1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ethernet.h> 46 47 #include <net80211/ieee80211_var.h> 48 #include <net80211/ieee80211_regdomain.h> 49 #ifdef IEEE80211_SUPPORT_SUPERG 50 #include <net80211/ieee80211_superg.h> 51 #endif 52 #include <net80211/ieee80211_ratectl.h> 53 54 #include <net/bpf.h> 55 56 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 57 [IEEE80211_MODE_AUTO] = "auto", 58 [IEEE80211_MODE_11A] = "11a", 59 [IEEE80211_MODE_11B] = "11b", 60 [IEEE80211_MODE_11G] = "11g", 61 [IEEE80211_MODE_FH] = "FH", 62 [IEEE80211_MODE_TURBO_A] = "turboA", 63 [IEEE80211_MODE_TURBO_G] = "turboG", 64 [IEEE80211_MODE_STURBO_A] = "sturboA", 65 [IEEE80211_MODE_HALF] = "half", 66 [IEEE80211_MODE_QUARTER] = "quarter", 67 [IEEE80211_MODE_11NA] = "11na", 68 [IEEE80211_MODE_11NG] = "11ng", 69 }; 70 /* map ieee80211_opmode to the corresponding capability bit */ 71 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 72 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 73 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 74 [IEEE80211_M_STA] = IEEE80211_C_STA, 75 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 76 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 77 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 78 #ifdef IEEE80211_SUPPORT_MESH 79 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 80 #endif 81 }; 82 83 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 84 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 85 86 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 87 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 88 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 89 static int ieee80211_media_setup(struct ieee80211com *ic, 90 struct ifmedia *media, int caps, int addsta, 91 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 92 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 93 static int ieee80211com_media_change(struct ifnet *); 94 static int media_status(enum ieee80211_opmode, 95 const struct ieee80211_channel *); 96 97 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 98 99 /* 100 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 101 */ 102 #define B(r) ((r) | IEEE80211_RATE_BASIC) 103 static const struct ieee80211_rateset ieee80211_rateset_11a = 104 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 105 static const struct ieee80211_rateset ieee80211_rateset_half = 106 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 107 static const struct ieee80211_rateset ieee80211_rateset_quarter = 108 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 109 static const struct ieee80211_rateset ieee80211_rateset_11b = 110 { 4, { B(2), B(4), B(11), B(22) } }; 111 /* NB: OFDM rates are handled specially based on mode */ 112 static const struct ieee80211_rateset ieee80211_rateset_11g = 113 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 114 #undef B 115 116 /* 117 * Fill in 802.11 available channel set, mark 118 * all available channels as active, and pick 119 * a default channel if not already specified. 120 */ 121 static void 122 ieee80211_chan_init(struct ieee80211com *ic) 123 { 124 #define DEFAULTRATES(m, def) do { \ 125 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 126 ic->ic_sup_rates[m] = def; \ 127 } while (0) 128 struct ieee80211_channel *c; 129 int i; 130 131 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 132 ("invalid number of channels specified: %u", ic->ic_nchans)); 133 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 134 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 135 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 136 for (i = 0; i < ic->ic_nchans; i++) { 137 c = &ic->ic_channels[i]; 138 KASSERT(c->ic_flags != 0, ("channel with no flags")); 139 /* 140 * Help drivers that work only with frequencies by filling 141 * in IEEE channel #'s if not already calculated. Note this 142 * mimics similar work done in ieee80211_setregdomain when 143 * changing regulatory state. 144 */ 145 if (c->ic_ieee == 0) 146 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 147 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 148 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 149 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 150 c->ic_flags); 151 /* default max tx power to max regulatory */ 152 if (c->ic_maxpower == 0) 153 c->ic_maxpower = 2*c->ic_maxregpower; 154 setbit(ic->ic_chan_avail, c->ic_ieee); 155 /* 156 * Identify mode capabilities. 157 */ 158 if (IEEE80211_IS_CHAN_A(c)) 159 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 160 if (IEEE80211_IS_CHAN_B(c)) 161 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 162 if (IEEE80211_IS_CHAN_ANYG(c)) 163 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 164 if (IEEE80211_IS_CHAN_FHSS(c)) 165 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 166 if (IEEE80211_IS_CHAN_108A(c)) 167 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 168 if (IEEE80211_IS_CHAN_108G(c)) 169 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 170 if (IEEE80211_IS_CHAN_ST(c)) 171 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 172 if (IEEE80211_IS_CHAN_HALF(c)) 173 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 174 if (IEEE80211_IS_CHAN_QUARTER(c)) 175 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 176 if (IEEE80211_IS_CHAN_HTA(c)) 177 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 178 if (IEEE80211_IS_CHAN_HTG(c)) 179 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 180 } 181 /* initialize candidate channels to all available */ 182 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 183 sizeof(ic->ic_chan_avail)); 184 185 /* sort channel table to allow lookup optimizations */ 186 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 187 188 /* invalidate any previous state */ 189 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 190 ic->ic_prevchan = NULL; 191 ic->ic_csa_newchan = NULL; 192 /* arbitrarily pick the first channel */ 193 ic->ic_curchan = &ic->ic_channels[0]; 194 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 195 196 /* fillin well-known rate sets if driver has not specified */ 197 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 198 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 199 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 200 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 201 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 202 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 203 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 204 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 205 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 206 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 207 208 /* 209 * Set auto mode to reset active channel state and any desired channel. 210 */ 211 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 212 #undef DEFAULTRATES 213 } 214 215 static void 216 null_update_mcast(struct ifnet *ifp) 217 { 218 if_printf(ifp, "need multicast update callback\n"); 219 } 220 221 static void 222 null_update_promisc(struct ifnet *ifp) 223 { 224 if_printf(ifp, "need promiscuous mode update callback\n"); 225 } 226 227 static int 228 null_transmit(struct ifnet *ifp, struct mbuf *m) 229 { 230 m_freem(m); 231 ifp->if_oerrors++; 232 return EACCES; /* XXX EIO/EPERM? */ 233 } 234 235 static int 236 null_output(struct ifnet *ifp, struct mbuf *m, 237 struct sockaddr *dst, struct route *ro) 238 { 239 if_printf(ifp, "discard raw packet\n"); 240 return null_transmit(ifp, m); 241 } 242 243 static void 244 null_input(struct ifnet *ifp, struct mbuf *m) 245 { 246 if_printf(ifp, "if_input should not be called\n"); 247 m_freem(m); 248 } 249 250 /* 251 * Attach/setup the common net80211 state. Called by 252 * the driver on attach to prior to creating any vap's. 253 */ 254 void 255 ieee80211_ifattach(struct ieee80211com *ic, 256 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 257 { 258 struct ifnet *ifp = ic->ic_ifp; 259 struct sockaddr_dl *sdl; 260 struct ifaddr *ifa; 261 262 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 263 264 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 265 TAILQ_INIT(&ic->ic_vaps); 266 267 /* Create a taskqueue for all state changes */ 268 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 269 taskqueue_thread_enqueue, &ic->ic_tq); 270 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq", 271 ifp->if_xname); 272 /* 273 * Fill in 802.11 available channel set, mark all 274 * available channels as active, and pick a default 275 * channel if not already specified. 276 */ 277 ieee80211_media_init(ic); 278 279 ic->ic_update_mcast = null_update_mcast; 280 ic->ic_update_promisc = null_update_promisc; 281 282 ic->ic_hash_key = arc4random(); 283 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 284 ic->ic_lintval = ic->ic_bintval; 285 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 286 287 ieee80211_crypto_attach(ic); 288 ieee80211_node_attach(ic); 289 ieee80211_power_attach(ic); 290 ieee80211_proto_attach(ic); 291 #ifdef IEEE80211_SUPPORT_SUPERG 292 ieee80211_superg_attach(ic); 293 #endif 294 ieee80211_ht_attach(ic); 295 ieee80211_scan_attach(ic); 296 ieee80211_regdomain_attach(ic); 297 ieee80211_dfs_attach(ic); 298 299 ieee80211_sysctl_attach(ic); 300 301 ifp->if_addrlen = IEEE80211_ADDR_LEN; 302 ifp->if_hdrlen = 0; 303 if_attach(ifp); 304 ifp->if_mtu = IEEE80211_MTU_MAX; 305 ifp->if_broadcastaddr = ieee80211broadcastaddr; 306 ifp->if_output = null_output; 307 ifp->if_input = null_input; /* just in case */ 308 ifp->if_resolvemulti = NULL; /* NB: callers check */ 309 310 ifa = ifaddr_byindex(ifp->if_index); 311 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 312 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 313 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 314 sdl->sdl_alen = IEEE80211_ADDR_LEN; 315 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 316 ifa_free(ifa); 317 } 318 319 /* 320 * Detach net80211 state on device detach. Tear down 321 * all vap's and reclaim all common state prior to the 322 * device state going away. Note we may call back into 323 * driver; it must be prepared for this. 324 */ 325 void 326 ieee80211_ifdetach(struct ieee80211com *ic) 327 { 328 struct ifnet *ifp = ic->ic_ifp; 329 struct ieee80211vap *vap; 330 331 if_detach(ifp); 332 333 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 334 ieee80211_vap_destroy(vap); 335 ieee80211_waitfor_parent(ic); 336 337 ieee80211_sysctl_detach(ic); 338 ieee80211_dfs_detach(ic); 339 ieee80211_regdomain_detach(ic); 340 ieee80211_scan_detach(ic); 341 #ifdef IEEE80211_SUPPORT_SUPERG 342 ieee80211_superg_detach(ic); 343 #endif 344 ieee80211_ht_detach(ic); 345 /* NB: must be called before ieee80211_node_detach */ 346 ieee80211_proto_detach(ic); 347 ieee80211_crypto_detach(ic); 348 ieee80211_power_detach(ic); 349 ieee80211_node_detach(ic); 350 351 ifmedia_removeall(&ic->ic_media); 352 taskqueue_free(ic->ic_tq); 353 IEEE80211_LOCK_DESTROY(ic); 354 } 355 356 /* 357 * Default reset method for use with the ioctl support. This 358 * method is invoked after any state change in the 802.11 359 * layer that should be propagated to the hardware but not 360 * require re-initialization of the 802.11 state machine (e.g 361 * rescanning for an ap). We always return ENETRESET which 362 * should cause the driver to re-initialize the device. Drivers 363 * can override this method to implement more optimized support. 364 */ 365 static int 366 default_reset(struct ieee80211vap *vap, u_long cmd) 367 { 368 return ENETRESET; 369 } 370 371 /* 372 * Prepare a vap for use. Drivers use this call to 373 * setup net80211 state in new vap's prior attaching 374 * them with ieee80211_vap_attach (below). 375 */ 376 int 377 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 378 const char name[IFNAMSIZ], int unit, int opmode, int flags, 379 const uint8_t bssid[IEEE80211_ADDR_LEN], 380 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 381 { 382 struct ifnet *ifp; 383 384 ifp = if_alloc(IFT_ETHER); 385 if (ifp == NULL) { 386 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 387 __func__); 388 return ENOMEM; 389 } 390 if_initname(ifp, name, unit); 391 ifp->if_softc = vap; /* back pointer */ 392 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 393 ifp->if_start = ieee80211_start; 394 ifp->if_ioctl = ieee80211_ioctl; 395 ifp->if_init = ieee80211_init; 396 /* NB: input+output filled in by ether_ifattach */ 397 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 398 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 399 IFQ_SET_READY(&ifp->if_snd); 400 401 vap->iv_ifp = ifp; 402 vap->iv_ic = ic; 403 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 404 vap->iv_flags_ext = ic->ic_flags_ext; 405 vap->iv_flags_ven = ic->ic_flags_ven; 406 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 407 vap->iv_htcaps = ic->ic_htcaps; 408 vap->iv_htextcaps = ic->ic_htextcaps; 409 vap->iv_opmode = opmode; 410 vap->iv_caps |= ieee80211_opcap[opmode]; 411 switch (opmode) { 412 case IEEE80211_M_WDS: 413 /* 414 * WDS links must specify the bssid of the far end. 415 * For legacy operation this is a static relationship. 416 * For non-legacy operation the station must associate 417 * and be authorized to pass traffic. Plumbing the 418 * vap to the proper node happens when the vap 419 * transitions to RUN state. 420 */ 421 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 422 vap->iv_flags |= IEEE80211_F_DESBSSID; 423 if (flags & IEEE80211_CLONE_WDSLEGACY) 424 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 425 break; 426 #ifdef IEEE80211_SUPPORT_TDMA 427 case IEEE80211_M_AHDEMO: 428 if (flags & IEEE80211_CLONE_TDMA) { 429 /* NB: checked before clone operation allowed */ 430 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 431 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 432 /* 433 * Propagate TDMA capability to mark vap; this 434 * cannot be removed and is used to distinguish 435 * regular ahdemo operation from ahdemo+tdma. 436 */ 437 vap->iv_caps |= IEEE80211_C_TDMA; 438 } 439 break; 440 #endif 441 } 442 /* auto-enable s/w beacon miss support */ 443 if (flags & IEEE80211_CLONE_NOBEACONS) 444 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 445 /* auto-generated or user supplied MAC address */ 446 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 447 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 448 /* 449 * Enable various functionality by default if we're 450 * capable; the driver can override us if it knows better. 451 */ 452 if (vap->iv_caps & IEEE80211_C_WME) 453 vap->iv_flags |= IEEE80211_F_WME; 454 if (vap->iv_caps & IEEE80211_C_BURST) 455 vap->iv_flags |= IEEE80211_F_BURST; 456 /* NB: bg scanning only makes sense for station mode right now */ 457 if (vap->iv_opmode == IEEE80211_M_STA && 458 (vap->iv_caps & IEEE80211_C_BGSCAN)) 459 vap->iv_flags |= IEEE80211_F_BGSCAN; 460 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 461 /* NB: DFS support only makes sense for ap mode right now */ 462 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 463 (vap->iv_caps & IEEE80211_C_DFS)) 464 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 465 466 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 467 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 468 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 469 /* 470 * Install a default reset method for the ioctl support; 471 * the driver can override this. 472 */ 473 vap->iv_reset = default_reset; 474 475 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 476 477 ieee80211_sysctl_vattach(vap); 478 ieee80211_crypto_vattach(vap); 479 ieee80211_node_vattach(vap); 480 ieee80211_power_vattach(vap); 481 ieee80211_proto_vattach(vap); 482 #ifdef IEEE80211_SUPPORT_SUPERG 483 ieee80211_superg_vattach(vap); 484 #endif 485 ieee80211_ht_vattach(vap); 486 ieee80211_scan_vattach(vap); 487 ieee80211_regdomain_vattach(vap); 488 ieee80211_radiotap_vattach(vap); 489 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 490 491 return 0; 492 } 493 494 /* 495 * Activate a vap. State should have been prepared with a 496 * call to ieee80211_vap_setup and by the driver. On return 497 * from this call the vap is ready for use. 498 */ 499 int 500 ieee80211_vap_attach(struct ieee80211vap *vap, 501 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 502 { 503 struct ifnet *ifp = vap->iv_ifp; 504 struct ieee80211com *ic = vap->iv_ic; 505 struct ifmediareq imr; 506 int maxrate; 507 508 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 509 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 510 __func__, ieee80211_opmode_name[vap->iv_opmode], 511 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 512 513 /* 514 * Do late attach work that cannot happen until after 515 * the driver has had a chance to override defaults. 516 */ 517 ieee80211_node_latevattach(vap); 518 ieee80211_power_latevattach(vap); 519 520 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 521 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 522 ieee80211_media_status(ifp, &imr); 523 /* NB: strip explicit mode; we're actually in autoselect */ 524 ifmedia_set(&vap->iv_media, 525 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 526 if (maxrate) 527 ifp->if_baudrate = IF_Mbps(maxrate); 528 529 ether_ifattach(ifp, vap->iv_myaddr); 530 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 531 /* NB: disallow transmit */ 532 ifp->if_transmit = null_transmit; 533 ifp->if_output = null_output; 534 } else { 535 /* hook output method setup by ether_ifattach */ 536 vap->iv_output = ifp->if_output; 537 ifp->if_output = ieee80211_output; 538 } 539 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 540 541 IEEE80211_LOCK(ic); 542 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 543 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 544 #ifdef IEEE80211_SUPPORT_SUPERG 545 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 546 #endif 547 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 548 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 549 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 550 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 551 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 552 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 553 IEEE80211_UNLOCK(ic); 554 555 return 1; 556 } 557 558 /* 559 * Tear down vap state and reclaim the ifnet. 560 * The driver is assumed to have prepared for 561 * this; e.g. by turning off interrupts for the 562 * underlying device. 563 */ 564 void 565 ieee80211_vap_detach(struct ieee80211vap *vap) 566 { 567 struct ieee80211com *ic = vap->iv_ic; 568 struct ifnet *ifp = vap->iv_ifp; 569 570 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 571 __func__, ieee80211_opmode_name[vap->iv_opmode], 572 ic->ic_ifp->if_xname); 573 574 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 575 ether_ifdetach(ifp); 576 577 ieee80211_stop(vap); 578 579 /* 580 * Flush any deferred vap tasks. 581 */ 582 ieee80211_draintask(ic, &vap->iv_nstate_task); 583 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 584 585 /* XXX band-aid until ifnet handles this for us */ 586 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 587 588 IEEE80211_LOCK(ic); 589 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 590 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 591 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 592 #ifdef IEEE80211_SUPPORT_SUPERG 593 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 594 #endif 595 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 596 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 597 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 598 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 599 /* NB: this handles the bpfdetach done below */ 600 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 601 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 602 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 603 IEEE80211_UNLOCK(ic); 604 605 ifmedia_removeall(&vap->iv_media); 606 607 ieee80211_radiotap_vdetach(vap); 608 ieee80211_regdomain_vdetach(vap); 609 ieee80211_scan_vdetach(vap); 610 #ifdef IEEE80211_SUPPORT_SUPERG 611 ieee80211_superg_vdetach(vap); 612 #endif 613 ieee80211_ht_vdetach(vap); 614 /* NB: must be before ieee80211_node_vdetach */ 615 ieee80211_proto_vdetach(vap); 616 ieee80211_crypto_vdetach(vap); 617 ieee80211_power_vdetach(vap); 618 ieee80211_node_vdetach(vap); 619 ieee80211_sysctl_vdetach(vap); 620 621 if_free(ifp); 622 } 623 624 /* 625 * Synchronize flag bit state in the parent ifnet structure 626 * according to the state of all vap ifnet's. This is used, 627 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 628 */ 629 void 630 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 631 { 632 struct ifnet *ifp = ic->ic_ifp; 633 struct ieee80211vap *vap; 634 int bit, oflags; 635 636 IEEE80211_LOCK_ASSERT(ic); 637 638 bit = 0; 639 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 640 if (vap->iv_ifp->if_flags & flag) { 641 /* 642 * XXX the bridge sets PROMISC but we don't want to 643 * enable it on the device, discard here so all the 644 * drivers don't need to special-case it 645 */ 646 if (flag == IFF_PROMISC && 647 !(vap->iv_opmode == IEEE80211_M_MONITOR || 648 (vap->iv_opmode == IEEE80211_M_AHDEMO && 649 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 650 continue; 651 bit = 1; 652 break; 653 } 654 oflags = ifp->if_flags; 655 if (bit) 656 ifp->if_flags |= flag; 657 else 658 ifp->if_flags &= ~flag; 659 if ((ifp->if_flags ^ oflags) & flag) { 660 /* XXX should we return 1/0 and let caller do this? */ 661 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 662 if (flag == IFF_PROMISC) 663 ieee80211_runtask(ic, &ic->ic_promisc_task); 664 else if (flag == IFF_ALLMULTI) 665 ieee80211_runtask(ic, &ic->ic_mcast_task); 666 } 667 } 668 } 669 670 /* 671 * Synchronize flag bit state in the com structure 672 * according to the state of all vap's. This is used, 673 * for example, to handle state changes via ioctls. 674 */ 675 static void 676 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 677 { 678 struct ieee80211vap *vap; 679 int bit; 680 681 IEEE80211_LOCK_ASSERT(ic); 682 683 bit = 0; 684 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 685 if (vap->iv_flags & flag) { 686 bit = 1; 687 break; 688 } 689 if (bit) 690 ic->ic_flags |= flag; 691 else 692 ic->ic_flags &= ~flag; 693 } 694 695 void 696 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 697 { 698 struct ieee80211com *ic = vap->iv_ic; 699 700 IEEE80211_LOCK(ic); 701 if (flag < 0) { 702 flag = -flag; 703 vap->iv_flags &= ~flag; 704 } else 705 vap->iv_flags |= flag; 706 ieee80211_syncflag_locked(ic, flag); 707 IEEE80211_UNLOCK(ic); 708 } 709 710 /* 711 * Synchronize flags_ht bit state in the com structure 712 * according to the state of all vap's. This is used, 713 * for example, to handle state changes via ioctls. 714 */ 715 static void 716 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 717 { 718 struct ieee80211vap *vap; 719 int bit; 720 721 IEEE80211_LOCK_ASSERT(ic); 722 723 bit = 0; 724 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 725 if (vap->iv_flags_ht & flag) { 726 bit = 1; 727 break; 728 } 729 if (bit) 730 ic->ic_flags_ht |= flag; 731 else 732 ic->ic_flags_ht &= ~flag; 733 } 734 735 void 736 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 737 { 738 struct ieee80211com *ic = vap->iv_ic; 739 740 IEEE80211_LOCK(ic); 741 if (flag < 0) { 742 flag = -flag; 743 vap->iv_flags_ht &= ~flag; 744 } else 745 vap->iv_flags_ht |= flag; 746 ieee80211_syncflag_ht_locked(ic, flag); 747 IEEE80211_UNLOCK(ic); 748 } 749 750 /* 751 * Synchronize flags_ext bit state in the com structure 752 * according to the state of all vap's. This is used, 753 * for example, to handle state changes via ioctls. 754 */ 755 static void 756 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 757 { 758 struct ieee80211vap *vap; 759 int bit; 760 761 IEEE80211_LOCK_ASSERT(ic); 762 763 bit = 0; 764 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 765 if (vap->iv_flags_ext & flag) { 766 bit = 1; 767 break; 768 } 769 if (bit) 770 ic->ic_flags_ext |= flag; 771 else 772 ic->ic_flags_ext &= ~flag; 773 } 774 775 void 776 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 777 { 778 struct ieee80211com *ic = vap->iv_ic; 779 780 IEEE80211_LOCK(ic); 781 if (flag < 0) { 782 flag = -flag; 783 vap->iv_flags_ext &= ~flag; 784 } else 785 vap->iv_flags_ext |= flag; 786 ieee80211_syncflag_ext_locked(ic, flag); 787 IEEE80211_UNLOCK(ic); 788 } 789 790 static __inline int 791 mapgsm(u_int freq, u_int flags) 792 { 793 freq *= 10; 794 if (flags & IEEE80211_CHAN_QUARTER) 795 freq += 5; 796 else if (flags & IEEE80211_CHAN_HALF) 797 freq += 10; 798 else 799 freq += 20; 800 /* NB: there is no 907/20 wide but leave room */ 801 return (freq - 906*10) / 5; 802 } 803 804 static __inline int 805 mappsb(u_int freq, u_int flags) 806 { 807 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 808 } 809 810 /* 811 * Convert MHz frequency to IEEE channel number. 812 */ 813 int 814 ieee80211_mhz2ieee(u_int freq, u_int flags) 815 { 816 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 817 if (flags & IEEE80211_CHAN_GSM) 818 return mapgsm(freq, flags); 819 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 820 if (freq == 2484) 821 return 14; 822 if (freq < 2484) 823 return ((int) freq - 2407) / 5; 824 else 825 return 15 + ((freq - 2512) / 20); 826 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 827 if (freq <= 5000) { 828 /* XXX check regdomain? */ 829 if (IS_FREQ_IN_PSB(freq)) 830 return mappsb(freq, flags); 831 return (freq - 4000) / 5; 832 } else 833 return (freq - 5000) / 5; 834 } else { /* either, guess */ 835 if (freq == 2484) 836 return 14; 837 if (freq < 2484) { 838 if (907 <= freq && freq <= 922) 839 return mapgsm(freq, flags); 840 return ((int) freq - 2407) / 5; 841 } 842 if (freq < 5000) { 843 if (IS_FREQ_IN_PSB(freq)) 844 return mappsb(freq, flags); 845 else if (freq > 4900) 846 return (freq - 4000) / 5; 847 else 848 return 15 + ((freq - 2512) / 20); 849 } 850 return (freq - 5000) / 5; 851 } 852 #undef IS_FREQ_IN_PSB 853 } 854 855 /* 856 * Convert channel to IEEE channel number. 857 */ 858 int 859 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 860 { 861 if (c == NULL) { 862 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 863 return 0; /* XXX */ 864 } 865 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 866 } 867 868 /* 869 * Convert IEEE channel number to MHz frequency. 870 */ 871 u_int 872 ieee80211_ieee2mhz(u_int chan, u_int flags) 873 { 874 if (flags & IEEE80211_CHAN_GSM) 875 return 907 + 5 * (chan / 10); 876 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 877 if (chan == 14) 878 return 2484; 879 if (chan < 14) 880 return 2407 + chan*5; 881 else 882 return 2512 + ((chan-15)*20); 883 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 884 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 885 chan -= 37; 886 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 887 } 888 return 5000 + (chan*5); 889 } else { /* either, guess */ 890 /* XXX can't distinguish PSB+GSM channels */ 891 if (chan == 14) 892 return 2484; 893 if (chan < 14) /* 0-13 */ 894 return 2407 + chan*5; 895 if (chan < 27) /* 15-26 */ 896 return 2512 + ((chan-15)*20); 897 return 5000 + (chan*5); 898 } 899 } 900 901 /* 902 * Locate a channel given a frequency+flags. We cache 903 * the previous lookup to optimize switching between two 904 * channels--as happens with dynamic turbo. 905 */ 906 struct ieee80211_channel * 907 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 908 { 909 struct ieee80211_channel *c; 910 int i; 911 912 flags &= IEEE80211_CHAN_ALLTURBO; 913 c = ic->ic_prevchan; 914 if (c != NULL && c->ic_freq == freq && 915 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 916 return c; 917 /* brute force search */ 918 for (i = 0; i < ic->ic_nchans; i++) { 919 c = &ic->ic_channels[i]; 920 if (c->ic_freq == freq && 921 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 922 return c; 923 } 924 return NULL; 925 } 926 927 /* 928 * Locate a channel given a channel number+flags. We cache 929 * the previous lookup to optimize switching between two 930 * channels--as happens with dynamic turbo. 931 */ 932 struct ieee80211_channel * 933 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 934 { 935 struct ieee80211_channel *c; 936 int i; 937 938 flags &= IEEE80211_CHAN_ALLTURBO; 939 c = ic->ic_prevchan; 940 if (c != NULL && c->ic_ieee == ieee && 941 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 942 return c; 943 /* brute force search */ 944 for (i = 0; i < ic->ic_nchans; i++) { 945 c = &ic->ic_channels[i]; 946 if (c->ic_ieee == ieee && 947 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 948 return c; 949 } 950 return NULL; 951 } 952 953 static void 954 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 955 { 956 #define ADD(_ic, _s, _o) \ 957 ifmedia_add(media, \ 958 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 959 static const u_int mopts[IEEE80211_MODE_MAX] = { 960 [IEEE80211_MODE_AUTO] = IFM_AUTO, 961 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 962 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 963 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 964 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 965 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 966 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 967 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 968 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 969 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 970 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 971 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 972 }; 973 u_int mopt; 974 975 mopt = mopts[mode]; 976 if (addsta) 977 ADD(ic, mword, mopt); /* STA mode has no cap */ 978 if (caps & IEEE80211_C_IBSS) 979 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 980 if (caps & IEEE80211_C_HOSTAP) 981 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 982 if (caps & IEEE80211_C_AHDEMO) 983 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 984 if (caps & IEEE80211_C_MONITOR) 985 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 986 if (caps & IEEE80211_C_WDS) 987 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 988 if (caps & IEEE80211_C_MBSS) 989 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 990 #undef ADD 991 } 992 993 /* 994 * Setup the media data structures according to the channel and 995 * rate tables. 996 */ 997 static int 998 ieee80211_media_setup(struct ieee80211com *ic, 999 struct ifmedia *media, int caps, int addsta, 1000 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1001 { 1002 int i, j, mode, rate, maxrate, mword, r; 1003 const struct ieee80211_rateset *rs; 1004 struct ieee80211_rateset allrates; 1005 1006 /* 1007 * Fill in media characteristics. 1008 */ 1009 ifmedia_init(media, 0, media_change, media_stat); 1010 maxrate = 0; 1011 /* 1012 * Add media for legacy operating modes. 1013 */ 1014 memset(&allrates, 0, sizeof(allrates)); 1015 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1016 if (isclr(ic->ic_modecaps, mode)) 1017 continue; 1018 addmedia(media, caps, addsta, mode, IFM_AUTO); 1019 if (mode == IEEE80211_MODE_AUTO) 1020 continue; 1021 rs = &ic->ic_sup_rates[mode]; 1022 for (i = 0; i < rs->rs_nrates; i++) { 1023 rate = rs->rs_rates[i]; 1024 mword = ieee80211_rate2media(ic, rate, mode); 1025 if (mword == 0) 1026 continue; 1027 addmedia(media, caps, addsta, mode, mword); 1028 /* 1029 * Add legacy rate to the collection of all rates. 1030 */ 1031 r = rate & IEEE80211_RATE_VAL; 1032 for (j = 0; j < allrates.rs_nrates; j++) 1033 if (allrates.rs_rates[j] == r) 1034 break; 1035 if (j == allrates.rs_nrates) { 1036 /* unique, add to the set */ 1037 allrates.rs_rates[j] = r; 1038 allrates.rs_nrates++; 1039 } 1040 rate = (rate & IEEE80211_RATE_VAL) / 2; 1041 if (rate > maxrate) 1042 maxrate = rate; 1043 } 1044 } 1045 for (i = 0; i < allrates.rs_nrates; i++) { 1046 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1047 IEEE80211_MODE_AUTO); 1048 if (mword == 0) 1049 continue; 1050 /* NB: remove media options from mword */ 1051 addmedia(media, caps, addsta, 1052 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1053 } 1054 /* 1055 * Add HT/11n media. Note that we do not have enough 1056 * bits in the media subtype to express the MCS so we 1057 * use a "placeholder" media subtype and any fixed MCS 1058 * must be specified with a different mechanism. 1059 */ 1060 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1061 if (isclr(ic->ic_modecaps, mode)) 1062 continue; 1063 addmedia(media, caps, addsta, mode, IFM_AUTO); 1064 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1065 } 1066 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1067 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1068 addmedia(media, caps, addsta, 1069 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1070 /* XXX could walk htrates */ 1071 /* XXX known array size */ 1072 if (ieee80211_htrates[15].ht40_rate_400ns > maxrate) 1073 maxrate = ieee80211_htrates[15].ht40_rate_400ns; 1074 } 1075 return maxrate; 1076 } 1077 1078 void 1079 ieee80211_media_init(struct ieee80211com *ic) 1080 { 1081 struct ifnet *ifp = ic->ic_ifp; 1082 int maxrate; 1083 1084 /* NB: this works because the structure is initialized to zero */ 1085 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1086 /* 1087 * We are re-initializing the channel list; clear 1088 * the existing media state as the media routines 1089 * don't suppress duplicates. 1090 */ 1091 ifmedia_removeall(&ic->ic_media); 1092 } 1093 ieee80211_chan_init(ic); 1094 1095 /* 1096 * Recalculate media settings in case new channel list changes 1097 * the set of available modes. 1098 */ 1099 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1100 ieee80211com_media_change, ieee80211com_media_status); 1101 /* NB: strip explicit mode; we're actually in autoselect */ 1102 ifmedia_set(&ic->ic_media, 1103 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1104 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1105 if (maxrate) 1106 ifp->if_baudrate = IF_Mbps(maxrate); 1107 1108 /* XXX need to propagate new media settings to vap's */ 1109 } 1110 1111 /* XXX inline or eliminate? */ 1112 const struct ieee80211_rateset * 1113 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1114 { 1115 /* XXX does this work for 11ng basic rates? */ 1116 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1117 } 1118 1119 void 1120 ieee80211_announce(struct ieee80211com *ic) 1121 { 1122 struct ifnet *ifp = ic->ic_ifp; 1123 int i, mode, rate, mword; 1124 const struct ieee80211_rateset *rs; 1125 1126 /* NB: skip AUTO since it has no rates */ 1127 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1128 if (isclr(ic->ic_modecaps, mode)) 1129 continue; 1130 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1131 rs = &ic->ic_sup_rates[mode]; 1132 for (i = 0; i < rs->rs_nrates; i++) { 1133 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1134 if (mword == 0) 1135 continue; 1136 rate = ieee80211_media2rate(mword); 1137 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1138 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1139 } 1140 printf("\n"); 1141 } 1142 ieee80211_ht_announce(ic); 1143 } 1144 1145 void 1146 ieee80211_announce_channels(struct ieee80211com *ic) 1147 { 1148 const struct ieee80211_channel *c; 1149 char type; 1150 int i, cw; 1151 1152 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1153 for (i = 0; i < ic->ic_nchans; i++) { 1154 c = &ic->ic_channels[i]; 1155 if (IEEE80211_IS_CHAN_ST(c)) 1156 type = 'S'; 1157 else if (IEEE80211_IS_CHAN_108A(c)) 1158 type = 'T'; 1159 else if (IEEE80211_IS_CHAN_108G(c)) 1160 type = 'G'; 1161 else if (IEEE80211_IS_CHAN_HT(c)) 1162 type = 'n'; 1163 else if (IEEE80211_IS_CHAN_A(c)) 1164 type = 'a'; 1165 else if (IEEE80211_IS_CHAN_ANYG(c)) 1166 type = 'g'; 1167 else if (IEEE80211_IS_CHAN_B(c)) 1168 type = 'b'; 1169 else 1170 type = 'f'; 1171 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1172 cw = 40; 1173 else if (IEEE80211_IS_CHAN_HALF(c)) 1174 cw = 10; 1175 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1176 cw = 5; 1177 else 1178 cw = 20; 1179 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1180 , c->ic_ieee, c->ic_freq, type 1181 , cw 1182 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1183 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1184 , c->ic_maxregpower 1185 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1186 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1187 ); 1188 } 1189 } 1190 1191 static int 1192 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1193 { 1194 switch (IFM_MODE(ime->ifm_media)) { 1195 case IFM_IEEE80211_11A: 1196 *mode = IEEE80211_MODE_11A; 1197 break; 1198 case IFM_IEEE80211_11B: 1199 *mode = IEEE80211_MODE_11B; 1200 break; 1201 case IFM_IEEE80211_11G: 1202 *mode = IEEE80211_MODE_11G; 1203 break; 1204 case IFM_IEEE80211_FH: 1205 *mode = IEEE80211_MODE_FH; 1206 break; 1207 case IFM_IEEE80211_11NA: 1208 *mode = IEEE80211_MODE_11NA; 1209 break; 1210 case IFM_IEEE80211_11NG: 1211 *mode = IEEE80211_MODE_11NG; 1212 break; 1213 case IFM_AUTO: 1214 *mode = IEEE80211_MODE_AUTO; 1215 break; 1216 default: 1217 return 0; 1218 } 1219 /* 1220 * Turbo mode is an ``option''. 1221 * XXX does not apply to AUTO 1222 */ 1223 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1224 if (*mode == IEEE80211_MODE_11A) { 1225 if (flags & IEEE80211_F_TURBOP) 1226 *mode = IEEE80211_MODE_TURBO_A; 1227 else 1228 *mode = IEEE80211_MODE_STURBO_A; 1229 } else if (*mode == IEEE80211_MODE_11G) 1230 *mode = IEEE80211_MODE_TURBO_G; 1231 else 1232 return 0; 1233 } 1234 /* XXX HT40 +/- */ 1235 return 1; 1236 } 1237 1238 /* 1239 * Handle a media change request on the underlying interface. 1240 */ 1241 int 1242 ieee80211com_media_change(struct ifnet *ifp) 1243 { 1244 return EINVAL; 1245 } 1246 1247 /* 1248 * Handle a media change request on the vap interface. 1249 */ 1250 int 1251 ieee80211_media_change(struct ifnet *ifp) 1252 { 1253 struct ieee80211vap *vap = ifp->if_softc; 1254 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1255 uint16_t newmode; 1256 1257 if (!media2mode(ime, vap->iv_flags, &newmode)) 1258 return EINVAL; 1259 if (vap->iv_des_mode != newmode) { 1260 vap->iv_des_mode = newmode; 1261 /* XXX kick state machine if up+running */ 1262 } 1263 return 0; 1264 } 1265 1266 /* 1267 * Common code to calculate the media status word 1268 * from the operating mode and channel state. 1269 */ 1270 static int 1271 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1272 { 1273 int status; 1274 1275 status = IFM_IEEE80211; 1276 switch (opmode) { 1277 case IEEE80211_M_STA: 1278 break; 1279 case IEEE80211_M_IBSS: 1280 status |= IFM_IEEE80211_ADHOC; 1281 break; 1282 case IEEE80211_M_HOSTAP: 1283 status |= IFM_IEEE80211_HOSTAP; 1284 break; 1285 case IEEE80211_M_MONITOR: 1286 status |= IFM_IEEE80211_MONITOR; 1287 break; 1288 case IEEE80211_M_AHDEMO: 1289 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1290 break; 1291 case IEEE80211_M_WDS: 1292 status |= IFM_IEEE80211_WDS; 1293 break; 1294 case IEEE80211_M_MBSS: 1295 status |= IFM_IEEE80211_MBSS; 1296 break; 1297 } 1298 if (IEEE80211_IS_CHAN_HTA(chan)) { 1299 status |= IFM_IEEE80211_11NA; 1300 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1301 status |= IFM_IEEE80211_11NG; 1302 } else if (IEEE80211_IS_CHAN_A(chan)) { 1303 status |= IFM_IEEE80211_11A; 1304 } else if (IEEE80211_IS_CHAN_B(chan)) { 1305 status |= IFM_IEEE80211_11B; 1306 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1307 status |= IFM_IEEE80211_11G; 1308 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1309 status |= IFM_IEEE80211_FH; 1310 } 1311 /* XXX else complain? */ 1312 1313 if (IEEE80211_IS_CHAN_TURBO(chan)) 1314 status |= IFM_IEEE80211_TURBO; 1315 #if 0 1316 if (IEEE80211_IS_CHAN_HT20(chan)) 1317 status |= IFM_IEEE80211_HT20; 1318 if (IEEE80211_IS_CHAN_HT40(chan)) 1319 status |= IFM_IEEE80211_HT40; 1320 #endif 1321 return status; 1322 } 1323 1324 static void 1325 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1326 { 1327 struct ieee80211com *ic = ifp->if_l2com; 1328 struct ieee80211vap *vap; 1329 1330 imr->ifm_status = IFM_AVALID; 1331 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1332 if (vap->iv_ifp->if_flags & IFF_UP) { 1333 imr->ifm_status |= IFM_ACTIVE; 1334 break; 1335 } 1336 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1337 if (imr->ifm_status & IFM_ACTIVE) 1338 imr->ifm_current = imr->ifm_active; 1339 } 1340 1341 void 1342 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1343 { 1344 struct ieee80211vap *vap = ifp->if_softc; 1345 struct ieee80211com *ic = vap->iv_ic; 1346 enum ieee80211_phymode mode; 1347 1348 imr->ifm_status = IFM_AVALID; 1349 /* 1350 * NB: use the current channel's mode to lock down a xmit 1351 * rate only when running; otherwise we may have a mismatch 1352 * in which case the rate will not be convertible. 1353 */ 1354 if (vap->iv_state == IEEE80211_S_RUN) { 1355 imr->ifm_status |= IFM_ACTIVE; 1356 mode = ieee80211_chan2mode(ic->ic_curchan); 1357 } else 1358 mode = IEEE80211_MODE_AUTO; 1359 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1360 /* 1361 * Calculate a current rate if possible. 1362 */ 1363 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1364 /* 1365 * A fixed rate is set, report that. 1366 */ 1367 imr->ifm_active |= ieee80211_rate2media(ic, 1368 vap->iv_txparms[mode].ucastrate, mode); 1369 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1370 /* 1371 * In station mode report the current transmit rate. 1372 */ 1373 imr->ifm_active |= ieee80211_rate2media(ic, 1374 vap->iv_bss->ni_txrate, mode); 1375 } else 1376 imr->ifm_active |= IFM_AUTO; 1377 if (imr->ifm_status & IFM_ACTIVE) 1378 imr->ifm_current = imr->ifm_active; 1379 } 1380 1381 /* 1382 * Set the current phy mode and recalculate the active channel 1383 * set based on the available channels for this mode. Also 1384 * select a new default/current channel if the current one is 1385 * inappropriate for this mode. 1386 */ 1387 int 1388 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1389 { 1390 /* 1391 * Adjust basic rates in 11b/11g supported rate set. 1392 * Note that if operating on a hal/quarter rate channel 1393 * this is a noop as those rates sets are different 1394 * and used instead. 1395 */ 1396 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1397 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1398 1399 ic->ic_curmode = mode; 1400 ieee80211_reset_erp(ic); /* reset ERP state */ 1401 1402 return 0; 1403 } 1404 1405 /* 1406 * Return the phy mode for with the specified channel. 1407 */ 1408 enum ieee80211_phymode 1409 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1410 { 1411 1412 if (IEEE80211_IS_CHAN_HTA(chan)) 1413 return IEEE80211_MODE_11NA; 1414 else if (IEEE80211_IS_CHAN_HTG(chan)) 1415 return IEEE80211_MODE_11NG; 1416 else if (IEEE80211_IS_CHAN_108G(chan)) 1417 return IEEE80211_MODE_TURBO_G; 1418 else if (IEEE80211_IS_CHAN_ST(chan)) 1419 return IEEE80211_MODE_STURBO_A; 1420 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1421 return IEEE80211_MODE_TURBO_A; 1422 else if (IEEE80211_IS_CHAN_HALF(chan)) 1423 return IEEE80211_MODE_HALF; 1424 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1425 return IEEE80211_MODE_QUARTER; 1426 else if (IEEE80211_IS_CHAN_A(chan)) 1427 return IEEE80211_MODE_11A; 1428 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1429 return IEEE80211_MODE_11G; 1430 else if (IEEE80211_IS_CHAN_B(chan)) 1431 return IEEE80211_MODE_11B; 1432 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1433 return IEEE80211_MODE_FH; 1434 1435 /* NB: should not get here */ 1436 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1437 __func__, chan->ic_freq, chan->ic_flags); 1438 return IEEE80211_MODE_11B; 1439 } 1440 1441 struct ratemedia { 1442 u_int match; /* rate + mode */ 1443 u_int media; /* if_media rate */ 1444 }; 1445 1446 static int 1447 findmedia(const struct ratemedia rates[], int n, u_int match) 1448 { 1449 int i; 1450 1451 for (i = 0; i < n; i++) 1452 if (rates[i].match == match) 1453 return rates[i].media; 1454 return IFM_AUTO; 1455 } 1456 1457 /* 1458 * Convert IEEE80211 rate value to ifmedia subtype. 1459 * Rate is either a legacy rate in units of 0.5Mbps 1460 * or an MCS index. 1461 */ 1462 int 1463 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1464 { 1465 #define N(a) (sizeof(a) / sizeof(a[0])) 1466 static const struct ratemedia rates[] = { 1467 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1468 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1469 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1470 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1471 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1472 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1473 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1474 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1475 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1476 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1477 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1478 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1479 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1480 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1481 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1482 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1483 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1484 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1485 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1486 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1487 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1488 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1489 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1490 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1491 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1492 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1493 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1494 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1495 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1496 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1497 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1498 }; 1499 static const struct ratemedia htrates[] = { 1500 { 0, IFM_IEEE80211_MCS }, 1501 { 1, IFM_IEEE80211_MCS }, 1502 { 2, IFM_IEEE80211_MCS }, 1503 { 3, IFM_IEEE80211_MCS }, 1504 { 4, IFM_IEEE80211_MCS }, 1505 { 5, IFM_IEEE80211_MCS }, 1506 { 6, IFM_IEEE80211_MCS }, 1507 { 7, IFM_IEEE80211_MCS }, 1508 { 8, IFM_IEEE80211_MCS }, 1509 { 9, IFM_IEEE80211_MCS }, 1510 { 10, IFM_IEEE80211_MCS }, 1511 { 11, IFM_IEEE80211_MCS }, 1512 { 12, IFM_IEEE80211_MCS }, 1513 { 13, IFM_IEEE80211_MCS }, 1514 { 14, IFM_IEEE80211_MCS }, 1515 { 15, IFM_IEEE80211_MCS }, 1516 }; 1517 int m; 1518 1519 /* 1520 * Check 11n rates first for match as an MCS. 1521 */ 1522 if (mode == IEEE80211_MODE_11NA) { 1523 if (rate & IEEE80211_RATE_MCS) { 1524 rate &= ~IEEE80211_RATE_MCS; 1525 m = findmedia(htrates, N(htrates), rate); 1526 if (m != IFM_AUTO) 1527 return m | IFM_IEEE80211_11NA; 1528 } 1529 } else if (mode == IEEE80211_MODE_11NG) { 1530 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1531 if (rate & IEEE80211_RATE_MCS) { 1532 rate &= ~IEEE80211_RATE_MCS; 1533 m = findmedia(htrates, N(htrates), rate); 1534 if (m != IFM_AUTO) 1535 return m | IFM_IEEE80211_11NG; 1536 } 1537 } 1538 rate &= IEEE80211_RATE_VAL; 1539 switch (mode) { 1540 case IEEE80211_MODE_11A: 1541 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1542 case IEEE80211_MODE_QUARTER: 1543 case IEEE80211_MODE_11NA: 1544 case IEEE80211_MODE_TURBO_A: 1545 case IEEE80211_MODE_STURBO_A: 1546 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1547 case IEEE80211_MODE_11B: 1548 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1549 case IEEE80211_MODE_FH: 1550 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1551 case IEEE80211_MODE_AUTO: 1552 /* NB: ic may be NULL for some drivers */ 1553 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1554 return findmedia(rates, N(rates), 1555 rate | IFM_IEEE80211_FH); 1556 /* NB: hack, 11g matches both 11b+11a rates */ 1557 /* fall thru... */ 1558 case IEEE80211_MODE_11G: 1559 case IEEE80211_MODE_11NG: 1560 case IEEE80211_MODE_TURBO_G: 1561 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1562 } 1563 return IFM_AUTO; 1564 #undef N 1565 } 1566 1567 int 1568 ieee80211_media2rate(int mword) 1569 { 1570 #define N(a) (sizeof(a) / sizeof(a[0])) 1571 static const int ieeerates[] = { 1572 -1, /* IFM_AUTO */ 1573 0, /* IFM_MANUAL */ 1574 0, /* IFM_NONE */ 1575 2, /* IFM_IEEE80211_FH1 */ 1576 4, /* IFM_IEEE80211_FH2 */ 1577 2, /* IFM_IEEE80211_DS1 */ 1578 4, /* IFM_IEEE80211_DS2 */ 1579 11, /* IFM_IEEE80211_DS5 */ 1580 22, /* IFM_IEEE80211_DS11 */ 1581 44, /* IFM_IEEE80211_DS22 */ 1582 12, /* IFM_IEEE80211_OFDM6 */ 1583 18, /* IFM_IEEE80211_OFDM9 */ 1584 24, /* IFM_IEEE80211_OFDM12 */ 1585 36, /* IFM_IEEE80211_OFDM18 */ 1586 48, /* IFM_IEEE80211_OFDM24 */ 1587 72, /* IFM_IEEE80211_OFDM36 */ 1588 96, /* IFM_IEEE80211_OFDM48 */ 1589 108, /* IFM_IEEE80211_OFDM54 */ 1590 144, /* IFM_IEEE80211_OFDM72 */ 1591 0, /* IFM_IEEE80211_DS354k */ 1592 0, /* IFM_IEEE80211_DS512k */ 1593 6, /* IFM_IEEE80211_OFDM3 */ 1594 9, /* IFM_IEEE80211_OFDM4 */ 1595 54, /* IFM_IEEE80211_OFDM27 */ 1596 -1, /* IFM_IEEE80211_MCS */ 1597 }; 1598 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1599 ieeerates[IFM_SUBTYPE(mword)] : 0; 1600 #undef N 1601 } 1602 1603 /* 1604 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1605 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1606 */ 1607 #define mix(a, b, c) \ 1608 do { \ 1609 a -= b; a -= c; a ^= (c >> 13); \ 1610 b -= c; b -= a; b ^= (a << 8); \ 1611 c -= a; c -= b; c ^= (b >> 13); \ 1612 a -= b; a -= c; a ^= (c >> 12); \ 1613 b -= c; b -= a; b ^= (a << 16); \ 1614 c -= a; c -= b; c ^= (b >> 5); \ 1615 a -= b; a -= c; a ^= (c >> 3); \ 1616 b -= c; b -= a; b ^= (a << 10); \ 1617 c -= a; c -= b; c ^= (b >> 15); \ 1618 } while (/*CONSTCOND*/0) 1619 1620 uint32_t 1621 ieee80211_mac_hash(const struct ieee80211com *ic, 1622 const uint8_t addr[IEEE80211_ADDR_LEN]) 1623 { 1624 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1625 1626 b += addr[5] << 8; 1627 b += addr[4]; 1628 a += addr[3] << 24; 1629 a += addr[2] << 16; 1630 a += addr[1] << 8; 1631 a += addr[0]; 1632 1633 mix(a, b, c); 1634 1635 return c; 1636 } 1637 #undef mix 1638