xref: /freebsd/sys/net80211/ieee80211.c (revision ad30f8e79bd1007cc2476e491bd21b4f5e389e0a)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ethernet.h>
46 
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_regdomain.h>
49 #ifdef IEEE80211_SUPPORT_SUPERG
50 #include <net80211/ieee80211_superg.h>
51 #endif
52 #include <net80211/ieee80211_ratectl.h>
53 
54 #include <net/bpf.h>
55 
56 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
57 	[IEEE80211_MODE_AUTO]	  = "auto",
58 	[IEEE80211_MODE_11A]	  = "11a",
59 	[IEEE80211_MODE_11B]	  = "11b",
60 	[IEEE80211_MODE_11G]	  = "11g",
61 	[IEEE80211_MODE_FH]	  = "FH",
62 	[IEEE80211_MODE_TURBO_A]  = "turboA",
63 	[IEEE80211_MODE_TURBO_G]  = "turboG",
64 	[IEEE80211_MODE_STURBO_A] = "sturboA",
65 	[IEEE80211_MODE_HALF]	  = "half",
66 	[IEEE80211_MODE_QUARTER]  = "quarter",
67 	[IEEE80211_MODE_11NA]	  = "11na",
68 	[IEEE80211_MODE_11NG]	  = "11ng",
69 };
70 /* map ieee80211_opmode to the corresponding capability bit */
71 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
72 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
73 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
74 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
75 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
76 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
77 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
78 #ifdef IEEE80211_SUPPORT_MESH
79 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
80 #endif
81 };
82 
83 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
84 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
85 
86 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
87 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
88 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
89 static	int ieee80211_media_setup(struct ieee80211com *ic,
90 		struct ifmedia *media, int caps, int addsta,
91 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
92 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
93 static	int ieee80211com_media_change(struct ifnet *);
94 static	int media_status(enum ieee80211_opmode,
95 		const struct ieee80211_channel *);
96 
97 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
98 
99 /*
100  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
101  */
102 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
103 static const struct ieee80211_rateset ieee80211_rateset_11a =
104 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
105 static const struct ieee80211_rateset ieee80211_rateset_half =
106 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
107 static const struct ieee80211_rateset ieee80211_rateset_quarter =
108 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
109 static const struct ieee80211_rateset ieee80211_rateset_11b =
110 	{ 4, { B(2), B(4), B(11), B(22) } };
111 /* NB: OFDM rates are handled specially based on mode */
112 static const struct ieee80211_rateset ieee80211_rateset_11g =
113 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
114 #undef B
115 
116 /*
117  * Fill in 802.11 available channel set, mark
118  * all available channels as active, and pick
119  * a default channel if not already specified.
120  */
121 static void
122 ieee80211_chan_init(struct ieee80211com *ic)
123 {
124 #define	DEFAULTRATES(m, def) do { \
125 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
126 		ic->ic_sup_rates[m] = def; \
127 } while (0)
128 	struct ieee80211_channel *c;
129 	int i;
130 
131 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
132 		("invalid number of channels specified: %u", ic->ic_nchans));
133 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
134 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
135 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
136 	for (i = 0; i < ic->ic_nchans; i++) {
137 		c = &ic->ic_channels[i];
138 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
139 		/*
140 		 * Help drivers that work only with frequencies by filling
141 		 * in IEEE channel #'s if not already calculated.  Note this
142 		 * mimics similar work done in ieee80211_setregdomain when
143 		 * changing regulatory state.
144 		 */
145 		if (c->ic_ieee == 0)
146 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
147 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
148 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
149 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
150 			    c->ic_flags);
151 		/* default max tx power to max regulatory */
152 		if (c->ic_maxpower == 0)
153 			c->ic_maxpower = 2*c->ic_maxregpower;
154 		setbit(ic->ic_chan_avail, c->ic_ieee);
155 		/*
156 		 * Identify mode capabilities.
157 		 */
158 		if (IEEE80211_IS_CHAN_A(c))
159 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
160 		if (IEEE80211_IS_CHAN_B(c))
161 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
162 		if (IEEE80211_IS_CHAN_ANYG(c))
163 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
164 		if (IEEE80211_IS_CHAN_FHSS(c))
165 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
166 		if (IEEE80211_IS_CHAN_108A(c))
167 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
168 		if (IEEE80211_IS_CHAN_108G(c))
169 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
170 		if (IEEE80211_IS_CHAN_ST(c))
171 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
172 		if (IEEE80211_IS_CHAN_HALF(c))
173 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
174 		if (IEEE80211_IS_CHAN_QUARTER(c))
175 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
176 		if (IEEE80211_IS_CHAN_HTA(c))
177 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
178 		if (IEEE80211_IS_CHAN_HTG(c))
179 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
180 	}
181 	/* initialize candidate channels to all available */
182 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
183 		sizeof(ic->ic_chan_avail));
184 
185 	/* sort channel table to allow lookup optimizations */
186 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
187 
188 	/* invalidate any previous state */
189 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
190 	ic->ic_prevchan = NULL;
191 	ic->ic_csa_newchan = NULL;
192 	/* arbitrarily pick the first channel */
193 	ic->ic_curchan = &ic->ic_channels[0];
194 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
195 
196 	/* fillin well-known rate sets if driver has not specified */
197 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
198 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
199 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
200 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
201 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
202 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
203 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
204 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
205 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
207 
208 	/*
209 	 * Set auto mode to reset active channel state and any desired channel.
210 	 */
211 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
212 #undef DEFAULTRATES
213 }
214 
215 static void
216 null_update_mcast(struct ifnet *ifp)
217 {
218 	if_printf(ifp, "need multicast update callback\n");
219 }
220 
221 static void
222 null_update_promisc(struct ifnet *ifp)
223 {
224 	if_printf(ifp, "need promiscuous mode update callback\n");
225 }
226 
227 static int
228 null_transmit(struct ifnet *ifp, struct mbuf *m)
229 {
230 	m_freem(m);
231 	ifp->if_oerrors++;
232 	return EACCES;		/* XXX EIO/EPERM? */
233 }
234 
235 static int
236 null_output(struct ifnet *ifp, struct mbuf *m,
237 	struct sockaddr *dst, struct route *ro)
238 {
239 	if_printf(ifp, "discard raw packet\n");
240 	return null_transmit(ifp, m);
241 }
242 
243 static void
244 null_input(struct ifnet *ifp, struct mbuf *m)
245 {
246 	if_printf(ifp, "if_input should not be called\n");
247 	m_freem(m);
248 }
249 
250 /*
251  * Attach/setup the common net80211 state.  Called by
252  * the driver on attach to prior to creating any vap's.
253  */
254 void
255 ieee80211_ifattach(struct ieee80211com *ic,
256 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
257 {
258 	struct ifnet *ifp = ic->ic_ifp;
259 	struct sockaddr_dl *sdl;
260 	struct ifaddr *ifa;
261 
262 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
263 
264 	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
265 	TAILQ_INIT(&ic->ic_vaps);
266 
267 	/* Create a taskqueue for all state changes */
268 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
269 	    taskqueue_thread_enqueue, &ic->ic_tq);
270 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq",
271 	    ifp->if_xname);
272 	/*
273 	 * Fill in 802.11 available channel set, mark all
274 	 * available channels as active, and pick a default
275 	 * channel if not already specified.
276 	 */
277 	ieee80211_media_init(ic);
278 
279 	ic->ic_update_mcast = null_update_mcast;
280 	ic->ic_update_promisc = null_update_promisc;
281 
282 	ic->ic_hash_key = arc4random();
283 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
284 	ic->ic_lintval = ic->ic_bintval;
285 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
286 
287 	ieee80211_crypto_attach(ic);
288 	ieee80211_node_attach(ic);
289 	ieee80211_power_attach(ic);
290 	ieee80211_proto_attach(ic);
291 #ifdef IEEE80211_SUPPORT_SUPERG
292 	ieee80211_superg_attach(ic);
293 #endif
294 	ieee80211_ht_attach(ic);
295 	ieee80211_scan_attach(ic);
296 	ieee80211_regdomain_attach(ic);
297 	ieee80211_dfs_attach(ic);
298 
299 	ieee80211_sysctl_attach(ic);
300 
301 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
302 	ifp->if_hdrlen = 0;
303 	if_attach(ifp);
304 	ifp->if_mtu = IEEE80211_MTU_MAX;
305 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
306 	ifp->if_output = null_output;
307 	ifp->if_input = null_input;	/* just in case */
308 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
309 
310 	ifa = ifaddr_byindex(ifp->if_index);
311 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
312 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
313 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
314 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
315 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
316 	ifa_free(ifa);
317 }
318 
319 /*
320  * Detach net80211 state on device detach.  Tear down
321  * all vap's and reclaim all common state prior to the
322  * device state going away.  Note we may call back into
323  * driver; it must be prepared for this.
324  */
325 void
326 ieee80211_ifdetach(struct ieee80211com *ic)
327 {
328 	struct ifnet *ifp = ic->ic_ifp;
329 	struct ieee80211vap *vap;
330 
331 	if_detach(ifp);
332 
333 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
334 		ieee80211_vap_destroy(vap);
335 	ieee80211_waitfor_parent(ic);
336 
337 	ieee80211_sysctl_detach(ic);
338 	ieee80211_dfs_detach(ic);
339 	ieee80211_regdomain_detach(ic);
340 	ieee80211_scan_detach(ic);
341 #ifdef IEEE80211_SUPPORT_SUPERG
342 	ieee80211_superg_detach(ic);
343 #endif
344 	ieee80211_ht_detach(ic);
345 	/* NB: must be called before ieee80211_node_detach */
346 	ieee80211_proto_detach(ic);
347 	ieee80211_crypto_detach(ic);
348 	ieee80211_power_detach(ic);
349 	ieee80211_node_detach(ic);
350 
351 	ifmedia_removeall(&ic->ic_media);
352 	taskqueue_free(ic->ic_tq);
353 	IEEE80211_LOCK_DESTROY(ic);
354 }
355 
356 /*
357  * Default reset method for use with the ioctl support.  This
358  * method is invoked after any state change in the 802.11
359  * layer that should be propagated to the hardware but not
360  * require re-initialization of the 802.11 state machine (e.g
361  * rescanning for an ap).  We always return ENETRESET which
362  * should cause the driver to re-initialize the device. Drivers
363  * can override this method to implement more optimized support.
364  */
365 static int
366 default_reset(struct ieee80211vap *vap, u_long cmd)
367 {
368 	return ENETRESET;
369 }
370 
371 /*
372  * Prepare a vap for use.  Drivers use this call to
373  * setup net80211 state in new vap's prior attaching
374  * them with ieee80211_vap_attach (below).
375  */
376 int
377 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
378 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
379 	const uint8_t bssid[IEEE80211_ADDR_LEN],
380 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
381 {
382 	struct ifnet *ifp;
383 
384 	ifp = if_alloc(IFT_ETHER);
385 	if (ifp == NULL) {
386 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
387 		    __func__);
388 		return ENOMEM;
389 	}
390 	if_initname(ifp, name, unit);
391 	ifp->if_softc = vap;			/* back pointer */
392 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
393 	ifp->if_start = ieee80211_start;
394 	ifp->if_ioctl = ieee80211_ioctl;
395 	ifp->if_init = ieee80211_init;
396 	/* NB: input+output filled in by ether_ifattach */
397 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
398 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
399 	IFQ_SET_READY(&ifp->if_snd);
400 
401 	vap->iv_ifp = ifp;
402 	vap->iv_ic = ic;
403 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
404 	vap->iv_flags_ext = ic->ic_flags_ext;
405 	vap->iv_flags_ven = ic->ic_flags_ven;
406 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
407 	vap->iv_htcaps = ic->ic_htcaps;
408 	vap->iv_htextcaps = ic->ic_htextcaps;
409 	vap->iv_opmode = opmode;
410 	vap->iv_caps |= ieee80211_opcap[opmode];
411 	switch (opmode) {
412 	case IEEE80211_M_WDS:
413 		/*
414 		 * WDS links must specify the bssid of the far end.
415 		 * For legacy operation this is a static relationship.
416 		 * For non-legacy operation the station must associate
417 		 * and be authorized to pass traffic.  Plumbing the
418 		 * vap to the proper node happens when the vap
419 		 * transitions to RUN state.
420 		 */
421 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
422 		vap->iv_flags |= IEEE80211_F_DESBSSID;
423 		if (flags & IEEE80211_CLONE_WDSLEGACY)
424 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
425 		break;
426 #ifdef IEEE80211_SUPPORT_TDMA
427 	case IEEE80211_M_AHDEMO:
428 		if (flags & IEEE80211_CLONE_TDMA) {
429 			/* NB: checked before clone operation allowed */
430 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
431 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
432 			/*
433 			 * Propagate TDMA capability to mark vap; this
434 			 * cannot be removed and is used to distinguish
435 			 * regular ahdemo operation from ahdemo+tdma.
436 			 */
437 			vap->iv_caps |= IEEE80211_C_TDMA;
438 		}
439 		break;
440 #endif
441 	}
442 	/* auto-enable s/w beacon miss support */
443 	if (flags & IEEE80211_CLONE_NOBEACONS)
444 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
445 	/* auto-generated or user supplied MAC address */
446 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
447 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
448 	/*
449 	 * Enable various functionality by default if we're
450 	 * capable; the driver can override us if it knows better.
451 	 */
452 	if (vap->iv_caps & IEEE80211_C_WME)
453 		vap->iv_flags |= IEEE80211_F_WME;
454 	if (vap->iv_caps & IEEE80211_C_BURST)
455 		vap->iv_flags |= IEEE80211_F_BURST;
456 	/* NB: bg scanning only makes sense for station mode right now */
457 	if (vap->iv_opmode == IEEE80211_M_STA &&
458 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
459 		vap->iv_flags |= IEEE80211_F_BGSCAN;
460 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
461 	/* NB: DFS support only makes sense for ap mode right now */
462 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
463 	    (vap->iv_caps & IEEE80211_C_DFS))
464 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
465 
466 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
467 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
468 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
469 	/*
470 	 * Install a default reset method for the ioctl support;
471 	 * the driver can override this.
472 	 */
473 	vap->iv_reset = default_reset;
474 
475 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
476 
477 	ieee80211_sysctl_vattach(vap);
478 	ieee80211_crypto_vattach(vap);
479 	ieee80211_node_vattach(vap);
480 	ieee80211_power_vattach(vap);
481 	ieee80211_proto_vattach(vap);
482 #ifdef IEEE80211_SUPPORT_SUPERG
483 	ieee80211_superg_vattach(vap);
484 #endif
485 	ieee80211_ht_vattach(vap);
486 	ieee80211_scan_vattach(vap);
487 	ieee80211_regdomain_vattach(vap);
488 	ieee80211_radiotap_vattach(vap);
489 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
490 
491 	return 0;
492 }
493 
494 /*
495  * Activate a vap.  State should have been prepared with a
496  * call to ieee80211_vap_setup and by the driver.  On return
497  * from this call the vap is ready for use.
498  */
499 int
500 ieee80211_vap_attach(struct ieee80211vap *vap,
501 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
502 {
503 	struct ifnet *ifp = vap->iv_ifp;
504 	struct ieee80211com *ic = vap->iv_ic;
505 	struct ifmediareq imr;
506 	int maxrate;
507 
508 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
509 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
510 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
511 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
512 
513 	/*
514 	 * Do late attach work that cannot happen until after
515 	 * the driver has had a chance to override defaults.
516 	 */
517 	ieee80211_node_latevattach(vap);
518 	ieee80211_power_latevattach(vap);
519 
520 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
521 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
522 	ieee80211_media_status(ifp, &imr);
523 	/* NB: strip explicit mode; we're actually in autoselect */
524 	ifmedia_set(&vap->iv_media,
525 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
526 	if (maxrate)
527 		ifp->if_baudrate = IF_Mbps(maxrate);
528 
529 	ether_ifattach(ifp, vap->iv_myaddr);
530 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
531 		/* NB: disallow transmit */
532 		ifp->if_transmit = null_transmit;
533 		ifp->if_output = null_output;
534 	} else {
535 		/* hook output method setup by ether_ifattach */
536 		vap->iv_output = ifp->if_output;
537 		ifp->if_output = ieee80211_output;
538 	}
539 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
540 
541 	IEEE80211_LOCK(ic);
542 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
543 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
544 #ifdef IEEE80211_SUPPORT_SUPERG
545 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
546 #endif
547 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
548 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
549 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
550 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
551 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
552 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
553 	IEEE80211_UNLOCK(ic);
554 
555 	return 1;
556 }
557 
558 /*
559  * Tear down vap state and reclaim the ifnet.
560  * The driver is assumed to have prepared for
561  * this; e.g. by turning off interrupts for the
562  * underlying device.
563  */
564 void
565 ieee80211_vap_detach(struct ieee80211vap *vap)
566 {
567 	struct ieee80211com *ic = vap->iv_ic;
568 	struct ifnet *ifp = vap->iv_ifp;
569 
570 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
571 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
572 	    ic->ic_ifp->if_xname);
573 
574 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
575 	ether_ifdetach(ifp);
576 
577 	ieee80211_stop(vap);
578 
579 	/*
580 	 * Flush any deferred vap tasks.
581 	 */
582 	ieee80211_draintask(ic, &vap->iv_nstate_task);
583 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
584 
585 	/* XXX band-aid until ifnet handles this for us */
586 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
587 
588 	IEEE80211_LOCK(ic);
589 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
590 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
591 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
592 #ifdef IEEE80211_SUPPORT_SUPERG
593 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
594 #endif
595 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
596 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
597 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
598 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
599 	/* NB: this handles the bpfdetach done below */
600 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
601 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
602 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
603 	IEEE80211_UNLOCK(ic);
604 
605 	ifmedia_removeall(&vap->iv_media);
606 
607 	ieee80211_radiotap_vdetach(vap);
608 	ieee80211_regdomain_vdetach(vap);
609 	ieee80211_scan_vdetach(vap);
610 #ifdef IEEE80211_SUPPORT_SUPERG
611 	ieee80211_superg_vdetach(vap);
612 #endif
613 	ieee80211_ht_vdetach(vap);
614 	/* NB: must be before ieee80211_node_vdetach */
615 	ieee80211_proto_vdetach(vap);
616 	ieee80211_crypto_vdetach(vap);
617 	ieee80211_power_vdetach(vap);
618 	ieee80211_node_vdetach(vap);
619 	ieee80211_sysctl_vdetach(vap);
620 
621 	if_free(ifp);
622 }
623 
624 /*
625  * Synchronize flag bit state in the parent ifnet structure
626  * according to the state of all vap ifnet's.  This is used,
627  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
628  */
629 void
630 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
631 {
632 	struct ifnet *ifp = ic->ic_ifp;
633 	struct ieee80211vap *vap;
634 	int bit, oflags;
635 
636 	IEEE80211_LOCK_ASSERT(ic);
637 
638 	bit = 0;
639 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
640 		if (vap->iv_ifp->if_flags & flag) {
641 			/*
642 			 * XXX the bridge sets PROMISC but we don't want to
643 			 * enable it on the device, discard here so all the
644 			 * drivers don't need to special-case it
645 			 */
646 			if (flag == IFF_PROMISC &&
647 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
648 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
649 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
650 				continue;
651 			bit = 1;
652 			break;
653 		}
654 	oflags = ifp->if_flags;
655 	if (bit)
656 		ifp->if_flags |= flag;
657 	else
658 		ifp->if_flags &= ~flag;
659 	if ((ifp->if_flags ^ oflags) & flag) {
660 		/* XXX should we return 1/0 and let caller do this? */
661 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
662 			if (flag == IFF_PROMISC)
663 				ieee80211_runtask(ic, &ic->ic_promisc_task);
664 			else if (flag == IFF_ALLMULTI)
665 				ieee80211_runtask(ic, &ic->ic_mcast_task);
666 		}
667 	}
668 }
669 
670 /*
671  * Synchronize flag bit state in the com structure
672  * according to the state of all vap's.  This is used,
673  * for example, to handle state changes via ioctls.
674  */
675 static void
676 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
677 {
678 	struct ieee80211vap *vap;
679 	int bit;
680 
681 	IEEE80211_LOCK_ASSERT(ic);
682 
683 	bit = 0;
684 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
685 		if (vap->iv_flags & flag) {
686 			bit = 1;
687 			break;
688 		}
689 	if (bit)
690 		ic->ic_flags |= flag;
691 	else
692 		ic->ic_flags &= ~flag;
693 }
694 
695 void
696 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
697 {
698 	struct ieee80211com *ic = vap->iv_ic;
699 
700 	IEEE80211_LOCK(ic);
701 	if (flag < 0) {
702 		flag = -flag;
703 		vap->iv_flags &= ~flag;
704 	} else
705 		vap->iv_flags |= flag;
706 	ieee80211_syncflag_locked(ic, flag);
707 	IEEE80211_UNLOCK(ic);
708 }
709 
710 /*
711  * Synchronize flags_ht bit state in the com structure
712  * according to the state of all vap's.  This is used,
713  * for example, to handle state changes via ioctls.
714  */
715 static void
716 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
717 {
718 	struct ieee80211vap *vap;
719 	int bit;
720 
721 	IEEE80211_LOCK_ASSERT(ic);
722 
723 	bit = 0;
724 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
725 		if (vap->iv_flags_ht & flag) {
726 			bit = 1;
727 			break;
728 		}
729 	if (bit)
730 		ic->ic_flags_ht |= flag;
731 	else
732 		ic->ic_flags_ht &= ~flag;
733 }
734 
735 void
736 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
737 {
738 	struct ieee80211com *ic = vap->iv_ic;
739 
740 	IEEE80211_LOCK(ic);
741 	if (flag < 0) {
742 		flag = -flag;
743 		vap->iv_flags_ht &= ~flag;
744 	} else
745 		vap->iv_flags_ht |= flag;
746 	ieee80211_syncflag_ht_locked(ic, flag);
747 	IEEE80211_UNLOCK(ic);
748 }
749 
750 /*
751  * Synchronize flags_ext bit state in the com structure
752  * according to the state of all vap's.  This is used,
753  * for example, to handle state changes via ioctls.
754  */
755 static void
756 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
757 {
758 	struct ieee80211vap *vap;
759 	int bit;
760 
761 	IEEE80211_LOCK_ASSERT(ic);
762 
763 	bit = 0;
764 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
765 		if (vap->iv_flags_ext & flag) {
766 			bit = 1;
767 			break;
768 		}
769 	if (bit)
770 		ic->ic_flags_ext |= flag;
771 	else
772 		ic->ic_flags_ext &= ~flag;
773 }
774 
775 void
776 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
777 {
778 	struct ieee80211com *ic = vap->iv_ic;
779 
780 	IEEE80211_LOCK(ic);
781 	if (flag < 0) {
782 		flag = -flag;
783 		vap->iv_flags_ext &= ~flag;
784 	} else
785 		vap->iv_flags_ext |= flag;
786 	ieee80211_syncflag_ext_locked(ic, flag);
787 	IEEE80211_UNLOCK(ic);
788 }
789 
790 static __inline int
791 mapgsm(u_int freq, u_int flags)
792 {
793 	freq *= 10;
794 	if (flags & IEEE80211_CHAN_QUARTER)
795 		freq += 5;
796 	else if (flags & IEEE80211_CHAN_HALF)
797 		freq += 10;
798 	else
799 		freq += 20;
800 	/* NB: there is no 907/20 wide but leave room */
801 	return (freq - 906*10) / 5;
802 }
803 
804 static __inline int
805 mappsb(u_int freq, u_int flags)
806 {
807 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
808 }
809 
810 /*
811  * Convert MHz frequency to IEEE channel number.
812  */
813 int
814 ieee80211_mhz2ieee(u_int freq, u_int flags)
815 {
816 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
817 	if (flags & IEEE80211_CHAN_GSM)
818 		return mapgsm(freq, flags);
819 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
820 		if (freq == 2484)
821 			return 14;
822 		if (freq < 2484)
823 			return ((int) freq - 2407) / 5;
824 		else
825 			return 15 + ((freq - 2512) / 20);
826 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
827 		if (freq <= 5000) {
828 			/* XXX check regdomain? */
829 			if (IS_FREQ_IN_PSB(freq))
830 				return mappsb(freq, flags);
831 			return (freq - 4000) / 5;
832 		} else
833 			return (freq - 5000) / 5;
834 	} else {				/* either, guess */
835 		if (freq == 2484)
836 			return 14;
837 		if (freq < 2484) {
838 			if (907 <= freq && freq <= 922)
839 				return mapgsm(freq, flags);
840 			return ((int) freq - 2407) / 5;
841 		}
842 		if (freq < 5000) {
843 			if (IS_FREQ_IN_PSB(freq))
844 				return mappsb(freq, flags);
845 			else if (freq > 4900)
846 				return (freq - 4000) / 5;
847 			else
848 				return 15 + ((freq - 2512) / 20);
849 		}
850 		return (freq - 5000) / 5;
851 	}
852 #undef IS_FREQ_IN_PSB
853 }
854 
855 /*
856  * Convert channel to IEEE channel number.
857  */
858 int
859 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
860 {
861 	if (c == NULL) {
862 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
863 		return 0;		/* XXX */
864 	}
865 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
866 }
867 
868 /*
869  * Convert IEEE channel number to MHz frequency.
870  */
871 u_int
872 ieee80211_ieee2mhz(u_int chan, u_int flags)
873 {
874 	if (flags & IEEE80211_CHAN_GSM)
875 		return 907 + 5 * (chan / 10);
876 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
877 		if (chan == 14)
878 			return 2484;
879 		if (chan < 14)
880 			return 2407 + chan*5;
881 		else
882 			return 2512 + ((chan-15)*20);
883 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
884 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
885 			chan -= 37;
886 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
887 		}
888 		return 5000 + (chan*5);
889 	} else {				/* either, guess */
890 		/* XXX can't distinguish PSB+GSM channels */
891 		if (chan == 14)
892 			return 2484;
893 		if (chan < 14)			/* 0-13 */
894 			return 2407 + chan*5;
895 		if (chan < 27)			/* 15-26 */
896 			return 2512 + ((chan-15)*20);
897 		return 5000 + (chan*5);
898 	}
899 }
900 
901 /*
902  * Locate a channel given a frequency+flags.  We cache
903  * the previous lookup to optimize switching between two
904  * channels--as happens with dynamic turbo.
905  */
906 struct ieee80211_channel *
907 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
908 {
909 	struct ieee80211_channel *c;
910 	int i;
911 
912 	flags &= IEEE80211_CHAN_ALLTURBO;
913 	c = ic->ic_prevchan;
914 	if (c != NULL && c->ic_freq == freq &&
915 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
916 		return c;
917 	/* brute force search */
918 	for (i = 0; i < ic->ic_nchans; i++) {
919 		c = &ic->ic_channels[i];
920 		if (c->ic_freq == freq &&
921 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
922 			return c;
923 	}
924 	return NULL;
925 }
926 
927 /*
928  * Locate a channel given a channel number+flags.  We cache
929  * the previous lookup to optimize switching between two
930  * channels--as happens with dynamic turbo.
931  */
932 struct ieee80211_channel *
933 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
934 {
935 	struct ieee80211_channel *c;
936 	int i;
937 
938 	flags &= IEEE80211_CHAN_ALLTURBO;
939 	c = ic->ic_prevchan;
940 	if (c != NULL && c->ic_ieee == ieee &&
941 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
942 		return c;
943 	/* brute force search */
944 	for (i = 0; i < ic->ic_nchans; i++) {
945 		c = &ic->ic_channels[i];
946 		if (c->ic_ieee == ieee &&
947 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
948 			return c;
949 	}
950 	return NULL;
951 }
952 
953 static void
954 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
955 {
956 #define	ADD(_ic, _s, _o) \
957 	ifmedia_add(media, \
958 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
959 	static const u_int mopts[IEEE80211_MODE_MAX] = {
960 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
961 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
962 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
963 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
964 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
965 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
966 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
967 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
968 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
969 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
970 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
971 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
972 	};
973 	u_int mopt;
974 
975 	mopt = mopts[mode];
976 	if (addsta)
977 		ADD(ic, mword, mopt);	/* STA mode has no cap */
978 	if (caps & IEEE80211_C_IBSS)
979 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
980 	if (caps & IEEE80211_C_HOSTAP)
981 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
982 	if (caps & IEEE80211_C_AHDEMO)
983 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
984 	if (caps & IEEE80211_C_MONITOR)
985 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
986 	if (caps & IEEE80211_C_WDS)
987 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
988 	if (caps & IEEE80211_C_MBSS)
989 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
990 #undef ADD
991 }
992 
993 /*
994  * Setup the media data structures according to the channel and
995  * rate tables.
996  */
997 static int
998 ieee80211_media_setup(struct ieee80211com *ic,
999 	struct ifmedia *media, int caps, int addsta,
1000 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1001 {
1002 	int i, j, mode, rate, maxrate, mword, r;
1003 	const struct ieee80211_rateset *rs;
1004 	struct ieee80211_rateset allrates;
1005 
1006 	/*
1007 	 * Fill in media characteristics.
1008 	 */
1009 	ifmedia_init(media, 0, media_change, media_stat);
1010 	maxrate = 0;
1011 	/*
1012 	 * Add media for legacy operating modes.
1013 	 */
1014 	memset(&allrates, 0, sizeof(allrates));
1015 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1016 		if (isclr(ic->ic_modecaps, mode))
1017 			continue;
1018 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1019 		if (mode == IEEE80211_MODE_AUTO)
1020 			continue;
1021 		rs = &ic->ic_sup_rates[mode];
1022 		for (i = 0; i < rs->rs_nrates; i++) {
1023 			rate = rs->rs_rates[i];
1024 			mword = ieee80211_rate2media(ic, rate, mode);
1025 			if (mword == 0)
1026 				continue;
1027 			addmedia(media, caps, addsta, mode, mword);
1028 			/*
1029 			 * Add legacy rate to the collection of all rates.
1030 			 */
1031 			r = rate & IEEE80211_RATE_VAL;
1032 			for (j = 0; j < allrates.rs_nrates; j++)
1033 				if (allrates.rs_rates[j] == r)
1034 					break;
1035 			if (j == allrates.rs_nrates) {
1036 				/* unique, add to the set */
1037 				allrates.rs_rates[j] = r;
1038 				allrates.rs_nrates++;
1039 			}
1040 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1041 			if (rate > maxrate)
1042 				maxrate = rate;
1043 		}
1044 	}
1045 	for (i = 0; i < allrates.rs_nrates; i++) {
1046 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1047 				IEEE80211_MODE_AUTO);
1048 		if (mword == 0)
1049 			continue;
1050 		/* NB: remove media options from mword */
1051 		addmedia(media, caps, addsta,
1052 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1053 	}
1054 	/*
1055 	 * Add HT/11n media.  Note that we do not have enough
1056 	 * bits in the media subtype to express the MCS so we
1057 	 * use a "placeholder" media subtype and any fixed MCS
1058 	 * must be specified with a different mechanism.
1059 	 */
1060 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1061 		if (isclr(ic->ic_modecaps, mode))
1062 			continue;
1063 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1064 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1065 	}
1066 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1067 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1068 		addmedia(media, caps, addsta,
1069 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1070 		/* XXX could walk htrates */
1071 		/* XXX known array size */
1072 		if (ieee80211_htrates[15].ht40_rate_400ns > maxrate)
1073 			maxrate = ieee80211_htrates[15].ht40_rate_400ns;
1074 	}
1075 	return maxrate;
1076 }
1077 
1078 void
1079 ieee80211_media_init(struct ieee80211com *ic)
1080 {
1081 	struct ifnet *ifp = ic->ic_ifp;
1082 	int maxrate;
1083 
1084 	/* NB: this works because the structure is initialized to zero */
1085 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1086 		/*
1087 		 * We are re-initializing the channel list; clear
1088 		 * the existing media state as the media routines
1089 		 * don't suppress duplicates.
1090 		 */
1091 		ifmedia_removeall(&ic->ic_media);
1092 	}
1093 	ieee80211_chan_init(ic);
1094 
1095 	/*
1096 	 * Recalculate media settings in case new channel list changes
1097 	 * the set of available modes.
1098 	 */
1099 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1100 		ieee80211com_media_change, ieee80211com_media_status);
1101 	/* NB: strip explicit mode; we're actually in autoselect */
1102 	ifmedia_set(&ic->ic_media,
1103 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1104 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1105 	if (maxrate)
1106 		ifp->if_baudrate = IF_Mbps(maxrate);
1107 
1108 	/* XXX need to propagate new media settings to vap's */
1109 }
1110 
1111 /* XXX inline or eliminate? */
1112 const struct ieee80211_rateset *
1113 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1114 {
1115 	/* XXX does this work for 11ng basic rates? */
1116 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1117 }
1118 
1119 void
1120 ieee80211_announce(struct ieee80211com *ic)
1121 {
1122 	struct ifnet *ifp = ic->ic_ifp;
1123 	int i, mode, rate, mword;
1124 	const struct ieee80211_rateset *rs;
1125 
1126 	/* NB: skip AUTO since it has no rates */
1127 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1128 		if (isclr(ic->ic_modecaps, mode))
1129 			continue;
1130 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1131 		rs = &ic->ic_sup_rates[mode];
1132 		for (i = 0; i < rs->rs_nrates; i++) {
1133 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1134 			if (mword == 0)
1135 				continue;
1136 			rate = ieee80211_media2rate(mword);
1137 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1138 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1139 		}
1140 		printf("\n");
1141 	}
1142 	ieee80211_ht_announce(ic);
1143 }
1144 
1145 void
1146 ieee80211_announce_channels(struct ieee80211com *ic)
1147 {
1148 	const struct ieee80211_channel *c;
1149 	char type;
1150 	int i, cw;
1151 
1152 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1153 	for (i = 0; i < ic->ic_nchans; i++) {
1154 		c = &ic->ic_channels[i];
1155 		if (IEEE80211_IS_CHAN_ST(c))
1156 			type = 'S';
1157 		else if (IEEE80211_IS_CHAN_108A(c))
1158 			type = 'T';
1159 		else if (IEEE80211_IS_CHAN_108G(c))
1160 			type = 'G';
1161 		else if (IEEE80211_IS_CHAN_HT(c))
1162 			type = 'n';
1163 		else if (IEEE80211_IS_CHAN_A(c))
1164 			type = 'a';
1165 		else if (IEEE80211_IS_CHAN_ANYG(c))
1166 			type = 'g';
1167 		else if (IEEE80211_IS_CHAN_B(c))
1168 			type = 'b';
1169 		else
1170 			type = 'f';
1171 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1172 			cw = 40;
1173 		else if (IEEE80211_IS_CHAN_HALF(c))
1174 			cw = 10;
1175 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1176 			cw = 5;
1177 		else
1178 			cw = 20;
1179 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1180 			, c->ic_ieee, c->ic_freq, type
1181 			, cw
1182 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1183 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1184 			, c->ic_maxregpower
1185 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1186 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1187 		);
1188 	}
1189 }
1190 
1191 static int
1192 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1193 {
1194 	switch (IFM_MODE(ime->ifm_media)) {
1195 	case IFM_IEEE80211_11A:
1196 		*mode = IEEE80211_MODE_11A;
1197 		break;
1198 	case IFM_IEEE80211_11B:
1199 		*mode = IEEE80211_MODE_11B;
1200 		break;
1201 	case IFM_IEEE80211_11G:
1202 		*mode = IEEE80211_MODE_11G;
1203 		break;
1204 	case IFM_IEEE80211_FH:
1205 		*mode = IEEE80211_MODE_FH;
1206 		break;
1207 	case IFM_IEEE80211_11NA:
1208 		*mode = IEEE80211_MODE_11NA;
1209 		break;
1210 	case IFM_IEEE80211_11NG:
1211 		*mode = IEEE80211_MODE_11NG;
1212 		break;
1213 	case IFM_AUTO:
1214 		*mode = IEEE80211_MODE_AUTO;
1215 		break;
1216 	default:
1217 		return 0;
1218 	}
1219 	/*
1220 	 * Turbo mode is an ``option''.
1221 	 * XXX does not apply to AUTO
1222 	 */
1223 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1224 		if (*mode == IEEE80211_MODE_11A) {
1225 			if (flags & IEEE80211_F_TURBOP)
1226 				*mode = IEEE80211_MODE_TURBO_A;
1227 			else
1228 				*mode = IEEE80211_MODE_STURBO_A;
1229 		} else if (*mode == IEEE80211_MODE_11G)
1230 			*mode = IEEE80211_MODE_TURBO_G;
1231 		else
1232 			return 0;
1233 	}
1234 	/* XXX HT40 +/- */
1235 	return 1;
1236 }
1237 
1238 /*
1239  * Handle a media change request on the underlying interface.
1240  */
1241 int
1242 ieee80211com_media_change(struct ifnet *ifp)
1243 {
1244 	return EINVAL;
1245 }
1246 
1247 /*
1248  * Handle a media change request on the vap interface.
1249  */
1250 int
1251 ieee80211_media_change(struct ifnet *ifp)
1252 {
1253 	struct ieee80211vap *vap = ifp->if_softc;
1254 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1255 	uint16_t newmode;
1256 
1257 	if (!media2mode(ime, vap->iv_flags, &newmode))
1258 		return EINVAL;
1259 	if (vap->iv_des_mode != newmode) {
1260 		vap->iv_des_mode = newmode;
1261 		/* XXX kick state machine if up+running */
1262 	}
1263 	return 0;
1264 }
1265 
1266 /*
1267  * Common code to calculate the media status word
1268  * from the operating mode and channel state.
1269  */
1270 static int
1271 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1272 {
1273 	int status;
1274 
1275 	status = IFM_IEEE80211;
1276 	switch (opmode) {
1277 	case IEEE80211_M_STA:
1278 		break;
1279 	case IEEE80211_M_IBSS:
1280 		status |= IFM_IEEE80211_ADHOC;
1281 		break;
1282 	case IEEE80211_M_HOSTAP:
1283 		status |= IFM_IEEE80211_HOSTAP;
1284 		break;
1285 	case IEEE80211_M_MONITOR:
1286 		status |= IFM_IEEE80211_MONITOR;
1287 		break;
1288 	case IEEE80211_M_AHDEMO:
1289 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1290 		break;
1291 	case IEEE80211_M_WDS:
1292 		status |= IFM_IEEE80211_WDS;
1293 		break;
1294 	case IEEE80211_M_MBSS:
1295 		status |= IFM_IEEE80211_MBSS;
1296 		break;
1297 	}
1298 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1299 		status |= IFM_IEEE80211_11NA;
1300 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1301 		status |= IFM_IEEE80211_11NG;
1302 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1303 		status |= IFM_IEEE80211_11A;
1304 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1305 		status |= IFM_IEEE80211_11B;
1306 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1307 		status |= IFM_IEEE80211_11G;
1308 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1309 		status |= IFM_IEEE80211_FH;
1310 	}
1311 	/* XXX else complain? */
1312 
1313 	if (IEEE80211_IS_CHAN_TURBO(chan))
1314 		status |= IFM_IEEE80211_TURBO;
1315 #if 0
1316 	if (IEEE80211_IS_CHAN_HT20(chan))
1317 		status |= IFM_IEEE80211_HT20;
1318 	if (IEEE80211_IS_CHAN_HT40(chan))
1319 		status |= IFM_IEEE80211_HT40;
1320 #endif
1321 	return status;
1322 }
1323 
1324 static void
1325 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1326 {
1327 	struct ieee80211com *ic = ifp->if_l2com;
1328 	struct ieee80211vap *vap;
1329 
1330 	imr->ifm_status = IFM_AVALID;
1331 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1332 		if (vap->iv_ifp->if_flags & IFF_UP) {
1333 			imr->ifm_status |= IFM_ACTIVE;
1334 			break;
1335 		}
1336 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1337 	if (imr->ifm_status & IFM_ACTIVE)
1338 		imr->ifm_current = imr->ifm_active;
1339 }
1340 
1341 void
1342 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1343 {
1344 	struct ieee80211vap *vap = ifp->if_softc;
1345 	struct ieee80211com *ic = vap->iv_ic;
1346 	enum ieee80211_phymode mode;
1347 
1348 	imr->ifm_status = IFM_AVALID;
1349 	/*
1350 	 * NB: use the current channel's mode to lock down a xmit
1351 	 * rate only when running; otherwise we may have a mismatch
1352 	 * in which case the rate will not be convertible.
1353 	 */
1354 	if (vap->iv_state == IEEE80211_S_RUN) {
1355 		imr->ifm_status |= IFM_ACTIVE;
1356 		mode = ieee80211_chan2mode(ic->ic_curchan);
1357 	} else
1358 		mode = IEEE80211_MODE_AUTO;
1359 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1360 	/*
1361 	 * Calculate a current rate if possible.
1362 	 */
1363 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1364 		/*
1365 		 * A fixed rate is set, report that.
1366 		 */
1367 		imr->ifm_active |= ieee80211_rate2media(ic,
1368 			vap->iv_txparms[mode].ucastrate, mode);
1369 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1370 		/*
1371 		 * In station mode report the current transmit rate.
1372 		 */
1373 		imr->ifm_active |= ieee80211_rate2media(ic,
1374 			vap->iv_bss->ni_txrate, mode);
1375 	} else
1376 		imr->ifm_active |= IFM_AUTO;
1377 	if (imr->ifm_status & IFM_ACTIVE)
1378 		imr->ifm_current = imr->ifm_active;
1379 }
1380 
1381 /*
1382  * Set the current phy mode and recalculate the active channel
1383  * set based on the available channels for this mode.  Also
1384  * select a new default/current channel if the current one is
1385  * inappropriate for this mode.
1386  */
1387 int
1388 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1389 {
1390 	/*
1391 	 * Adjust basic rates in 11b/11g supported rate set.
1392 	 * Note that if operating on a hal/quarter rate channel
1393 	 * this is a noop as those rates sets are different
1394 	 * and used instead.
1395 	 */
1396 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1397 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1398 
1399 	ic->ic_curmode = mode;
1400 	ieee80211_reset_erp(ic);	/* reset ERP state */
1401 
1402 	return 0;
1403 }
1404 
1405 /*
1406  * Return the phy mode for with the specified channel.
1407  */
1408 enum ieee80211_phymode
1409 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1410 {
1411 
1412 	if (IEEE80211_IS_CHAN_HTA(chan))
1413 		return IEEE80211_MODE_11NA;
1414 	else if (IEEE80211_IS_CHAN_HTG(chan))
1415 		return IEEE80211_MODE_11NG;
1416 	else if (IEEE80211_IS_CHAN_108G(chan))
1417 		return IEEE80211_MODE_TURBO_G;
1418 	else if (IEEE80211_IS_CHAN_ST(chan))
1419 		return IEEE80211_MODE_STURBO_A;
1420 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1421 		return IEEE80211_MODE_TURBO_A;
1422 	else if (IEEE80211_IS_CHAN_HALF(chan))
1423 		return IEEE80211_MODE_HALF;
1424 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1425 		return IEEE80211_MODE_QUARTER;
1426 	else if (IEEE80211_IS_CHAN_A(chan))
1427 		return IEEE80211_MODE_11A;
1428 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1429 		return IEEE80211_MODE_11G;
1430 	else if (IEEE80211_IS_CHAN_B(chan))
1431 		return IEEE80211_MODE_11B;
1432 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1433 		return IEEE80211_MODE_FH;
1434 
1435 	/* NB: should not get here */
1436 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1437 		__func__, chan->ic_freq, chan->ic_flags);
1438 	return IEEE80211_MODE_11B;
1439 }
1440 
1441 struct ratemedia {
1442 	u_int	match;	/* rate + mode */
1443 	u_int	media;	/* if_media rate */
1444 };
1445 
1446 static int
1447 findmedia(const struct ratemedia rates[], int n, u_int match)
1448 {
1449 	int i;
1450 
1451 	for (i = 0; i < n; i++)
1452 		if (rates[i].match == match)
1453 			return rates[i].media;
1454 	return IFM_AUTO;
1455 }
1456 
1457 /*
1458  * Convert IEEE80211 rate value to ifmedia subtype.
1459  * Rate is either a legacy rate in units of 0.5Mbps
1460  * or an MCS index.
1461  */
1462 int
1463 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1464 {
1465 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1466 	static const struct ratemedia rates[] = {
1467 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1468 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1469 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1470 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1471 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1472 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1473 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1474 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1475 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1476 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1477 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1478 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1479 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1480 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1481 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1482 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1483 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1484 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1485 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1486 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1487 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1488 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1489 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1490 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1491 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1492 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1493 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1494 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1495 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1496 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1497 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1498 	};
1499 	static const struct ratemedia htrates[] = {
1500 		{   0, IFM_IEEE80211_MCS },
1501 		{   1, IFM_IEEE80211_MCS },
1502 		{   2, IFM_IEEE80211_MCS },
1503 		{   3, IFM_IEEE80211_MCS },
1504 		{   4, IFM_IEEE80211_MCS },
1505 		{   5, IFM_IEEE80211_MCS },
1506 		{   6, IFM_IEEE80211_MCS },
1507 		{   7, IFM_IEEE80211_MCS },
1508 		{   8, IFM_IEEE80211_MCS },
1509 		{   9, IFM_IEEE80211_MCS },
1510 		{  10, IFM_IEEE80211_MCS },
1511 		{  11, IFM_IEEE80211_MCS },
1512 		{  12, IFM_IEEE80211_MCS },
1513 		{  13, IFM_IEEE80211_MCS },
1514 		{  14, IFM_IEEE80211_MCS },
1515 		{  15, IFM_IEEE80211_MCS },
1516 	};
1517 	int m;
1518 
1519 	/*
1520 	 * Check 11n rates first for match as an MCS.
1521 	 */
1522 	if (mode == IEEE80211_MODE_11NA) {
1523 		if (rate & IEEE80211_RATE_MCS) {
1524 			rate &= ~IEEE80211_RATE_MCS;
1525 			m = findmedia(htrates, N(htrates), rate);
1526 			if (m != IFM_AUTO)
1527 				return m | IFM_IEEE80211_11NA;
1528 		}
1529 	} else if (mode == IEEE80211_MODE_11NG) {
1530 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1531 		if (rate & IEEE80211_RATE_MCS) {
1532 			rate &= ~IEEE80211_RATE_MCS;
1533 			m = findmedia(htrates, N(htrates), rate);
1534 			if (m != IFM_AUTO)
1535 				return m | IFM_IEEE80211_11NG;
1536 		}
1537 	}
1538 	rate &= IEEE80211_RATE_VAL;
1539 	switch (mode) {
1540 	case IEEE80211_MODE_11A:
1541 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1542 	case IEEE80211_MODE_QUARTER:
1543 	case IEEE80211_MODE_11NA:
1544 	case IEEE80211_MODE_TURBO_A:
1545 	case IEEE80211_MODE_STURBO_A:
1546 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A);
1547 	case IEEE80211_MODE_11B:
1548 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B);
1549 	case IEEE80211_MODE_FH:
1550 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH);
1551 	case IEEE80211_MODE_AUTO:
1552 		/* NB: ic may be NULL for some drivers */
1553 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1554 			return findmedia(rates, N(rates),
1555 			    rate | IFM_IEEE80211_FH);
1556 		/* NB: hack, 11g matches both 11b+11a rates */
1557 		/* fall thru... */
1558 	case IEEE80211_MODE_11G:
1559 	case IEEE80211_MODE_11NG:
1560 	case IEEE80211_MODE_TURBO_G:
1561 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G);
1562 	}
1563 	return IFM_AUTO;
1564 #undef N
1565 }
1566 
1567 int
1568 ieee80211_media2rate(int mword)
1569 {
1570 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1571 	static const int ieeerates[] = {
1572 		-1,		/* IFM_AUTO */
1573 		0,		/* IFM_MANUAL */
1574 		0,		/* IFM_NONE */
1575 		2,		/* IFM_IEEE80211_FH1 */
1576 		4,		/* IFM_IEEE80211_FH2 */
1577 		2,		/* IFM_IEEE80211_DS1 */
1578 		4,		/* IFM_IEEE80211_DS2 */
1579 		11,		/* IFM_IEEE80211_DS5 */
1580 		22,		/* IFM_IEEE80211_DS11 */
1581 		44,		/* IFM_IEEE80211_DS22 */
1582 		12,		/* IFM_IEEE80211_OFDM6 */
1583 		18,		/* IFM_IEEE80211_OFDM9 */
1584 		24,		/* IFM_IEEE80211_OFDM12 */
1585 		36,		/* IFM_IEEE80211_OFDM18 */
1586 		48,		/* IFM_IEEE80211_OFDM24 */
1587 		72,		/* IFM_IEEE80211_OFDM36 */
1588 		96,		/* IFM_IEEE80211_OFDM48 */
1589 		108,		/* IFM_IEEE80211_OFDM54 */
1590 		144,		/* IFM_IEEE80211_OFDM72 */
1591 		0,		/* IFM_IEEE80211_DS354k */
1592 		0,		/* IFM_IEEE80211_DS512k */
1593 		6,		/* IFM_IEEE80211_OFDM3 */
1594 		9,		/* IFM_IEEE80211_OFDM4 */
1595 		54,		/* IFM_IEEE80211_OFDM27 */
1596 		-1,		/* IFM_IEEE80211_MCS */
1597 	};
1598 	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1599 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1600 #undef N
1601 }
1602 
1603 /*
1604  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1605  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1606  */
1607 #define	mix(a, b, c)							\
1608 do {									\
1609 	a -= b; a -= c; a ^= (c >> 13);					\
1610 	b -= c; b -= a; b ^= (a << 8);					\
1611 	c -= a; c -= b; c ^= (b >> 13);					\
1612 	a -= b; a -= c; a ^= (c >> 12);					\
1613 	b -= c; b -= a; b ^= (a << 16);					\
1614 	c -= a; c -= b; c ^= (b >> 5);					\
1615 	a -= b; a -= c; a ^= (c >> 3);					\
1616 	b -= c; b -= a; b ^= (a << 10);					\
1617 	c -= a; c -= b; c ^= (b >> 15);					\
1618 } while (/*CONSTCOND*/0)
1619 
1620 uint32_t
1621 ieee80211_mac_hash(const struct ieee80211com *ic,
1622 	const uint8_t addr[IEEE80211_ADDR_LEN])
1623 {
1624 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1625 
1626 	b += addr[5] << 8;
1627 	b += addr[4];
1628 	a += addr[3] << 24;
1629 	a += addr[2] << 16;
1630 	a += addr[1] << 8;
1631 	a += addr[0];
1632 
1633 	mix(a, b, c);
1634 
1635 	return c;
1636 }
1637 #undef mix
1638