xref: /freebsd/sys/net80211/ieee80211.c (revision 9a0c3479e22feda1bdb2db4b97f9deb1b5fa6269)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ethernet.h>
46 
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_regdomain.h>
49 #ifdef IEEE80211_SUPPORT_SUPERG
50 #include <net80211/ieee80211_superg.h>
51 #endif
52 #include <net80211/ieee80211_ratectl.h>
53 
54 #include <net/bpf.h>
55 
56 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
57 	[IEEE80211_MODE_AUTO]	  = "auto",
58 	[IEEE80211_MODE_11A]	  = "11a",
59 	[IEEE80211_MODE_11B]	  = "11b",
60 	[IEEE80211_MODE_11G]	  = "11g",
61 	[IEEE80211_MODE_FH]	  = "FH",
62 	[IEEE80211_MODE_TURBO_A]  = "turboA",
63 	[IEEE80211_MODE_TURBO_G]  = "turboG",
64 	[IEEE80211_MODE_STURBO_A] = "sturboA",
65 	[IEEE80211_MODE_HALF]	  = "half",
66 	[IEEE80211_MODE_QUARTER]  = "quarter",
67 	[IEEE80211_MODE_11NA]	  = "11na",
68 	[IEEE80211_MODE_11NG]	  = "11ng",
69 };
70 /* map ieee80211_opmode to the corresponding capability bit */
71 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
72 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
73 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
74 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
75 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
76 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
77 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
78 #ifdef IEEE80211_SUPPORT_MESH
79 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
80 #endif
81 };
82 
83 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
84 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
85 
86 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
87 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
88 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
89 static	int ieee80211_media_setup(struct ieee80211com *ic,
90 		struct ifmedia *media, int caps, int addsta,
91 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
92 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
93 static	int ieee80211com_media_change(struct ifnet *);
94 static	int media_status(enum ieee80211_opmode,
95 		const struct ieee80211_channel *);
96 
97 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
98 
99 /*
100  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
101  */
102 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
103 static const struct ieee80211_rateset ieee80211_rateset_11a =
104 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
105 static const struct ieee80211_rateset ieee80211_rateset_half =
106 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
107 static const struct ieee80211_rateset ieee80211_rateset_quarter =
108 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
109 static const struct ieee80211_rateset ieee80211_rateset_11b =
110 	{ 4, { B(2), B(4), B(11), B(22) } };
111 /* NB: OFDM rates are handled specially based on mode */
112 static const struct ieee80211_rateset ieee80211_rateset_11g =
113 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
114 #undef B
115 
116 /*
117  * Fill in 802.11 available channel set, mark
118  * all available channels as active, and pick
119  * a default channel if not already specified.
120  */
121 static void
122 ieee80211_chan_init(struct ieee80211com *ic)
123 {
124 #define	DEFAULTRATES(m, def) do { \
125 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
126 		ic->ic_sup_rates[m] = def; \
127 } while (0)
128 	struct ieee80211_channel *c;
129 	int i;
130 
131 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
132 		("invalid number of channels specified: %u", ic->ic_nchans));
133 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
134 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
135 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
136 	for (i = 0; i < ic->ic_nchans; i++) {
137 		c = &ic->ic_channels[i];
138 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
139 		/*
140 		 * Help drivers that work only with frequencies by filling
141 		 * in IEEE channel #'s if not already calculated.  Note this
142 		 * mimics similar work done in ieee80211_setregdomain when
143 		 * changing regulatory state.
144 		 */
145 		if (c->ic_ieee == 0)
146 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
147 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
148 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
149 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
150 			    c->ic_flags);
151 		/* default max tx power to max regulatory */
152 		if (c->ic_maxpower == 0)
153 			c->ic_maxpower = 2*c->ic_maxregpower;
154 		setbit(ic->ic_chan_avail, c->ic_ieee);
155 		/*
156 		 * Identify mode capabilities.
157 		 */
158 		if (IEEE80211_IS_CHAN_A(c))
159 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
160 		if (IEEE80211_IS_CHAN_B(c))
161 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
162 		if (IEEE80211_IS_CHAN_ANYG(c))
163 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
164 		if (IEEE80211_IS_CHAN_FHSS(c))
165 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
166 		if (IEEE80211_IS_CHAN_108A(c))
167 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
168 		if (IEEE80211_IS_CHAN_108G(c))
169 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
170 		if (IEEE80211_IS_CHAN_ST(c))
171 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
172 		if (IEEE80211_IS_CHAN_HALF(c))
173 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
174 		if (IEEE80211_IS_CHAN_QUARTER(c))
175 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
176 		if (IEEE80211_IS_CHAN_HTA(c))
177 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
178 		if (IEEE80211_IS_CHAN_HTG(c))
179 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
180 	}
181 	/* initialize candidate channels to all available */
182 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
183 		sizeof(ic->ic_chan_avail));
184 
185 	/* sort channel table to allow lookup optimizations */
186 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
187 
188 	/* invalidate any previous state */
189 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
190 	ic->ic_prevchan = NULL;
191 	ic->ic_csa_newchan = NULL;
192 	/* arbitrarily pick the first channel */
193 	ic->ic_curchan = &ic->ic_channels[0];
194 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
195 
196 	/* fillin well-known rate sets if driver has not specified */
197 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
198 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
199 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
200 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
201 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
202 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
203 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
204 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
205 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
207 
208 	/*
209 	 * Setup required information to fill the mcsset field, if driver did
210 	 * not. Assume a 2T2R setup for historic reasons.
211 	 */
212 	if (ic->ic_rxstream == 0)
213 		ic->ic_rxstream = 2;
214 	if (ic->ic_txstream == 0)
215 		ic->ic_txstream = 2;
216 
217 	/*
218 	 * Set auto mode to reset active channel state and any desired channel.
219 	 */
220 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
221 #undef DEFAULTRATES
222 }
223 
224 static void
225 null_update_mcast(struct ifnet *ifp)
226 {
227 	if_printf(ifp, "need multicast update callback\n");
228 }
229 
230 static void
231 null_update_promisc(struct ifnet *ifp)
232 {
233 	if_printf(ifp, "need promiscuous mode update callback\n");
234 }
235 
236 static int
237 null_transmit(struct ifnet *ifp, struct mbuf *m)
238 {
239 	m_freem(m);
240 	ifp->if_oerrors++;
241 	return EACCES;		/* XXX EIO/EPERM? */
242 }
243 
244 static int
245 null_output(struct ifnet *ifp, struct mbuf *m,
246 	const struct sockaddr *dst, struct route *ro)
247 {
248 	if_printf(ifp, "discard raw packet\n");
249 	return null_transmit(ifp, m);
250 }
251 
252 static void
253 null_input(struct ifnet *ifp, struct mbuf *m)
254 {
255 	if_printf(ifp, "if_input should not be called\n");
256 	m_freem(m);
257 }
258 
259 static void
260 null_update_chw(struct ieee80211com *ic)
261 {
262 
263 	if_printf(ic->ic_ifp, "%s: need callback\n", __func__);
264 }
265 
266 /*
267  * Attach/setup the common net80211 state.  Called by
268  * the driver on attach to prior to creating any vap's.
269  */
270 void
271 ieee80211_ifattach(struct ieee80211com *ic,
272 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
273 {
274 	struct ifnet *ifp = ic->ic_ifp;
275 	struct sockaddr_dl *sdl;
276 	struct ifaddr *ifa;
277 
278 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
279 
280 	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
281 	IEEE80211_TX_LOCK_INIT(ic, ifp->if_xname);
282 	TAILQ_INIT(&ic->ic_vaps);
283 
284 	/* Create a taskqueue for all state changes */
285 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
286 	    taskqueue_thread_enqueue, &ic->ic_tq);
287 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
288 	    ifp->if_xname);
289 	/*
290 	 * Fill in 802.11 available channel set, mark all
291 	 * available channels as active, and pick a default
292 	 * channel if not already specified.
293 	 */
294 	ieee80211_media_init(ic);
295 
296 	ic->ic_update_mcast = null_update_mcast;
297 	ic->ic_update_promisc = null_update_promisc;
298 	ic->ic_update_chw = null_update_chw;
299 
300 	ic->ic_hash_key = arc4random();
301 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
302 	ic->ic_lintval = ic->ic_bintval;
303 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
304 
305 	ieee80211_crypto_attach(ic);
306 	ieee80211_node_attach(ic);
307 	ieee80211_power_attach(ic);
308 	ieee80211_proto_attach(ic);
309 #ifdef IEEE80211_SUPPORT_SUPERG
310 	ieee80211_superg_attach(ic);
311 #endif
312 	ieee80211_ht_attach(ic);
313 	ieee80211_scan_attach(ic);
314 	ieee80211_regdomain_attach(ic);
315 	ieee80211_dfs_attach(ic);
316 
317 	ieee80211_sysctl_attach(ic);
318 
319 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
320 	ifp->if_hdrlen = 0;
321 
322 	CURVNET_SET(vnet0);
323 
324 	if_attach(ifp);
325 
326 	ifp->if_mtu = IEEE80211_MTU_MAX;
327 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
328 	ifp->if_output = null_output;
329 	ifp->if_input = null_input;	/* just in case */
330 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
331 
332 	ifa = ifaddr_byindex(ifp->if_index);
333 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
334 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
335 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
336 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
337 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
338 	ifa_free(ifa);
339 
340 	CURVNET_RESTORE();
341 }
342 
343 /*
344  * Detach net80211 state on device detach.  Tear down
345  * all vap's and reclaim all common state prior to the
346  * device state going away.  Note we may call back into
347  * driver; it must be prepared for this.
348  */
349 void
350 ieee80211_ifdetach(struct ieee80211com *ic)
351 {
352 	struct ifnet *ifp = ic->ic_ifp;
353 	struct ieee80211vap *vap;
354 
355 	/*
356 	 * This detaches the main interface, but not the vaps.
357 	 * Each VAP may be in a separate VIMAGE.
358 	 */
359 	CURVNET_SET(ifp->if_vnet);
360 	if_detach(ifp);
361 	CURVNET_RESTORE();
362 
363 	/*
364 	 * The VAP is responsible for setting and clearing
365 	 * the VIMAGE context.
366 	 */
367 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
368 		ieee80211_vap_destroy(vap);
369 	ieee80211_waitfor_parent(ic);
370 
371 	ieee80211_sysctl_detach(ic);
372 	ieee80211_dfs_detach(ic);
373 	ieee80211_regdomain_detach(ic);
374 	ieee80211_scan_detach(ic);
375 #ifdef IEEE80211_SUPPORT_SUPERG
376 	ieee80211_superg_detach(ic);
377 #endif
378 	ieee80211_ht_detach(ic);
379 	/* NB: must be called before ieee80211_node_detach */
380 	ieee80211_proto_detach(ic);
381 	ieee80211_crypto_detach(ic);
382 	ieee80211_power_detach(ic);
383 	ieee80211_node_detach(ic);
384 
385 	/* XXX VNET needed? */
386 	ifmedia_removeall(&ic->ic_media);
387 
388 	taskqueue_free(ic->ic_tq);
389 	IEEE80211_TX_LOCK_DESTROY(ic);
390 	IEEE80211_LOCK_DESTROY(ic);
391 }
392 
393 /*
394  * Default reset method for use with the ioctl support.  This
395  * method is invoked after any state change in the 802.11
396  * layer that should be propagated to the hardware but not
397  * require re-initialization of the 802.11 state machine (e.g
398  * rescanning for an ap).  We always return ENETRESET which
399  * should cause the driver to re-initialize the device. Drivers
400  * can override this method to implement more optimized support.
401  */
402 static int
403 default_reset(struct ieee80211vap *vap, u_long cmd)
404 {
405 	return ENETRESET;
406 }
407 
408 /*
409  * Prepare a vap for use.  Drivers use this call to
410  * setup net80211 state in new vap's prior attaching
411  * them with ieee80211_vap_attach (below).
412  */
413 int
414 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
415     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
416     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
417     const uint8_t macaddr[IEEE80211_ADDR_LEN])
418 {
419 	struct ifnet *ifp;
420 
421 	ifp = if_alloc(IFT_ETHER);
422 	if (ifp == NULL) {
423 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
424 		    __func__);
425 		return ENOMEM;
426 	}
427 	if_initname(ifp, name, unit);
428 	ifp->if_softc = vap;			/* back pointer */
429 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
430 	ifp->if_start = ieee80211_start;
431 	ifp->if_ioctl = ieee80211_ioctl;
432 	ifp->if_init = ieee80211_init;
433 	/* NB: input+output filled in by ether_ifattach */
434 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
435 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
436 	IFQ_SET_READY(&ifp->if_snd);
437 
438 	vap->iv_ifp = ifp;
439 	vap->iv_ic = ic;
440 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
441 	vap->iv_flags_ext = ic->ic_flags_ext;
442 	vap->iv_flags_ven = ic->ic_flags_ven;
443 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
444 	vap->iv_htcaps = ic->ic_htcaps;
445 	vap->iv_htextcaps = ic->ic_htextcaps;
446 	vap->iv_opmode = opmode;
447 	vap->iv_caps |= ieee80211_opcap[opmode];
448 	switch (opmode) {
449 	case IEEE80211_M_WDS:
450 		/*
451 		 * WDS links must specify the bssid of the far end.
452 		 * For legacy operation this is a static relationship.
453 		 * For non-legacy operation the station must associate
454 		 * and be authorized to pass traffic.  Plumbing the
455 		 * vap to the proper node happens when the vap
456 		 * transitions to RUN state.
457 		 */
458 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
459 		vap->iv_flags |= IEEE80211_F_DESBSSID;
460 		if (flags & IEEE80211_CLONE_WDSLEGACY)
461 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
462 		break;
463 #ifdef IEEE80211_SUPPORT_TDMA
464 	case IEEE80211_M_AHDEMO:
465 		if (flags & IEEE80211_CLONE_TDMA) {
466 			/* NB: checked before clone operation allowed */
467 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
468 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
469 			/*
470 			 * Propagate TDMA capability to mark vap; this
471 			 * cannot be removed and is used to distinguish
472 			 * regular ahdemo operation from ahdemo+tdma.
473 			 */
474 			vap->iv_caps |= IEEE80211_C_TDMA;
475 		}
476 		break;
477 #endif
478 	default:
479 		break;
480 	}
481 	/* auto-enable s/w beacon miss support */
482 	if (flags & IEEE80211_CLONE_NOBEACONS)
483 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
484 	/* auto-generated or user supplied MAC address */
485 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
486 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
487 	/*
488 	 * Enable various functionality by default if we're
489 	 * capable; the driver can override us if it knows better.
490 	 */
491 	if (vap->iv_caps & IEEE80211_C_WME)
492 		vap->iv_flags |= IEEE80211_F_WME;
493 	if (vap->iv_caps & IEEE80211_C_BURST)
494 		vap->iv_flags |= IEEE80211_F_BURST;
495 	/* NB: bg scanning only makes sense for station mode right now */
496 	if (vap->iv_opmode == IEEE80211_M_STA &&
497 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
498 		vap->iv_flags |= IEEE80211_F_BGSCAN;
499 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
500 	/* NB: DFS support only makes sense for ap mode right now */
501 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
502 	    (vap->iv_caps & IEEE80211_C_DFS))
503 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
504 
505 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
506 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
507 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
508 	/*
509 	 * Install a default reset method for the ioctl support;
510 	 * the driver can override this.
511 	 */
512 	vap->iv_reset = default_reset;
513 
514 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
515 
516 	ieee80211_sysctl_vattach(vap);
517 	ieee80211_crypto_vattach(vap);
518 	ieee80211_node_vattach(vap);
519 	ieee80211_power_vattach(vap);
520 	ieee80211_proto_vattach(vap);
521 #ifdef IEEE80211_SUPPORT_SUPERG
522 	ieee80211_superg_vattach(vap);
523 #endif
524 	ieee80211_ht_vattach(vap);
525 	ieee80211_scan_vattach(vap);
526 	ieee80211_regdomain_vattach(vap);
527 	ieee80211_radiotap_vattach(vap);
528 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
529 
530 	return 0;
531 }
532 
533 /*
534  * Activate a vap.  State should have been prepared with a
535  * call to ieee80211_vap_setup and by the driver.  On return
536  * from this call the vap is ready for use.
537  */
538 int
539 ieee80211_vap_attach(struct ieee80211vap *vap,
540 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
541 {
542 	struct ifnet *ifp = vap->iv_ifp;
543 	struct ieee80211com *ic = vap->iv_ic;
544 	struct ifmediareq imr;
545 	int maxrate;
546 
547 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
548 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
549 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
550 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
551 
552 	/*
553 	 * Do late attach work that cannot happen until after
554 	 * the driver has had a chance to override defaults.
555 	 */
556 	ieee80211_node_latevattach(vap);
557 	ieee80211_power_latevattach(vap);
558 
559 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
560 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
561 	ieee80211_media_status(ifp, &imr);
562 	/* NB: strip explicit mode; we're actually in autoselect */
563 	ifmedia_set(&vap->iv_media,
564 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
565 	if (maxrate)
566 		ifp->if_baudrate = IF_Mbps(maxrate);
567 
568 	ether_ifattach(ifp, vap->iv_myaddr);
569 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
570 		/* NB: disallow transmit */
571 		ifp->if_transmit = null_transmit;
572 		ifp->if_output = null_output;
573 	} else {
574 		/* hook output method setup by ether_ifattach */
575 		vap->iv_output = ifp->if_output;
576 		ifp->if_output = ieee80211_output;
577 	}
578 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
579 
580 	IEEE80211_LOCK(ic);
581 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
582 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
583 #ifdef IEEE80211_SUPPORT_SUPERG
584 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
585 #endif
586 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
587 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
588 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
589 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
590 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
591 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
592 	IEEE80211_UNLOCK(ic);
593 
594 	return 1;
595 }
596 
597 /*
598  * Tear down vap state and reclaim the ifnet.
599  * The driver is assumed to have prepared for
600  * this; e.g. by turning off interrupts for the
601  * underlying device.
602  */
603 void
604 ieee80211_vap_detach(struct ieee80211vap *vap)
605 {
606 	struct ieee80211com *ic = vap->iv_ic;
607 	struct ifnet *ifp = vap->iv_ifp;
608 
609 	CURVNET_SET(ifp->if_vnet);
610 
611 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
612 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
613 	    ic->ic_ifp->if_xname);
614 
615 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
616 	ether_ifdetach(ifp);
617 
618 	ieee80211_stop(vap);
619 
620 	/*
621 	 * Flush any deferred vap tasks.
622 	 */
623 	ieee80211_draintask(ic, &vap->iv_nstate_task);
624 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
625 
626 	/* XXX band-aid until ifnet handles this for us */
627 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
628 
629 	IEEE80211_LOCK(ic);
630 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
631 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
632 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
633 #ifdef IEEE80211_SUPPORT_SUPERG
634 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
635 #endif
636 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
637 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
638 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
639 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
640 	/* NB: this handles the bpfdetach done below */
641 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
642 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
643 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
644 	IEEE80211_UNLOCK(ic);
645 
646 	ifmedia_removeall(&vap->iv_media);
647 
648 	ieee80211_radiotap_vdetach(vap);
649 	ieee80211_regdomain_vdetach(vap);
650 	ieee80211_scan_vdetach(vap);
651 #ifdef IEEE80211_SUPPORT_SUPERG
652 	ieee80211_superg_vdetach(vap);
653 #endif
654 	ieee80211_ht_vdetach(vap);
655 	/* NB: must be before ieee80211_node_vdetach */
656 	ieee80211_proto_vdetach(vap);
657 	ieee80211_crypto_vdetach(vap);
658 	ieee80211_power_vdetach(vap);
659 	ieee80211_node_vdetach(vap);
660 	ieee80211_sysctl_vdetach(vap);
661 
662 	if_free(ifp);
663 
664 	CURVNET_RESTORE();
665 }
666 
667 /*
668  * Synchronize flag bit state in the parent ifnet structure
669  * according to the state of all vap ifnet's.  This is used,
670  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
671  */
672 void
673 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
674 {
675 	struct ifnet *ifp = ic->ic_ifp;
676 	struct ieee80211vap *vap;
677 	int bit, oflags;
678 
679 	IEEE80211_LOCK_ASSERT(ic);
680 
681 	bit = 0;
682 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
683 		if (vap->iv_ifp->if_flags & flag) {
684 			/*
685 			 * XXX the bridge sets PROMISC but we don't want to
686 			 * enable it on the device, discard here so all the
687 			 * drivers don't need to special-case it
688 			 */
689 			if (flag == IFF_PROMISC &&
690 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
691 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
692 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
693 				continue;
694 			bit = 1;
695 			break;
696 		}
697 	oflags = ifp->if_flags;
698 	if (bit)
699 		ifp->if_flags |= flag;
700 	else
701 		ifp->if_flags &= ~flag;
702 	if ((ifp->if_flags ^ oflags) & flag) {
703 		/* XXX should we return 1/0 and let caller do this? */
704 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
705 			if (flag == IFF_PROMISC)
706 				ieee80211_runtask(ic, &ic->ic_promisc_task);
707 			else if (flag == IFF_ALLMULTI)
708 				ieee80211_runtask(ic, &ic->ic_mcast_task);
709 		}
710 	}
711 }
712 
713 /*
714  * Synchronize flag bit state in the com structure
715  * according to the state of all vap's.  This is used,
716  * for example, to handle state changes via ioctls.
717  */
718 static void
719 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
720 {
721 	struct ieee80211vap *vap;
722 	int bit;
723 
724 	IEEE80211_LOCK_ASSERT(ic);
725 
726 	bit = 0;
727 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
728 		if (vap->iv_flags & flag) {
729 			bit = 1;
730 			break;
731 		}
732 	if (bit)
733 		ic->ic_flags |= flag;
734 	else
735 		ic->ic_flags &= ~flag;
736 }
737 
738 void
739 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
740 {
741 	struct ieee80211com *ic = vap->iv_ic;
742 
743 	IEEE80211_LOCK(ic);
744 	if (flag < 0) {
745 		flag = -flag;
746 		vap->iv_flags &= ~flag;
747 	} else
748 		vap->iv_flags |= flag;
749 	ieee80211_syncflag_locked(ic, flag);
750 	IEEE80211_UNLOCK(ic);
751 }
752 
753 /*
754  * Synchronize flags_ht bit state in the com structure
755  * according to the state of all vap's.  This is used,
756  * for example, to handle state changes via ioctls.
757  */
758 static void
759 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
760 {
761 	struct ieee80211vap *vap;
762 	int bit;
763 
764 	IEEE80211_LOCK_ASSERT(ic);
765 
766 	bit = 0;
767 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
768 		if (vap->iv_flags_ht & flag) {
769 			bit = 1;
770 			break;
771 		}
772 	if (bit)
773 		ic->ic_flags_ht |= flag;
774 	else
775 		ic->ic_flags_ht &= ~flag;
776 }
777 
778 void
779 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
780 {
781 	struct ieee80211com *ic = vap->iv_ic;
782 
783 	IEEE80211_LOCK(ic);
784 	if (flag < 0) {
785 		flag = -flag;
786 		vap->iv_flags_ht &= ~flag;
787 	} else
788 		vap->iv_flags_ht |= flag;
789 	ieee80211_syncflag_ht_locked(ic, flag);
790 	IEEE80211_UNLOCK(ic);
791 }
792 
793 /*
794  * Synchronize flags_ext bit state in the com structure
795  * according to the state of all vap's.  This is used,
796  * for example, to handle state changes via ioctls.
797  */
798 static void
799 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
800 {
801 	struct ieee80211vap *vap;
802 	int bit;
803 
804 	IEEE80211_LOCK_ASSERT(ic);
805 
806 	bit = 0;
807 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
808 		if (vap->iv_flags_ext & flag) {
809 			bit = 1;
810 			break;
811 		}
812 	if (bit)
813 		ic->ic_flags_ext |= flag;
814 	else
815 		ic->ic_flags_ext &= ~flag;
816 }
817 
818 void
819 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
820 {
821 	struct ieee80211com *ic = vap->iv_ic;
822 
823 	IEEE80211_LOCK(ic);
824 	if (flag < 0) {
825 		flag = -flag;
826 		vap->iv_flags_ext &= ~flag;
827 	} else
828 		vap->iv_flags_ext |= flag;
829 	ieee80211_syncflag_ext_locked(ic, flag);
830 	IEEE80211_UNLOCK(ic);
831 }
832 
833 static __inline int
834 mapgsm(u_int freq, u_int flags)
835 {
836 	freq *= 10;
837 	if (flags & IEEE80211_CHAN_QUARTER)
838 		freq += 5;
839 	else if (flags & IEEE80211_CHAN_HALF)
840 		freq += 10;
841 	else
842 		freq += 20;
843 	/* NB: there is no 907/20 wide but leave room */
844 	return (freq - 906*10) / 5;
845 }
846 
847 static __inline int
848 mappsb(u_int freq, u_int flags)
849 {
850 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
851 }
852 
853 /*
854  * Convert MHz frequency to IEEE channel number.
855  */
856 int
857 ieee80211_mhz2ieee(u_int freq, u_int flags)
858 {
859 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
860 	if (flags & IEEE80211_CHAN_GSM)
861 		return mapgsm(freq, flags);
862 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
863 		if (freq == 2484)
864 			return 14;
865 		if (freq < 2484)
866 			return ((int) freq - 2407) / 5;
867 		else
868 			return 15 + ((freq - 2512) / 20);
869 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
870 		if (freq <= 5000) {
871 			/* XXX check regdomain? */
872 			if (IS_FREQ_IN_PSB(freq))
873 				return mappsb(freq, flags);
874 			return (freq - 4000) / 5;
875 		} else
876 			return (freq - 5000) / 5;
877 	} else {				/* either, guess */
878 		if (freq == 2484)
879 			return 14;
880 		if (freq < 2484) {
881 			if (907 <= freq && freq <= 922)
882 				return mapgsm(freq, flags);
883 			return ((int) freq - 2407) / 5;
884 		}
885 		if (freq < 5000) {
886 			if (IS_FREQ_IN_PSB(freq))
887 				return mappsb(freq, flags);
888 			else if (freq > 4900)
889 				return (freq - 4000) / 5;
890 			else
891 				return 15 + ((freq - 2512) / 20);
892 		}
893 		return (freq - 5000) / 5;
894 	}
895 #undef IS_FREQ_IN_PSB
896 }
897 
898 /*
899  * Convert channel to IEEE channel number.
900  */
901 int
902 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
903 {
904 	if (c == NULL) {
905 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
906 		return 0;		/* XXX */
907 	}
908 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
909 }
910 
911 /*
912  * Convert IEEE channel number to MHz frequency.
913  */
914 u_int
915 ieee80211_ieee2mhz(u_int chan, u_int flags)
916 {
917 	if (flags & IEEE80211_CHAN_GSM)
918 		return 907 + 5 * (chan / 10);
919 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
920 		if (chan == 14)
921 			return 2484;
922 		if (chan < 14)
923 			return 2407 + chan*5;
924 		else
925 			return 2512 + ((chan-15)*20);
926 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
927 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
928 			chan -= 37;
929 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
930 		}
931 		return 5000 + (chan*5);
932 	} else {				/* either, guess */
933 		/* XXX can't distinguish PSB+GSM channels */
934 		if (chan == 14)
935 			return 2484;
936 		if (chan < 14)			/* 0-13 */
937 			return 2407 + chan*5;
938 		if (chan < 27)			/* 15-26 */
939 			return 2512 + ((chan-15)*20);
940 		return 5000 + (chan*5);
941 	}
942 }
943 
944 /*
945  * Locate a channel given a frequency+flags.  We cache
946  * the previous lookup to optimize switching between two
947  * channels--as happens with dynamic turbo.
948  */
949 struct ieee80211_channel *
950 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
951 {
952 	struct ieee80211_channel *c;
953 	int i;
954 
955 	flags &= IEEE80211_CHAN_ALLTURBO;
956 	c = ic->ic_prevchan;
957 	if (c != NULL && c->ic_freq == freq &&
958 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
959 		return c;
960 	/* brute force search */
961 	for (i = 0; i < ic->ic_nchans; i++) {
962 		c = &ic->ic_channels[i];
963 		if (c->ic_freq == freq &&
964 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
965 			return c;
966 	}
967 	return NULL;
968 }
969 
970 /*
971  * Locate a channel given a channel number+flags.  We cache
972  * the previous lookup to optimize switching between two
973  * channels--as happens with dynamic turbo.
974  */
975 struct ieee80211_channel *
976 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
977 {
978 	struct ieee80211_channel *c;
979 	int i;
980 
981 	flags &= IEEE80211_CHAN_ALLTURBO;
982 	c = ic->ic_prevchan;
983 	if (c != NULL && c->ic_ieee == ieee &&
984 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
985 		return c;
986 	/* brute force search */
987 	for (i = 0; i < ic->ic_nchans; i++) {
988 		c = &ic->ic_channels[i];
989 		if (c->ic_ieee == ieee &&
990 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
991 			return c;
992 	}
993 	return NULL;
994 }
995 
996 static void
997 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
998 {
999 #define	ADD(_ic, _s, _o) \
1000 	ifmedia_add(media, \
1001 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1002 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1003 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1004 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1005 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1006 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1007 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1008 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1009 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1010 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1011 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1012 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1013 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1014 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1015 	};
1016 	u_int mopt;
1017 
1018 	mopt = mopts[mode];
1019 	if (addsta)
1020 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1021 	if (caps & IEEE80211_C_IBSS)
1022 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1023 	if (caps & IEEE80211_C_HOSTAP)
1024 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1025 	if (caps & IEEE80211_C_AHDEMO)
1026 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1027 	if (caps & IEEE80211_C_MONITOR)
1028 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1029 	if (caps & IEEE80211_C_WDS)
1030 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1031 	if (caps & IEEE80211_C_MBSS)
1032 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1033 #undef ADD
1034 }
1035 
1036 /*
1037  * Setup the media data structures according to the channel and
1038  * rate tables.
1039  */
1040 static int
1041 ieee80211_media_setup(struct ieee80211com *ic,
1042 	struct ifmedia *media, int caps, int addsta,
1043 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1044 {
1045 	int i, j, rate, maxrate, mword, r;
1046 	enum ieee80211_phymode mode;
1047 	const struct ieee80211_rateset *rs;
1048 	struct ieee80211_rateset allrates;
1049 
1050 	/*
1051 	 * Fill in media characteristics.
1052 	 */
1053 	ifmedia_init(media, 0, media_change, media_stat);
1054 	maxrate = 0;
1055 	/*
1056 	 * Add media for legacy operating modes.
1057 	 */
1058 	memset(&allrates, 0, sizeof(allrates));
1059 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1060 		if (isclr(ic->ic_modecaps, mode))
1061 			continue;
1062 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1063 		if (mode == IEEE80211_MODE_AUTO)
1064 			continue;
1065 		rs = &ic->ic_sup_rates[mode];
1066 		for (i = 0; i < rs->rs_nrates; i++) {
1067 			rate = rs->rs_rates[i];
1068 			mword = ieee80211_rate2media(ic, rate, mode);
1069 			if (mword == 0)
1070 				continue;
1071 			addmedia(media, caps, addsta, mode, mword);
1072 			/*
1073 			 * Add legacy rate to the collection of all rates.
1074 			 */
1075 			r = rate & IEEE80211_RATE_VAL;
1076 			for (j = 0; j < allrates.rs_nrates; j++)
1077 				if (allrates.rs_rates[j] == r)
1078 					break;
1079 			if (j == allrates.rs_nrates) {
1080 				/* unique, add to the set */
1081 				allrates.rs_rates[j] = r;
1082 				allrates.rs_nrates++;
1083 			}
1084 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1085 			if (rate > maxrate)
1086 				maxrate = rate;
1087 		}
1088 	}
1089 	for (i = 0; i < allrates.rs_nrates; i++) {
1090 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1091 				IEEE80211_MODE_AUTO);
1092 		if (mword == 0)
1093 			continue;
1094 		/* NB: remove media options from mword */
1095 		addmedia(media, caps, addsta,
1096 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1097 	}
1098 	/*
1099 	 * Add HT/11n media.  Note that we do not have enough
1100 	 * bits in the media subtype to express the MCS so we
1101 	 * use a "placeholder" media subtype and any fixed MCS
1102 	 * must be specified with a different mechanism.
1103 	 */
1104 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1105 		if (isclr(ic->ic_modecaps, mode))
1106 			continue;
1107 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1108 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1109 	}
1110 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1111 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1112 		addmedia(media, caps, addsta,
1113 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1114 		i = ic->ic_txstream * 8 - 1;
1115 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1116 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1117 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1118 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1119 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1120 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1121 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1122 		else
1123 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1124 		if (rate > maxrate)
1125 			maxrate = rate;
1126 	}
1127 	return maxrate;
1128 }
1129 
1130 void
1131 ieee80211_media_init(struct ieee80211com *ic)
1132 {
1133 	struct ifnet *ifp = ic->ic_ifp;
1134 	int maxrate;
1135 
1136 	/* NB: this works because the structure is initialized to zero */
1137 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1138 		/*
1139 		 * We are re-initializing the channel list; clear
1140 		 * the existing media state as the media routines
1141 		 * don't suppress duplicates.
1142 		 */
1143 		ifmedia_removeall(&ic->ic_media);
1144 	}
1145 	ieee80211_chan_init(ic);
1146 
1147 	/*
1148 	 * Recalculate media settings in case new channel list changes
1149 	 * the set of available modes.
1150 	 */
1151 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1152 		ieee80211com_media_change, ieee80211com_media_status);
1153 	/* NB: strip explicit mode; we're actually in autoselect */
1154 	ifmedia_set(&ic->ic_media,
1155 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1156 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1157 	if (maxrate)
1158 		ifp->if_baudrate = IF_Mbps(maxrate);
1159 
1160 	/* XXX need to propagate new media settings to vap's */
1161 }
1162 
1163 /* XXX inline or eliminate? */
1164 const struct ieee80211_rateset *
1165 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1166 {
1167 	/* XXX does this work for 11ng basic rates? */
1168 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1169 }
1170 
1171 void
1172 ieee80211_announce(struct ieee80211com *ic)
1173 {
1174 	struct ifnet *ifp = ic->ic_ifp;
1175 	int i, rate, mword;
1176 	enum ieee80211_phymode mode;
1177 	const struct ieee80211_rateset *rs;
1178 
1179 	/* NB: skip AUTO since it has no rates */
1180 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1181 		if (isclr(ic->ic_modecaps, mode))
1182 			continue;
1183 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1184 		rs = &ic->ic_sup_rates[mode];
1185 		for (i = 0; i < rs->rs_nrates; i++) {
1186 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1187 			if (mword == 0)
1188 				continue;
1189 			rate = ieee80211_media2rate(mword);
1190 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1191 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1192 		}
1193 		printf("\n");
1194 	}
1195 	ieee80211_ht_announce(ic);
1196 }
1197 
1198 void
1199 ieee80211_announce_channels(struct ieee80211com *ic)
1200 {
1201 	const struct ieee80211_channel *c;
1202 	char type;
1203 	int i, cw;
1204 
1205 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1206 	for (i = 0; i < ic->ic_nchans; i++) {
1207 		c = &ic->ic_channels[i];
1208 		if (IEEE80211_IS_CHAN_ST(c))
1209 			type = 'S';
1210 		else if (IEEE80211_IS_CHAN_108A(c))
1211 			type = 'T';
1212 		else if (IEEE80211_IS_CHAN_108G(c))
1213 			type = 'G';
1214 		else if (IEEE80211_IS_CHAN_HT(c))
1215 			type = 'n';
1216 		else if (IEEE80211_IS_CHAN_A(c))
1217 			type = 'a';
1218 		else if (IEEE80211_IS_CHAN_ANYG(c))
1219 			type = 'g';
1220 		else if (IEEE80211_IS_CHAN_B(c))
1221 			type = 'b';
1222 		else
1223 			type = 'f';
1224 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1225 			cw = 40;
1226 		else if (IEEE80211_IS_CHAN_HALF(c))
1227 			cw = 10;
1228 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1229 			cw = 5;
1230 		else
1231 			cw = 20;
1232 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1233 			, c->ic_ieee, c->ic_freq, type
1234 			, cw
1235 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1236 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1237 			, c->ic_maxregpower
1238 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1239 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1240 		);
1241 	}
1242 }
1243 
1244 static int
1245 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1246 {
1247 	switch (IFM_MODE(ime->ifm_media)) {
1248 	case IFM_IEEE80211_11A:
1249 		*mode = IEEE80211_MODE_11A;
1250 		break;
1251 	case IFM_IEEE80211_11B:
1252 		*mode = IEEE80211_MODE_11B;
1253 		break;
1254 	case IFM_IEEE80211_11G:
1255 		*mode = IEEE80211_MODE_11G;
1256 		break;
1257 	case IFM_IEEE80211_FH:
1258 		*mode = IEEE80211_MODE_FH;
1259 		break;
1260 	case IFM_IEEE80211_11NA:
1261 		*mode = IEEE80211_MODE_11NA;
1262 		break;
1263 	case IFM_IEEE80211_11NG:
1264 		*mode = IEEE80211_MODE_11NG;
1265 		break;
1266 	case IFM_AUTO:
1267 		*mode = IEEE80211_MODE_AUTO;
1268 		break;
1269 	default:
1270 		return 0;
1271 	}
1272 	/*
1273 	 * Turbo mode is an ``option''.
1274 	 * XXX does not apply to AUTO
1275 	 */
1276 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1277 		if (*mode == IEEE80211_MODE_11A) {
1278 			if (flags & IEEE80211_F_TURBOP)
1279 				*mode = IEEE80211_MODE_TURBO_A;
1280 			else
1281 				*mode = IEEE80211_MODE_STURBO_A;
1282 		} else if (*mode == IEEE80211_MODE_11G)
1283 			*mode = IEEE80211_MODE_TURBO_G;
1284 		else
1285 			return 0;
1286 	}
1287 	/* XXX HT40 +/- */
1288 	return 1;
1289 }
1290 
1291 /*
1292  * Handle a media change request on the underlying interface.
1293  */
1294 int
1295 ieee80211com_media_change(struct ifnet *ifp)
1296 {
1297 	return EINVAL;
1298 }
1299 
1300 /*
1301  * Handle a media change request on the vap interface.
1302  */
1303 int
1304 ieee80211_media_change(struct ifnet *ifp)
1305 {
1306 	struct ieee80211vap *vap = ifp->if_softc;
1307 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1308 	uint16_t newmode;
1309 
1310 	if (!media2mode(ime, vap->iv_flags, &newmode))
1311 		return EINVAL;
1312 	if (vap->iv_des_mode != newmode) {
1313 		vap->iv_des_mode = newmode;
1314 		/* XXX kick state machine if up+running */
1315 	}
1316 	return 0;
1317 }
1318 
1319 /*
1320  * Common code to calculate the media status word
1321  * from the operating mode and channel state.
1322  */
1323 static int
1324 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1325 {
1326 	int status;
1327 
1328 	status = IFM_IEEE80211;
1329 	switch (opmode) {
1330 	case IEEE80211_M_STA:
1331 		break;
1332 	case IEEE80211_M_IBSS:
1333 		status |= IFM_IEEE80211_ADHOC;
1334 		break;
1335 	case IEEE80211_M_HOSTAP:
1336 		status |= IFM_IEEE80211_HOSTAP;
1337 		break;
1338 	case IEEE80211_M_MONITOR:
1339 		status |= IFM_IEEE80211_MONITOR;
1340 		break;
1341 	case IEEE80211_M_AHDEMO:
1342 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1343 		break;
1344 	case IEEE80211_M_WDS:
1345 		status |= IFM_IEEE80211_WDS;
1346 		break;
1347 	case IEEE80211_M_MBSS:
1348 		status |= IFM_IEEE80211_MBSS;
1349 		break;
1350 	}
1351 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1352 		status |= IFM_IEEE80211_11NA;
1353 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1354 		status |= IFM_IEEE80211_11NG;
1355 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1356 		status |= IFM_IEEE80211_11A;
1357 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1358 		status |= IFM_IEEE80211_11B;
1359 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1360 		status |= IFM_IEEE80211_11G;
1361 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1362 		status |= IFM_IEEE80211_FH;
1363 	}
1364 	/* XXX else complain? */
1365 
1366 	if (IEEE80211_IS_CHAN_TURBO(chan))
1367 		status |= IFM_IEEE80211_TURBO;
1368 #if 0
1369 	if (IEEE80211_IS_CHAN_HT20(chan))
1370 		status |= IFM_IEEE80211_HT20;
1371 	if (IEEE80211_IS_CHAN_HT40(chan))
1372 		status |= IFM_IEEE80211_HT40;
1373 #endif
1374 	return status;
1375 }
1376 
1377 static void
1378 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1379 {
1380 	struct ieee80211com *ic = ifp->if_l2com;
1381 	struct ieee80211vap *vap;
1382 
1383 	imr->ifm_status = IFM_AVALID;
1384 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1385 		if (vap->iv_ifp->if_flags & IFF_UP) {
1386 			imr->ifm_status |= IFM_ACTIVE;
1387 			break;
1388 		}
1389 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1390 	if (imr->ifm_status & IFM_ACTIVE)
1391 		imr->ifm_current = imr->ifm_active;
1392 }
1393 
1394 void
1395 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1396 {
1397 	struct ieee80211vap *vap = ifp->if_softc;
1398 	struct ieee80211com *ic = vap->iv_ic;
1399 	enum ieee80211_phymode mode;
1400 
1401 	imr->ifm_status = IFM_AVALID;
1402 	/*
1403 	 * NB: use the current channel's mode to lock down a xmit
1404 	 * rate only when running; otherwise we may have a mismatch
1405 	 * in which case the rate will not be convertible.
1406 	 */
1407 	if (vap->iv_state == IEEE80211_S_RUN) {
1408 		imr->ifm_status |= IFM_ACTIVE;
1409 		mode = ieee80211_chan2mode(ic->ic_curchan);
1410 	} else
1411 		mode = IEEE80211_MODE_AUTO;
1412 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1413 	/*
1414 	 * Calculate a current rate if possible.
1415 	 */
1416 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1417 		/*
1418 		 * A fixed rate is set, report that.
1419 		 */
1420 		imr->ifm_active |= ieee80211_rate2media(ic,
1421 			vap->iv_txparms[mode].ucastrate, mode);
1422 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1423 		/*
1424 		 * In station mode report the current transmit rate.
1425 		 */
1426 		imr->ifm_active |= ieee80211_rate2media(ic,
1427 			vap->iv_bss->ni_txrate, mode);
1428 	} else
1429 		imr->ifm_active |= IFM_AUTO;
1430 	if (imr->ifm_status & IFM_ACTIVE)
1431 		imr->ifm_current = imr->ifm_active;
1432 }
1433 
1434 /*
1435  * Set the current phy mode and recalculate the active channel
1436  * set based on the available channels for this mode.  Also
1437  * select a new default/current channel if the current one is
1438  * inappropriate for this mode.
1439  */
1440 int
1441 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1442 {
1443 	/*
1444 	 * Adjust basic rates in 11b/11g supported rate set.
1445 	 * Note that if operating on a hal/quarter rate channel
1446 	 * this is a noop as those rates sets are different
1447 	 * and used instead.
1448 	 */
1449 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1450 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1451 
1452 	ic->ic_curmode = mode;
1453 	ieee80211_reset_erp(ic);	/* reset ERP state */
1454 
1455 	return 0;
1456 }
1457 
1458 /*
1459  * Return the phy mode for with the specified channel.
1460  */
1461 enum ieee80211_phymode
1462 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1463 {
1464 
1465 	if (IEEE80211_IS_CHAN_HTA(chan))
1466 		return IEEE80211_MODE_11NA;
1467 	else if (IEEE80211_IS_CHAN_HTG(chan))
1468 		return IEEE80211_MODE_11NG;
1469 	else if (IEEE80211_IS_CHAN_108G(chan))
1470 		return IEEE80211_MODE_TURBO_G;
1471 	else if (IEEE80211_IS_CHAN_ST(chan))
1472 		return IEEE80211_MODE_STURBO_A;
1473 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1474 		return IEEE80211_MODE_TURBO_A;
1475 	else if (IEEE80211_IS_CHAN_HALF(chan))
1476 		return IEEE80211_MODE_HALF;
1477 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1478 		return IEEE80211_MODE_QUARTER;
1479 	else if (IEEE80211_IS_CHAN_A(chan))
1480 		return IEEE80211_MODE_11A;
1481 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1482 		return IEEE80211_MODE_11G;
1483 	else if (IEEE80211_IS_CHAN_B(chan))
1484 		return IEEE80211_MODE_11B;
1485 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1486 		return IEEE80211_MODE_FH;
1487 
1488 	/* NB: should not get here */
1489 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1490 		__func__, chan->ic_freq, chan->ic_flags);
1491 	return IEEE80211_MODE_11B;
1492 }
1493 
1494 struct ratemedia {
1495 	u_int	match;	/* rate + mode */
1496 	u_int	media;	/* if_media rate */
1497 };
1498 
1499 static int
1500 findmedia(const struct ratemedia rates[], int n, u_int match)
1501 {
1502 	int i;
1503 
1504 	for (i = 0; i < n; i++)
1505 		if (rates[i].match == match)
1506 			return rates[i].media;
1507 	return IFM_AUTO;
1508 }
1509 
1510 /*
1511  * Convert IEEE80211 rate value to ifmedia subtype.
1512  * Rate is either a legacy rate in units of 0.5Mbps
1513  * or an MCS index.
1514  */
1515 int
1516 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1517 {
1518 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1519 	static const struct ratemedia rates[] = {
1520 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1521 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1522 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1523 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1524 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1525 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1526 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1527 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1528 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1529 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1530 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1531 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1532 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1533 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1534 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1535 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1536 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1537 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1538 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1539 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1540 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1541 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1542 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1543 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1544 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1545 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1546 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1547 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1548 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1549 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1550 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1551 	};
1552 	static const struct ratemedia htrates[] = {
1553 		{   0, IFM_IEEE80211_MCS },
1554 		{   1, IFM_IEEE80211_MCS },
1555 		{   2, IFM_IEEE80211_MCS },
1556 		{   3, IFM_IEEE80211_MCS },
1557 		{   4, IFM_IEEE80211_MCS },
1558 		{   5, IFM_IEEE80211_MCS },
1559 		{   6, IFM_IEEE80211_MCS },
1560 		{   7, IFM_IEEE80211_MCS },
1561 		{   8, IFM_IEEE80211_MCS },
1562 		{   9, IFM_IEEE80211_MCS },
1563 		{  10, IFM_IEEE80211_MCS },
1564 		{  11, IFM_IEEE80211_MCS },
1565 		{  12, IFM_IEEE80211_MCS },
1566 		{  13, IFM_IEEE80211_MCS },
1567 		{  14, IFM_IEEE80211_MCS },
1568 		{  15, IFM_IEEE80211_MCS },
1569 		{  16, IFM_IEEE80211_MCS },
1570 		{  17, IFM_IEEE80211_MCS },
1571 		{  18, IFM_IEEE80211_MCS },
1572 		{  19, IFM_IEEE80211_MCS },
1573 		{  20, IFM_IEEE80211_MCS },
1574 		{  21, IFM_IEEE80211_MCS },
1575 		{  22, IFM_IEEE80211_MCS },
1576 		{  23, IFM_IEEE80211_MCS },
1577 		{  24, IFM_IEEE80211_MCS },
1578 		{  25, IFM_IEEE80211_MCS },
1579 		{  26, IFM_IEEE80211_MCS },
1580 		{  27, IFM_IEEE80211_MCS },
1581 		{  28, IFM_IEEE80211_MCS },
1582 		{  29, IFM_IEEE80211_MCS },
1583 		{  30, IFM_IEEE80211_MCS },
1584 		{  31, IFM_IEEE80211_MCS },
1585 		{  32, IFM_IEEE80211_MCS },
1586 		{  33, IFM_IEEE80211_MCS },
1587 		{  34, IFM_IEEE80211_MCS },
1588 		{  35, IFM_IEEE80211_MCS },
1589 		{  36, IFM_IEEE80211_MCS },
1590 		{  37, IFM_IEEE80211_MCS },
1591 		{  38, IFM_IEEE80211_MCS },
1592 		{  39, IFM_IEEE80211_MCS },
1593 		{  40, IFM_IEEE80211_MCS },
1594 		{  41, IFM_IEEE80211_MCS },
1595 		{  42, IFM_IEEE80211_MCS },
1596 		{  43, IFM_IEEE80211_MCS },
1597 		{  44, IFM_IEEE80211_MCS },
1598 		{  45, IFM_IEEE80211_MCS },
1599 		{  46, IFM_IEEE80211_MCS },
1600 		{  47, IFM_IEEE80211_MCS },
1601 		{  48, IFM_IEEE80211_MCS },
1602 		{  49, IFM_IEEE80211_MCS },
1603 		{  50, IFM_IEEE80211_MCS },
1604 		{  51, IFM_IEEE80211_MCS },
1605 		{  52, IFM_IEEE80211_MCS },
1606 		{  53, IFM_IEEE80211_MCS },
1607 		{  54, IFM_IEEE80211_MCS },
1608 		{  55, IFM_IEEE80211_MCS },
1609 		{  56, IFM_IEEE80211_MCS },
1610 		{  57, IFM_IEEE80211_MCS },
1611 		{  58, IFM_IEEE80211_MCS },
1612 		{  59, IFM_IEEE80211_MCS },
1613 		{  60, IFM_IEEE80211_MCS },
1614 		{  61, IFM_IEEE80211_MCS },
1615 		{  62, IFM_IEEE80211_MCS },
1616 		{  63, IFM_IEEE80211_MCS },
1617 		{  64, IFM_IEEE80211_MCS },
1618 		{  65, IFM_IEEE80211_MCS },
1619 		{  66, IFM_IEEE80211_MCS },
1620 		{  67, IFM_IEEE80211_MCS },
1621 		{  68, IFM_IEEE80211_MCS },
1622 		{  69, IFM_IEEE80211_MCS },
1623 		{  70, IFM_IEEE80211_MCS },
1624 		{  71, IFM_IEEE80211_MCS },
1625 		{  72, IFM_IEEE80211_MCS },
1626 		{  73, IFM_IEEE80211_MCS },
1627 		{  74, IFM_IEEE80211_MCS },
1628 		{  75, IFM_IEEE80211_MCS },
1629 		{  76, IFM_IEEE80211_MCS },
1630 	};
1631 	int m;
1632 
1633 	/*
1634 	 * Check 11n rates first for match as an MCS.
1635 	 */
1636 	if (mode == IEEE80211_MODE_11NA) {
1637 		if (rate & IEEE80211_RATE_MCS) {
1638 			rate &= ~IEEE80211_RATE_MCS;
1639 			m = findmedia(htrates, N(htrates), rate);
1640 			if (m != IFM_AUTO)
1641 				return m | IFM_IEEE80211_11NA;
1642 		}
1643 	} else if (mode == IEEE80211_MODE_11NG) {
1644 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1645 		if (rate & IEEE80211_RATE_MCS) {
1646 			rate &= ~IEEE80211_RATE_MCS;
1647 			m = findmedia(htrates, N(htrates), rate);
1648 			if (m != IFM_AUTO)
1649 				return m | IFM_IEEE80211_11NG;
1650 		}
1651 	}
1652 	rate &= IEEE80211_RATE_VAL;
1653 	switch (mode) {
1654 	case IEEE80211_MODE_11A:
1655 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1656 	case IEEE80211_MODE_QUARTER:
1657 	case IEEE80211_MODE_11NA:
1658 	case IEEE80211_MODE_TURBO_A:
1659 	case IEEE80211_MODE_STURBO_A:
1660 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A);
1661 	case IEEE80211_MODE_11B:
1662 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B);
1663 	case IEEE80211_MODE_FH:
1664 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH);
1665 	case IEEE80211_MODE_AUTO:
1666 		/* NB: ic may be NULL for some drivers */
1667 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1668 			return findmedia(rates, N(rates),
1669 			    rate | IFM_IEEE80211_FH);
1670 		/* NB: hack, 11g matches both 11b+11a rates */
1671 		/* fall thru... */
1672 	case IEEE80211_MODE_11G:
1673 	case IEEE80211_MODE_11NG:
1674 	case IEEE80211_MODE_TURBO_G:
1675 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G);
1676 	}
1677 	return IFM_AUTO;
1678 #undef N
1679 }
1680 
1681 int
1682 ieee80211_media2rate(int mword)
1683 {
1684 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1685 	static const int ieeerates[] = {
1686 		-1,		/* IFM_AUTO */
1687 		0,		/* IFM_MANUAL */
1688 		0,		/* IFM_NONE */
1689 		2,		/* IFM_IEEE80211_FH1 */
1690 		4,		/* IFM_IEEE80211_FH2 */
1691 		2,		/* IFM_IEEE80211_DS1 */
1692 		4,		/* IFM_IEEE80211_DS2 */
1693 		11,		/* IFM_IEEE80211_DS5 */
1694 		22,		/* IFM_IEEE80211_DS11 */
1695 		44,		/* IFM_IEEE80211_DS22 */
1696 		12,		/* IFM_IEEE80211_OFDM6 */
1697 		18,		/* IFM_IEEE80211_OFDM9 */
1698 		24,		/* IFM_IEEE80211_OFDM12 */
1699 		36,		/* IFM_IEEE80211_OFDM18 */
1700 		48,		/* IFM_IEEE80211_OFDM24 */
1701 		72,		/* IFM_IEEE80211_OFDM36 */
1702 		96,		/* IFM_IEEE80211_OFDM48 */
1703 		108,		/* IFM_IEEE80211_OFDM54 */
1704 		144,		/* IFM_IEEE80211_OFDM72 */
1705 		0,		/* IFM_IEEE80211_DS354k */
1706 		0,		/* IFM_IEEE80211_DS512k */
1707 		6,		/* IFM_IEEE80211_OFDM3 */
1708 		9,		/* IFM_IEEE80211_OFDM4 */
1709 		54,		/* IFM_IEEE80211_OFDM27 */
1710 		-1,		/* IFM_IEEE80211_MCS */
1711 	};
1712 	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1713 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1714 #undef N
1715 }
1716 
1717 /*
1718  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1719  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1720  */
1721 #define	mix(a, b, c)							\
1722 do {									\
1723 	a -= b; a -= c; a ^= (c >> 13);					\
1724 	b -= c; b -= a; b ^= (a << 8);					\
1725 	c -= a; c -= b; c ^= (b >> 13);					\
1726 	a -= b; a -= c; a ^= (c >> 12);					\
1727 	b -= c; b -= a; b ^= (a << 16);					\
1728 	c -= a; c -= b; c ^= (b >> 5);					\
1729 	a -= b; a -= c; a ^= (c >> 3);					\
1730 	b -= c; b -= a; b ^= (a << 10);					\
1731 	c -= a; c -= b; c ^= (b >> 15);					\
1732 } while (/*CONSTCOND*/0)
1733 
1734 uint32_t
1735 ieee80211_mac_hash(const struct ieee80211com *ic,
1736 	const uint8_t addr[IEEE80211_ADDR_LEN])
1737 {
1738 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1739 
1740 	b += addr[5] << 8;
1741 	b += addr[4];
1742 	a += addr[3] << 24;
1743 	a += addr[2] << 16;
1744 	a += addr[1] << 8;
1745 	a += addr[0];
1746 
1747 	mix(a, b, c);
1748 
1749 	return c;
1750 }
1751 #undef mix
1752