1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/socket.h> 42 #include <sys/sbuf.h> 43 44 #include <machine/stdarg.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_dl.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 #include <net/ethernet.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #include <net80211/ieee80211_ratectl.h> 59 #include <net80211/ieee80211_vht.h> 60 61 #include <net/bpf.h> 62 63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 64 [IEEE80211_MODE_AUTO] = "auto", 65 [IEEE80211_MODE_11A] = "11a", 66 [IEEE80211_MODE_11B] = "11b", 67 [IEEE80211_MODE_11G] = "11g", 68 [IEEE80211_MODE_FH] = "FH", 69 [IEEE80211_MODE_TURBO_A] = "turboA", 70 [IEEE80211_MODE_TURBO_G] = "turboG", 71 [IEEE80211_MODE_STURBO_A] = "sturboA", 72 [IEEE80211_MODE_HALF] = "half", 73 [IEEE80211_MODE_QUARTER] = "quarter", 74 [IEEE80211_MODE_11NA] = "11na", 75 [IEEE80211_MODE_11NG] = "11ng", 76 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 77 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 78 }; 79 /* map ieee80211_opmode to the corresponding capability bit */ 80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 81 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 82 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 83 [IEEE80211_M_STA] = IEEE80211_C_STA, 84 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 85 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 86 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 87 #ifdef IEEE80211_SUPPORT_MESH 88 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 89 #endif 90 }; 91 92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 93 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 94 95 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 96 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 98 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 99 static int ieee80211_media_setup(struct ieee80211com *ic, 100 struct ifmedia *media, int caps, int addsta, 101 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 102 static int media_status(enum ieee80211_opmode, 103 const struct ieee80211_channel *); 104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 105 106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 107 108 /* 109 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 110 */ 111 #define B(r) ((r) | IEEE80211_RATE_BASIC) 112 static const struct ieee80211_rateset ieee80211_rateset_11a = 113 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 114 static const struct ieee80211_rateset ieee80211_rateset_half = 115 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 116 static const struct ieee80211_rateset ieee80211_rateset_quarter = 117 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 118 static const struct ieee80211_rateset ieee80211_rateset_11b = 119 { 4, { B(2), B(4), B(11), B(22) } }; 120 /* NB: OFDM rates are handled specially based on mode */ 121 static const struct ieee80211_rateset ieee80211_rateset_11g = 122 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 123 #undef B 124 125 static int set_vht_extchan(struct ieee80211_channel *c); 126 127 /* 128 * Fill in 802.11 available channel set, mark 129 * all available channels as active, and pick 130 * a default channel if not already specified. 131 */ 132 void 133 ieee80211_chan_init(struct ieee80211com *ic) 134 { 135 #define DEFAULTRATES(m, def) do { \ 136 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 137 ic->ic_sup_rates[m] = def; \ 138 } while (0) 139 struct ieee80211_channel *c; 140 int i; 141 142 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 143 ("invalid number of channels specified: %u", ic->ic_nchans)); 144 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 145 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 146 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 147 for (i = 0; i < ic->ic_nchans; i++) { 148 c = &ic->ic_channels[i]; 149 KASSERT(c->ic_flags != 0, ("channel with no flags")); 150 /* 151 * Help drivers that work only with frequencies by filling 152 * in IEEE channel #'s if not already calculated. Note this 153 * mimics similar work done in ieee80211_setregdomain when 154 * changing regulatory state. 155 */ 156 if (c->ic_ieee == 0) 157 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 158 159 /* 160 * Setup the HT40/VHT40 upper/lower bits. 161 * The VHT80 math is done elsewhere. 162 */ 163 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 164 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 165 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 166 c->ic_flags); 167 168 /* Update VHT math */ 169 /* 170 * XXX VHT again, note that this assumes VHT80 channels 171 * are legit already 172 */ 173 set_vht_extchan(c); 174 175 /* default max tx power to max regulatory */ 176 if (c->ic_maxpower == 0) 177 c->ic_maxpower = 2*c->ic_maxregpower; 178 setbit(ic->ic_chan_avail, c->ic_ieee); 179 /* 180 * Identify mode capabilities. 181 */ 182 if (IEEE80211_IS_CHAN_A(c)) 183 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 184 if (IEEE80211_IS_CHAN_B(c)) 185 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 186 if (IEEE80211_IS_CHAN_ANYG(c)) 187 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 188 if (IEEE80211_IS_CHAN_FHSS(c)) 189 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 190 if (IEEE80211_IS_CHAN_108A(c)) 191 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 192 if (IEEE80211_IS_CHAN_108G(c)) 193 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 194 if (IEEE80211_IS_CHAN_ST(c)) 195 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 196 if (IEEE80211_IS_CHAN_HALF(c)) 197 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 198 if (IEEE80211_IS_CHAN_QUARTER(c)) 199 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 200 if (IEEE80211_IS_CHAN_HTA(c)) 201 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 202 if (IEEE80211_IS_CHAN_HTG(c)) 203 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 204 if (IEEE80211_IS_CHAN_VHTA(c)) 205 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 206 if (IEEE80211_IS_CHAN_VHTG(c)) 207 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 208 } 209 /* initialize candidate channels to all available */ 210 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 211 sizeof(ic->ic_chan_avail)); 212 213 /* sort channel table to allow lookup optimizations */ 214 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 215 216 /* invalidate any previous state */ 217 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 218 ic->ic_prevchan = NULL; 219 ic->ic_csa_newchan = NULL; 220 /* arbitrarily pick the first channel */ 221 ic->ic_curchan = &ic->ic_channels[0]; 222 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 223 224 /* fillin well-known rate sets if driver has not specified */ 225 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 226 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 227 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 228 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 229 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 230 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 231 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 232 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 233 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 234 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 235 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 236 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 237 238 /* 239 * Setup required information to fill the mcsset field, if driver did 240 * not. Assume a 2T2R setup for historic reasons. 241 */ 242 if (ic->ic_rxstream == 0) 243 ic->ic_rxstream = 2; 244 if (ic->ic_txstream == 0) 245 ic->ic_txstream = 2; 246 247 ieee80211_init_suphtrates(ic); 248 249 /* 250 * Set auto mode to reset active channel state and any desired channel. 251 */ 252 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 253 #undef DEFAULTRATES 254 } 255 256 static void 257 null_update_mcast(struct ieee80211com *ic) 258 { 259 260 ic_printf(ic, "need multicast update callback\n"); 261 } 262 263 static void 264 null_update_promisc(struct ieee80211com *ic) 265 { 266 267 ic_printf(ic, "need promiscuous mode update callback\n"); 268 } 269 270 static void 271 null_update_chw(struct ieee80211com *ic) 272 { 273 274 ic_printf(ic, "%s: need callback\n", __func__); 275 } 276 277 int 278 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 279 { 280 va_list ap; 281 int retval; 282 283 retval = printf("%s: ", ic->ic_name); 284 va_start(ap, fmt); 285 retval += vprintf(fmt, ap); 286 va_end(ap); 287 return (retval); 288 } 289 290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 291 static struct mtx ic_list_mtx; 292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 293 294 static int 295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 296 { 297 struct ieee80211com *ic; 298 struct sbuf sb; 299 char *sp; 300 int error; 301 302 error = sysctl_wire_old_buffer(req, 0); 303 if (error) 304 return (error); 305 sbuf_new_for_sysctl(&sb, NULL, 8, req); 306 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 307 sp = ""; 308 mtx_lock(&ic_list_mtx); 309 LIST_FOREACH(ic, &ic_head, ic_next) { 310 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 311 sp = " "; 312 } 313 mtx_unlock(&ic_list_mtx); 314 error = sbuf_finish(&sb); 315 sbuf_delete(&sb); 316 return (error); 317 } 318 319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 320 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 321 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 322 323 /* 324 * Attach/setup the common net80211 state. Called by 325 * the driver on attach to prior to creating any vap's. 326 */ 327 void 328 ieee80211_ifattach(struct ieee80211com *ic) 329 { 330 331 IEEE80211_LOCK_INIT(ic, ic->ic_name); 332 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 333 TAILQ_INIT(&ic->ic_vaps); 334 335 /* Create a taskqueue for all state changes */ 336 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 337 taskqueue_thread_enqueue, &ic->ic_tq); 338 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 339 ic->ic_name); 340 ic->ic_ierrors = counter_u64_alloc(M_WAITOK); 341 ic->ic_oerrors = counter_u64_alloc(M_WAITOK); 342 /* 343 * Fill in 802.11 available channel set, mark all 344 * available channels as active, and pick a default 345 * channel if not already specified. 346 */ 347 ieee80211_chan_init(ic); 348 349 ic->ic_update_mcast = null_update_mcast; 350 ic->ic_update_promisc = null_update_promisc; 351 ic->ic_update_chw = null_update_chw; 352 353 ic->ic_hash_key = arc4random(); 354 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 355 ic->ic_lintval = ic->ic_bintval; 356 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 357 358 ieee80211_crypto_attach(ic); 359 ieee80211_node_attach(ic); 360 ieee80211_power_attach(ic); 361 ieee80211_proto_attach(ic); 362 #ifdef IEEE80211_SUPPORT_SUPERG 363 ieee80211_superg_attach(ic); 364 #endif 365 ieee80211_ht_attach(ic); 366 ieee80211_vht_attach(ic); 367 ieee80211_scan_attach(ic); 368 ieee80211_regdomain_attach(ic); 369 ieee80211_dfs_attach(ic); 370 371 ieee80211_sysctl_attach(ic); 372 373 mtx_lock(&ic_list_mtx); 374 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 375 mtx_unlock(&ic_list_mtx); 376 } 377 378 /* 379 * Detach net80211 state on device detach. Tear down 380 * all vap's and reclaim all common state prior to the 381 * device state going away. Note we may call back into 382 * driver; it must be prepared for this. 383 */ 384 void 385 ieee80211_ifdetach(struct ieee80211com *ic) 386 { 387 struct ieee80211vap *vap; 388 389 /* 390 * We use this as an indicator that ifattach never had a chance to be 391 * called, e.g. early driver attach failed and ifdetach was called 392 * during subsequent detach. Never fear, for we have nothing to do 393 * here. 394 */ 395 if (ic->ic_tq == NULL) 396 return; 397 398 mtx_lock(&ic_list_mtx); 399 LIST_REMOVE(ic, ic_next); 400 mtx_unlock(&ic_list_mtx); 401 402 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 403 404 /* 405 * The VAP is responsible for setting and clearing 406 * the VIMAGE context. 407 */ 408 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { 409 ieee80211_com_vdetach(vap); 410 ieee80211_vap_destroy(vap); 411 } 412 ieee80211_waitfor_parent(ic); 413 414 ieee80211_sysctl_detach(ic); 415 ieee80211_dfs_detach(ic); 416 ieee80211_regdomain_detach(ic); 417 ieee80211_scan_detach(ic); 418 #ifdef IEEE80211_SUPPORT_SUPERG 419 ieee80211_superg_detach(ic); 420 #endif 421 ieee80211_vht_detach(ic); 422 ieee80211_ht_detach(ic); 423 /* NB: must be called before ieee80211_node_detach */ 424 ieee80211_proto_detach(ic); 425 ieee80211_crypto_detach(ic); 426 ieee80211_power_detach(ic); 427 ieee80211_node_detach(ic); 428 429 counter_u64_free(ic->ic_ierrors); 430 counter_u64_free(ic->ic_oerrors); 431 432 taskqueue_free(ic->ic_tq); 433 IEEE80211_TX_LOCK_DESTROY(ic); 434 IEEE80211_LOCK_DESTROY(ic); 435 } 436 437 struct ieee80211com * 438 ieee80211_find_com(const char *name) 439 { 440 struct ieee80211com *ic; 441 442 mtx_lock(&ic_list_mtx); 443 LIST_FOREACH(ic, &ic_head, ic_next) 444 if (strcmp(ic->ic_name, name) == 0) 445 break; 446 mtx_unlock(&ic_list_mtx); 447 448 return (ic); 449 } 450 451 void 452 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 453 { 454 struct ieee80211com *ic; 455 456 mtx_lock(&ic_list_mtx); 457 LIST_FOREACH(ic, &ic_head, ic_next) 458 (*f)(arg, ic); 459 mtx_unlock(&ic_list_mtx); 460 } 461 462 /* 463 * Default reset method for use with the ioctl support. This 464 * method is invoked after any state change in the 802.11 465 * layer that should be propagated to the hardware but not 466 * require re-initialization of the 802.11 state machine (e.g 467 * rescanning for an ap). We always return ENETRESET which 468 * should cause the driver to re-initialize the device. Drivers 469 * can override this method to implement more optimized support. 470 */ 471 static int 472 default_reset(struct ieee80211vap *vap, u_long cmd) 473 { 474 return ENETRESET; 475 } 476 477 /* 478 * Default for updating the VAP default TX key index. 479 * 480 * Drivers that support TX offload as well as hardware encryption offload 481 * may need to be informed of key index changes separate from the key 482 * update. 483 */ 484 static void 485 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 486 { 487 488 /* XXX assert validity */ 489 /* XXX assert we're in a key update block */ 490 vap->iv_def_txkey = kid; 491 } 492 493 /* 494 * Add underlying device errors to vap errors. 495 */ 496 static uint64_t 497 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 498 { 499 struct ieee80211vap *vap = ifp->if_softc; 500 struct ieee80211com *ic = vap->iv_ic; 501 uint64_t rv; 502 503 rv = if_get_counter_default(ifp, cnt); 504 switch (cnt) { 505 case IFCOUNTER_OERRORS: 506 rv += counter_u64_fetch(ic->ic_oerrors); 507 break; 508 case IFCOUNTER_IERRORS: 509 rv += counter_u64_fetch(ic->ic_ierrors); 510 break; 511 default: 512 break; 513 } 514 515 return (rv); 516 } 517 518 /* 519 * Prepare a vap for use. Drivers use this call to 520 * setup net80211 state in new vap's prior attaching 521 * them with ieee80211_vap_attach (below). 522 */ 523 int 524 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 525 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 526 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 527 { 528 struct ifnet *ifp; 529 530 ifp = if_alloc(IFT_ETHER); 531 if (ifp == NULL) { 532 ic_printf(ic, "%s: unable to allocate ifnet\n", 533 __func__); 534 return ENOMEM; 535 } 536 if_initname(ifp, name, unit); 537 ifp->if_softc = vap; /* back pointer */ 538 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 539 ifp->if_transmit = ieee80211_vap_transmit; 540 ifp->if_qflush = ieee80211_vap_qflush; 541 ifp->if_ioctl = ieee80211_ioctl; 542 ifp->if_init = ieee80211_init; 543 ifp->if_get_counter = ieee80211_get_counter; 544 545 vap->iv_ifp = ifp; 546 vap->iv_ic = ic; 547 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 548 vap->iv_flags_ext = ic->ic_flags_ext; 549 vap->iv_flags_ven = ic->ic_flags_ven; 550 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 551 552 /* 11n capabilities - XXX methodize */ 553 vap->iv_htcaps = ic->ic_htcaps; 554 vap->iv_htextcaps = ic->ic_htextcaps; 555 556 /* 11ac capabilities - XXX methodize */ 557 vap->iv_vhtcaps = ic->ic_vhtcaps; 558 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 559 560 vap->iv_opmode = opmode; 561 vap->iv_caps |= ieee80211_opcap[opmode]; 562 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 563 switch (opmode) { 564 case IEEE80211_M_WDS: 565 /* 566 * WDS links must specify the bssid of the far end. 567 * For legacy operation this is a static relationship. 568 * For non-legacy operation the station must associate 569 * and be authorized to pass traffic. Plumbing the 570 * vap to the proper node happens when the vap 571 * transitions to RUN state. 572 */ 573 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 574 vap->iv_flags |= IEEE80211_F_DESBSSID; 575 if (flags & IEEE80211_CLONE_WDSLEGACY) 576 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 577 break; 578 #ifdef IEEE80211_SUPPORT_TDMA 579 case IEEE80211_M_AHDEMO: 580 if (flags & IEEE80211_CLONE_TDMA) { 581 /* NB: checked before clone operation allowed */ 582 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 583 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 584 /* 585 * Propagate TDMA capability to mark vap; this 586 * cannot be removed and is used to distinguish 587 * regular ahdemo operation from ahdemo+tdma. 588 */ 589 vap->iv_caps |= IEEE80211_C_TDMA; 590 } 591 break; 592 #endif 593 default: 594 break; 595 } 596 /* auto-enable s/w beacon miss support */ 597 if (flags & IEEE80211_CLONE_NOBEACONS) 598 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 599 /* auto-generated or user supplied MAC address */ 600 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 601 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 602 /* 603 * Enable various functionality by default if we're 604 * capable; the driver can override us if it knows better. 605 */ 606 if (vap->iv_caps & IEEE80211_C_WME) 607 vap->iv_flags |= IEEE80211_F_WME; 608 if (vap->iv_caps & IEEE80211_C_BURST) 609 vap->iv_flags |= IEEE80211_F_BURST; 610 /* NB: bg scanning only makes sense for station mode right now */ 611 if (vap->iv_opmode == IEEE80211_M_STA && 612 (vap->iv_caps & IEEE80211_C_BGSCAN)) 613 vap->iv_flags |= IEEE80211_F_BGSCAN; 614 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 615 /* NB: DFS support only makes sense for ap mode right now */ 616 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 617 (vap->iv_caps & IEEE80211_C_DFS)) 618 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 619 620 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 621 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 622 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 623 /* 624 * Install a default reset method for the ioctl support; 625 * the driver can override this. 626 */ 627 vap->iv_reset = default_reset; 628 629 /* 630 * Install a default crypto key update method, the driver 631 * can override this. 632 */ 633 vap->iv_update_deftxkey = default_update_deftxkey; 634 635 ieee80211_sysctl_vattach(vap); 636 ieee80211_crypto_vattach(vap); 637 ieee80211_node_vattach(vap); 638 ieee80211_power_vattach(vap); 639 ieee80211_proto_vattach(vap); 640 #ifdef IEEE80211_SUPPORT_SUPERG 641 ieee80211_superg_vattach(vap); 642 #endif 643 ieee80211_ht_vattach(vap); 644 ieee80211_vht_vattach(vap); 645 ieee80211_scan_vattach(vap); 646 ieee80211_regdomain_vattach(vap); 647 ieee80211_radiotap_vattach(vap); 648 ieee80211_vap_reset_erp(vap); 649 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 650 651 return 0; 652 } 653 654 /* 655 * Activate a vap. State should have been prepared with a 656 * call to ieee80211_vap_setup and by the driver. On return 657 * from this call the vap is ready for use. 658 */ 659 int 660 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 661 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 662 { 663 struct ifnet *ifp = vap->iv_ifp; 664 struct ieee80211com *ic = vap->iv_ic; 665 struct ifmediareq imr; 666 int maxrate; 667 668 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 669 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 670 __func__, ieee80211_opmode_name[vap->iv_opmode], 671 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 672 673 /* 674 * Do late attach work that cannot happen until after 675 * the driver has had a chance to override defaults. 676 */ 677 ieee80211_node_latevattach(vap); 678 ieee80211_power_latevattach(vap); 679 680 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 681 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 682 ieee80211_media_status(ifp, &imr); 683 /* NB: strip explicit mode; we're actually in autoselect */ 684 ifmedia_set(&vap->iv_media, 685 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 686 if (maxrate) 687 ifp->if_baudrate = IF_Mbps(maxrate); 688 689 ether_ifattach(ifp, macaddr); 690 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 691 /* hook output method setup by ether_ifattach */ 692 vap->iv_output = ifp->if_output; 693 ifp->if_output = ieee80211_output; 694 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 695 696 IEEE80211_LOCK(ic); 697 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 698 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 699 #ifdef IEEE80211_SUPPORT_SUPERG 700 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 701 #endif 702 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 703 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 704 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 705 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 706 707 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 708 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 709 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 710 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 711 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 712 IEEE80211_UNLOCK(ic); 713 714 return 1; 715 } 716 717 /* 718 * Tear down vap state and reclaim the ifnet. 719 * The driver is assumed to have prepared for 720 * this; e.g. by turning off interrupts for the 721 * underlying device. 722 */ 723 void 724 ieee80211_vap_detach(struct ieee80211vap *vap) 725 { 726 struct ieee80211com *ic = vap->iv_ic; 727 struct ifnet *ifp = vap->iv_ifp; 728 729 CURVNET_SET(ifp->if_vnet); 730 731 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 732 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 733 734 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 735 ether_ifdetach(ifp); 736 737 ieee80211_stop(vap); 738 739 /* 740 * Flush any deferred vap tasks. 741 */ 742 ieee80211_draintask(ic, &vap->iv_nstate_task); 743 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 744 ieee80211_draintask(ic, &vap->iv_wme_task); 745 ieee80211_draintask(ic, &ic->ic_parent_task); 746 747 /* XXX band-aid until ifnet handles this for us */ 748 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 749 750 IEEE80211_LOCK(ic); 751 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 752 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 753 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 754 #ifdef IEEE80211_SUPPORT_SUPERG 755 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 756 #endif 757 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 758 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 759 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 760 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 761 762 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 763 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 764 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 765 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 766 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 767 768 /* NB: this handles the bpfdetach done below */ 769 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 770 if (vap->iv_ifflags & IFF_PROMISC) 771 ieee80211_promisc(vap, false); 772 if (vap->iv_ifflags & IFF_ALLMULTI) 773 ieee80211_allmulti(vap, false); 774 IEEE80211_UNLOCK(ic); 775 776 ifmedia_removeall(&vap->iv_media); 777 778 ieee80211_radiotap_vdetach(vap); 779 ieee80211_regdomain_vdetach(vap); 780 ieee80211_scan_vdetach(vap); 781 #ifdef IEEE80211_SUPPORT_SUPERG 782 ieee80211_superg_vdetach(vap); 783 #endif 784 ieee80211_vht_vdetach(vap); 785 ieee80211_ht_vdetach(vap); 786 /* NB: must be before ieee80211_node_vdetach */ 787 ieee80211_proto_vdetach(vap); 788 ieee80211_crypto_vdetach(vap); 789 ieee80211_power_vdetach(vap); 790 ieee80211_node_vdetach(vap); 791 ieee80211_sysctl_vdetach(vap); 792 793 if_free(ifp); 794 795 CURVNET_RESTORE(); 796 } 797 798 /* 799 * Count number of vaps in promisc, and issue promisc on 800 * parent respectively. 801 */ 802 void 803 ieee80211_promisc(struct ieee80211vap *vap, bool on) 804 { 805 struct ieee80211com *ic = vap->iv_ic; 806 807 IEEE80211_LOCK_ASSERT(ic); 808 809 if (on) { 810 if (++ic->ic_promisc == 1) 811 ieee80211_runtask(ic, &ic->ic_promisc_task); 812 } else { 813 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 814 __func__, ic)); 815 if (--ic->ic_promisc == 0) 816 ieee80211_runtask(ic, &ic->ic_promisc_task); 817 } 818 } 819 820 /* 821 * Count number of vaps in allmulti, and issue allmulti on 822 * parent respectively. 823 */ 824 void 825 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 826 { 827 struct ieee80211com *ic = vap->iv_ic; 828 829 IEEE80211_LOCK_ASSERT(ic); 830 831 if (on) { 832 if (++ic->ic_allmulti == 1) 833 ieee80211_runtask(ic, &ic->ic_mcast_task); 834 } else { 835 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 836 __func__, ic)); 837 if (--ic->ic_allmulti == 0) 838 ieee80211_runtask(ic, &ic->ic_mcast_task); 839 } 840 } 841 842 /* 843 * Synchronize flag bit state in the com structure 844 * according to the state of all vap's. This is used, 845 * for example, to handle state changes via ioctls. 846 */ 847 static void 848 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 849 { 850 struct ieee80211vap *vap; 851 int bit; 852 853 IEEE80211_LOCK_ASSERT(ic); 854 855 bit = 0; 856 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 857 if (vap->iv_flags & flag) { 858 bit = 1; 859 break; 860 } 861 if (bit) 862 ic->ic_flags |= flag; 863 else 864 ic->ic_flags &= ~flag; 865 } 866 867 void 868 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 869 { 870 struct ieee80211com *ic = vap->iv_ic; 871 872 IEEE80211_LOCK(ic); 873 if (flag < 0) { 874 flag = -flag; 875 vap->iv_flags &= ~flag; 876 } else 877 vap->iv_flags |= flag; 878 ieee80211_syncflag_locked(ic, flag); 879 IEEE80211_UNLOCK(ic); 880 } 881 882 /* 883 * Synchronize flags_ht bit state in the com structure 884 * according to the state of all vap's. This is used, 885 * for example, to handle state changes via ioctls. 886 */ 887 static void 888 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 889 { 890 struct ieee80211vap *vap; 891 int bit; 892 893 IEEE80211_LOCK_ASSERT(ic); 894 895 bit = 0; 896 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 897 if (vap->iv_flags_ht & flag) { 898 bit = 1; 899 break; 900 } 901 if (bit) 902 ic->ic_flags_ht |= flag; 903 else 904 ic->ic_flags_ht &= ~flag; 905 } 906 907 void 908 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 909 { 910 struct ieee80211com *ic = vap->iv_ic; 911 912 IEEE80211_LOCK(ic); 913 if (flag < 0) { 914 flag = -flag; 915 vap->iv_flags_ht &= ~flag; 916 } else 917 vap->iv_flags_ht |= flag; 918 ieee80211_syncflag_ht_locked(ic, flag); 919 IEEE80211_UNLOCK(ic); 920 } 921 922 /* 923 * Synchronize flags_vht bit state in the com structure 924 * according to the state of all vap's. This is used, 925 * for example, to handle state changes via ioctls. 926 */ 927 static void 928 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 929 { 930 struct ieee80211vap *vap; 931 int bit; 932 933 IEEE80211_LOCK_ASSERT(ic); 934 935 bit = 0; 936 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 937 if (vap->iv_flags_vht & flag) { 938 bit = 1; 939 break; 940 } 941 if (bit) 942 ic->ic_flags_vht |= flag; 943 else 944 ic->ic_flags_vht &= ~flag; 945 } 946 947 void 948 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 949 { 950 struct ieee80211com *ic = vap->iv_ic; 951 952 IEEE80211_LOCK(ic); 953 if (flag < 0) { 954 flag = -flag; 955 vap->iv_flags_vht &= ~flag; 956 } else 957 vap->iv_flags_vht |= flag; 958 ieee80211_syncflag_vht_locked(ic, flag); 959 IEEE80211_UNLOCK(ic); 960 } 961 962 /* 963 * Synchronize flags_ext bit state in the com structure 964 * according to the state of all vap's. This is used, 965 * for example, to handle state changes via ioctls. 966 */ 967 static void 968 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 969 { 970 struct ieee80211vap *vap; 971 int bit; 972 973 IEEE80211_LOCK_ASSERT(ic); 974 975 bit = 0; 976 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 977 if (vap->iv_flags_ext & flag) { 978 bit = 1; 979 break; 980 } 981 if (bit) 982 ic->ic_flags_ext |= flag; 983 else 984 ic->ic_flags_ext &= ~flag; 985 } 986 987 void 988 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 989 { 990 struct ieee80211com *ic = vap->iv_ic; 991 992 IEEE80211_LOCK(ic); 993 if (flag < 0) { 994 flag = -flag; 995 vap->iv_flags_ext &= ~flag; 996 } else 997 vap->iv_flags_ext |= flag; 998 ieee80211_syncflag_ext_locked(ic, flag); 999 IEEE80211_UNLOCK(ic); 1000 } 1001 1002 static __inline int 1003 mapgsm(u_int freq, u_int flags) 1004 { 1005 freq *= 10; 1006 if (flags & IEEE80211_CHAN_QUARTER) 1007 freq += 5; 1008 else if (flags & IEEE80211_CHAN_HALF) 1009 freq += 10; 1010 else 1011 freq += 20; 1012 /* NB: there is no 907/20 wide but leave room */ 1013 return (freq - 906*10) / 5; 1014 } 1015 1016 static __inline int 1017 mappsb(u_int freq, u_int flags) 1018 { 1019 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1020 } 1021 1022 /* 1023 * Convert MHz frequency to IEEE channel number. 1024 */ 1025 int 1026 ieee80211_mhz2ieee(u_int freq, u_int flags) 1027 { 1028 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1029 if (flags & IEEE80211_CHAN_GSM) 1030 return mapgsm(freq, flags); 1031 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1032 if (freq == 2484) 1033 return 14; 1034 if (freq < 2484) 1035 return ((int) freq - 2407) / 5; 1036 else 1037 return 15 + ((freq - 2512) / 20); 1038 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1039 if (freq <= 5000) { 1040 /* XXX check regdomain? */ 1041 if (IS_FREQ_IN_PSB(freq)) 1042 return mappsb(freq, flags); 1043 return (freq - 4000) / 5; 1044 } else 1045 return (freq - 5000) / 5; 1046 } else { /* either, guess */ 1047 if (freq == 2484) 1048 return 14; 1049 if (freq < 2484) { 1050 if (907 <= freq && freq <= 922) 1051 return mapgsm(freq, flags); 1052 return ((int) freq - 2407) / 5; 1053 } 1054 if (freq < 5000) { 1055 if (IS_FREQ_IN_PSB(freq)) 1056 return mappsb(freq, flags); 1057 else if (freq > 4900) 1058 return (freq - 4000) / 5; 1059 else 1060 return 15 + ((freq - 2512) / 20); 1061 } 1062 return (freq - 5000) / 5; 1063 } 1064 #undef IS_FREQ_IN_PSB 1065 } 1066 1067 /* 1068 * Convert channel to IEEE channel number. 1069 */ 1070 int 1071 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1072 { 1073 if (c == NULL) { 1074 ic_printf(ic, "invalid channel (NULL)\n"); 1075 return 0; /* XXX */ 1076 } 1077 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1078 } 1079 1080 /* 1081 * Convert IEEE channel number to MHz frequency. 1082 */ 1083 u_int 1084 ieee80211_ieee2mhz(u_int chan, u_int flags) 1085 { 1086 if (flags & IEEE80211_CHAN_GSM) 1087 return 907 + 5 * (chan / 10); 1088 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1089 if (chan == 14) 1090 return 2484; 1091 if (chan < 14) 1092 return 2407 + chan*5; 1093 else 1094 return 2512 + ((chan-15)*20); 1095 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1096 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1097 chan -= 37; 1098 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1099 } 1100 return 5000 + (chan*5); 1101 } else { /* either, guess */ 1102 /* XXX can't distinguish PSB+GSM channels */ 1103 if (chan == 14) 1104 return 2484; 1105 if (chan < 14) /* 0-13 */ 1106 return 2407 + chan*5; 1107 if (chan < 27) /* 15-26 */ 1108 return 2512 + ((chan-15)*20); 1109 return 5000 + (chan*5); 1110 } 1111 } 1112 1113 static __inline void 1114 set_extchan(struct ieee80211_channel *c) 1115 { 1116 1117 /* 1118 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1119 * "the secondary channel number shall be 'N + [1,-1] * 4' 1120 */ 1121 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1122 c->ic_extieee = c->ic_ieee + 4; 1123 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1124 c->ic_extieee = c->ic_ieee - 4; 1125 else 1126 c->ic_extieee = 0; 1127 } 1128 1129 /* 1130 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1131 * 1132 * This for now uses a hard-coded list of 80MHz wide channels. 1133 * 1134 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1135 * wide channel we've already decided upon. 1136 * 1137 * For VHT80 and VHT160, there are only a small number of fixed 1138 * 80/160MHz wide channels, so we just use those. 1139 * 1140 * This is all likely very very wrong - both the regulatory code 1141 * and this code needs to ensure that all four channels are 1142 * available and valid before the VHT80 (and eight for VHT160) channel 1143 * is created. 1144 */ 1145 1146 struct vht_chan_range { 1147 uint16_t freq_start; 1148 uint16_t freq_end; 1149 }; 1150 1151 struct vht_chan_range vht80_chan_ranges[] = { 1152 { 5170, 5250 }, 1153 { 5250, 5330 }, 1154 { 5490, 5570 }, 1155 { 5570, 5650 }, 1156 { 5650, 5730 }, 1157 { 5735, 5815 }, 1158 { 0, 0, } 1159 }; 1160 1161 static int 1162 set_vht_extchan(struct ieee80211_channel *c) 1163 { 1164 int i; 1165 1166 if (! IEEE80211_IS_CHAN_VHT(c)) { 1167 return (0); 1168 } 1169 1170 if (IEEE80211_IS_CHAN_VHT20(c)) { 1171 c->ic_vht_ch_freq1 = c->ic_ieee; 1172 return (1); 1173 } 1174 1175 if (IEEE80211_IS_CHAN_VHT40(c)) { 1176 if (IEEE80211_IS_CHAN_HT40U(c)) 1177 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1178 else if (IEEE80211_IS_CHAN_HT40D(c)) 1179 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1180 else 1181 return (0); 1182 return (1); 1183 } 1184 1185 if (IEEE80211_IS_CHAN_VHT80(c)) { 1186 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1187 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1188 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1189 int midpoint; 1190 1191 midpoint = vht80_chan_ranges[i].freq_start + 40; 1192 c->ic_vht_ch_freq1 = 1193 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1194 c->ic_vht_ch_freq2 = 0; 1195 #if 0 1196 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1197 __func__, c->ic_ieee, c->ic_freq, midpoint, 1198 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1199 #endif 1200 return (1); 1201 } 1202 } 1203 return (0); 1204 } 1205 1206 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1207 __func__, 1208 c->ic_ieee, 1209 c->ic_flags); 1210 1211 return (0); 1212 } 1213 1214 /* 1215 * Return whether the current channel could possibly be a part of 1216 * a VHT80 channel. 1217 * 1218 * This doesn't check that the whole range is in the allowed list 1219 * according to regulatory. 1220 */ 1221 static int 1222 is_vht80_valid_freq(uint16_t freq) 1223 { 1224 int i; 1225 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1226 if (freq >= vht80_chan_ranges[i].freq_start && 1227 freq < vht80_chan_ranges[i].freq_end) 1228 return (1); 1229 } 1230 return (0); 1231 } 1232 1233 static int 1234 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1235 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1236 { 1237 struct ieee80211_channel *c; 1238 1239 if (*nchans >= maxchans) 1240 return (ENOBUFS); 1241 1242 #if 0 1243 printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n", 1244 __func__, 1245 *nchans, 1246 ieee, 1247 freq, 1248 flags); 1249 #endif 1250 1251 c = &chans[(*nchans)++]; 1252 c->ic_ieee = ieee; 1253 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1254 c->ic_maxregpower = maxregpower; 1255 c->ic_maxpower = 2 * maxregpower; 1256 c->ic_flags = flags; 1257 c->ic_vht_ch_freq1 = 0; 1258 c->ic_vht_ch_freq2 = 0; 1259 set_extchan(c); 1260 set_vht_extchan(c); 1261 1262 return (0); 1263 } 1264 1265 static int 1266 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1267 uint32_t flags) 1268 { 1269 struct ieee80211_channel *c; 1270 1271 KASSERT(*nchans > 0, ("channel list is empty\n")); 1272 1273 if (*nchans >= maxchans) 1274 return (ENOBUFS); 1275 1276 #if 0 1277 printf("%s: %d: flags=0x%08x\n", 1278 __func__, 1279 *nchans, 1280 flags); 1281 #endif 1282 1283 c = &chans[(*nchans)++]; 1284 c[0] = c[-1]; 1285 c->ic_flags = flags; 1286 c->ic_vht_ch_freq1 = 0; 1287 c->ic_vht_ch_freq2 = 0; 1288 set_extchan(c); 1289 set_vht_extchan(c); 1290 1291 return (0); 1292 } 1293 1294 /* 1295 * XXX VHT-2GHz 1296 */ 1297 static void 1298 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40) 1299 { 1300 int nmodes; 1301 1302 nmodes = 0; 1303 if (isset(bands, IEEE80211_MODE_11B)) 1304 flags[nmodes++] = IEEE80211_CHAN_B; 1305 if (isset(bands, IEEE80211_MODE_11G)) 1306 flags[nmodes++] = IEEE80211_CHAN_G; 1307 if (isset(bands, IEEE80211_MODE_11NG)) 1308 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1309 if (ht40) { 1310 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1311 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1312 } 1313 flags[nmodes] = 0; 1314 } 1315 1316 static void 1317 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1318 { 1319 int nmodes; 1320 1321 /* 1322 * the addchan_list function seems to expect the flags array to 1323 * be in channel width order, so the VHT bits are interspersed 1324 * as appropriate to maintain said order. 1325 * 1326 * It also assumes HT40U is before HT40D. 1327 */ 1328 nmodes = 0; 1329 1330 /* 20MHz */ 1331 if (isset(bands, IEEE80211_MODE_11A)) 1332 flags[nmodes++] = IEEE80211_CHAN_A; 1333 if (isset(bands, IEEE80211_MODE_11NA)) 1334 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1335 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1336 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1337 IEEE80211_CHAN_VHT20; 1338 } 1339 1340 /* 40MHz */ 1341 if (ht40) { 1342 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1343 } 1344 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1345 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U 1346 | IEEE80211_CHAN_VHT40U; 1347 } 1348 if (ht40) { 1349 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1350 } 1351 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1352 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D 1353 | IEEE80211_CHAN_VHT40D; 1354 } 1355 1356 /* 80MHz */ 1357 if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1358 flags[nmodes++] = IEEE80211_CHAN_A | 1359 IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80; 1360 flags[nmodes++] = IEEE80211_CHAN_A | 1361 IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80; 1362 } 1363 1364 /* XXX VHT80+80 */ 1365 /* XXX VHT160 */ 1366 flags[nmodes] = 0; 1367 } 1368 1369 static void 1370 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1371 { 1372 1373 flags[0] = 0; 1374 if (isset(bands, IEEE80211_MODE_11A) || 1375 isset(bands, IEEE80211_MODE_11NA) || 1376 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1377 if (isset(bands, IEEE80211_MODE_11B) || 1378 isset(bands, IEEE80211_MODE_11G) || 1379 isset(bands, IEEE80211_MODE_11NG) || 1380 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1381 return; 1382 1383 getflags_5ghz(bands, flags, ht40, vht80); 1384 } else 1385 getflags_2ghz(bands, flags, ht40); 1386 } 1387 1388 /* 1389 * Add one 20 MHz channel into specified channel list. 1390 * You MUST NOT mix bands when calling this. It will not add 5ghz 1391 * channels if you have any B/G/N band bit set. 1392 */ 1393 /* XXX VHT */ 1394 int 1395 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1396 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1397 uint32_t chan_flags, const uint8_t bands[]) 1398 { 1399 uint32_t flags[IEEE80211_MODE_MAX]; 1400 int i, error; 1401 1402 getflags(bands, flags, 0, 0); 1403 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1404 1405 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1406 flags[0] | chan_flags); 1407 for (i = 1; flags[i] != 0 && error == 0; i++) { 1408 error = copychan_prev(chans, maxchans, nchans, 1409 flags[i] | chan_flags); 1410 } 1411 1412 return (error); 1413 } 1414 1415 static struct ieee80211_channel * 1416 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1417 uint32_t flags) 1418 { 1419 struct ieee80211_channel *c; 1420 int i; 1421 1422 flags &= IEEE80211_CHAN_ALLTURBO; 1423 /* brute force search */ 1424 for (i = 0; i < nchans; i++) { 1425 c = &chans[i]; 1426 if (c->ic_freq == freq && 1427 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1428 return c; 1429 } 1430 return NULL; 1431 } 1432 1433 /* 1434 * Add 40 MHz channel pair into specified channel list. 1435 */ 1436 /* XXX VHT */ 1437 int 1438 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1439 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1440 { 1441 struct ieee80211_channel *cent, *extc; 1442 uint16_t freq; 1443 int error; 1444 1445 freq = ieee80211_ieee2mhz(ieee, flags); 1446 1447 /* 1448 * Each entry defines an HT40 channel pair; find the 1449 * center channel, then the extension channel above. 1450 */ 1451 flags |= IEEE80211_CHAN_HT20; 1452 cent = findchannel(chans, *nchans, freq, flags); 1453 if (cent == NULL) 1454 return (EINVAL); 1455 1456 extc = findchannel(chans, *nchans, freq + 20, flags); 1457 if (extc == NULL) 1458 return (ENOENT); 1459 1460 flags &= ~IEEE80211_CHAN_HT; 1461 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1462 maxregpower, flags | IEEE80211_CHAN_HT40U); 1463 if (error != 0) 1464 return (error); 1465 1466 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1467 maxregpower, flags | IEEE80211_CHAN_HT40D); 1468 1469 return (error); 1470 } 1471 1472 /* 1473 * Fetch the center frequency for the primary channel. 1474 */ 1475 uint32_t 1476 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1477 { 1478 1479 return (c->ic_freq); 1480 } 1481 1482 /* 1483 * Fetch the center frequency for the primary BAND channel. 1484 * 1485 * For 5, 10, 20MHz channels it'll be the normally configured channel 1486 * frequency. 1487 * 1488 * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the 1489 * wide channel, not the centre of the primary channel (that's ic_freq). 1490 * 1491 * For 80+80MHz channels this will be the centre of the primary 1492 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1493 */ 1494 uint32_t 1495 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1496 { 1497 1498 /* 1499 * VHT - use the pre-calculated centre frequency 1500 * of the given channel. 1501 */ 1502 if (IEEE80211_IS_CHAN_VHT(c)) 1503 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1504 1505 if (IEEE80211_IS_CHAN_HT40U(c)) { 1506 return (c->ic_freq + 10); 1507 } 1508 if (IEEE80211_IS_CHAN_HT40D(c)) { 1509 return (c->ic_freq - 10); 1510 } 1511 1512 return (c->ic_freq); 1513 } 1514 1515 /* 1516 * For now, no 80+80 support; it will likely always return 0. 1517 */ 1518 uint32_t 1519 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1520 { 1521 1522 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1523 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1524 1525 return (0); 1526 } 1527 1528 /* 1529 * Adds channels into specified channel list (ieee[] array must be sorted). 1530 * Channels are already sorted. 1531 */ 1532 static int 1533 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1534 const uint8_t ieee[], int nieee, uint32_t flags[]) 1535 { 1536 uint16_t freq; 1537 int i, j, error; 1538 int is_vht; 1539 1540 for (i = 0; i < nieee; i++) { 1541 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1542 for (j = 0; flags[j] != 0; j++) { 1543 /* 1544 * Notes: 1545 * + HT40 and VHT40 channels occur together, so 1546 * we need to be careful that we actually allow that. 1547 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1548 * make sure it's not skipped because of the overlap 1549 * check used for (V)HT40. 1550 */ 1551 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1552 1553 /* 1554 * Test for VHT80. 1555 * XXX This is all very broken right now. 1556 * What we /should/ do is: 1557 * 1558 * + check that the frequency is in the list of 1559 * allowed VHT80 ranges; and 1560 * + the other 3 channels in the list are actually 1561 * also available. 1562 */ 1563 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1564 if (! is_vht80_valid_freq(freq)) 1565 continue; 1566 1567 /* 1568 * Test for (V)HT40. 1569 * 1570 * This is also a fall through from VHT80; as we only 1571 * allow a VHT80 channel if the VHT40 combination is 1572 * also valid. If the VHT40 form is not valid then 1573 * we certainly can't do VHT80.. 1574 */ 1575 if (flags[j] & IEEE80211_CHAN_HT40D) 1576 /* 1577 * Can't have a "lower" channel if we are the 1578 * first channel. 1579 * 1580 * Can't have a "lower" channel if it's below/ 1581 * within 20MHz of the first channel. 1582 * 1583 * Can't have a "lower" channel if the channel 1584 * below it is not 20MHz away. 1585 */ 1586 if (i == 0 || ieee[i] < ieee[0] + 4 || 1587 freq - 20 != 1588 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1589 continue; 1590 if (flags[j] & IEEE80211_CHAN_HT40U) 1591 /* 1592 * Can't have an "upper" channel if we are 1593 * the last channel. 1594 * 1595 * Can't have an "upper" channel be above the 1596 * last channel in the list. 1597 * 1598 * Can't have an "upper" channel if the next 1599 * channel according to the math isn't 20MHz 1600 * away. (Likely for channel 13/14.) 1601 */ 1602 if (i == nieee - 1 || 1603 ieee[i] + 4 > ieee[nieee - 1] || 1604 freq + 20 != 1605 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1606 continue; 1607 1608 if (j == 0) { 1609 error = addchan(chans, maxchans, nchans, 1610 ieee[i], freq, 0, flags[j]); 1611 } else { 1612 error = copychan_prev(chans, maxchans, nchans, 1613 flags[j]); 1614 } 1615 if (error != 0) 1616 return (error); 1617 } 1618 } 1619 1620 return (0); 1621 } 1622 1623 int 1624 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1625 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1626 int ht40) 1627 { 1628 uint32_t flags[IEEE80211_MODE_MAX]; 1629 1630 /* XXX no VHT for now */ 1631 getflags_2ghz(bands, flags, ht40); 1632 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1633 1634 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1635 } 1636 1637 int 1638 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], 1639 int maxchans, int *nchans, const uint8_t bands[], int ht40) 1640 { 1641 const uint8_t default_chan_list[] = 1642 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 1643 1644 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 1645 default_chan_list, nitems(default_chan_list), bands, ht40)); 1646 } 1647 1648 int 1649 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1650 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1651 int ht40) 1652 { 1653 uint32_t flags[IEEE80211_MODE_MAX]; 1654 int vht80 = 0; 1655 1656 /* 1657 * For now, assume VHT == VHT80 support as a minimum. 1658 */ 1659 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1660 vht80 = 1; 1661 1662 getflags_5ghz(bands, flags, ht40, vht80); 1663 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1664 1665 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1666 } 1667 1668 /* 1669 * Locate a channel given a frequency+flags. We cache 1670 * the previous lookup to optimize switching between two 1671 * channels--as happens with dynamic turbo. 1672 */ 1673 struct ieee80211_channel * 1674 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1675 { 1676 struct ieee80211_channel *c; 1677 1678 flags &= IEEE80211_CHAN_ALLTURBO; 1679 c = ic->ic_prevchan; 1680 if (c != NULL && c->ic_freq == freq && 1681 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1682 return c; 1683 /* brute force search */ 1684 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1685 } 1686 1687 /* 1688 * Locate a channel given a channel number+flags. We cache 1689 * the previous lookup to optimize switching between two 1690 * channels--as happens with dynamic turbo. 1691 */ 1692 struct ieee80211_channel * 1693 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1694 { 1695 struct ieee80211_channel *c; 1696 int i; 1697 1698 flags &= IEEE80211_CHAN_ALLTURBO; 1699 c = ic->ic_prevchan; 1700 if (c != NULL && c->ic_ieee == ieee && 1701 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1702 return c; 1703 /* brute force search */ 1704 for (i = 0; i < ic->ic_nchans; i++) { 1705 c = &ic->ic_channels[i]; 1706 if (c->ic_ieee == ieee && 1707 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1708 return c; 1709 } 1710 return NULL; 1711 } 1712 1713 /* 1714 * Lookup a channel suitable for the given rx status. 1715 * 1716 * This is used to find a channel for a frame (eg beacon, probe 1717 * response) based purely on the received PHY information. 1718 * 1719 * For now it tries to do it based on R_FREQ / R_IEEE. 1720 * This is enough for 11bg and 11a (and thus 11ng/11na) 1721 * but it will not be enough for GSM, PSB channels and the 1722 * like. It also doesn't know about legacy-turbog and 1723 * legacy-turbo modes, which some offload NICs actually 1724 * support in weird ways. 1725 * 1726 * Takes the ic and rxstatus; returns the channel or NULL 1727 * if not found. 1728 * 1729 * XXX TODO: Add support for that when the need arises. 1730 */ 1731 struct ieee80211_channel * 1732 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1733 const struct ieee80211_rx_stats *rxs) 1734 { 1735 struct ieee80211com *ic = vap->iv_ic; 1736 uint32_t flags; 1737 struct ieee80211_channel *c; 1738 1739 if (rxs == NULL) 1740 return (NULL); 1741 1742 /* 1743 * Strictly speaking we only use freq for now, 1744 * however later on we may wish to just store 1745 * the ieee for verification. 1746 */ 1747 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1748 return (NULL); 1749 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1750 return (NULL); 1751 1752 /* 1753 * If the rx status contains a valid ieee/freq, then 1754 * ensure we populate the correct channel information 1755 * in rxchan before passing it up to the scan infrastructure. 1756 * Offload NICs will pass up beacons from all channels 1757 * during background scans. 1758 */ 1759 1760 /* Determine a band */ 1761 /* XXX should be done by the driver? */ 1762 if (rxs->c_freq < 3000) { 1763 flags = IEEE80211_CHAN_G; 1764 } else { 1765 flags = IEEE80211_CHAN_A; 1766 } 1767 1768 /* Channel lookup */ 1769 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1770 1771 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1772 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1773 __func__, 1774 (int) rxs->c_freq, 1775 (int) rxs->c_ieee, 1776 flags, 1777 c); 1778 1779 return (c); 1780 } 1781 1782 static void 1783 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1784 { 1785 #define ADD(_ic, _s, _o) \ 1786 ifmedia_add(media, \ 1787 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1788 static const u_int mopts[IEEE80211_MODE_MAX] = { 1789 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1790 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1791 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1792 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1793 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1794 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1795 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1796 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1797 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1798 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1799 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1800 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1801 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1802 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1803 }; 1804 u_int mopt; 1805 1806 mopt = mopts[mode]; 1807 if (addsta) 1808 ADD(ic, mword, mopt); /* STA mode has no cap */ 1809 if (caps & IEEE80211_C_IBSS) 1810 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1811 if (caps & IEEE80211_C_HOSTAP) 1812 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1813 if (caps & IEEE80211_C_AHDEMO) 1814 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1815 if (caps & IEEE80211_C_MONITOR) 1816 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1817 if (caps & IEEE80211_C_WDS) 1818 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1819 if (caps & IEEE80211_C_MBSS) 1820 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1821 #undef ADD 1822 } 1823 1824 /* 1825 * Setup the media data structures according to the channel and 1826 * rate tables. 1827 */ 1828 static int 1829 ieee80211_media_setup(struct ieee80211com *ic, 1830 struct ifmedia *media, int caps, int addsta, 1831 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1832 { 1833 int i, j, rate, maxrate, mword, r; 1834 enum ieee80211_phymode mode; 1835 const struct ieee80211_rateset *rs; 1836 struct ieee80211_rateset allrates; 1837 1838 /* 1839 * Fill in media characteristics. 1840 */ 1841 ifmedia_init(media, 0, media_change, media_stat); 1842 maxrate = 0; 1843 /* 1844 * Add media for legacy operating modes. 1845 */ 1846 memset(&allrates, 0, sizeof(allrates)); 1847 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1848 if (isclr(ic->ic_modecaps, mode)) 1849 continue; 1850 addmedia(media, caps, addsta, mode, IFM_AUTO); 1851 if (mode == IEEE80211_MODE_AUTO) 1852 continue; 1853 rs = &ic->ic_sup_rates[mode]; 1854 for (i = 0; i < rs->rs_nrates; i++) { 1855 rate = rs->rs_rates[i]; 1856 mword = ieee80211_rate2media(ic, rate, mode); 1857 if (mword == 0) 1858 continue; 1859 addmedia(media, caps, addsta, mode, mword); 1860 /* 1861 * Add legacy rate to the collection of all rates. 1862 */ 1863 r = rate & IEEE80211_RATE_VAL; 1864 for (j = 0; j < allrates.rs_nrates; j++) 1865 if (allrates.rs_rates[j] == r) 1866 break; 1867 if (j == allrates.rs_nrates) { 1868 /* unique, add to the set */ 1869 allrates.rs_rates[j] = r; 1870 allrates.rs_nrates++; 1871 } 1872 rate = (rate & IEEE80211_RATE_VAL) / 2; 1873 if (rate > maxrate) 1874 maxrate = rate; 1875 } 1876 } 1877 for (i = 0; i < allrates.rs_nrates; i++) { 1878 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1879 IEEE80211_MODE_AUTO); 1880 if (mword == 0) 1881 continue; 1882 /* NB: remove media options from mword */ 1883 addmedia(media, caps, addsta, 1884 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1885 } 1886 /* 1887 * Add HT/11n media. Note that we do not have enough 1888 * bits in the media subtype to express the MCS so we 1889 * use a "placeholder" media subtype and any fixed MCS 1890 * must be specified with a different mechanism. 1891 */ 1892 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1893 if (isclr(ic->ic_modecaps, mode)) 1894 continue; 1895 addmedia(media, caps, addsta, mode, IFM_AUTO); 1896 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1897 } 1898 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1899 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1900 addmedia(media, caps, addsta, 1901 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1902 i = ic->ic_txstream * 8 - 1; 1903 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1904 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1905 rate = ieee80211_htrates[i].ht40_rate_400ns; 1906 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1907 rate = ieee80211_htrates[i].ht40_rate_800ns; 1908 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1909 rate = ieee80211_htrates[i].ht20_rate_400ns; 1910 else 1911 rate = ieee80211_htrates[i].ht20_rate_800ns; 1912 if (rate > maxrate) 1913 maxrate = rate; 1914 } 1915 1916 /* 1917 * Add VHT media. 1918 */ 1919 for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) { 1920 if (isclr(ic->ic_modecaps, mode)) 1921 continue; 1922 addmedia(media, caps, addsta, mode, IFM_AUTO); 1923 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 1924 1925 /* XXX TODO: VHT maxrate */ 1926 } 1927 1928 return maxrate; 1929 } 1930 1931 /* XXX inline or eliminate? */ 1932 const struct ieee80211_rateset * 1933 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1934 { 1935 /* XXX does this work for 11ng basic rates? */ 1936 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1937 } 1938 1939 /* XXX inline or eliminate? */ 1940 const struct ieee80211_htrateset * 1941 ieee80211_get_suphtrates(struct ieee80211com *ic, 1942 const struct ieee80211_channel *c) 1943 { 1944 return &ic->ic_sup_htrates; 1945 } 1946 1947 void 1948 ieee80211_announce(struct ieee80211com *ic) 1949 { 1950 int i, rate, mword; 1951 enum ieee80211_phymode mode; 1952 const struct ieee80211_rateset *rs; 1953 1954 /* NB: skip AUTO since it has no rates */ 1955 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1956 if (isclr(ic->ic_modecaps, mode)) 1957 continue; 1958 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 1959 rs = &ic->ic_sup_rates[mode]; 1960 for (i = 0; i < rs->rs_nrates; i++) { 1961 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1962 if (mword == 0) 1963 continue; 1964 rate = ieee80211_media2rate(mword); 1965 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1966 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1967 } 1968 printf("\n"); 1969 } 1970 ieee80211_ht_announce(ic); 1971 ieee80211_vht_announce(ic); 1972 } 1973 1974 void 1975 ieee80211_announce_channels(struct ieee80211com *ic) 1976 { 1977 const struct ieee80211_channel *c; 1978 char type; 1979 int i, cw; 1980 1981 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1982 for (i = 0; i < ic->ic_nchans; i++) { 1983 c = &ic->ic_channels[i]; 1984 if (IEEE80211_IS_CHAN_ST(c)) 1985 type = 'S'; 1986 else if (IEEE80211_IS_CHAN_108A(c)) 1987 type = 'T'; 1988 else if (IEEE80211_IS_CHAN_108G(c)) 1989 type = 'G'; 1990 else if (IEEE80211_IS_CHAN_HT(c)) 1991 type = 'n'; 1992 else if (IEEE80211_IS_CHAN_A(c)) 1993 type = 'a'; 1994 else if (IEEE80211_IS_CHAN_ANYG(c)) 1995 type = 'g'; 1996 else if (IEEE80211_IS_CHAN_B(c)) 1997 type = 'b'; 1998 else 1999 type = 'f'; 2000 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 2001 cw = 40; 2002 else if (IEEE80211_IS_CHAN_HALF(c)) 2003 cw = 10; 2004 else if (IEEE80211_IS_CHAN_QUARTER(c)) 2005 cw = 5; 2006 else 2007 cw = 20; 2008 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 2009 , c->ic_ieee, c->ic_freq, type 2010 , cw 2011 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 2012 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 2013 , c->ic_maxregpower 2014 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 2015 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 2016 ); 2017 } 2018 } 2019 2020 static int 2021 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 2022 { 2023 switch (IFM_MODE(ime->ifm_media)) { 2024 case IFM_IEEE80211_11A: 2025 *mode = IEEE80211_MODE_11A; 2026 break; 2027 case IFM_IEEE80211_11B: 2028 *mode = IEEE80211_MODE_11B; 2029 break; 2030 case IFM_IEEE80211_11G: 2031 *mode = IEEE80211_MODE_11G; 2032 break; 2033 case IFM_IEEE80211_FH: 2034 *mode = IEEE80211_MODE_FH; 2035 break; 2036 case IFM_IEEE80211_11NA: 2037 *mode = IEEE80211_MODE_11NA; 2038 break; 2039 case IFM_IEEE80211_11NG: 2040 *mode = IEEE80211_MODE_11NG; 2041 break; 2042 case IFM_AUTO: 2043 *mode = IEEE80211_MODE_AUTO; 2044 break; 2045 default: 2046 return 0; 2047 } 2048 /* 2049 * Turbo mode is an ``option''. 2050 * XXX does not apply to AUTO 2051 */ 2052 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2053 if (*mode == IEEE80211_MODE_11A) { 2054 if (flags & IEEE80211_F_TURBOP) 2055 *mode = IEEE80211_MODE_TURBO_A; 2056 else 2057 *mode = IEEE80211_MODE_STURBO_A; 2058 } else if (*mode == IEEE80211_MODE_11G) 2059 *mode = IEEE80211_MODE_TURBO_G; 2060 else 2061 return 0; 2062 } 2063 /* XXX HT40 +/- */ 2064 return 1; 2065 } 2066 2067 /* 2068 * Handle a media change request on the vap interface. 2069 */ 2070 int 2071 ieee80211_media_change(struct ifnet *ifp) 2072 { 2073 struct ieee80211vap *vap = ifp->if_softc; 2074 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2075 uint16_t newmode; 2076 2077 if (!media2mode(ime, vap->iv_flags, &newmode)) 2078 return EINVAL; 2079 if (vap->iv_des_mode != newmode) { 2080 vap->iv_des_mode = newmode; 2081 /* XXX kick state machine if up+running */ 2082 } 2083 return 0; 2084 } 2085 2086 /* 2087 * Common code to calculate the media status word 2088 * from the operating mode and channel state. 2089 */ 2090 static int 2091 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2092 { 2093 int status; 2094 2095 status = IFM_IEEE80211; 2096 switch (opmode) { 2097 case IEEE80211_M_STA: 2098 break; 2099 case IEEE80211_M_IBSS: 2100 status |= IFM_IEEE80211_ADHOC; 2101 break; 2102 case IEEE80211_M_HOSTAP: 2103 status |= IFM_IEEE80211_HOSTAP; 2104 break; 2105 case IEEE80211_M_MONITOR: 2106 status |= IFM_IEEE80211_MONITOR; 2107 break; 2108 case IEEE80211_M_AHDEMO: 2109 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2110 break; 2111 case IEEE80211_M_WDS: 2112 status |= IFM_IEEE80211_WDS; 2113 break; 2114 case IEEE80211_M_MBSS: 2115 status |= IFM_IEEE80211_MBSS; 2116 break; 2117 } 2118 if (IEEE80211_IS_CHAN_HTA(chan)) { 2119 status |= IFM_IEEE80211_11NA; 2120 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2121 status |= IFM_IEEE80211_11NG; 2122 } else if (IEEE80211_IS_CHAN_A(chan)) { 2123 status |= IFM_IEEE80211_11A; 2124 } else if (IEEE80211_IS_CHAN_B(chan)) { 2125 status |= IFM_IEEE80211_11B; 2126 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2127 status |= IFM_IEEE80211_11G; 2128 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2129 status |= IFM_IEEE80211_FH; 2130 } 2131 /* XXX else complain? */ 2132 2133 if (IEEE80211_IS_CHAN_TURBO(chan)) 2134 status |= IFM_IEEE80211_TURBO; 2135 #if 0 2136 if (IEEE80211_IS_CHAN_HT20(chan)) 2137 status |= IFM_IEEE80211_HT20; 2138 if (IEEE80211_IS_CHAN_HT40(chan)) 2139 status |= IFM_IEEE80211_HT40; 2140 #endif 2141 return status; 2142 } 2143 2144 void 2145 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2146 { 2147 struct ieee80211vap *vap = ifp->if_softc; 2148 struct ieee80211com *ic = vap->iv_ic; 2149 enum ieee80211_phymode mode; 2150 2151 imr->ifm_status = IFM_AVALID; 2152 /* 2153 * NB: use the current channel's mode to lock down a xmit 2154 * rate only when running; otherwise we may have a mismatch 2155 * in which case the rate will not be convertible. 2156 */ 2157 if (vap->iv_state == IEEE80211_S_RUN || 2158 vap->iv_state == IEEE80211_S_SLEEP) { 2159 imr->ifm_status |= IFM_ACTIVE; 2160 mode = ieee80211_chan2mode(ic->ic_curchan); 2161 } else 2162 mode = IEEE80211_MODE_AUTO; 2163 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2164 /* 2165 * Calculate a current rate if possible. 2166 */ 2167 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2168 /* 2169 * A fixed rate is set, report that. 2170 */ 2171 imr->ifm_active |= ieee80211_rate2media(ic, 2172 vap->iv_txparms[mode].ucastrate, mode); 2173 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2174 /* 2175 * In station mode report the current transmit rate. 2176 */ 2177 imr->ifm_active |= ieee80211_rate2media(ic, 2178 vap->iv_bss->ni_txrate, mode); 2179 } else 2180 imr->ifm_active |= IFM_AUTO; 2181 if (imr->ifm_status & IFM_ACTIVE) 2182 imr->ifm_current = imr->ifm_active; 2183 } 2184 2185 /* 2186 * Set the current phy mode and recalculate the active channel 2187 * set based on the available channels for this mode. Also 2188 * select a new default/current channel if the current one is 2189 * inappropriate for this mode. 2190 */ 2191 int 2192 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2193 { 2194 /* 2195 * Adjust basic rates in 11b/11g supported rate set. 2196 * Note that if operating on a hal/quarter rate channel 2197 * this is a noop as those rates sets are different 2198 * and used instead. 2199 */ 2200 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2201 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2202 2203 ic->ic_curmode = mode; 2204 ieee80211_reset_erp(ic); /* reset global ERP state */ 2205 2206 return 0; 2207 } 2208 2209 /* 2210 * Return the phy mode for with the specified channel. 2211 */ 2212 enum ieee80211_phymode 2213 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2214 { 2215 2216 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2217 return IEEE80211_MODE_VHT_2GHZ; 2218 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2219 return IEEE80211_MODE_VHT_5GHZ; 2220 else if (IEEE80211_IS_CHAN_HTA(chan)) 2221 return IEEE80211_MODE_11NA; 2222 else if (IEEE80211_IS_CHAN_HTG(chan)) 2223 return IEEE80211_MODE_11NG; 2224 else if (IEEE80211_IS_CHAN_108G(chan)) 2225 return IEEE80211_MODE_TURBO_G; 2226 else if (IEEE80211_IS_CHAN_ST(chan)) 2227 return IEEE80211_MODE_STURBO_A; 2228 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2229 return IEEE80211_MODE_TURBO_A; 2230 else if (IEEE80211_IS_CHAN_HALF(chan)) 2231 return IEEE80211_MODE_HALF; 2232 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2233 return IEEE80211_MODE_QUARTER; 2234 else if (IEEE80211_IS_CHAN_A(chan)) 2235 return IEEE80211_MODE_11A; 2236 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2237 return IEEE80211_MODE_11G; 2238 else if (IEEE80211_IS_CHAN_B(chan)) 2239 return IEEE80211_MODE_11B; 2240 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2241 return IEEE80211_MODE_FH; 2242 2243 /* NB: should not get here */ 2244 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2245 __func__, chan->ic_freq, chan->ic_flags); 2246 return IEEE80211_MODE_11B; 2247 } 2248 2249 struct ratemedia { 2250 u_int match; /* rate + mode */ 2251 u_int media; /* if_media rate */ 2252 }; 2253 2254 static int 2255 findmedia(const struct ratemedia rates[], int n, u_int match) 2256 { 2257 int i; 2258 2259 for (i = 0; i < n; i++) 2260 if (rates[i].match == match) 2261 return rates[i].media; 2262 return IFM_AUTO; 2263 } 2264 2265 /* 2266 * Convert IEEE80211 rate value to ifmedia subtype. 2267 * Rate is either a legacy rate in units of 0.5Mbps 2268 * or an MCS index. 2269 */ 2270 int 2271 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2272 { 2273 static const struct ratemedia rates[] = { 2274 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2275 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2276 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2277 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2278 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2279 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2280 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2281 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2282 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2283 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2284 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2285 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2286 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2287 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2288 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2289 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2290 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2291 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2292 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2293 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2294 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2295 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2296 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2297 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2298 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2299 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2300 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2301 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2302 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2303 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2304 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2305 }; 2306 static const struct ratemedia htrates[] = { 2307 { 0, IFM_IEEE80211_MCS }, 2308 { 1, IFM_IEEE80211_MCS }, 2309 { 2, IFM_IEEE80211_MCS }, 2310 { 3, IFM_IEEE80211_MCS }, 2311 { 4, IFM_IEEE80211_MCS }, 2312 { 5, IFM_IEEE80211_MCS }, 2313 { 6, IFM_IEEE80211_MCS }, 2314 { 7, IFM_IEEE80211_MCS }, 2315 { 8, IFM_IEEE80211_MCS }, 2316 { 9, IFM_IEEE80211_MCS }, 2317 { 10, IFM_IEEE80211_MCS }, 2318 { 11, IFM_IEEE80211_MCS }, 2319 { 12, IFM_IEEE80211_MCS }, 2320 { 13, IFM_IEEE80211_MCS }, 2321 { 14, IFM_IEEE80211_MCS }, 2322 { 15, IFM_IEEE80211_MCS }, 2323 { 16, IFM_IEEE80211_MCS }, 2324 { 17, IFM_IEEE80211_MCS }, 2325 { 18, IFM_IEEE80211_MCS }, 2326 { 19, IFM_IEEE80211_MCS }, 2327 { 20, IFM_IEEE80211_MCS }, 2328 { 21, IFM_IEEE80211_MCS }, 2329 { 22, IFM_IEEE80211_MCS }, 2330 { 23, IFM_IEEE80211_MCS }, 2331 { 24, IFM_IEEE80211_MCS }, 2332 { 25, IFM_IEEE80211_MCS }, 2333 { 26, IFM_IEEE80211_MCS }, 2334 { 27, IFM_IEEE80211_MCS }, 2335 { 28, IFM_IEEE80211_MCS }, 2336 { 29, IFM_IEEE80211_MCS }, 2337 { 30, IFM_IEEE80211_MCS }, 2338 { 31, IFM_IEEE80211_MCS }, 2339 { 32, IFM_IEEE80211_MCS }, 2340 { 33, IFM_IEEE80211_MCS }, 2341 { 34, IFM_IEEE80211_MCS }, 2342 { 35, IFM_IEEE80211_MCS }, 2343 { 36, IFM_IEEE80211_MCS }, 2344 { 37, IFM_IEEE80211_MCS }, 2345 { 38, IFM_IEEE80211_MCS }, 2346 { 39, IFM_IEEE80211_MCS }, 2347 { 40, IFM_IEEE80211_MCS }, 2348 { 41, IFM_IEEE80211_MCS }, 2349 { 42, IFM_IEEE80211_MCS }, 2350 { 43, IFM_IEEE80211_MCS }, 2351 { 44, IFM_IEEE80211_MCS }, 2352 { 45, IFM_IEEE80211_MCS }, 2353 { 46, IFM_IEEE80211_MCS }, 2354 { 47, IFM_IEEE80211_MCS }, 2355 { 48, IFM_IEEE80211_MCS }, 2356 { 49, IFM_IEEE80211_MCS }, 2357 { 50, IFM_IEEE80211_MCS }, 2358 { 51, IFM_IEEE80211_MCS }, 2359 { 52, IFM_IEEE80211_MCS }, 2360 { 53, IFM_IEEE80211_MCS }, 2361 { 54, IFM_IEEE80211_MCS }, 2362 { 55, IFM_IEEE80211_MCS }, 2363 { 56, IFM_IEEE80211_MCS }, 2364 { 57, IFM_IEEE80211_MCS }, 2365 { 58, IFM_IEEE80211_MCS }, 2366 { 59, IFM_IEEE80211_MCS }, 2367 { 60, IFM_IEEE80211_MCS }, 2368 { 61, IFM_IEEE80211_MCS }, 2369 { 62, IFM_IEEE80211_MCS }, 2370 { 63, IFM_IEEE80211_MCS }, 2371 { 64, IFM_IEEE80211_MCS }, 2372 { 65, IFM_IEEE80211_MCS }, 2373 { 66, IFM_IEEE80211_MCS }, 2374 { 67, IFM_IEEE80211_MCS }, 2375 { 68, IFM_IEEE80211_MCS }, 2376 { 69, IFM_IEEE80211_MCS }, 2377 { 70, IFM_IEEE80211_MCS }, 2378 { 71, IFM_IEEE80211_MCS }, 2379 { 72, IFM_IEEE80211_MCS }, 2380 { 73, IFM_IEEE80211_MCS }, 2381 { 74, IFM_IEEE80211_MCS }, 2382 { 75, IFM_IEEE80211_MCS }, 2383 { 76, IFM_IEEE80211_MCS }, 2384 }; 2385 int m; 2386 2387 /* 2388 * Check 11n rates first for match as an MCS. 2389 */ 2390 if (mode == IEEE80211_MODE_11NA) { 2391 if (rate & IEEE80211_RATE_MCS) { 2392 rate &= ~IEEE80211_RATE_MCS; 2393 m = findmedia(htrates, nitems(htrates), rate); 2394 if (m != IFM_AUTO) 2395 return m | IFM_IEEE80211_11NA; 2396 } 2397 } else if (mode == IEEE80211_MODE_11NG) { 2398 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2399 if (rate & IEEE80211_RATE_MCS) { 2400 rate &= ~IEEE80211_RATE_MCS; 2401 m = findmedia(htrates, nitems(htrates), rate); 2402 if (m != IFM_AUTO) 2403 return m | IFM_IEEE80211_11NG; 2404 } 2405 } 2406 rate &= IEEE80211_RATE_VAL; 2407 switch (mode) { 2408 case IEEE80211_MODE_11A: 2409 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2410 case IEEE80211_MODE_QUARTER: 2411 case IEEE80211_MODE_11NA: 2412 case IEEE80211_MODE_TURBO_A: 2413 case IEEE80211_MODE_STURBO_A: 2414 return findmedia(rates, nitems(rates), 2415 rate | IFM_IEEE80211_11A); 2416 case IEEE80211_MODE_11B: 2417 return findmedia(rates, nitems(rates), 2418 rate | IFM_IEEE80211_11B); 2419 case IEEE80211_MODE_FH: 2420 return findmedia(rates, nitems(rates), 2421 rate | IFM_IEEE80211_FH); 2422 case IEEE80211_MODE_AUTO: 2423 /* NB: ic may be NULL for some drivers */ 2424 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2425 return findmedia(rates, nitems(rates), 2426 rate | IFM_IEEE80211_FH); 2427 /* NB: hack, 11g matches both 11b+11a rates */ 2428 /* fall thru... */ 2429 case IEEE80211_MODE_11G: 2430 case IEEE80211_MODE_11NG: 2431 case IEEE80211_MODE_TURBO_G: 2432 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2433 case IEEE80211_MODE_VHT_2GHZ: 2434 case IEEE80211_MODE_VHT_5GHZ: 2435 /* XXX TODO: need to figure out mapping for VHT rates */ 2436 return IFM_AUTO; 2437 } 2438 return IFM_AUTO; 2439 } 2440 2441 int 2442 ieee80211_media2rate(int mword) 2443 { 2444 static const int ieeerates[] = { 2445 -1, /* IFM_AUTO */ 2446 0, /* IFM_MANUAL */ 2447 0, /* IFM_NONE */ 2448 2, /* IFM_IEEE80211_FH1 */ 2449 4, /* IFM_IEEE80211_FH2 */ 2450 2, /* IFM_IEEE80211_DS1 */ 2451 4, /* IFM_IEEE80211_DS2 */ 2452 11, /* IFM_IEEE80211_DS5 */ 2453 22, /* IFM_IEEE80211_DS11 */ 2454 44, /* IFM_IEEE80211_DS22 */ 2455 12, /* IFM_IEEE80211_OFDM6 */ 2456 18, /* IFM_IEEE80211_OFDM9 */ 2457 24, /* IFM_IEEE80211_OFDM12 */ 2458 36, /* IFM_IEEE80211_OFDM18 */ 2459 48, /* IFM_IEEE80211_OFDM24 */ 2460 72, /* IFM_IEEE80211_OFDM36 */ 2461 96, /* IFM_IEEE80211_OFDM48 */ 2462 108, /* IFM_IEEE80211_OFDM54 */ 2463 144, /* IFM_IEEE80211_OFDM72 */ 2464 0, /* IFM_IEEE80211_DS354k */ 2465 0, /* IFM_IEEE80211_DS512k */ 2466 6, /* IFM_IEEE80211_OFDM3 */ 2467 9, /* IFM_IEEE80211_OFDM4 */ 2468 54, /* IFM_IEEE80211_OFDM27 */ 2469 -1, /* IFM_IEEE80211_MCS */ 2470 -1, /* IFM_IEEE80211_VHT */ 2471 }; 2472 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2473 ieeerates[IFM_SUBTYPE(mword)] : 0; 2474 } 2475 2476 /* 2477 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2478 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2479 */ 2480 #define mix(a, b, c) \ 2481 do { \ 2482 a -= b; a -= c; a ^= (c >> 13); \ 2483 b -= c; b -= a; b ^= (a << 8); \ 2484 c -= a; c -= b; c ^= (b >> 13); \ 2485 a -= b; a -= c; a ^= (c >> 12); \ 2486 b -= c; b -= a; b ^= (a << 16); \ 2487 c -= a; c -= b; c ^= (b >> 5); \ 2488 a -= b; a -= c; a ^= (c >> 3); \ 2489 b -= c; b -= a; b ^= (a << 10); \ 2490 c -= a; c -= b; c ^= (b >> 15); \ 2491 } while (/*CONSTCOND*/0) 2492 2493 uint32_t 2494 ieee80211_mac_hash(const struct ieee80211com *ic, 2495 const uint8_t addr[IEEE80211_ADDR_LEN]) 2496 { 2497 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2498 2499 b += addr[5] << 8; 2500 b += addr[4]; 2501 a += addr[3] << 24; 2502 a += addr[2] << 16; 2503 a += addr[1] << 8; 2504 a += addr[0]; 2505 2506 mix(a, b, c); 2507 2508 return c; 2509 } 2510 #undef mix 2511 2512 char 2513 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2514 { 2515 if (IEEE80211_IS_CHAN_ST(c)) 2516 return 'S'; 2517 if (IEEE80211_IS_CHAN_108A(c)) 2518 return 'T'; 2519 if (IEEE80211_IS_CHAN_108G(c)) 2520 return 'G'; 2521 if (IEEE80211_IS_CHAN_VHT(c)) 2522 return 'v'; 2523 if (IEEE80211_IS_CHAN_HT(c)) 2524 return 'n'; 2525 if (IEEE80211_IS_CHAN_A(c)) 2526 return 'a'; 2527 if (IEEE80211_IS_CHAN_ANYG(c)) 2528 return 'g'; 2529 if (IEEE80211_IS_CHAN_B(c)) 2530 return 'b'; 2531 return 'f'; 2532 } 2533