1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ethernet.h> 46 47 #include <net80211/ieee80211_var.h> 48 #include <net80211/ieee80211_regdomain.h> 49 50 #include <net/bpf.h> 51 52 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 53 [IEEE80211_MODE_AUTO] = "auto", 54 [IEEE80211_MODE_11A] = "11a", 55 [IEEE80211_MODE_11B] = "11b", 56 [IEEE80211_MODE_11G] = "11g", 57 [IEEE80211_MODE_FH] = "FH", 58 [IEEE80211_MODE_TURBO_A] = "turboA", 59 [IEEE80211_MODE_TURBO_G] = "turboG", 60 [IEEE80211_MODE_STURBO_A] = "sturboA", 61 [IEEE80211_MODE_11NA] = "11na", 62 [IEEE80211_MODE_11NG] = "11ng", 63 }; 64 /* map ieee80211_opmode to the corresponding capability bit */ 65 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 66 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 67 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 68 [IEEE80211_M_STA] = IEEE80211_C_STA, 69 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 70 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 71 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 72 }; 73 74 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 75 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 76 77 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 78 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 79 static int ieee80211_media_setup(struct ieee80211com *ic, 80 struct ifmedia *media, int caps, int addsta, 81 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 82 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 83 static int ieee80211com_media_change(struct ifnet *); 84 static int media_status(enum ieee80211_opmode, 85 const struct ieee80211_channel *); 86 87 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 88 89 /* 90 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 91 */ 92 #define B(r) ((r) | IEEE80211_RATE_BASIC) 93 static const struct ieee80211_rateset ieee80211_rateset_11a = 94 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 95 static const struct ieee80211_rateset ieee80211_rateset_half = 96 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 97 static const struct ieee80211_rateset ieee80211_rateset_quarter = 98 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 99 static const struct ieee80211_rateset ieee80211_rateset_11b = 100 { 4, { B(2), B(4), B(11), B(22) } }; 101 /* NB: OFDM rates are handled specially based on mode */ 102 static const struct ieee80211_rateset ieee80211_rateset_11g = 103 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 104 #undef B 105 106 /* 107 * Fill in 802.11 available channel set, mark 108 * all available channels as active, and pick 109 * a default channel if not already specified. 110 */ 111 static void 112 ieee80211_chan_init(struct ieee80211com *ic) 113 { 114 #define DEFAULTRATES(m, def) do { \ 115 if (isset(ic->ic_modecaps, m) && ic->ic_sup_rates[m].rs_nrates == 0) \ 116 ic->ic_sup_rates[m] = def; \ 117 } while (0) 118 struct ieee80211_channel *c; 119 int i; 120 121 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 122 ("invalid number of channels specified: %u", ic->ic_nchans)); 123 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 124 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 125 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 126 for (i = 0; i < ic->ic_nchans; i++) { 127 c = &ic->ic_channels[i]; 128 KASSERT(c->ic_flags != 0, ("channel with no flags")); 129 setbit(ic->ic_chan_avail, c->ic_ieee); 130 /* 131 * Identify mode capabilities. 132 */ 133 if (IEEE80211_IS_CHAN_A(c)) 134 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 135 if (IEEE80211_IS_CHAN_B(c)) 136 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 137 if (IEEE80211_IS_CHAN_ANYG(c)) 138 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 139 if (IEEE80211_IS_CHAN_FHSS(c)) 140 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 141 if (IEEE80211_IS_CHAN_108A(c)) 142 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 143 if (IEEE80211_IS_CHAN_108G(c)) 144 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 145 if (IEEE80211_IS_CHAN_ST(c)) 146 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 147 if (IEEE80211_IS_CHAN_HTA(c)) 148 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 149 if (IEEE80211_IS_CHAN_HTG(c)) 150 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 151 } 152 /* initialize candidate channels to all available */ 153 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 154 sizeof(ic->ic_chan_avail)); 155 156 /* sort channel table to allow lookup optimizations */ 157 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 158 159 /* invalidate any previous state */ 160 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 161 ic->ic_prevchan = NULL; 162 ic->ic_csa_newchan = NULL; 163 /* arbitrarily pick the first channel */ 164 ic->ic_curchan = &ic->ic_channels[0]; 165 166 /* fillin well-known rate sets if driver has not specified */ 167 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 168 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 169 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 170 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 171 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 172 173 /* 174 * Set auto mode to reset active channel state and any desired channel. 175 */ 176 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 177 #undef DEFAULTRATES 178 } 179 180 static void 181 null_update_mcast(struct ifnet *ifp) 182 { 183 if_printf(ifp, "need multicast update callback\n"); 184 } 185 186 static void 187 null_update_promisc(struct ifnet *ifp) 188 { 189 if_printf(ifp, "need promiscuous mode update callback\n"); 190 } 191 192 static int 193 null_output(struct ifnet *ifp, struct mbuf *m, 194 struct sockaddr *dst, struct rtentry *rt0) 195 { 196 if_printf(ifp, "discard raw packet\n"); 197 m_freem(m); 198 return EIO; 199 } 200 201 static void 202 null_input(struct ifnet *ifp, struct mbuf *m) 203 { 204 if_printf(ifp, "if_input should not be called\n"); 205 m_freem(m); 206 } 207 208 /* 209 * Attach/setup the common net80211 state. Called by 210 * the driver on attach to prior to creating any vap's. 211 */ 212 void 213 ieee80211_ifattach(struct ieee80211com *ic) 214 { 215 struct ifnet *ifp = ic->ic_ifp; 216 struct sockaddr_dl *sdl; 217 struct ifaddr *ifa; 218 219 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 220 221 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 222 TAILQ_INIT(&ic->ic_vaps); 223 /* 224 * Fill in 802.11 available channel set, mark all 225 * available channels as active, and pick a default 226 * channel if not already specified. 227 */ 228 ieee80211_media_init(ic); 229 230 ic->ic_update_mcast = null_update_mcast; 231 ic->ic_update_promisc = null_update_promisc; 232 233 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 234 ic->ic_lintval = ic->ic_bintval; 235 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 236 237 ieee80211_crypto_attach(ic); 238 ieee80211_node_attach(ic); 239 ieee80211_power_attach(ic); 240 ieee80211_proto_attach(ic); 241 ieee80211_ht_attach(ic); 242 ieee80211_scan_attach(ic); 243 ieee80211_regdomain_attach(ic); 244 245 ieee80211_sysctl_attach(ic); 246 247 ifp->if_addrlen = IEEE80211_ADDR_LEN; 248 ifp->if_hdrlen = 0; 249 if_attach(ifp); 250 ifp->if_mtu = IEEE80211_MTU_MAX; 251 ifp->if_broadcastaddr = ieee80211broadcastaddr; 252 ifp->if_output = null_output; 253 ifp->if_input = null_input; /* just in case */ 254 ifp->if_resolvemulti = NULL; /* NB: callers check */ 255 256 ifa = ifaddr_byindex(ifp->if_index); 257 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 258 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 259 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 260 sdl->sdl_alen = IEEE80211_ADDR_LEN; 261 IEEE80211_ADDR_COPY(LLADDR(sdl), ic->ic_myaddr); 262 } 263 264 /* 265 * Detach net80211 state on device detach. Tear down 266 * all vap's and reclaim all common state prior to the 267 * device state going away. Note we may call back into 268 * driver; it must be prepared for this. 269 */ 270 void 271 ieee80211_ifdetach(struct ieee80211com *ic) 272 { 273 struct ifnet *ifp = ic->ic_ifp; 274 struct ieee80211vap *vap; 275 276 /* XXX ieee80211_stop_all? */ 277 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 278 ieee80211_vap_destroy(vap); 279 280 ieee80211_sysctl_detach(ic); 281 ieee80211_regdomain_detach(ic); 282 ieee80211_scan_detach(ic); 283 ieee80211_ht_detach(ic); 284 /* NB: must be called before ieee80211_node_detach */ 285 ieee80211_proto_detach(ic); 286 ieee80211_crypto_detach(ic); 287 ieee80211_power_detach(ic); 288 ieee80211_node_detach(ic); 289 ifmedia_removeall(&ic->ic_media); 290 291 IEEE80211_LOCK_DESTROY(ic); 292 if_detach(ifp); 293 } 294 295 /* 296 * Default reset method for use with the ioctl support. This 297 * method is invoked after any state change in the 802.11 298 * layer that should be propagated to the hardware but not 299 * require re-initialization of the 802.11 state machine (e.g 300 * rescanning for an ap). We always return ENETRESET which 301 * should cause the driver to re-initialize the device. Drivers 302 * can override this method to implement more optimized support. 303 */ 304 static int 305 default_reset(struct ieee80211vap *vap, u_long cmd) 306 { 307 return ENETRESET; 308 } 309 310 /* 311 * Prepare a vap for use. Drivers use this call to 312 * setup net80211 state in new vap's prior attaching 313 * them with ieee80211_vap_attach (below). 314 */ 315 int 316 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 317 const char name[IFNAMSIZ], int unit, int opmode, int flags, 318 const uint8_t bssid[IEEE80211_ADDR_LEN], 319 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 320 { 321 struct ifnet *ifp; 322 323 ifp = if_alloc(IFT_ETHER); 324 if (ifp == NULL) { 325 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 326 __func__); 327 return ENOMEM; 328 } 329 if_initname(ifp, name, unit); 330 ifp->if_softc = vap; /* back pointer */ 331 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 332 ifp->if_start = ieee80211_start; 333 ifp->if_ioctl = ieee80211_ioctl; 334 ifp->if_watchdog = NULL; /* NB: no watchdog routine */ 335 ifp->if_init = ieee80211_init; 336 /* NB: input+output filled in by ether_ifattach */ 337 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 338 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 339 IFQ_SET_READY(&ifp->if_snd); 340 341 vap->iv_ifp = ifp; 342 vap->iv_ic = ic; 343 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 344 vap->iv_flags_ext = ic->ic_flags_ext; 345 vap->iv_flags_ven = ic->ic_flags_ven; 346 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 347 vap->iv_htcaps = ic->ic_htcaps; 348 vap->iv_opmode = opmode; 349 vap->iv_caps |= ieee80211_opcap[opmode]; 350 switch (opmode) { 351 case IEEE80211_M_WDS: 352 /* 353 * WDS links must specify the bssid of the far end. 354 * For legacy operation this is a static relationship. 355 * For non-legacy operation the station must associate 356 * and be authorized to pass traffic. Plumbing the 357 * vap to the proper node happens when the vap 358 * transitions to RUN state. 359 */ 360 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 361 vap->iv_flags |= IEEE80211_F_DESBSSID; 362 if (flags & IEEE80211_CLONE_WDSLEGACY) 363 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 364 break; 365 #ifdef IEEE80211_SUPPORT_TDMA 366 case IEEE80211_M_AHDEMO: 367 if (flags & IEEE80211_CLONE_TDMA) { 368 /* NB: checked before clone operation allowed */ 369 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 370 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 371 /* 372 * Propagate TDMA capability to mark vap; this 373 * cannot be removed and is used to distinguish 374 * regular ahdemo operation from ahdemo+tdma. 375 */ 376 vap->iv_caps |= IEEE80211_C_TDMA; 377 } 378 break; 379 #endif 380 } 381 /* auto-enable s/w beacon miss support */ 382 if (flags & IEEE80211_CLONE_NOBEACONS) 383 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 384 /* 385 * Enable various functionality by default if we're 386 * capable; the driver can override us if it knows better. 387 */ 388 if (vap->iv_caps & IEEE80211_C_WME) 389 vap->iv_flags |= IEEE80211_F_WME; 390 if (vap->iv_caps & IEEE80211_C_BURST) 391 vap->iv_flags |= IEEE80211_F_BURST; 392 if (vap->iv_caps & IEEE80211_C_FF) 393 vap->iv_flags |= IEEE80211_F_FF; 394 if (vap->iv_caps & IEEE80211_C_TURBOP) 395 vap->iv_flags |= IEEE80211_F_TURBOP; 396 /* NB: bg scanning only makes sense for station mode right now */ 397 if (vap->iv_opmode == IEEE80211_M_STA && 398 (vap->iv_caps & IEEE80211_C_BGSCAN)) 399 vap->iv_flags |= IEEE80211_F_BGSCAN; 400 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 401 /* NB: DFS support only makes sense for ap mode right now */ 402 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 403 (vap->iv_caps & IEEE80211_C_DFS)) 404 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 405 406 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 407 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 408 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 409 /* 410 * Install a default reset method for the ioctl support; 411 * the driver can override this. 412 */ 413 vap->iv_reset = default_reset; 414 415 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 416 417 ieee80211_sysctl_vattach(vap); 418 ieee80211_crypto_vattach(vap); 419 ieee80211_node_vattach(vap); 420 ieee80211_power_vattach(vap); 421 ieee80211_proto_vattach(vap); 422 ieee80211_ht_vattach(vap); 423 ieee80211_scan_vattach(vap); 424 ieee80211_regdomain_vattach(vap); 425 426 return 0; 427 } 428 429 /* 430 * Activate a vap. State should have been prepared with a 431 * call to ieee80211_vap_setup and by the driver. On return 432 * from this call the vap is ready for use. 433 */ 434 int 435 ieee80211_vap_attach(struct ieee80211vap *vap, 436 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 437 { 438 struct ifnet *ifp = vap->iv_ifp; 439 struct ieee80211com *ic = vap->iv_ic; 440 struct ifmediareq imr; 441 int maxrate; 442 443 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 444 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 445 __func__, ieee80211_opmode_name[vap->iv_opmode], 446 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 447 448 /* 449 * Do late attach work that cannot happen until after 450 * the driver has had a chance to override defaults. 451 */ 452 ieee80211_node_latevattach(vap); 453 ieee80211_power_latevattach(vap); 454 455 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 456 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 457 ieee80211_media_status(ifp, &imr); 458 /* NB: strip explicit mode; we're actually in autoselect */ 459 ifmedia_set(&vap->iv_media, imr.ifm_active &~ IFM_MMASK); 460 if (maxrate) 461 ifp->if_baudrate = IF_Mbps(maxrate); 462 463 ether_ifattach(ifp, vap->iv_myaddr); 464 /* hook output method setup by ether_ifattach */ 465 vap->iv_output = ifp->if_output; 466 ifp->if_output = ieee80211_output; 467 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 468 bpfattach2(ifp, DLT_IEEE802_11, ifp->if_hdrlen, &vap->iv_rawbpf); 469 470 IEEE80211_LOCK(ic); 471 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 472 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 473 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 474 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 475 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 476 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_HT); 477 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_USEHT40); 478 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 479 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 480 IEEE80211_UNLOCK(ic); 481 482 return 1; 483 } 484 485 /* 486 * Tear down vap state and reclaim the ifnet. 487 * The driver is assumed to have prepared for 488 * this; e.g. by turning off interrupts for the 489 * underlying device. 490 */ 491 void 492 ieee80211_vap_detach(struct ieee80211vap *vap) 493 { 494 struct ieee80211com *ic = vap->iv_ic; 495 struct ifnet *ifp = vap->iv_ifp; 496 497 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 498 __func__, ieee80211_opmode_name[vap->iv_opmode], 499 ic->ic_ifp->if_xname); 500 501 IEEE80211_LOCK(ic); 502 /* block traffic from above */ 503 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 504 /* 505 * Evil hack. Clear the backpointer from the ifnet to the 506 * vap so any requests from above will return an error or 507 * be ignored. In particular this short-circuits requests 508 * by the bridge to turn off promiscuous mode as a result 509 * of calling ether_ifdetach. 510 */ 511 ifp->if_softc = NULL; 512 /* 513 * Stop the vap before detaching the ifnet. Ideally we'd 514 * do this in the other order so the ifnet is inaccessible 515 * while we cleanup internal state but that is hard. 516 */ 517 ieee80211_stop_locked(vap); 518 519 /* XXX accumulate iv_stats in ic_stats? */ 520 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 521 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 522 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 523 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 524 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 525 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_HT); 526 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_USEHT40); 527 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 528 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 529 IEEE80211_UNLOCK(ic); 530 531 /* XXX can't hold com lock */ 532 /* NB: bpfattach is called by ether_ifdetach and claims all taps */ 533 ether_ifdetach(ifp); 534 535 ifmedia_removeall(&vap->iv_media); 536 537 ieee80211_regdomain_vdetach(vap); 538 ieee80211_scan_vdetach(vap); 539 ieee80211_ht_vdetach(vap); 540 /* NB: must be before ieee80211_node_vdetach */ 541 ieee80211_proto_vdetach(vap); 542 ieee80211_crypto_vdetach(vap); 543 ieee80211_power_vdetach(vap); 544 ieee80211_node_vdetach(vap); 545 ieee80211_sysctl_vdetach(vap); 546 547 if_free(ifp); 548 } 549 550 /* 551 * Synchronize flag bit state in the parent ifnet structure 552 * according to the state of all vap ifnet's. This is used, 553 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 554 */ 555 void 556 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 557 { 558 struct ifnet *ifp = ic->ic_ifp; 559 struct ieee80211vap *vap; 560 int bit, oflags; 561 562 IEEE80211_LOCK_ASSERT(ic); 563 564 bit = 0; 565 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 566 if (vap->iv_ifp->if_flags & flag) { 567 /* 568 * XXX the bridge sets PROMISC but we don't want to 569 * enable it on the device, discard here so all the 570 * drivers don't need to special-case it 571 */ 572 if (flag == IFF_PROMISC && 573 vap->iv_opmode == IEEE80211_M_HOSTAP) 574 continue; 575 bit = 1; 576 break; 577 } 578 oflags = ifp->if_flags; 579 if (bit) 580 ifp->if_flags |= flag; 581 else 582 ifp->if_flags &= ~flag; 583 if ((ifp->if_flags ^ oflags) & flag) { 584 /* XXX should we return 1/0 and let caller do this? */ 585 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 586 if (flag == IFF_PROMISC) 587 ic->ic_update_promisc(ifp); 588 else if (flag == IFF_ALLMULTI) 589 ic->ic_update_mcast(ifp); 590 } 591 } 592 } 593 594 /* 595 * Synchronize flag bit state in the com structure 596 * according to the state of all vap's. This is used, 597 * for example, to handle state changes via ioctls. 598 */ 599 static void 600 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 601 { 602 struct ieee80211vap *vap; 603 int bit; 604 605 IEEE80211_LOCK_ASSERT(ic); 606 607 bit = 0; 608 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 609 if (vap->iv_flags & flag) { 610 bit = 1; 611 break; 612 } 613 if (bit) 614 ic->ic_flags |= flag; 615 else 616 ic->ic_flags &= ~flag; 617 } 618 619 void 620 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 621 { 622 struct ieee80211com *ic = vap->iv_ic; 623 624 IEEE80211_LOCK(ic); 625 if (flag < 0) { 626 flag = -flag; 627 vap->iv_flags &= ~flag; 628 } else 629 vap->iv_flags |= flag; 630 ieee80211_syncflag_locked(ic, flag); 631 IEEE80211_UNLOCK(ic); 632 } 633 634 /* 635 * Synchronize flag bit state in the com structure 636 * according to the state of all vap's. This is used, 637 * for example, to handle state changes via ioctls. 638 */ 639 static void 640 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 641 { 642 struct ieee80211vap *vap; 643 int bit; 644 645 IEEE80211_LOCK_ASSERT(ic); 646 647 bit = 0; 648 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 649 if (vap->iv_flags_ext & flag) { 650 bit = 1; 651 break; 652 } 653 if (bit) 654 ic->ic_flags_ext |= flag; 655 else 656 ic->ic_flags_ext &= ~flag; 657 } 658 659 void 660 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 661 { 662 struct ieee80211com *ic = vap->iv_ic; 663 664 IEEE80211_LOCK(ic); 665 if (flag < 0) { 666 flag = -flag; 667 vap->iv_flags_ext &= ~flag; 668 } else 669 vap->iv_flags_ext |= flag; 670 ieee80211_syncflag_ext_locked(ic, flag); 671 IEEE80211_UNLOCK(ic); 672 } 673 674 static __inline int 675 mapgsm(u_int freq, u_int flags) 676 { 677 freq *= 10; 678 if (flags & IEEE80211_CHAN_QUARTER) 679 freq += 5; 680 else if (flags & IEEE80211_CHAN_HALF) 681 freq += 10; 682 else 683 freq += 20; 684 /* NB: there is no 907/20 wide but leave room */ 685 return (freq - 906*10) / 5; 686 } 687 688 static __inline int 689 mappsb(u_int freq, u_int flags) 690 { 691 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 692 } 693 694 /* 695 * Convert MHz frequency to IEEE channel number. 696 */ 697 int 698 ieee80211_mhz2ieee(u_int freq, u_int flags) 699 { 700 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 701 if (flags & IEEE80211_CHAN_GSM) 702 return mapgsm(freq, flags); 703 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 704 if (freq == 2484) 705 return 14; 706 if (freq < 2484) 707 return ((int) freq - 2407) / 5; 708 else 709 return 15 + ((freq - 2512) / 20); 710 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 711 if (freq <= 5000) { 712 /* XXX check regdomain? */ 713 if (IS_FREQ_IN_PSB(freq)) 714 return mappsb(freq, flags); 715 return (freq - 4000) / 5; 716 } else 717 return (freq - 5000) / 5; 718 } else { /* either, guess */ 719 if (freq == 2484) 720 return 14; 721 if (freq < 2484) { 722 if (907 <= freq && freq <= 922) 723 return mapgsm(freq, flags); 724 return ((int) freq - 2407) / 5; 725 } 726 if (freq < 5000) { 727 if (IS_FREQ_IN_PSB(freq)) 728 return mappsb(freq, flags); 729 else if (freq > 4900) 730 return (freq - 4000) / 5; 731 else 732 return 15 + ((freq - 2512) / 20); 733 } 734 return (freq - 5000) / 5; 735 } 736 #undef IS_FREQ_IN_PSB 737 } 738 739 /* 740 * Convert channel to IEEE channel number. 741 */ 742 int 743 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 744 { 745 if (c == NULL) { 746 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 747 return 0; /* XXX */ 748 } 749 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 750 } 751 752 /* 753 * Convert IEEE channel number to MHz frequency. 754 */ 755 u_int 756 ieee80211_ieee2mhz(u_int chan, u_int flags) 757 { 758 if (flags & IEEE80211_CHAN_GSM) 759 return 907 + 5 * (chan / 10); 760 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 761 if (chan == 14) 762 return 2484; 763 if (chan < 14) 764 return 2407 + chan*5; 765 else 766 return 2512 + ((chan-15)*20); 767 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 768 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 769 chan -= 37; 770 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 771 } 772 return 5000 + (chan*5); 773 } else { /* either, guess */ 774 /* XXX can't distinguish PSB+GSM channels */ 775 if (chan == 14) 776 return 2484; 777 if (chan < 14) /* 0-13 */ 778 return 2407 + chan*5; 779 if (chan < 27) /* 15-26 */ 780 return 2512 + ((chan-15)*20); 781 return 5000 + (chan*5); 782 } 783 } 784 785 /* 786 * Locate a channel given a frequency+flags. We cache 787 * the previous lookup to optimize switching between two 788 * channels--as happens with dynamic turbo. 789 */ 790 struct ieee80211_channel * 791 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 792 { 793 struct ieee80211_channel *c; 794 int i; 795 796 flags &= IEEE80211_CHAN_ALLTURBO; 797 c = ic->ic_prevchan; 798 if (c != NULL && c->ic_freq == freq && 799 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 800 return c; 801 /* brute force search */ 802 for (i = 0; i < ic->ic_nchans; i++) { 803 c = &ic->ic_channels[i]; 804 if (c->ic_freq == freq && 805 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 806 return c; 807 } 808 return NULL; 809 } 810 811 /* 812 * Locate a channel given a channel number+flags. We cache 813 * the previous lookup to optimize switching between two 814 * channels--as happens with dynamic turbo. 815 */ 816 struct ieee80211_channel * 817 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 818 { 819 struct ieee80211_channel *c; 820 int i; 821 822 flags &= IEEE80211_CHAN_ALLTURBO; 823 c = ic->ic_prevchan; 824 if (c != NULL && c->ic_ieee == ieee && 825 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 826 return c; 827 /* brute force search */ 828 for (i = 0; i < ic->ic_nchans; i++) { 829 c = &ic->ic_channels[i]; 830 if (c->ic_ieee == ieee && 831 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 832 return c; 833 } 834 return NULL; 835 } 836 837 static void 838 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 839 { 840 #define ADD(_ic, _s, _o) \ 841 ifmedia_add(media, \ 842 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 843 static const u_int mopts[IEEE80211_MODE_MAX] = { 844 IFM_AUTO, 845 IFM_IEEE80211_11A, 846 IFM_IEEE80211_11B, 847 IFM_IEEE80211_11G, 848 IFM_IEEE80211_FH, 849 IFM_IEEE80211_11A | IFM_IEEE80211_TURBO, 850 IFM_IEEE80211_11G | IFM_IEEE80211_TURBO, 851 IFM_IEEE80211_11A | IFM_IEEE80211_TURBO, 852 IFM_IEEE80211_11NA, 853 IFM_IEEE80211_11NG, 854 }; 855 u_int mopt; 856 857 mopt = mopts[mode]; 858 if (addsta) 859 ADD(ic, mword, mopt); /* STA mode has no cap */ 860 if (caps & IEEE80211_C_IBSS) 861 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 862 if (caps & IEEE80211_C_HOSTAP) 863 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 864 if (caps & IEEE80211_C_AHDEMO) 865 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 866 if (caps & IEEE80211_C_MONITOR) 867 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 868 if (caps & IEEE80211_C_WDS) 869 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 870 #undef ADD 871 } 872 873 /* 874 * Setup the media data structures according to the channel and 875 * rate tables. 876 */ 877 static int 878 ieee80211_media_setup(struct ieee80211com *ic, 879 struct ifmedia *media, int caps, int addsta, 880 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 881 { 882 int i, j, mode, rate, maxrate, mword, r; 883 const struct ieee80211_rateset *rs; 884 struct ieee80211_rateset allrates; 885 886 /* 887 * Fill in media characteristics. 888 */ 889 ifmedia_init(media, 0, media_change, media_stat); 890 maxrate = 0; 891 /* 892 * Add media for legacy operating modes. 893 */ 894 memset(&allrates, 0, sizeof(allrates)); 895 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 896 if (isclr(ic->ic_modecaps, mode)) 897 continue; 898 addmedia(media, caps, addsta, mode, IFM_AUTO); 899 if (mode == IEEE80211_MODE_AUTO) 900 continue; 901 rs = &ic->ic_sup_rates[mode]; 902 for (i = 0; i < rs->rs_nrates; i++) { 903 rate = rs->rs_rates[i]; 904 mword = ieee80211_rate2media(ic, rate, mode); 905 if (mword == 0) 906 continue; 907 addmedia(media, caps, addsta, mode, mword); 908 /* 909 * Add legacy rate to the collection of all rates. 910 */ 911 r = rate & IEEE80211_RATE_VAL; 912 for (j = 0; j < allrates.rs_nrates; j++) 913 if (allrates.rs_rates[j] == r) 914 break; 915 if (j == allrates.rs_nrates) { 916 /* unique, add to the set */ 917 allrates.rs_rates[j] = r; 918 allrates.rs_nrates++; 919 } 920 rate = (rate & IEEE80211_RATE_VAL) / 2; 921 if (rate > maxrate) 922 maxrate = rate; 923 } 924 } 925 for (i = 0; i < allrates.rs_nrates; i++) { 926 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 927 IEEE80211_MODE_AUTO); 928 if (mword == 0) 929 continue; 930 /* NB: remove media options from mword */ 931 addmedia(media, caps, addsta, 932 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 933 } 934 /* 935 * Add HT/11n media. Note that we do not have enough 936 * bits in the media subtype to express the MCS so we 937 * use a "placeholder" media subtype and any fixed MCS 938 * must be specified with a different mechanism. 939 */ 940 for (; mode < IEEE80211_MODE_MAX; mode++) { 941 if (isclr(ic->ic_modecaps, mode)) 942 continue; 943 addmedia(media, caps, addsta, mode, IFM_AUTO); 944 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 945 } 946 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 947 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 948 addmedia(media, caps, addsta, 949 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 950 /* XXX could walk htrates */ 951 /* XXX known array size */ 952 if (ieee80211_htrates[15].ht40_rate_400ns > maxrate) 953 maxrate = ieee80211_htrates[15].ht40_rate_400ns; 954 } 955 return maxrate; 956 } 957 958 void 959 ieee80211_media_init(struct ieee80211com *ic) 960 { 961 struct ifnet *ifp = ic->ic_ifp; 962 int maxrate; 963 964 /* NB: this works because the structure is initialized to zero */ 965 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 966 /* 967 * We are re-initializing the channel list; clear 968 * the existing media state as the media routines 969 * don't suppress duplicates. 970 */ 971 ifmedia_removeall(&ic->ic_media); 972 } 973 ieee80211_chan_init(ic); 974 975 /* 976 * Recalculate media settings in case new channel list changes 977 * the set of available modes. 978 */ 979 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 980 ieee80211com_media_change, ieee80211com_media_status); 981 /* NB: strip explicit mode; we're actually in autoselect */ 982 ifmedia_set(&ic->ic_media, 983 media_status(ic->ic_opmode, ic->ic_curchan) &~ IFM_MMASK); 984 if (maxrate) 985 ifp->if_baudrate = IF_Mbps(maxrate); 986 987 /* XXX need to propagate new media settings to vap's */ 988 } 989 990 const struct ieee80211_rateset * 991 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 992 { 993 if (IEEE80211_IS_CHAN_HALF(c)) 994 return &ieee80211_rateset_half; 995 if (IEEE80211_IS_CHAN_QUARTER(c)) 996 return &ieee80211_rateset_quarter; 997 if (IEEE80211_IS_CHAN_HTA(c)) 998 return &ic->ic_sup_rates[IEEE80211_MODE_11A]; 999 if (IEEE80211_IS_CHAN_HTG(c)) { 1000 /* XXX does this work for basic rates? */ 1001 return &ic->ic_sup_rates[IEEE80211_MODE_11G]; 1002 } 1003 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1004 } 1005 1006 void 1007 ieee80211_announce(struct ieee80211com *ic) 1008 { 1009 struct ifnet *ifp = ic->ic_ifp; 1010 int i, mode, rate, mword; 1011 const struct ieee80211_rateset *rs; 1012 1013 /* NB: skip AUTO since it has no rates */ 1014 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1015 if (isclr(ic->ic_modecaps, mode)) 1016 continue; 1017 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1018 rs = &ic->ic_sup_rates[mode]; 1019 for (i = 0; i < rs->rs_nrates; i++) { 1020 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1021 if (mword == 0) 1022 continue; 1023 rate = ieee80211_media2rate(mword); 1024 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1025 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1026 } 1027 printf("\n"); 1028 } 1029 ieee80211_ht_announce(ic); 1030 } 1031 1032 void 1033 ieee80211_announce_channels(struct ieee80211com *ic) 1034 { 1035 const struct ieee80211_channel *c; 1036 char type; 1037 int i, cw; 1038 1039 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1040 for (i = 0; i < ic->ic_nchans; i++) { 1041 c = &ic->ic_channels[i]; 1042 if (IEEE80211_IS_CHAN_ST(c)) 1043 type = 'S'; 1044 else if (IEEE80211_IS_CHAN_108A(c)) 1045 type = 'T'; 1046 else if (IEEE80211_IS_CHAN_108G(c)) 1047 type = 'G'; 1048 else if (IEEE80211_IS_CHAN_HT(c)) 1049 type = 'n'; 1050 else if (IEEE80211_IS_CHAN_A(c)) 1051 type = 'a'; 1052 else if (IEEE80211_IS_CHAN_ANYG(c)) 1053 type = 'g'; 1054 else if (IEEE80211_IS_CHAN_B(c)) 1055 type = 'b'; 1056 else 1057 type = 'f'; 1058 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1059 cw = 40; 1060 else if (IEEE80211_IS_CHAN_HALF(c)) 1061 cw = 10; 1062 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1063 cw = 5; 1064 else 1065 cw = 20; 1066 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1067 , c->ic_ieee, c->ic_freq, type 1068 , cw 1069 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1070 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1071 , c->ic_maxregpower 1072 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1073 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1074 ); 1075 } 1076 } 1077 1078 static int 1079 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1080 { 1081 switch (IFM_MODE(ime->ifm_media)) { 1082 case IFM_IEEE80211_11A: 1083 *mode = IEEE80211_MODE_11A; 1084 break; 1085 case IFM_IEEE80211_11B: 1086 *mode = IEEE80211_MODE_11B; 1087 break; 1088 case IFM_IEEE80211_11G: 1089 *mode = IEEE80211_MODE_11G; 1090 break; 1091 case IFM_IEEE80211_FH: 1092 *mode = IEEE80211_MODE_FH; 1093 break; 1094 case IFM_IEEE80211_11NA: 1095 *mode = IEEE80211_MODE_11NA; 1096 break; 1097 case IFM_IEEE80211_11NG: 1098 *mode = IEEE80211_MODE_11NG; 1099 break; 1100 case IFM_AUTO: 1101 *mode = IEEE80211_MODE_AUTO; 1102 break; 1103 default: 1104 return 0; 1105 } 1106 /* 1107 * Turbo mode is an ``option''. 1108 * XXX does not apply to AUTO 1109 */ 1110 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1111 if (*mode == IEEE80211_MODE_11A) { 1112 if (flags & IEEE80211_F_TURBOP) 1113 *mode = IEEE80211_MODE_TURBO_A; 1114 else 1115 *mode = IEEE80211_MODE_STURBO_A; 1116 } else if (*mode == IEEE80211_MODE_11G) 1117 *mode = IEEE80211_MODE_TURBO_G; 1118 else 1119 return 0; 1120 } 1121 /* XXX HT40 +/- */ 1122 return 1; 1123 } 1124 1125 /* 1126 * Handle a media change request on the underlying interface. 1127 */ 1128 int 1129 ieee80211com_media_change(struct ifnet *ifp) 1130 { 1131 return EINVAL; 1132 } 1133 1134 /* 1135 * Handle a media change request on the vap interface. 1136 */ 1137 int 1138 ieee80211_media_change(struct ifnet *ifp) 1139 { 1140 struct ieee80211vap *vap = ifp->if_softc; 1141 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1142 uint16_t newmode; 1143 1144 if (!media2mode(ime, vap->iv_flags, &newmode)) 1145 return EINVAL; 1146 if (vap->iv_des_mode != newmode) { 1147 vap->iv_des_mode = newmode; 1148 return ENETRESET; 1149 } 1150 return 0; 1151 } 1152 1153 /* 1154 * Common code to calculate the media status word 1155 * from the operating mode and channel state. 1156 */ 1157 static int 1158 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1159 { 1160 int status; 1161 1162 status = IFM_IEEE80211; 1163 switch (opmode) { 1164 case IEEE80211_M_STA: 1165 break; 1166 case IEEE80211_M_IBSS: 1167 status |= IFM_IEEE80211_ADHOC; 1168 break; 1169 case IEEE80211_M_HOSTAP: 1170 status |= IFM_IEEE80211_HOSTAP; 1171 break; 1172 case IEEE80211_M_MONITOR: 1173 status |= IFM_IEEE80211_MONITOR; 1174 break; 1175 case IEEE80211_M_AHDEMO: 1176 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1177 break; 1178 case IEEE80211_M_WDS: 1179 status |= IFM_IEEE80211_WDS; 1180 break; 1181 } 1182 if (IEEE80211_IS_CHAN_HTA(chan)) { 1183 status |= IFM_IEEE80211_11NA; 1184 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1185 status |= IFM_IEEE80211_11NG; 1186 } else if (IEEE80211_IS_CHAN_A(chan)) { 1187 status |= IFM_IEEE80211_11A; 1188 } else if (IEEE80211_IS_CHAN_B(chan)) { 1189 status |= IFM_IEEE80211_11B; 1190 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1191 status |= IFM_IEEE80211_11G; 1192 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1193 status |= IFM_IEEE80211_FH; 1194 } 1195 /* XXX else complain? */ 1196 1197 if (IEEE80211_IS_CHAN_TURBO(chan)) 1198 status |= IFM_IEEE80211_TURBO; 1199 #if 0 1200 if (IEEE80211_IS_CHAN_HT20(chan)) 1201 status |= IFM_IEEE80211_HT20; 1202 if (IEEE80211_IS_CHAN_HT40(chan)) 1203 status |= IFM_IEEE80211_HT40; 1204 #endif 1205 return status; 1206 } 1207 1208 static void 1209 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1210 { 1211 struct ieee80211com *ic = ifp->if_l2com; 1212 struct ieee80211vap *vap; 1213 1214 imr->ifm_status = IFM_AVALID; 1215 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1216 if (vap->iv_ifp->if_flags & IFF_UP) { 1217 imr->ifm_status |= IFM_ACTIVE; 1218 break; 1219 } 1220 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1221 if (imr->ifm_status & IFM_ACTIVE) 1222 imr->ifm_current = imr->ifm_active; 1223 } 1224 1225 void 1226 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1227 { 1228 struct ieee80211vap *vap = ifp->if_softc; 1229 struct ieee80211com *ic = vap->iv_ic; 1230 enum ieee80211_phymode mode; 1231 1232 imr->ifm_status = IFM_AVALID; 1233 /* 1234 * NB: use the current channel's mode to lock down a xmit 1235 * rate only when running; otherwise we may have a mismatch 1236 * in which case the rate will not be convertible. 1237 */ 1238 if (vap->iv_state == IEEE80211_S_RUN) { 1239 imr->ifm_status |= IFM_ACTIVE; 1240 mode = ieee80211_chan2mode(ic->ic_curchan); 1241 } else 1242 mode = IEEE80211_MODE_AUTO; 1243 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1244 /* 1245 * Calculate a current rate if possible. 1246 */ 1247 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1248 /* 1249 * A fixed rate is set, report that. 1250 */ 1251 imr->ifm_active |= ieee80211_rate2media(ic, 1252 vap->iv_txparms[mode].ucastrate, mode); 1253 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1254 /* 1255 * In station mode report the current transmit rate. 1256 */ 1257 imr->ifm_active |= ieee80211_rate2media(ic, 1258 vap->iv_bss->ni_txrate, mode); 1259 } else 1260 imr->ifm_active |= IFM_AUTO; 1261 if (imr->ifm_status & IFM_ACTIVE) 1262 imr->ifm_current = imr->ifm_active; 1263 } 1264 1265 /* 1266 * Set the current phy mode and recalculate the active channel 1267 * set based on the available channels for this mode. Also 1268 * select a new default/current channel if the current one is 1269 * inappropriate for this mode. 1270 */ 1271 int 1272 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1273 { 1274 /* 1275 * Adjust basic rates in 11b/11g supported rate set. 1276 * Note that if operating on a hal/quarter rate channel 1277 * this is a noop as those rates sets are different 1278 * and used instead. 1279 */ 1280 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1281 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1282 1283 ic->ic_curmode = mode; 1284 ieee80211_reset_erp(ic); /* reset ERP state */ 1285 1286 return 0; 1287 } 1288 1289 /* 1290 * Return the phy mode for with the specified channel. 1291 */ 1292 enum ieee80211_phymode 1293 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1294 { 1295 1296 if (IEEE80211_IS_CHAN_HTA(chan)) 1297 return IEEE80211_MODE_11NA; 1298 else if (IEEE80211_IS_CHAN_HTG(chan)) 1299 return IEEE80211_MODE_11NG; 1300 else if (IEEE80211_IS_CHAN_108G(chan)) 1301 return IEEE80211_MODE_TURBO_G; 1302 else if (IEEE80211_IS_CHAN_ST(chan)) 1303 return IEEE80211_MODE_STURBO_A; 1304 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1305 return IEEE80211_MODE_TURBO_A; 1306 else if (IEEE80211_IS_CHAN_A(chan)) 1307 return IEEE80211_MODE_11A; 1308 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1309 return IEEE80211_MODE_11G; 1310 else if (IEEE80211_IS_CHAN_B(chan)) 1311 return IEEE80211_MODE_11B; 1312 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1313 return IEEE80211_MODE_FH; 1314 1315 /* NB: should not get here */ 1316 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1317 __func__, chan->ic_freq, chan->ic_flags); 1318 return IEEE80211_MODE_11B; 1319 } 1320 1321 struct ratemedia { 1322 u_int match; /* rate + mode */ 1323 u_int media; /* if_media rate */ 1324 }; 1325 1326 static int 1327 findmedia(const struct ratemedia rates[], int n, u_int match) 1328 { 1329 int i; 1330 1331 for (i = 0; i < n; i++) 1332 if (rates[i].match == match) 1333 return rates[i].media; 1334 return IFM_AUTO; 1335 } 1336 1337 /* 1338 * Convert IEEE80211 rate value to ifmedia subtype. 1339 * Rate is either a legacy rate in units of 0.5Mbps 1340 * or an MCS index. 1341 */ 1342 int 1343 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1344 { 1345 #define N(a) (sizeof(a) / sizeof(a[0])) 1346 static const struct ratemedia rates[] = { 1347 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1348 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1349 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1350 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1351 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1352 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1353 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1354 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1355 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1356 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1357 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1358 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1359 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1360 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1361 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1362 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1363 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1364 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1365 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1366 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1367 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1368 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1369 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1370 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1371 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1372 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1373 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1374 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1375 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1376 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1377 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1378 }; 1379 static const struct ratemedia htrates[] = { 1380 { 0, IFM_IEEE80211_MCS }, 1381 { 1, IFM_IEEE80211_MCS }, 1382 { 2, IFM_IEEE80211_MCS }, 1383 { 3, IFM_IEEE80211_MCS }, 1384 { 4, IFM_IEEE80211_MCS }, 1385 { 5, IFM_IEEE80211_MCS }, 1386 { 6, IFM_IEEE80211_MCS }, 1387 { 7, IFM_IEEE80211_MCS }, 1388 { 8, IFM_IEEE80211_MCS }, 1389 { 9, IFM_IEEE80211_MCS }, 1390 { 10, IFM_IEEE80211_MCS }, 1391 { 11, IFM_IEEE80211_MCS }, 1392 { 12, IFM_IEEE80211_MCS }, 1393 { 13, IFM_IEEE80211_MCS }, 1394 { 14, IFM_IEEE80211_MCS }, 1395 { 15, IFM_IEEE80211_MCS }, 1396 }; 1397 int m; 1398 1399 /* 1400 * Check 11n rates first for match as an MCS. 1401 */ 1402 if (mode == IEEE80211_MODE_11NA) { 1403 if (rate & IEEE80211_RATE_MCS) { 1404 rate &= ~IEEE80211_RATE_MCS; 1405 m = findmedia(htrates, N(htrates), rate); 1406 if (m != IFM_AUTO) 1407 return m | IFM_IEEE80211_11NA; 1408 } 1409 } else if (mode == IEEE80211_MODE_11NG) { 1410 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1411 if (rate & IEEE80211_RATE_MCS) { 1412 rate &= ~IEEE80211_RATE_MCS; 1413 m = findmedia(htrates, N(htrates), rate); 1414 if (m != IFM_AUTO) 1415 return m | IFM_IEEE80211_11NG; 1416 } 1417 } 1418 rate &= IEEE80211_RATE_VAL; 1419 switch (mode) { 1420 case IEEE80211_MODE_11A: 1421 case IEEE80211_MODE_11NA: 1422 case IEEE80211_MODE_TURBO_A: 1423 case IEEE80211_MODE_STURBO_A: 1424 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1425 case IEEE80211_MODE_11B: 1426 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1427 case IEEE80211_MODE_FH: 1428 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1429 case IEEE80211_MODE_AUTO: 1430 /* NB: ic may be NULL for some drivers */ 1431 if (ic && ic->ic_phytype == IEEE80211_T_FH) 1432 return findmedia(rates, N(rates), 1433 rate | IFM_IEEE80211_FH); 1434 /* NB: hack, 11g matches both 11b+11a rates */ 1435 /* fall thru... */ 1436 case IEEE80211_MODE_11G: 1437 case IEEE80211_MODE_11NG: 1438 case IEEE80211_MODE_TURBO_G: 1439 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1440 } 1441 return IFM_AUTO; 1442 #undef N 1443 } 1444 1445 int 1446 ieee80211_media2rate(int mword) 1447 { 1448 #define N(a) (sizeof(a) / sizeof(a[0])) 1449 static const int ieeerates[] = { 1450 -1, /* IFM_AUTO */ 1451 0, /* IFM_MANUAL */ 1452 0, /* IFM_NONE */ 1453 2, /* IFM_IEEE80211_FH1 */ 1454 4, /* IFM_IEEE80211_FH2 */ 1455 2, /* IFM_IEEE80211_DS1 */ 1456 4, /* IFM_IEEE80211_DS2 */ 1457 11, /* IFM_IEEE80211_DS5 */ 1458 22, /* IFM_IEEE80211_DS11 */ 1459 44, /* IFM_IEEE80211_DS22 */ 1460 12, /* IFM_IEEE80211_OFDM6 */ 1461 18, /* IFM_IEEE80211_OFDM9 */ 1462 24, /* IFM_IEEE80211_OFDM12 */ 1463 36, /* IFM_IEEE80211_OFDM18 */ 1464 48, /* IFM_IEEE80211_OFDM24 */ 1465 72, /* IFM_IEEE80211_OFDM36 */ 1466 96, /* IFM_IEEE80211_OFDM48 */ 1467 108, /* IFM_IEEE80211_OFDM54 */ 1468 144, /* IFM_IEEE80211_OFDM72 */ 1469 0, /* IFM_IEEE80211_DS354k */ 1470 0, /* IFM_IEEE80211_DS512k */ 1471 6, /* IFM_IEEE80211_OFDM3 */ 1472 9, /* IFM_IEEE80211_OFDM4 */ 1473 54, /* IFM_IEEE80211_OFDM27 */ 1474 -1, /* IFM_IEEE80211_MCS */ 1475 }; 1476 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1477 ieeerates[IFM_SUBTYPE(mword)] : 0; 1478 #undef N 1479 } 1480