xref: /freebsd/sys/net80211/ieee80211.c (revision 90ec6a30353aa7caaf995ea50e2e23aa5a099600)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * IEEE 802.11 generic handler
34  */
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/socket.h>
42 #include <sys/sbuf.h>
43 
44 #include <machine/stdarg.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/ethernet.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_regdomain.h>
55 #ifdef IEEE80211_SUPPORT_SUPERG
56 #include <net80211/ieee80211_superg.h>
57 #endif
58 #include <net80211/ieee80211_ratectl.h>
59 #include <net80211/ieee80211_vht.h>
60 
61 #include <net/bpf.h>
62 
63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
64 	[IEEE80211_MODE_AUTO]	  = "auto",
65 	[IEEE80211_MODE_11A]	  = "11a",
66 	[IEEE80211_MODE_11B]	  = "11b",
67 	[IEEE80211_MODE_11G]	  = "11g",
68 	[IEEE80211_MODE_FH]	  = "FH",
69 	[IEEE80211_MODE_TURBO_A]  = "turboA",
70 	[IEEE80211_MODE_TURBO_G]  = "turboG",
71 	[IEEE80211_MODE_STURBO_A] = "sturboA",
72 	[IEEE80211_MODE_HALF]	  = "half",
73 	[IEEE80211_MODE_QUARTER]  = "quarter",
74 	[IEEE80211_MODE_11NA]	  = "11na",
75 	[IEEE80211_MODE_11NG]	  = "11ng",
76 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
77 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
78 };
79 /* map ieee80211_opmode to the corresponding capability bit */
80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
81 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
82 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
83 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
84 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
85 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
86 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
87 #ifdef IEEE80211_SUPPORT_MESH
88 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
89 #endif
90 };
91 
92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
93 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
94 
95 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
98 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
99 static	int ieee80211_media_setup(struct ieee80211com *ic,
100 		struct ifmedia *media, int caps, int addsta,
101 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
102 static	int media_status(enum ieee80211_opmode,
103 		const struct ieee80211_channel *);
104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
105 
106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
107 
108 /*
109  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
110  */
111 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
112 static const struct ieee80211_rateset ieee80211_rateset_11a =
113 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
114 static const struct ieee80211_rateset ieee80211_rateset_half =
115 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
116 static const struct ieee80211_rateset ieee80211_rateset_quarter =
117 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
118 static const struct ieee80211_rateset ieee80211_rateset_11b =
119 	{ 4, { B(2), B(4), B(11), B(22) } };
120 /* NB: OFDM rates are handled specially based on mode */
121 static const struct ieee80211_rateset ieee80211_rateset_11g =
122 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
123 #undef B
124 
125 static int set_vht_extchan(struct ieee80211_channel *c);
126 
127 /*
128  * Fill in 802.11 available channel set, mark
129  * all available channels as active, and pick
130  * a default channel if not already specified.
131  */
132 void
133 ieee80211_chan_init(struct ieee80211com *ic)
134 {
135 #define	DEFAULTRATES(m, def) do { \
136 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
137 		ic->ic_sup_rates[m] = def; \
138 } while (0)
139 	struct ieee80211_channel *c;
140 	int i;
141 
142 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
143 		("invalid number of channels specified: %u", ic->ic_nchans));
144 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
145 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
146 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
147 	for (i = 0; i < ic->ic_nchans; i++) {
148 		c = &ic->ic_channels[i];
149 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
150 		/*
151 		 * Help drivers that work only with frequencies by filling
152 		 * in IEEE channel #'s if not already calculated.  Note this
153 		 * mimics similar work done in ieee80211_setregdomain when
154 		 * changing regulatory state.
155 		 */
156 		if (c->ic_ieee == 0)
157 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
158 
159 		/*
160 		 * Setup the HT40/VHT40 upper/lower bits.
161 		 * The VHT80 math is done elsewhere.
162 		 */
163 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
164 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
165 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
166 			    c->ic_flags);
167 
168 		/* Update VHT math */
169 		/*
170 		 * XXX VHT again, note that this assumes VHT80 channels
171 		 * are legit already
172 		 */
173 		set_vht_extchan(c);
174 
175 		/* default max tx power to max regulatory */
176 		if (c->ic_maxpower == 0)
177 			c->ic_maxpower = 2*c->ic_maxregpower;
178 		setbit(ic->ic_chan_avail, c->ic_ieee);
179 		/*
180 		 * Identify mode capabilities.
181 		 */
182 		if (IEEE80211_IS_CHAN_A(c))
183 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
184 		if (IEEE80211_IS_CHAN_B(c))
185 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
186 		if (IEEE80211_IS_CHAN_ANYG(c))
187 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
188 		if (IEEE80211_IS_CHAN_FHSS(c))
189 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
190 		if (IEEE80211_IS_CHAN_108A(c))
191 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
192 		if (IEEE80211_IS_CHAN_108G(c))
193 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
194 		if (IEEE80211_IS_CHAN_ST(c))
195 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
196 		if (IEEE80211_IS_CHAN_HALF(c))
197 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
198 		if (IEEE80211_IS_CHAN_QUARTER(c))
199 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
200 		if (IEEE80211_IS_CHAN_HTA(c))
201 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
202 		if (IEEE80211_IS_CHAN_HTG(c))
203 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
204 		if (IEEE80211_IS_CHAN_VHTA(c))
205 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
206 		if (IEEE80211_IS_CHAN_VHTG(c))
207 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
208 	}
209 	/* initialize candidate channels to all available */
210 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
211 		sizeof(ic->ic_chan_avail));
212 
213 	/* sort channel table to allow lookup optimizations */
214 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
215 
216 	/* invalidate any previous state */
217 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
218 	ic->ic_prevchan = NULL;
219 	ic->ic_csa_newchan = NULL;
220 	/* arbitrarily pick the first channel */
221 	ic->ic_curchan = &ic->ic_channels[0];
222 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
223 
224 	/* fillin well-known rate sets if driver has not specified */
225 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
226 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
227 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
228 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
229 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
230 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
231 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
232 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
233 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
234 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
235 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
236 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
237 
238 	/*
239 	 * Setup required information to fill the mcsset field, if driver did
240 	 * not. Assume a 2T2R setup for historic reasons.
241 	 */
242 	if (ic->ic_rxstream == 0)
243 		ic->ic_rxstream = 2;
244 	if (ic->ic_txstream == 0)
245 		ic->ic_txstream = 2;
246 
247 	ieee80211_init_suphtrates(ic);
248 
249 	/*
250 	 * Set auto mode to reset active channel state and any desired channel.
251 	 */
252 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
253 #undef DEFAULTRATES
254 }
255 
256 static void
257 null_update_mcast(struct ieee80211com *ic)
258 {
259 
260 	ic_printf(ic, "need multicast update callback\n");
261 }
262 
263 static void
264 null_update_promisc(struct ieee80211com *ic)
265 {
266 
267 	ic_printf(ic, "need promiscuous mode update callback\n");
268 }
269 
270 static void
271 null_update_chw(struct ieee80211com *ic)
272 {
273 
274 	ic_printf(ic, "%s: need callback\n", __func__);
275 }
276 
277 int
278 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
279 {
280 	va_list ap;
281 	int retval;
282 
283 	retval = printf("%s: ", ic->ic_name);
284 	va_start(ap, fmt);
285 	retval += vprintf(fmt, ap);
286 	va_end(ap);
287 	return (retval);
288 }
289 
290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
291 static struct mtx ic_list_mtx;
292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
293 
294 static int
295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
296 {
297 	struct ieee80211com *ic;
298 	struct sbuf sb;
299 	char *sp;
300 	int error;
301 
302 	error = sysctl_wire_old_buffer(req, 0);
303 	if (error)
304 		return (error);
305 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
306 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
307 	sp = "";
308 	mtx_lock(&ic_list_mtx);
309 	LIST_FOREACH(ic, &ic_head, ic_next) {
310 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
311 		sp = " ";
312 	}
313 	mtx_unlock(&ic_list_mtx);
314 	error = sbuf_finish(&sb);
315 	sbuf_delete(&sb);
316 	return (error);
317 }
318 
319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
320     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
321     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
322 
323 /*
324  * Attach/setup the common net80211 state.  Called by
325  * the driver on attach to prior to creating any vap's.
326  */
327 void
328 ieee80211_ifattach(struct ieee80211com *ic)
329 {
330 
331 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
332 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
333 	TAILQ_INIT(&ic->ic_vaps);
334 
335 	/* Create a taskqueue for all state changes */
336 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
337 	    taskqueue_thread_enqueue, &ic->ic_tq);
338 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
339 	    ic->ic_name);
340 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
341 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
342 	/*
343 	 * Fill in 802.11 available channel set, mark all
344 	 * available channels as active, and pick a default
345 	 * channel if not already specified.
346 	 */
347 	ieee80211_chan_init(ic);
348 
349 	ic->ic_update_mcast = null_update_mcast;
350 	ic->ic_update_promisc = null_update_promisc;
351 	ic->ic_update_chw = null_update_chw;
352 
353 	ic->ic_hash_key = arc4random();
354 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
355 	ic->ic_lintval = ic->ic_bintval;
356 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
357 
358 	ieee80211_crypto_attach(ic);
359 	ieee80211_node_attach(ic);
360 	ieee80211_power_attach(ic);
361 	ieee80211_proto_attach(ic);
362 #ifdef IEEE80211_SUPPORT_SUPERG
363 	ieee80211_superg_attach(ic);
364 #endif
365 	ieee80211_ht_attach(ic);
366 	ieee80211_vht_attach(ic);
367 	ieee80211_scan_attach(ic);
368 	ieee80211_regdomain_attach(ic);
369 	ieee80211_dfs_attach(ic);
370 
371 	ieee80211_sysctl_attach(ic);
372 
373 	mtx_lock(&ic_list_mtx);
374 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
375 	mtx_unlock(&ic_list_mtx);
376 }
377 
378 /*
379  * Detach net80211 state on device detach.  Tear down
380  * all vap's and reclaim all common state prior to the
381  * device state going away.  Note we may call back into
382  * driver; it must be prepared for this.
383  */
384 void
385 ieee80211_ifdetach(struct ieee80211com *ic)
386 {
387 	struct ieee80211vap *vap;
388 
389 	/*
390 	 * We use this as an indicator that ifattach never had a chance to be
391 	 * called, e.g. early driver attach failed and ifdetach was called
392 	 * during subsequent detach.  Never fear, for we have nothing to do
393 	 * here.
394 	 */
395 	if (ic->ic_tq == NULL)
396 		return;
397 
398 	mtx_lock(&ic_list_mtx);
399 	LIST_REMOVE(ic, ic_next);
400 	mtx_unlock(&ic_list_mtx);
401 
402 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
403 
404 	/*
405 	 * The VAP is responsible for setting and clearing
406 	 * the VIMAGE context.
407 	 */
408 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
409 		ieee80211_com_vdetach(vap);
410 		ieee80211_vap_destroy(vap);
411 	}
412 	ieee80211_waitfor_parent(ic);
413 
414 	ieee80211_sysctl_detach(ic);
415 	ieee80211_dfs_detach(ic);
416 	ieee80211_regdomain_detach(ic);
417 	ieee80211_scan_detach(ic);
418 #ifdef IEEE80211_SUPPORT_SUPERG
419 	ieee80211_superg_detach(ic);
420 #endif
421 	ieee80211_vht_detach(ic);
422 	ieee80211_ht_detach(ic);
423 	/* NB: must be called before ieee80211_node_detach */
424 	ieee80211_proto_detach(ic);
425 	ieee80211_crypto_detach(ic);
426 	ieee80211_power_detach(ic);
427 	ieee80211_node_detach(ic);
428 
429 	counter_u64_free(ic->ic_ierrors);
430 	counter_u64_free(ic->ic_oerrors);
431 
432 	taskqueue_free(ic->ic_tq);
433 	IEEE80211_TX_LOCK_DESTROY(ic);
434 	IEEE80211_LOCK_DESTROY(ic);
435 }
436 
437 struct ieee80211com *
438 ieee80211_find_com(const char *name)
439 {
440 	struct ieee80211com *ic;
441 
442 	mtx_lock(&ic_list_mtx);
443 	LIST_FOREACH(ic, &ic_head, ic_next)
444 		if (strcmp(ic->ic_name, name) == 0)
445 			break;
446 	mtx_unlock(&ic_list_mtx);
447 
448 	return (ic);
449 }
450 
451 void
452 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
453 {
454 	struct ieee80211com *ic;
455 
456 	mtx_lock(&ic_list_mtx);
457 	LIST_FOREACH(ic, &ic_head, ic_next)
458 		(*f)(arg, ic);
459 	mtx_unlock(&ic_list_mtx);
460 }
461 
462 /*
463  * Default reset method for use with the ioctl support.  This
464  * method is invoked after any state change in the 802.11
465  * layer that should be propagated to the hardware but not
466  * require re-initialization of the 802.11 state machine (e.g
467  * rescanning for an ap).  We always return ENETRESET which
468  * should cause the driver to re-initialize the device. Drivers
469  * can override this method to implement more optimized support.
470  */
471 static int
472 default_reset(struct ieee80211vap *vap, u_long cmd)
473 {
474 	return ENETRESET;
475 }
476 
477 /*
478  * Default for updating the VAP default TX key index.
479  *
480  * Drivers that support TX offload as well as hardware encryption offload
481  * may need to be informed of key index changes separate from the key
482  * update.
483  */
484 static void
485 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
486 {
487 
488 	/* XXX assert validity */
489 	/* XXX assert we're in a key update block */
490 	vap->iv_def_txkey = kid;
491 }
492 
493 /*
494  * Add underlying device errors to vap errors.
495  */
496 static uint64_t
497 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
498 {
499 	struct ieee80211vap *vap = ifp->if_softc;
500 	struct ieee80211com *ic = vap->iv_ic;
501 	uint64_t rv;
502 
503 	rv = if_get_counter_default(ifp, cnt);
504 	switch (cnt) {
505 	case IFCOUNTER_OERRORS:
506 		rv += counter_u64_fetch(ic->ic_oerrors);
507 		break;
508 	case IFCOUNTER_IERRORS:
509 		rv += counter_u64_fetch(ic->ic_ierrors);
510 		break;
511 	default:
512 		break;
513 	}
514 
515 	return (rv);
516 }
517 
518 /*
519  * Prepare a vap for use.  Drivers use this call to
520  * setup net80211 state in new vap's prior attaching
521  * them with ieee80211_vap_attach (below).
522  */
523 int
524 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
525     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
526     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
527 {
528 	struct ifnet *ifp;
529 
530 	ifp = if_alloc(IFT_ETHER);
531 	if (ifp == NULL) {
532 		ic_printf(ic, "%s: unable to allocate ifnet\n", __func__);
533 		return ENOMEM;
534 	}
535 	if_initname(ifp, name, unit);
536 	ifp->if_softc = vap;			/* back pointer */
537 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
538 	ifp->if_transmit = ieee80211_vap_transmit;
539 	ifp->if_qflush = ieee80211_vap_qflush;
540 	ifp->if_ioctl = ieee80211_ioctl;
541 	ifp->if_init = ieee80211_init;
542 	ifp->if_get_counter = ieee80211_get_counter;
543 
544 	vap->iv_ifp = ifp;
545 	vap->iv_ic = ic;
546 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
547 	vap->iv_flags_ext = ic->ic_flags_ext;
548 	vap->iv_flags_ven = ic->ic_flags_ven;
549 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
550 
551 	/* 11n capabilities - XXX methodize */
552 	vap->iv_htcaps = ic->ic_htcaps;
553 	vap->iv_htextcaps = ic->ic_htextcaps;
554 
555 	/* 11ac capabilities - XXX methodize */
556 	vap->iv_vhtcaps = ic->ic_vhtcaps;
557 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
558 
559 	vap->iv_opmode = opmode;
560 	vap->iv_caps |= ieee80211_opcap[opmode];
561 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
562 	switch (opmode) {
563 	case IEEE80211_M_WDS:
564 		/*
565 		 * WDS links must specify the bssid of the far end.
566 		 * For legacy operation this is a static relationship.
567 		 * For non-legacy operation the station must associate
568 		 * and be authorized to pass traffic.  Plumbing the
569 		 * vap to the proper node happens when the vap
570 		 * transitions to RUN state.
571 		 */
572 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
573 		vap->iv_flags |= IEEE80211_F_DESBSSID;
574 		if (flags & IEEE80211_CLONE_WDSLEGACY)
575 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
576 		break;
577 #ifdef IEEE80211_SUPPORT_TDMA
578 	case IEEE80211_M_AHDEMO:
579 		if (flags & IEEE80211_CLONE_TDMA) {
580 			/* NB: checked before clone operation allowed */
581 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
582 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
583 			/*
584 			 * Propagate TDMA capability to mark vap; this
585 			 * cannot be removed and is used to distinguish
586 			 * regular ahdemo operation from ahdemo+tdma.
587 			 */
588 			vap->iv_caps |= IEEE80211_C_TDMA;
589 		}
590 		break;
591 #endif
592 	default:
593 		break;
594 	}
595 	/* auto-enable s/w beacon miss support */
596 	if (flags & IEEE80211_CLONE_NOBEACONS)
597 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
598 	/* auto-generated or user supplied MAC address */
599 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
600 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
601 	/*
602 	 * Enable various functionality by default if we're
603 	 * capable; the driver can override us if it knows better.
604 	 */
605 	if (vap->iv_caps & IEEE80211_C_WME)
606 		vap->iv_flags |= IEEE80211_F_WME;
607 	if (vap->iv_caps & IEEE80211_C_BURST)
608 		vap->iv_flags |= IEEE80211_F_BURST;
609 	/* NB: bg scanning only makes sense for station mode right now */
610 	if (vap->iv_opmode == IEEE80211_M_STA &&
611 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
612 		vap->iv_flags |= IEEE80211_F_BGSCAN;
613 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
614 	/* NB: DFS support only makes sense for ap mode right now */
615 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
616 	    (vap->iv_caps & IEEE80211_C_DFS))
617 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
618 	/* NB: only flip on U-APSD for hostap/sta for now */
619 	if ((vap->iv_opmode == IEEE80211_M_STA)
620 	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
621 		if (vap->iv_caps & IEEE80211_C_UAPSD)
622 			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
623 	}
624 
625 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
626 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
627 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
628 	/*
629 	 * Install a default reset method for the ioctl support;
630 	 * the driver can override this.
631 	 */
632 	vap->iv_reset = default_reset;
633 
634 	/*
635 	 * Install a default crypto key update method, the driver
636 	 * can override this.
637 	 */
638 	vap->iv_update_deftxkey = default_update_deftxkey;
639 
640 	ieee80211_sysctl_vattach(vap);
641 	ieee80211_crypto_vattach(vap);
642 	ieee80211_node_vattach(vap);
643 	ieee80211_power_vattach(vap);
644 	ieee80211_proto_vattach(vap);
645 #ifdef IEEE80211_SUPPORT_SUPERG
646 	ieee80211_superg_vattach(vap);
647 #endif
648 	ieee80211_ht_vattach(vap);
649 	ieee80211_vht_vattach(vap);
650 	ieee80211_scan_vattach(vap);
651 	ieee80211_regdomain_vattach(vap);
652 	ieee80211_radiotap_vattach(vap);
653 	ieee80211_vap_reset_erp(vap);
654 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
655 
656 	return 0;
657 }
658 
659 /*
660  * Activate a vap.  State should have been prepared with a
661  * call to ieee80211_vap_setup and by the driver.  On return
662  * from this call the vap is ready for use.
663  */
664 int
665 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
666     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
667 {
668 	struct ifnet *ifp = vap->iv_ifp;
669 	struct ieee80211com *ic = vap->iv_ic;
670 	struct ifmediareq imr;
671 	int maxrate;
672 
673 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
674 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
675 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
676 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
677 
678 	/*
679 	 * Do late attach work that cannot happen until after
680 	 * the driver has had a chance to override defaults.
681 	 */
682 	ieee80211_node_latevattach(vap);
683 	ieee80211_power_latevattach(vap);
684 
685 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
686 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
687 	ieee80211_media_status(ifp, &imr);
688 	/* NB: strip explicit mode; we're actually in autoselect */
689 	ifmedia_set(&vap->iv_media,
690 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
691 	if (maxrate)
692 		ifp->if_baudrate = IF_Mbps(maxrate);
693 
694 	ether_ifattach(ifp, macaddr);
695 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
696 	/* hook output method setup by ether_ifattach */
697 	vap->iv_output = ifp->if_output;
698 	ifp->if_output = ieee80211_output;
699 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
700 
701 	IEEE80211_LOCK(ic);
702 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
703 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
704 #ifdef IEEE80211_SUPPORT_SUPERG
705 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
706 #endif
707 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
708 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
709 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
710 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
711 
712 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
713 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
714 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
715 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
716 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
717 	IEEE80211_UNLOCK(ic);
718 
719 	return 1;
720 }
721 
722 /*
723  * Tear down vap state and reclaim the ifnet.
724  * The driver is assumed to have prepared for
725  * this; e.g. by turning off interrupts for the
726  * underlying device.
727  */
728 void
729 ieee80211_vap_detach(struct ieee80211vap *vap)
730 {
731 	struct ieee80211com *ic = vap->iv_ic;
732 	struct ifnet *ifp = vap->iv_ifp;
733 
734 	CURVNET_SET(ifp->if_vnet);
735 
736 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
737 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
738 
739 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
740 	ether_ifdetach(ifp);
741 
742 	ieee80211_stop(vap);
743 
744 	/*
745 	 * Flush any deferred vap tasks.
746 	 */
747 	ieee80211_draintask(ic, &vap->iv_nstate_task);
748 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
749 	ieee80211_draintask(ic, &vap->iv_wme_task);
750 	ieee80211_draintask(ic, &ic->ic_parent_task);
751 
752 	/* XXX band-aid until ifnet handles this for us */
753 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
754 
755 	IEEE80211_LOCK(ic);
756 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
757 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
758 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
759 #ifdef IEEE80211_SUPPORT_SUPERG
760 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
761 #endif
762 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
763 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
764 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
765 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
766 
767 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
768 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
769 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
770 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
771 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
772 
773 	/* NB: this handles the bpfdetach done below */
774 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
775 	if (vap->iv_ifflags & IFF_PROMISC)
776 		ieee80211_promisc(vap, false);
777 	if (vap->iv_ifflags & IFF_ALLMULTI)
778 		ieee80211_allmulti(vap, false);
779 	IEEE80211_UNLOCK(ic);
780 
781 	ifmedia_removeall(&vap->iv_media);
782 
783 	ieee80211_radiotap_vdetach(vap);
784 	ieee80211_regdomain_vdetach(vap);
785 	ieee80211_scan_vdetach(vap);
786 #ifdef IEEE80211_SUPPORT_SUPERG
787 	ieee80211_superg_vdetach(vap);
788 #endif
789 	ieee80211_vht_vdetach(vap);
790 	ieee80211_ht_vdetach(vap);
791 	/* NB: must be before ieee80211_node_vdetach */
792 	ieee80211_proto_vdetach(vap);
793 	ieee80211_crypto_vdetach(vap);
794 	ieee80211_power_vdetach(vap);
795 	ieee80211_node_vdetach(vap);
796 	ieee80211_sysctl_vdetach(vap);
797 
798 	if_free(ifp);
799 
800 	CURVNET_RESTORE();
801 }
802 
803 /*
804  * Count number of vaps in promisc, and issue promisc on
805  * parent respectively.
806  */
807 void
808 ieee80211_promisc(struct ieee80211vap *vap, bool on)
809 {
810 	struct ieee80211com *ic = vap->iv_ic;
811 
812 	IEEE80211_LOCK_ASSERT(ic);
813 
814 	if (on) {
815 		if (++ic->ic_promisc == 1)
816 			ieee80211_runtask(ic, &ic->ic_promisc_task);
817 	} else {
818 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
819 		    __func__, ic));
820 		if (--ic->ic_promisc == 0)
821 			ieee80211_runtask(ic, &ic->ic_promisc_task);
822 	}
823 }
824 
825 /*
826  * Count number of vaps in allmulti, and issue allmulti on
827  * parent respectively.
828  */
829 void
830 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
831 {
832 	struct ieee80211com *ic = vap->iv_ic;
833 
834 	IEEE80211_LOCK_ASSERT(ic);
835 
836 	if (on) {
837 		if (++ic->ic_allmulti == 1)
838 			ieee80211_runtask(ic, &ic->ic_mcast_task);
839 	} else {
840 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
841 		    __func__, ic));
842 		if (--ic->ic_allmulti == 0)
843 			ieee80211_runtask(ic, &ic->ic_mcast_task);
844 	}
845 }
846 
847 /*
848  * Synchronize flag bit state in the com structure
849  * according to the state of all vap's.  This is used,
850  * for example, to handle state changes via ioctls.
851  */
852 static void
853 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
854 {
855 	struct ieee80211vap *vap;
856 	int bit;
857 
858 	IEEE80211_LOCK_ASSERT(ic);
859 
860 	bit = 0;
861 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
862 		if (vap->iv_flags & flag) {
863 			bit = 1;
864 			break;
865 		}
866 	if (bit)
867 		ic->ic_flags |= flag;
868 	else
869 		ic->ic_flags &= ~flag;
870 }
871 
872 void
873 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
874 {
875 	struct ieee80211com *ic = vap->iv_ic;
876 
877 	IEEE80211_LOCK(ic);
878 	if (flag < 0) {
879 		flag = -flag;
880 		vap->iv_flags &= ~flag;
881 	} else
882 		vap->iv_flags |= flag;
883 	ieee80211_syncflag_locked(ic, flag);
884 	IEEE80211_UNLOCK(ic);
885 }
886 
887 /*
888  * Synchronize flags_ht bit state in the com structure
889  * according to the state of all vap's.  This is used,
890  * for example, to handle state changes via ioctls.
891  */
892 static void
893 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
894 {
895 	struct ieee80211vap *vap;
896 	int bit;
897 
898 	IEEE80211_LOCK_ASSERT(ic);
899 
900 	bit = 0;
901 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
902 		if (vap->iv_flags_ht & flag) {
903 			bit = 1;
904 			break;
905 		}
906 	if (bit)
907 		ic->ic_flags_ht |= flag;
908 	else
909 		ic->ic_flags_ht &= ~flag;
910 }
911 
912 void
913 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
914 {
915 	struct ieee80211com *ic = vap->iv_ic;
916 
917 	IEEE80211_LOCK(ic);
918 	if (flag < 0) {
919 		flag = -flag;
920 		vap->iv_flags_ht &= ~flag;
921 	} else
922 		vap->iv_flags_ht |= flag;
923 	ieee80211_syncflag_ht_locked(ic, flag);
924 	IEEE80211_UNLOCK(ic);
925 }
926 
927 /*
928  * Synchronize flags_vht bit state in the com structure
929  * according to the state of all vap's.  This is used,
930  * for example, to handle state changes via ioctls.
931  */
932 static void
933 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
934 {
935 	struct ieee80211vap *vap;
936 	int bit;
937 
938 	IEEE80211_LOCK_ASSERT(ic);
939 
940 	bit = 0;
941 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
942 		if (vap->iv_flags_vht & flag) {
943 			bit = 1;
944 			break;
945 		}
946 	if (bit)
947 		ic->ic_flags_vht |= flag;
948 	else
949 		ic->ic_flags_vht &= ~flag;
950 }
951 
952 void
953 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
954 {
955 	struct ieee80211com *ic = vap->iv_ic;
956 
957 	IEEE80211_LOCK(ic);
958 	if (flag < 0) {
959 		flag = -flag;
960 		vap->iv_flags_vht &= ~flag;
961 	} else
962 		vap->iv_flags_vht |= flag;
963 	ieee80211_syncflag_vht_locked(ic, flag);
964 	IEEE80211_UNLOCK(ic);
965 }
966 
967 /*
968  * Synchronize flags_ext bit state in the com structure
969  * according to the state of all vap's.  This is used,
970  * for example, to handle state changes via ioctls.
971  */
972 static void
973 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
974 {
975 	struct ieee80211vap *vap;
976 	int bit;
977 
978 	IEEE80211_LOCK_ASSERT(ic);
979 
980 	bit = 0;
981 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
982 		if (vap->iv_flags_ext & flag) {
983 			bit = 1;
984 			break;
985 		}
986 	if (bit)
987 		ic->ic_flags_ext |= flag;
988 	else
989 		ic->ic_flags_ext &= ~flag;
990 }
991 
992 void
993 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
994 {
995 	struct ieee80211com *ic = vap->iv_ic;
996 
997 	IEEE80211_LOCK(ic);
998 	if (flag < 0) {
999 		flag = -flag;
1000 		vap->iv_flags_ext &= ~flag;
1001 	} else
1002 		vap->iv_flags_ext |= flag;
1003 	ieee80211_syncflag_ext_locked(ic, flag);
1004 	IEEE80211_UNLOCK(ic);
1005 }
1006 
1007 static __inline int
1008 mapgsm(u_int freq, u_int flags)
1009 {
1010 	freq *= 10;
1011 	if (flags & IEEE80211_CHAN_QUARTER)
1012 		freq += 5;
1013 	else if (flags & IEEE80211_CHAN_HALF)
1014 		freq += 10;
1015 	else
1016 		freq += 20;
1017 	/* NB: there is no 907/20 wide but leave room */
1018 	return (freq - 906*10) / 5;
1019 }
1020 
1021 static __inline int
1022 mappsb(u_int freq, u_int flags)
1023 {
1024 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1025 }
1026 
1027 /*
1028  * Convert MHz frequency to IEEE channel number.
1029  */
1030 int
1031 ieee80211_mhz2ieee(u_int freq, u_int flags)
1032 {
1033 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1034 	if (flags & IEEE80211_CHAN_GSM)
1035 		return mapgsm(freq, flags);
1036 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1037 		if (freq == 2484)
1038 			return 14;
1039 		if (freq < 2484)
1040 			return ((int) freq - 2407) / 5;
1041 		else
1042 			return 15 + ((freq - 2512) / 20);
1043 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1044 		if (freq <= 5000) {
1045 			/* XXX check regdomain? */
1046 			if (IS_FREQ_IN_PSB(freq))
1047 				return mappsb(freq, flags);
1048 			return (freq - 4000) / 5;
1049 		} else
1050 			return (freq - 5000) / 5;
1051 	} else {				/* either, guess */
1052 		if (freq == 2484)
1053 			return 14;
1054 		if (freq < 2484) {
1055 			if (907 <= freq && freq <= 922)
1056 				return mapgsm(freq, flags);
1057 			return ((int) freq - 2407) / 5;
1058 		}
1059 		if (freq < 5000) {
1060 			if (IS_FREQ_IN_PSB(freq))
1061 				return mappsb(freq, flags);
1062 			else if (freq > 4900)
1063 				return (freq - 4000) / 5;
1064 			else
1065 				return 15 + ((freq - 2512) / 20);
1066 		}
1067 		return (freq - 5000) / 5;
1068 	}
1069 #undef IS_FREQ_IN_PSB
1070 }
1071 
1072 /*
1073  * Convert channel to IEEE channel number.
1074  */
1075 int
1076 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1077 {
1078 	if (c == NULL) {
1079 		ic_printf(ic, "invalid channel (NULL)\n");
1080 		return 0;		/* XXX */
1081 	}
1082 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1083 }
1084 
1085 /*
1086  * Convert IEEE channel number to MHz frequency.
1087  */
1088 u_int
1089 ieee80211_ieee2mhz(u_int chan, u_int flags)
1090 {
1091 	if (flags & IEEE80211_CHAN_GSM)
1092 		return 907 + 5 * (chan / 10);
1093 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1094 		if (chan == 14)
1095 			return 2484;
1096 		if (chan < 14)
1097 			return 2407 + chan*5;
1098 		else
1099 			return 2512 + ((chan-15)*20);
1100 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1101 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1102 			chan -= 37;
1103 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1104 		}
1105 		return 5000 + (chan*5);
1106 	} else {				/* either, guess */
1107 		/* XXX can't distinguish PSB+GSM channels */
1108 		if (chan == 14)
1109 			return 2484;
1110 		if (chan < 14)			/* 0-13 */
1111 			return 2407 + chan*5;
1112 		if (chan < 27)			/* 15-26 */
1113 			return 2512 + ((chan-15)*20);
1114 		return 5000 + (chan*5);
1115 	}
1116 }
1117 
1118 static __inline void
1119 set_extchan(struct ieee80211_channel *c)
1120 {
1121 
1122 	/*
1123 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1124 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1125 	 */
1126 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1127 		c->ic_extieee = c->ic_ieee + 4;
1128 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1129 		c->ic_extieee = c->ic_ieee - 4;
1130 	else
1131 		c->ic_extieee = 0;
1132 }
1133 
1134 /*
1135  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1136  *
1137  * This for now uses a hard-coded list of 80MHz wide channels.
1138  *
1139  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1140  * wide channel we've already decided upon.
1141  *
1142  * For VHT80 and VHT160, there are only a small number of fixed
1143  * 80/160MHz wide channels, so we just use those.
1144  *
1145  * This is all likely very very wrong - both the regulatory code
1146  * and this code needs to ensure that all four channels are
1147  * available and valid before the VHT80 (and eight for VHT160) channel
1148  * is created.
1149  */
1150 
1151 struct vht_chan_range {
1152 	uint16_t freq_start;
1153 	uint16_t freq_end;
1154 };
1155 
1156 struct vht_chan_range vht80_chan_ranges[] = {
1157 	{ 5170, 5250 },
1158 	{ 5250, 5330 },
1159 	{ 5490, 5570 },
1160 	{ 5570, 5650 },
1161 	{ 5650, 5730 },
1162 	{ 5735, 5815 },
1163 	{ 0, 0, }
1164 };
1165 
1166 static int
1167 set_vht_extchan(struct ieee80211_channel *c)
1168 {
1169 	int i;
1170 
1171 	if (! IEEE80211_IS_CHAN_VHT(c))
1172 		return (0);
1173 
1174 	if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1175 		printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1176 		    __func__, c->ic_ieee, c->ic_flags);
1177 	}
1178 
1179 	if (IEEE80211_IS_CHAN_VHT160(c)) {
1180 		printf("%s: TODO VHT160 channel (ieee=%d, flags=0x%08x)\n",
1181 		    __func__, c->ic_ieee, c->ic_flags);
1182 	}
1183 
1184 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1185 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1186 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1187 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1188 				int midpoint;
1189 
1190 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1191 				c->ic_vht_ch_freq1 =
1192 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1193 				c->ic_vht_ch_freq2 = 0;
1194 #if 0
1195 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1196 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1197 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1198 #endif
1199 				return (1);
1200 			}
1201 		}
1202 		return (0);
1203 	}
1204 
1205 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1206 		if (IEEE80211_IS_CHAN_HT40U(c))
1207 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1208 		else if (IEEE80211_IS_CHAN_HT40D(c))
1209 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1210 		else
1211 			return (0);
1212 		return (1);
1213 	}
1214 
1215 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1216 		c->ic_vht_ch_freq1 = c->ic_ieee;
1217 		return (1);
1218 	}
1219 
1220 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1221 	    __func__, c->ic_ieee, c->ic_flags);
1222 
1223 	return (0);
1224 }
1225 
1226 /*
1227  * Return whether the current channel could possibly be a part of
1228  * a VHT80 channel.
1229  *
1230  * This doesn't check that the whole range is in the allowed list
1231  * according to regulatory.
1232  */
1233 static int
1234 is_vht80_valid_freq(uint16_t freq)
1235 {
1236 	int i;
1237 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1238 		if (freq >= vht80_chan_ranges[i].freq_start &&
1239 		    freq < vht80_chan_ranges[i].freq_end)
1240 			return (1);
1241 	}
1242 	return (0);
1243 }
1244 
1245 static int
1246 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1247     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1248 {
1249 	struct ieee80211_channel *c;
1250 
1251 	if (*nchans >= maxchans)
1252 		return (ENOBUFS);
1253 
1254 #if 0
1255 	printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n",
1256 	    __func__, *nchans, ieee, freq, flags);
1257 #endif
1258 
1259 	c = &chans[(*nchans)++];
1260 	c->ic_ieee = ieee;
1261 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1262 	c->ic_maxregpower = maxregpower;
1263 	c->ic_maxpower = 2 * maxregpower;
1264 	c->ic_flags = flags;
1265 	c->ic_vht_ch_freq1 = 0;
1266 	c->ic_vht_ch_freq2 = 0;
1267 	set_extchan(c);
1268 	set_vht_extchan(c);
1269 
1270 	return (0);
1271 }
1272 
1273 static int
1274 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1275     uint32_t flags)
1276 {
1277 	struct ieee80211_channel *c;
1278 
1279 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1280 
1281 	if (*nchans >= maxchans)
1282 		return (ENOBUFS);
1283 
1284 #if 0
1285 	printf("%s: %d: flags=0x%08x\n",
1286 	    __func__, *nchans, flags);
1287 #endif
1288 
1289 	c = &chans[(*nchans)++];
1290 	c[0] = c[-1];
1291 	c->ic_flags = flags;
1292 	c->ic_vht_ch_freq1 = 0;
1293 	c->ic_vht_ch_freq2 = 0;
1294 	set_extchan(c);
1295 	set_vht_extchan(c);
1296 
1297 	return (0);
1298 }
1299 
1300 /*
1301  * XXX VHT-2GHz
1302  */
1303 static void
1304 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1305 {
1306 	int nmodes;
1307 
1308 	nmodes = 0;
1309 	if (isset(bands, IEEE80211_MODE_11B))
1310 		flags[nmodes++] = IEEE80211_CHAN_B;
1311 	if (isset(bands, IEEE80211_MODE_11G))
1312 		flags[nmodes++] = IEEE80211_CHAN_G;
1313 	if (isset(bands, IEEE80211_MODE_11NG))
1314 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1315 	if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1316 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1317 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1318 	}
1319 	flags[nmodes] = 0;
1320 }
1321 
1322 static void
1323 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1324 {
1325 	int nmodes;
1326 
1327 	/*
1328 	 * The addchan_list() function seems to expect the flags array to
1329 	 * be in channel width order, so the VHT bits are interspersed
1330 	 * as appropriate to maintain said order.
1331 	 *
1332 	 * It also assumes HT40U is before HT40D.
1333 	 */
1334 	nmodes = 0;
1335 
1336 	/* 20MHz */
1337 	if (isset(bands, IEEE80211_MODE_11A))
1338 		flags[nmodes++] = IEEE80211_CHAN_A;
1339 	if (isset(bands, IEEE80211_MODE_11NA))
1340 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1341 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1342 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1343 		    IEEE80211_CHAN_VHT20;
1344 	}
1345 
1346 	/* 40MHz */
1347 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1348 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1349 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1350 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1351 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1352 		    IEEE80211_CHAN_VHT40U;
1353 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1354 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1355 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1356 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1357 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1358 		    IEEE80211_CHAN_VHT40D;
1359 
1360 	/* 80MHz */
1361 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1362 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1363 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1364 		    IEEE80211_CHAN_VHT80;
1365 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1366 		    IEEE80211_CHAN_VHT80;
1367 	}
1368 
1369 	/* VHT160 */
1370 	if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1371 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1372 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1373 		    IEEE80211_CHAN_VHT160;
1374 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1375 		    IEEE80211_CHAN_VHT160;
1376 	}
1377 
1378 	/* VHT80+80 */
1379 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1380 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1381 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1382 		    IEEE80211_CHAN_VHT80P80;
1383 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1384 		    IEEE80211_CHAN_VHT80P80;
1385 	}
1386 
1387 	flags[nmodes] = 0;
1388 }
1389 
1390 static void
1391 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1392 {
1393 
1394 	flags[0] = 0;
1395 	if (isset(bands, IEEE80211_MODE_11A) ||
1396 	    isset(bands, IEEE80211_MODE_11NA) ||
1397 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1398 		if (isset(bands, IEEE80211_MODE_11B) ||
1399 		    isset(bands, IEEE80211_MODE_11G) ||
1400 		    isset(bands, IEEE80211_MODE_11NG) ||
1401 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1402 			return;
1403 
1404 		getflags_5ghz(bands, flags, cbw_flags);
1405 	} else
1406 		getflags_2ghz(bands, flags, cbw_flags);
1407 }
1408 
1409 /*
1410  * Add one 20 MHz channel into specified channel list.
1411  * You MUST NOT mix bands when calling this.  It will not add 5ghz
1412  * channels if you have any B/G/N band bit set.
1413  * This also does not support 40/80/160/80+80.
1414  */
1415 /* XXX VHT */
1416 int
1417 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1418     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1419     uint32_t chan_flags, const uint8_t bands[])
1420 {
1421 	uint32_t flags[IEEE80211_MODE_MAX];
1422 	int i, error;
1423 
1424 	getflags(bands, flags, 0);
1425 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1426 
1427 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1428 	    flags[0] | chan_flags);
1429 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1430 		error = copychan_prev(chans, maxchans, nchans,
1431 		    flags[i] | chan_flags);
1432 	}
1433 
1434 	return (error);
1435 }
1436 
1437 static struct ieee80211_channel *
1438 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1439     uint32_t flags)
1440 {
1441 	struct ieee80211_channel *c;
1442 	int i;
1443 
1444 	flags &= IEEE80211_CHAN_ALLTURBO;
1445 	/* brute force search */
1446 	for (i = 0; i < nchans; i++) {
1447 		c = &chans[i];
1448 		if (c->ic_freq == freq &&
1449 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1450 			return c;
1451 	}
1452 	return NULL;
1453 }
1454 
1455 /*
1456  * Add 40 MHz channel pair into specified channel list.
1457  */
1458 /* XXX VHT */
1459 int
1460 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1461     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1462 {
1463 	struct ieee80211_channel *cent, *extc;
1464 	uint16_t freq;
1465 	int error;
1466 
1467 	freq = ieee80211_ieee2mhz(ieee, flags);
1468 
1469 	/*
1470 	 * Each entry defines an HT40 channel pair; find the
1471 	 * center channel, then the extension channel above.
1472 	 */
1473 	flags |= IEEE80211_CHAN_HT20;
1474 	cent = findchannel(chans, *nchans, freq, flags);
1475 	if (cent == NULL)
1476 		return (EINVAL);
1477 
1478 	extc = findchannel(chans, *nchans, freq + 20, flags);
1479 	if (extc == NULL)
1480 		return (ENOENT);
1481 
1482 	flags &= ~IEEE80211_CHAN_HT;
1483 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1484 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1485 	if (error != 0)
1486 		return (error);
1487 
1488 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1489 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1490 
1491 	return (error);
1492 }
1493 
1494 /*
1495  * Fetch the center frequency for the primary channel.
1496  */
1497 uint32_t
1498 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1499 {
1500 
1501 	return (c->ic_freq);
1502 }
1503 
1504 /*
1505  * Fetch the center frequency for the primary BAND channel.
1506  *
1507  * For 5, 10, 20MHz channels it'll be the normally configured channel
1508  * frequency.
1509  *
1510  * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the
1511  * wide channel, not the centre of the primary channel (that's ic_freq).
1512  *
1513  * For 80+80MHz channels this will be the centre of the primary
1514  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1515  */
1516 uint32_t
1517 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1518 {
1519 
1520 	/*
1521 	 * VHT - use the pre-calculated centre frequency
1522 	 * of the given channel.
1523 	 */
1524 	if (IEEE80211_IS_CHAN_VHT(c))
1525 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1526 
1527 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1528 		return (c->ic_freq + 10);
1529 	}
1530 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1531 		return (c->ic_freq - 10);
1532 	}
1533 
1534 	return (c->ic_freq);
1535 }
1536 
1537 /*
1538  * For now, no 80+80 support; it will likely always return 0.
1539  */
1540 uint32_t
1541 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1542 {
1543 
1544 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1545 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1546 
1547 	return (0);
1548 }
1549 
1550 /*
1551  * Adds channels into specified channel list (ieee[] array must be sorted).
1552  * Channels are already sorted.
1553  */
1554 static int
1555 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1556     const uint8_t ieee[], int nieee, uint32_t flags[])
1557 {
1558 	uint16_t freq;
1559 	int i, j, error;
1560 	int is_vht;
1561 
1562 	for (i = 0; i < nieee; i++) {
1563 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1564 		for (j = 0; flags[j] != 0; j++) {
1565 			/*
1566 			 * Notes:
1567 			 * + HT40 and VHT40 channels occur together, so
1568 			 *   we need to be careful that we actually allow that.
1569 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1570 			 *   make sure it's not skipped because of the overlap
1571 			 *   check used for (V)HT40.
1572 			 */
1573 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1574 
1575 			/* XXX TODO FIXME VHT80P80. */
1576 			/* XXX TODO FIXME VHT160. */
1577 
1578 			/*
1579 			 * Test for VHT80.
1580 			 * XXX This is all very broken right now.
1581 			 * What we /should/ do is:
1582 			 *
1583 			 * + check that the frequency is in the list of
1584 			 *   allowed VHT80 ranges; and
1585 			 * + the other 3 channels in the list are actually
1586 			 *   also available.
1587 			 */
1588 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1589 				if (! is_vht80_valid_freq(freq))
1590 					continue;
1591 
1592 			/*
1593 			 * Test for (V)HT40.
1594 			 *
1595 			 * This is also a fall through from VHT80; as we only
1596 			 * allow a VHT80 channel if the VHT40 combination is
1597 			 * also valid.  If the VHT40 form is not valid then
1598 			 * we certainly can't do VHT80..
1599 			 */
1600 			if (flags[j] & IEEE80211_CHAN_HT40D)
1601 				/*
1602 				 * Can't have a "lower" channel if we are the
1603 				 * first channel.
1604 				 *
1605 				 * Can't have a "lower" channel if it's below/
1606 				 * within 20MHz of the first channel.
1607 				 *
1608 				 * Can't have a "lower" channel if the channel
1609 				 * below it is not 20MHz away.
1610 				 */
1611 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1612 				    freq - 20 !=
1613 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1614 					continue;
1615 			if (flags[j] & IEEE80211_CHAN_HT40U)
1616 				/*
1617 				 * Can't have an "upper" channel if we are
1618 				 * the last channel.
1619 				 *
1620 				 * Can't have an "upper" channel be above the
1621 				 * last channel in the list.
1622 				 *
1623 				 * Can't have an "upper" channel if the next
1624 				 * channel according to the math isn't 20MHz
1625 				 * away.  (Likely for channel 13/14.)
1626 				 */
1627 				if (i == nieee - 1 ||
1628 				    ieee[i] + 4 > ieee[nieee - 1] ||
1629 				    freq + 20 !=
1630 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1631 					continue;
1632 
1633 			if (j == 0) {
1634 				error = addchan(chans, maxchans, nchans,
1635 				    ieee[i], freq, 0, flags[j]);
1636 			} else {
1637 				error = copychan_prev(chans, maxchans, nchans,
1638 				    flags[j]);
1639 			}
1640 			if (error != 0)
1641 				return (error);
1642 		}
1643 	}
1644 
1645 	return (0);
1646 }
1647 
1648 int
1649 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1650     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1651     int cbw_flags)
1652 {
1653 	uint32_t flags[IEEE80211_MODE_MAX];
1654 
1655 	/* XXX no VHT for now */
1656 	getflags_2ghz(bands, flags, cbw_flags);
1657 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1658 
1659 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1660 }
1661 
1662 int
1663 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1664     int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1665 {
1666 	const uint8_t default_chan_list[] =
1667 	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1668 
1669 	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1670 	    default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1671 }
1672 
1673 int
1674 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1675     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1676     int cbw_flags)
1677 {
1678 	/*
1679 	 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
1680 	 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1681 	 */
1682 	uint32_t flags[2 * IEEE80211_MODE_MAX];
1683 
1684 	getflags_5ghz(bands, flags, cbw_flags);
1685 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1686 
1687 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1688 }
1689 
1690 /*
1691  * Locate a channel given a frequency+flags.  We cache
1692  * the previous lookup to optimize switching between two
1693  * channels--as happens with dynamic turbo.
1694  */
1695 struct ieee80211_channel *
1696 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1697 {
1698 	struct ieee80211_channel *c;
1699 
1700 	flags &= IEEE80211_CHAN_ALLTURBO;
1701 	c = ic->ic_prevchan;
1702 	if (c != NULL && c->ic_freq == freq &&
1703 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1704 		return c;
1705 	/* brute force search */
1706 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1707 }
1708 
1709 /*
1710  * Locate a channel given a channel number+flags.  We cache
1711  * the previous lookup to optimize switching between two
1712  * channels--as happens with dynamic turbo.
1713  */
1714 struct ieee80211_channel *
1715 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1716 {
1717 	struct ieee80211_channel *c;
1718 	int i;
1719 
1720 	flags &= IEEE80211_CHAN_ALLTURBO;
1721 	c = ic->ic_prevchan;
1722 	if (c != NULL && c->ic_ieee == ieee &&
1723 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1724 		return c;
1725 	/* brute force search */
1726 	for (i = 0; i < ic->ic_nchans; i++) {
1727 		c = &ic->ic_channels[i];
1728 		if (c->ic_ieee == ieee &&
1729 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1730 			return c;
1731 	}
1732 	return NULL;
1733 }
1734 
1735 /*
1736  * Lookup a channel suitable for the given rx status.
1737  *
1738  * This is used to find a channel for a frame (eg beacon, probe
1739  * response) based purely on the received PHY information.
1740  *
1741  * For now it tries to do it based on R_FREQ / R_IEEE.
1742  * This is enough for 11bg and 11a (and thus 11ng/11na)
1743  * but it will not be enough for GSM, PSB channels and the
1744  * like.  It also doesn't know about legacy-turbog and
1745  * legacy-turbo modes, which some offload NICs actually
1746  * support in weird ways.
1747  *
1748  * Takes the ic and rxstatus; returns the channel or NULL
1749  * if not found.
1750  *
1751  * XXX TODO: Add support for that when the need arises.
1752  */
1753 struct ieee80211_channel *
1754 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1755     const struct ieee80211_rx_stats *rxs)
1756 {
1757 	struct ieee80211com *ic = vap->iv_ic;
1758 	uint32_t flags;
1759 	struct ieee80211_channel *c;
1760 
1761 	if (rxs == NULL)
1762 		return (NULL);
1763 
1764 	/*
1765 	 * Strictly speaking we only use freq for now,
1766 	 * however later on we may wish to just store
1767 	 * the ieee for verification.
1768 	 */
1769 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1770 		return (NULL);
1771 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1772 		return (NULL);
1773 
1774 	/*
1775 	 * If the rx status contains a valid ieee/freq, then
1776 	 * ensure we populate the correct channel information
1777 	 * in rxchan before passing it up to the scan infrastructure.
1778 	 * Offload NICs will pass up beacons from all channels
1779 	 * during background scans.
1780 	 */
1781 
1782 	/* Determine a band */
1783 	/* XXX should be done by the driver? */
1784 	if (rxs->c_freq < 3000) {
1785 		flags = IEEE80211_CHAN_G;
1786 	} else {
1787 		flags = IEEE80211_CHAN_A;
1788 	}
1789 
1790 	/* Channel lookup */
1791 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1792 
1793 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1794 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1795 	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1796 
1797 	return (c);
1798 }
1799 
1800 static void
1801 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1802 {
1803 #define	ADD(_ic, _s, _o) \
1804 	ifmedia_add(media, \
1805 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1806 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1807 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1808 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1809 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1810 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1811 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1812 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1813 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1814 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1815 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1816 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1817 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1818 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1819 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1820 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1821 	};
1822 	u_int mopt;
1823 
1824 	mopt = mopts[mode];
1825 	if (addsta)
1826 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1827 	if (caps & IEEE80211_C_IBSS)
1828 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1829 	if (caps & IEEE80211_C_HOSTAP)
1830 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1831 	if (caps & IEEE80211_C_AHDEMO)
1832 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1833 	if (caps & IEEE80211_C_MONITOR)
1834 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1835 	if (caps & IEEE80211_C_WDS)
1836 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1837 	if (caps & IEEE80211_C_MBSS)
1838 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1839 #undef ADD
1840 }
1841 
1842 /*
1843  * Setup the media data structures according to the channel and
1844  * rate tables.
1845  */
1846 static int
1847 ieee80211_media_setup(struct ieee80211com *ic,
1848 	struct ifmedia *media, int caps, int addsta,
1849 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1850 {
1851 	int i, j, rate, maxrate, mword, r;
1852 	enum ieee80211_phymode mode;
1853 	const struct ieee80211_rateset *rs;
1854 	struct ieee80211_rateset allrates;
1855 
1856 	/*
1857 	 * Fill in media characteristics.
1858 	 */
1859 	ifmedia_init(media, 0, media_change, media_stat);
1860 	maxrate = 0;
1861 	/*
1862 	 * Add media for legacy operating modes.
1863 	 */
1864 	memset(&allrates, 0, sizeof(allrates));
1865 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1866 		if (isclr(ic->ic_modecaps, mode))
1867 			continue;
1868 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1869 		if (mode == IEEE80211_MODE_AUTO)
1870 			continue;
1871 		rs = &ic->ic_sup_rates[mode];
1872 		for (i = 0; i < rs->rs_nrates; i++) {
1873 			rate = rs->rs_rates[i];
1874 			mword = ieee80211_rate2media(ic, rate, mode);
1875 			if (mword == 0)
1876 				continue;
1877 			addmedia(media, caps, addsta, mode, mword);
1878 			/*
1879 			 * Add legacy rate to the collection of all rates.
1880 			 */
1881 			r = rate & IEEE80211_RATE_VAL;
1882 			for (j = 0; j < allrates.rs_nrates; j++)
1883 				if (allrates.rs_rates[j] == r)
1884 					break;
1885 			if (j == allrates.rs_nrates) {
1886 				/* unique, add to the set */
1887 				allrates.rs_rates[j] = r;
1888 				allrates.rs_nrates++;
1889 			}
1890 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1891 			if (rate > maxrate)
1892 				maxrate = rate;
1893 		}
1894 	}
1895 	for (i = 0; i < allrates.rs_nrates; i++) {
1896 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1897 				IEEE80211_MODE_AUTO);
1898 		if (mword == 0)
1899 			continue;
1900 		/* NB: remove media options from mword */
1901 		addmedia(media, caps, addsta,
1902 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1903 	}
1904 	/*
1905 	 * Add HT/11n media.  Note that we do not have enough
1906 	 * bits in the media subtype to express the MCS so we
1907 	 * use a "placeholder" media subtype and any fixed MCS
1908 	 * must be specified with a different mechanism.
1909 	 */
1910 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1911 		if (isclr(ic->ic_modecaps, mode))
1912 			continue;
1913 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1914 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1915 	}
1916 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1917 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1918 		addmedia(media, caps, addsta,
1919 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1920 		i = ic->ic_txstream * 8 - 1;
1921 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1922 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1923 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1924 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1925 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1926 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1927 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1928 		else
1929 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1930 		if (rate > maxrate)
1931 			maxrate = rate;
1932 	}
1933 
1934 	/*
1935 	 * Add VHT media.
1936 	 * XXX-BZ skip "VHT_2GHZ" for now.
1937 	 */
1938 	for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
1939 	    mode++) {
1940 		if (isclr(ic->ic_modecaps, mode))
1941 			continue;
1942 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1943 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
1944 	}
1945 	if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
1946 	       addmedia(media, caps, addsta,
1947 		   IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
1948 
1949 		/* XXX TODO: VHT maxrate */
1950 	}
1951 
1952 	return maxrate;
1953 }
1954 
1955 /* XXX inline or eliminate? */
1956 const struct ieee80211_rateset *
1957 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1958 {
1959 	/* XXX does this work for 11ng basic rates? */
1960 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1961 }
1962 
1963 /* XXX inline or eliminate? */
1964 const struct ieee80211_htrateset *
1965 ieee80211_get_suphtrates(struct ieee80211com *ic,
1966     const struct ieee80211_channel *c)
1967 {
1968 	return &ic->ic_sup_htrates;
1969 }
1970 
1971 void
1972 ieee80211_announce(struct ieee80211com *ic)
1973 {
1974 	int i, rate, mword;
1975 	enum ieee80211_phymode mode;
1976 	const struct ieee80211_rateset *rs;
1977 
1978 	/* NB: skip AUTO since it has no rates */
1979 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1980 		if (isclr(ic->ic_modecaps, mode))
1981 			continue;
1982 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1983 		rs = &ic->ic_sup_rates[mode];
1984 		for (i = 0; i < rs->rs_nrates; i++) {
1985 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1986 			if (mword == 0)
1987 				continue;
1988 			rate = ieee80211_media2rate(mword);
1989 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1990 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1991 		}
1992 		printf("\n");
1993 	}
1994 	ieee80211_ht_announce(ic);
1995 	ieee80211_vht_announce(ic);
1996 }
1997 
1998 void
1999 ieee80211_announce_channels(struct ieee80211com *ic)
2000 {
2001 	const struct ieee80211_channel *c;
2002 	char type;
2003 	int i, cw;
2004 
2005 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
2006 	for (i = 0; i < ic->ic_nchans; i++) {
2007 		c = &ic->ic_channels[i];
2008 		if (IEEE80211_IS_CHAN_ST(c))
2009 			type = 'S';
2010 		else if (IEEE80211_IS_CHAN_108A(c))
2011 			type = 'T';
2012 		else if (IEEE80211_IS_CHAN_108G(c))
2013 			type = 'G';
2014 		else if (IEEE80211_IS_CHAN_HT(c))
2015 			type = 'n';
2016 		else if (IEEE80211_IS_CHAN_A(c))
2017 			type = 'a';
2018 		else if (IEEE80211_IS_CHAN_ANYG(c))
2019 			type = 'g';
2020 		else if (IEEE80211_IS_CHAN_B(c))
2021 			type = 'b';
2022 		else
2023 			type = 'f';
2024 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2025 			cw = 40;
2026 		else if (IEEE80211_IS_CHAN_HALF(c))
2027 			cw = 10;
2028 		else if (IEEE80211_IS_CHAN_QUARTER(c))
2029 			cw = 5;
2030 		else
2031 			cw = 20;
2032 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2033 			, c->ic_ieee, c->ic_freq, type
2034 			, cw
2035 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2036 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2037 			, c->ic_maxregpower
2038 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2039 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2040 		);
2041 	}
2042 }
2043 
2044 static int
2045 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2046 {
2047 	switch (IFM_MODE(ime->ifm_media)) {
2048 	case IFM_IEEE80211_11A:
2049 		*mode = IEEE80211_MODE_11A;
2050 		break;
2051 	case IFM_IEEE80211_11B:
2052 		*mode = IEEE80211_MODE_11B;
2053 		break;
2054 	case IFM_IEEE80211_11G:
2055 		*mode = IEEE80211_MODE_11G;
2056 		break;
2057 	case IFM_IEEE80211_FH:
2058 		*mode = IEEE80211_MODE_FH;
2059 		break;
2060 	case IFM_IEEE80211_11NA:
2061 		*mode = IEEE80211_MODE_11NA;
2062 		break;
2063 	case IFM_IEEE80211_11NG:
2064 		*mode = IEEE80211_MODE_11NG;
2065 		break;
2066 	case IFM_IEEE80211_VHT2G:
2067 		*mode = IEEE80211_MODE_VHT_2GHZ;
2068 		break;
2069 	case IFM_IEEE80211_VHT5G:
2070 		*mode = IEEE80211_MODE_VHT_5GHZ;
2071 		break;
2072 	case IFM_AUTO:
2073 		*mode = IEEE80211_MODE_AUTO;
2074 		break;
2075 	default:
2076 		return 0;
2077 	}
2078 	/*
2079 	 * Turbo mode is an ``option''.
2080 	 * XXX does not apply to AUTO
2081 	 */
2082 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2083 		if (*mode == IEEE80211_MODE_11A) {
2084 			if (flags & IEEE80211_F_TURBOP)
2085 				*mode = IEEE80211_MODE_TURBO_A;
2086 			else
2087 				*mode = IEEE80211_MODE_STURBO_A;
2088 		} else if (*mode == IEEE80211_MODE_11G)
2089 			*mode = IEEE80211_MODE_TURBO_G;
2090 		else
2091 			return 0;
2092 	}
2093 	/* XXX HT40 +/- */
2094 	return 1;
2095 }
2096 
2097 /*
2098  * Handle a media change request on the vap interface.
2099  */
2100 int
2101 ieee80211_media_change(struct ifnet *ifp)
2102 {
2103 	struct ieee80211vap *vap = ifp->if_softc;
2104 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2105 	uint16_t newmode;
2106 
2107 	if (!media2mode(ime, vap->iv_flags, &newmode))
2108 		return EINVAL;
2109 	if (vap->iv_des_mode != newmode) {
2110 		vap->iv_des_mode = newmode;
2111 		/* XXX kick state machine if up+running */
2112 	}
2113 	return 0;
2114 }
2115 
2116 /*
2117  * Common code to calculate the media status word
2118  * from the operating mode and channel state.
2119  */
2120 static int
2121 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2122 {
2123 	int status;
2124 
2125 	status = IFM_IEEE80211;
2126 	switch (opmode) {
2127 	case IEEE80211_M_STA:
2128 		break;
2129 	case IEEE80211_M_IBSS:
2130 		status |= IFM_IEEE80211_ADHOC;
2131 		break;
2132 	case IEEE80211_M_HOSTAP:
2133 		status |= IFM_IEEE80211_HOSTAP;
2134 		break;
2135 	case IEEE80211_M_MONITOR:
2136 		status |= IFM_IEEE80211_MONITOR;
2137 		break;
2138 	case IEEE80211_M_AHDEMO:
2139 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2140 		break;
2141 	case IEEE80211_M_WDS:
2142 		status |= IFM_IEEE80211_WDS;
2143 		break;
2144 	case IEEE80211_M_MBSS:
2145 		status |= IFM_IEEE80211_MBSS;
2146 		break;
2147 	}
2148 	if (IEEE80211_IS_CHAN_HTA(chan)) {
2149 		status |= IFM_IEEE80211_11NA;
2150 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2151 		status |= IFM_IEEE80211_11NG;
2152 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2153 		status |= IFM_IEEE80211_11A;
2154 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2155 		status |= IFM_IEEE80211_11B;
2156 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2157 		status |= IFM_IEEE80211_11G;
2158 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2159 		status |= IFM_IEEE80211_FH;
2160 	}
2161 	/* XXX else complain? */
2162 
2163 	if (IEEE80211_IS_CHAN_TURBO(chan))
2164 		status |= IFM_IEEE80211_TURBO;
2165 #if 0
2166 	if (IEEE80211_IS_CHAN_HT20(chan))
2167 		status |= IFM_IEEE80211_HT20;
2168 	if (IEEE80211_IS_CHAN_HT40(chan))
2169 		status |= IFM_IEEE80211_HT40;
2170 #endif
2171 	return status;
2172 }
2173 
2174 void
2175 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2176 {
2177 	struct ieee80211vap *vap = ifp->if_softc;
2178 	struct ieee80211com *ic = vap->iv_ic;
2179 	enum ieee80211_phymode mode;
2180 
2181 	imr->ifm_status = IFM_AVALID;
2182 	/*
2183 	 * NB: use the current channel's mode to lock down a xmit
2184 	 * rate only when running; otherwise we may have a mismatch
2185 	 * in which case the rate will not be convertible.
2186 	 */
2187 	if (vap->iv_state == IEEE80211_S_RUN ||
2188 	    vap->iv_state == IEEE80211_S_SLEEP) {
2189 		imr->ifm_status |= IFM_ACTIVE;
2190 		mode = ieee80211_chan2mode(ic->ic_curchan);
2191 	} else
2192 		mode = IEEE80211_MODE_AUTO;
2193 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2194 	/*
2195 	 * Calculate a current rate if possible.
2196 	 */
2197 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2198 		/*
2199 		 * A fixed rate is set, report that.
2200 		 */
2201 		imr->ifm_active |= ieee80211_rate2media(ic,
2202 			vap->iv_txparms[mode].ucastrate, mode);
2203 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2204 		/*
2205 		 * In station mode report the current transmit rate.
2206 		 */
2207 		imr->ifm_active |= ieee80211_rate2media(ic,
2208 			vap->iv_bss->ni_txrate, mode);
2209 	} else
2210 		imr->ifm_active |= IFM_AUTO;
2211 	if (imr->ifm_status & IFM_ACTIVE)
2212 		imr->ifm_current = imr->ifm_active;
2213 }
2214 
2215 /*
2216  * Set the current phy mode and recalculate the active channel
2217  * set based on the available channels for this mode.  Also
2218  * select a new default/current channel if the current one is
2219  * inappropriate for this mode.
2220  */
2221 int
2222 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2223 {
2224 	/*
2225 	 * Adjust basic rates in 11b/11g supported rate set.
2226 	 * Note that if operating on a hal/quarter rate channel
2227 	 * this is a noop as those rates sets are different
2228 	 * and used instead.
2229 	 */
2230 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2231 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2232 
2233 	ic->ic_curmode = mode;
2234 	ieee80211_reset_erp(ic);	/* reset global ERP state */
2235 
2236 	return 0;
2237 }
2238 
2239 /*
2240  * Return the phy mode for with the specified channel.
2241  */
2242 enum ieee80211_phymode
2243 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2244 {
2245 
2246 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2247 		return IEEE80211_MODE_VHT_2GHZ;
2248 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2249 		return IEEE80211_MODE_VHT_5GHZ;
2250 	else if (IEEE80211_IS_CHAN_HTA(chan))
2251 		return IEEE80211_MODE_11NA;
2252 	else if (IEEE80211_IS_CHAN_HTG(chan))
2253 		return IEEE80211_MODE_11NG;
2254 	else if (IEEE80211_IS_CHAN_108G(chan))
2255 		return IEEE80211_MODE_TURBO_G;
2256 	else if (IEEE80211_IS_CHAN_ST(chan))
2257 		return IEEE80211_MODE_STURBO_A;
2258 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2259 		return IEEE80211_MODE_TURBO_A;
2260 	else if (IEEE80211_IS_CHAN_HALF(chan))
2261 		return IEEE80211_MODE_HALF;
2262 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2263 		return IEEE80211_MODE_QUARTER;
2264 	else if (IEEE80211_IS_CHAN_A(chan))
2265 		return IEEE80211_MODE_11A;
2266 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2267 		return IEEE80211_MODE_11G;
2268 	else if (IEEE80211_IS_CHAN_B(chan))
2269 		return IEEE80211_MODE_11B;
2270 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2271 		return IEEE80211_MODE_FH;
2272 
2273 	/* NB: should not get here */
2274 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2275 		__func__, chan->ic_freq, chan->ic_flags);
2276 	return IEEE80211_MODE_11B;
2277 }
2278 
2279 struct ratemedia {
2280 	u_int	match;	/* rate + mode */
2281 	u_int	media;	/* if_media rate */
2282 };
2283 
2284 static int
2285 findmedia(const struct ratemedia rates[], int n, u_int match)
2286 {
2287 	int i;
2288 
2289 	for (i = 0; i < n; i++)
2290 		if (rates[i].match == match)
2291 			return rates[i].media;
2292 	return IFM_AUTO;
2293 }
2294 
2295 /*
2296  * Convert IEEE80211 rate value to ifmedia subtype.
2297  * Rate is either a legacy rate in units of 0.5Mbps
2298  * or an MCS index.
2299  */
2300 int
2301 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2302 {
2303 	static const struct ratemedia rates[] = {
2304 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2305 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2306 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2307 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2308 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2309 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2310 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2311 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2312 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2313 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2314 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2315 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2316 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2317 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2318 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2319 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2320 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2321 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2322 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2323 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2324 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2325 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2326 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2327 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2328 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2329 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2330 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2331 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2332 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2333 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2334 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2335 	};
2336 	static const struct ratemedia htrates[] = {
2337 		{   0, IFM_IEEE80211_MCS },
2338 		{   1, IFM_IEEE80211_MCS },
2339 		{   2, IFM_IEEE80211_MCS },
2340 		{   3, IFM_IEEE80211_MCS },
2341 		{   4, IFM_IEEE80211_MCS },
2342 		{   5, IFM_IEEE80211_MCS },
2343 		{   6, IFM_IEEE80211_MCS },
2344 		{   7, IFM_IEEE80211_MCS },
2345 		{   8, IFM_IEEE80211_MCS },
2346 		{   9, IFM_IEEE80211_MCS },
2347 		{  10, IFM_IEEE80211_MCS },
2348 		{  11, IFM_IEEE80211_MCS },
2349 		{  12, IFM_IEEE80211_MCS },
2350 		{  13, IFM_IEEE80211_MCS },
2351 		{  14, IFM_IEEE80211_MCS },
2352 		{  15, IFM_IEEE80211_MCS },
2353 		{  16, IFM_IEEE80211_MCS },
2354 		{  17, IFM_IEEE80211_MCS },
2355 		{  18, IFM_IEEE80211_MCS },
2356 		{  19, IFM_IEEE80211_MCS },
2357 		{  20, IFM_IEEE80211_MCS },
2358 		{  21, IFM_IEEE80211_MCS },
2359 		{  22, IFM_IEEE80211_MCS },
2360 		{  23, IFM_IEEE80211_MCS },
2361 		{  24, IFM_IEEE80211_MCS },
2362 		{  25, IFM_IEEE80211_MCS },
2363 		{  26, IFM_IEEE80211_MCS },
2364 		{  27, IFM_IEEE80211_MCS },
2365 		{  28, IFM_IEEE80211_MCS },
2366 		{  29, IFM_IEEE80211_MCS },
2367 		{  30, IFM_IEEE80211_MCS },
2368 		{  31, IFM_IEEE80211_MCS },
2369 		{  32, IFM_IEEE80211_MCS },
2370 		{  33, IFM_IEEE80211_MCS },
2371 		{  34, IFM_IEEE80211_MCS },
2372 		{  35, IFM_IEEE80211_MCS },
2373 		{  36, IFM_IEEE80211_MCS },
2374 		{  37, IFM_IEEE80211_MCS },
2375 		{  38, IFM_IEEE80211_MCS },
2376 		{  39, IFM_IEEE80211_MCS },
2377 		{  40, IFM_IEEE80211_MCS },
2378 		{  41, IFM_IEEE80211_MCS },
2379 		{  42, IFM_IEEE80211_MCS },
2380 		{  43, IFM_IEEE80211_MCS },
2381 		{  44, IFM_IEEE80211_MCS },
2382 		{  45, IFM_IEEE80211_MCS },
2383 		{  46, IFM_IEEE80211_MCS },
2384 		{  47, IFM_IEEE80211_MCS },
2385 		{  48, IFM_IEEE80211_MCS },
2386 		{  49, IFM_IEEE80211_MCS },
2387 		{  50, IFM_IEEE80211_MCS },
2388 		{  51, IFM_IEEE80211_MCS },
2389 		{  52, IFM_IEEE80211_MCS },
2390 		{  53, IFM_IEEE80211_MCS },
2391 		{  54, IFM_IEEE80211_MCS },
2392 		{  55, IFM_IEEE80211_MCS },
2393 		{  56, IFM_IEEE80211_MCS },
2394 		{  57, IFM_IEEE80211_MCS },
2395 		{  58, IFM_IEEE80211_MCS },
2396 		{  59, IFM_IEEE80211_MCS },
2397 		{  60, IFM_IEEE80211_MCS },
2398 		{  61, IFM_IEEE80211_MCS },
2399 		{  62, IFM_IEEE80211_MCS },
2400 		{  63, IFM_IEEE80211_MCS },
2401 		{  64, IFM_IEEE80211_MCS },
2402 		{  65, IFM_IEEE80211_MCS },
2403 		{  66, IFM_IEEE80211_MCS },
2404 		{  67, IFM_IEEE80211_MCS },
2405 		{  68, IFM_IEEE80211_MCS },
2406 		{  69, IFM_IEEE80211_MCS },
2407 		{  70, IFM_IEEE80211_MCS },
2408 		{  71, IFM_IEEE80211_MCS },
2409 		{  72, IFM_IEEE80211_MCS },
2410 		{  73, IFM_IEEE80211_MCS },
2411 		{  74, IFM_IEEE80211_MCS },
2412 		{  75, IFM_IEEE80211_MCS },
2413 		{  76, IFM_IEEE80211_MCS },
2414 	};
2415 	static const struct ratemedia vhtrates[] = {
2416 		{   0, IFM_IEEE80211_VHT },
2417 		{   1, IFM_IEEE80211_VHT },
2418 		{   2, IFM_IEEE80211_VHT },
2419 		{   3, IFM_IEEE80211_VHT },
2420 		{   4, IFM_IEEE80211_VHT },
2421 		{   5, IFM_IEEE80211_VHT },
2422 		{   6, IFM_IEEE80211_VHT },
2423 		{   7, IFM_IEEE80211_VHT },
2424 		{   8, IFM_IEEE80211_VHT },	/* Optional. */
2425 		{   9, IFM_IEEE80211_VHT },	/* Optional. */
2426 #if 0
2427 		/* Some QCA and BRCM seem to support this; offspec. */
2428 		{  10, IFM_IEEE80211_VHT },
2429 		{  11, IFM_IEEE80211_VHT },
2430 #endif
2431 	};
2432 	int m;
2433 
2434 	/*
2435 	 * Check 11ac/11n rates first for match as an MCS.
2436 	 */
2437 	if (mode == IEEE80211_MODE_VHT_5GHZ) {
2438 		if (rate & IFM_IEEE80211_VHT) {
2439 			rate &= ~IFM_IEEE80211_VHT;
2440 			m = findmedia(vhtrates, nitems(vhtrates), rate);
2441 			if (m != IFM_AUTO)
2442 				return (m | IFM_IEEE80211_VHT);
2443 		}
2444 	} else if (mode == IEEE80211_MODE_11NA) {
2445 		if (rate & IEEE80211_RATE_MCS) {
2446 			rate &= ~IEEE80211_RATE_MCS;
2447 			m = findmedia(htrates, nitems(htrates), rate);
2448 			if (m != IFM_AUTO)
2449 				return m | IFM_IEEE80211_11NA;
2450 		}
2451 	} else if (mode == IEEE80211_MODE_11NG) {
2452 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2453 		if (rate & IEEE80211_RATE_MCS) {
2454 			rate &= ~IEEE80211_RATE_MCS;
2455 			m = findmedia(htrates, nitems(htrates), rate);
2456 			if (m != IFM_AUTO)
2457 				return m | IFM_IEEE80211_11NG;
2458 		}
2459 	}
2460 	rate &= IEEE80211_RATE_VAL;
2461 	switch (mode) {
2462 	case IEEE80211_MODE_11A:
2463 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2464 	case IEEE80211_MODE_QUARTER:
2465 	case IEEE80211_MODE_11NA:
2466 	case IEEE80211_MODE_TURBO_A:
2467 	case IEEE80211_MODE_STURBO_A:
2468 		return findmedia(rates, nitems(rates),
2469 		    rate | IFM_IEEE80211_11A);
2470 	case IEEE80211_MODE_11B:
2471 		return findmedia(rates, nitems(rates),
2472 		    rate | IFM_IEEE80211_11B);
2473 	case IEEE80211_MODE_FH:
2474 		return findmedia(rates, nitems(rates),
2475 		    rate | IFM_IEEE80211_FH);
2476 	case IEEE80211_MODE_AUTO:
2477 		/* NB: ic may be NULL for some drivers */
2478 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2479 			return findmedia(rates, nitems(rates),
2480 			    rate | IFM_IEEE80211_FH);
2481 		/* NB: hack, 11g matches both 11b+11a rates */
2482 		/* fall thru... */
2483 	case IEEE80211_MODE_11G:
2484 	case IEEE80211_MODE_11NG:
2485 	case IEEE80211_MODE_TURBO_G:
2486 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2487 	case IEEE80211_MODE_VHT_2GHZ:
2488 	case IEEE80211_MODE_VHT_5GHZ:
2489 		/* XXX TODO: need to figure out mapping for VHT rates */
2490 		return IFM_AUTO;
2491 	}
2492 	return IFM_AUTO;
2493 }
2494 
2495 int
2496 ieee80211_media2rate(int mword)
2497 {
2498 	static const int ieeerates[] = {
2499 		-1,		/* IFM_AUTO */
2500 		0,		/* IFM_MANUAL */
2501 		0,		/* IFM_NONE */
2502 		2,		/* IFM_IEEE80211_FH1 */
2503 		4,		/* IFM_IEEE80211_FH2 */
2504 		2,		/* IFM_IEEE80211_DS1 */
2505 		4,		/* IFM_IEEE80211_DS2 */
2506 		11,		/* IFM_IEEE80211_DS5 */
2507 		22,		/* IFM_IEEE80211_DS11 */
2508 		44,		/* IFM_IEEE80211_DS22 */
2509 		12,		/* IFM_IEEE80211_OFDM6 */
2510 		18,		/* IFM_IEEE80211_OFDM9 */
2511 		24,		/* IFM_IEEE80211_OFDM12 */
2512 		36,		/* IFM_IEEE80211_OFDM18 */
2513 		48,		/* IFM_IEEE80211_OFDM24 */
2514 		72,		/* IFM_IEEE80211_OFDM36 */
2515 		96,		/* IFM_IEEE80211_OFDM48 */
2516 		108,		/* IFM_IEEE80211_OFDM54 */
2517 		144,		/* IFM_IEEE80211_OFDM72 */
2518 		0,		/* IFM_IEEE80211_DS354k */
2519 		0,		/* IFM_IEEE80211_DS512k */
2520 		6,		/* IFM_IEEE80211_OFDM3 */
2521 		9,		/* IFM_IEEE80211_OFDM4 */
2522 		54,		/* IFM_IEEE80211_OFDM27 */
2523 		-1,		/* IFM_IEEE80211_MCS */
2524 		-1,		/* IFM_IEEE80211_VHT */
2525 	};
2526 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2527 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2528 }
2529 
2530 /*
2531  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2532  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2533  */
2534 #define	mix(a, b, c)							\
2535 do {									\
2536 	a -= b; a -= c; a ^= (c >> 13);					\
2537 	b -= c; b -= a; b ^= (a << 8);					\
2538 	c -= a; c -= b; c ^= (b >> 13);					\
2539 	a -= b; a -= c; a ^= (c >> 12);					\
2540 	b -= c; b -= a; b ^= (a << 16);					\
2541 	c -= a; c -= b; c ^= (b >> 5);					\
2542 	a -= b; a -= c; a ^= (c >> 3);					\
2543 	b -= c; b -= a; b ^= (a << 10);					\
2544 	c -= a; c -= b; c ^= (b >> 15);					\
2545 } while (/*CONSTCOND*/0)
2546 
2547 uint32_t
2548 ieee80211_mac_hash(const struct ieee80211com *ic,
2549 	const uint8_t addr[IEEE80211_ADDR_LEN])
2550 {
2551 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2552 
2553 	b += addr[5] << 8;
2554 	b += addr[4];
2555 	a += addr[3] << 24;
2556 	a += addr[2] << 16;
2557 	a += addr[1] << 8;
2558 	a += addr[0];
2559 
2560 	mix(a, b, c);
2561 
2562 	return c;
2563 }
2564 #undef mix
2565 
2566 char
2567 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2568 {
2569 	if (IEEE80211_IS_CHAN_ST(c))
2570 		return 'S';
2571 	if (IEEE80211_IS_CHAN_108A(c))
2572 		return 'T';
2573 	if (IEEE80211_IS_CHAN_108G(c))
2574 		return 'G';
2575 	if (IEEE80211_IS_CHAN_VHT(c))
2576 		return 'v';
2577 	if (IEEE80211_IS_CHAN_HT(c))
2578 		return 'n';
2579 	if (IEEE80211_IS_CHAN_A(c))
2580 		return 'a';
2581 	if (IEEE80211_IS_CHAN_ANYG(c))
2582 		return 'g';
2583 	if (IEEE80211_IS_CHAN_B(c))
2584 		return 'b';
2585 	return 'f';
2586 }
2587