1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ethernet.h> 46 47 #include <net80211/ieee80211_var.h> 48 #include <net80211/ieee80211_regdomain.h> 49 #ifdef IEEE80211_SUPPORT_SUPERG 50 #include <net80211/ieee80211_superg.h> 51 #endif 52 #include <net80211/ieee80211_ratectl.h> 53 54 #include <net/bpf.h> 55 56 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 57 [IEEE80211_MODE_AUTO] = "auto", 58 [IEEE80211_MODE_11A] = "11a", 59 [IEEE80211_MODE_11B] = "11b", 60 [IEEE80211_MODE_11G] = "11g", 61 [IEEE80211_MODE_FH] = "FH", 62 [IEEE80211_MODE_TURBO_A] = "turboA", 63 [IEEE80211_MODE_TURBO_G] = "turboG", 64 [IEEE80211_MODE_STURBO_A] = "sturboA", 65 [IEEE80211_MODE_HALF] = "half", 66 [IEEE80211_MODE_QUARTER] = "quarter", 67 [IEEE80211_MODE_11NA] = "11na", 68 [IEEE80211_MODE_11NG] = "11ng", 69 }; 70 /* map ieee80211_opmode to the corresponding capability bit */ 71 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 72 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 73 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 74 [IEEE80211_M_STA] = IEEE80211_C_STA, 75 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 76 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 77 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 78 #ifdef IEEE80211_SUPPORT_MESH 79 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 80 #endif 81 }; 82 83 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 84 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 85 86 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 87 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 88 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 89 static int ieee80211_media_setup(struct ieee80211com *ic, 90 struct ifmedia *media, int caps, int addsta, 91 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 92 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 93 static int ieee80211com_media_change(struct ifnet *); 94 static int media_status(enum ieee80211_opmode, 95 const struct ieee80211_channel *); 96 97 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 98 99 /* 100 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 101 */ 102 #define B(r) ((r) | IEEE80211_RATE_BASIC) 103 static const struct ieee80211_rateset ieee80211_rateset_11a = 104 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 105 static const struct ieee80211_rateset ieee80211_rateset_half = 106 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 107 static const struct ieee80211_rateset ieee80211_rateset_quarter = 108 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 109 static const struct ieee80211_rateset ieee80211_rateset_11b = 110 { 4, { B(2), B(4), B(11), B(22) } }; 111 /* NB: OFDM rates are handled specially based on mode */ 112 static const struct ieee80211_rateset ieee80211_rateset_11g = 113 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 114 #undef B 115 116 /* 117 * Fill in 802.11 available channel set, mark 118 * all available channels as active, and pick 119 * a default channel if not already specified. 120 */ 121 static void 122 ieee80211_chan_init(struct ieee80211com *ic) 123 { 124 #define DEFAULTRATES(m, def) do { \ 125 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 126 ic->ic_sup_rates[m] = def; \ 127 } while (0) 128 struct ieee80211_channel *c; 129 int i; 130 131 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 132 ("invalid number of channels specified: %u", ic->ic_nchans)); 133 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 134 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 135 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 136 for (i = 0; i < ic->ic_nchans; i++) { 137 c = &ic->ic_channels[i]; 138 KASSERT(c->ic_flags != 0, ("channel with no flags")); 139 /* 140 * Help drivers that work only with frequencies by filling 141 * in IEEE channel #'s if not already calculated. Note this 142 * mimics similar work done in ieee80211_setregdomain when 143 * changing regulatory state. 144 */ 145 if (c->ic_ieee == 0) 146 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 147 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 148 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 149 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 150 c->ic_flags); 151 /* default max tx power to max regulatory */ 152 if (c->ic_maxpower == 0) 153 c->ic_maxpower = 2*c->ic_maxregpower; 154 setbit(ic->ic_chan_avail, c->ic_ieee); 155 /* 156 * Identify mode capabilities. 157 */ 158 if (IEEE80211_IS_CHAN_A(c)) 159 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 160 if (IEEE80211_IS_CHAN_B(c)) 161 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 162 if (IEEE80211_IS_CHAN_ANYG(c)) 163 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 164 if (IEEE80211_IS_CHAN_FHSS(c)) 165 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 166 if (IEEE80211_IS_CHAN_108A(c)) 167 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 168 if (IEEE80211_IS_CHAN_108G(c)) 169 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 170 if (IEEE80211_IS_CHAN_ST(c)) 171 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 172 if (IEEE80211_IS_CHAN_HALF(c)) 173 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 174 if (IEEE80211_IS_CHAN_QUARTER(c)) 175 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 176 if (IEEE80211_IS_CHAN_HTA(c)) 177 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 178 if (IEEE80211_IS_CHAN_HTG(c)) 179 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 180 } 181 /* initialize candidate channels to all available */ 182 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 183 sizeof(ic->ic_chan_avail)); 184 185 /* sort channel table to allow lookup optimizations */ 186 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 187 188 /* invalidate any previous state */ 189 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 190 ic->ic_prevchan = NULL; 191 ic->ic_csa_newchan = NULL; 192 /* arbitrarily pick the first channel */ 193 ic->ic_curchan = &ic->ic_channels[0]; 194 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 195 196 /* fillin well-known rate sets if driver has not specified */ 197 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 198 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 199 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 200 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 201 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 202 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 203 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 204 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 205 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 206 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 207 208 /* 209 * Setup required information to fill the mcsset field, if driver did 210 * not. Assume a 2T2R setup for historic reasons. 211 */ 212 if (ic->ic_rxstream == 0) 213 ic->ic_rxstream = 2; 214 if (ic->ic_txstream == 0) 215 ic->ic_txstream = 2; 216 217 /* 218 * Set auto mode to reset active channel state and any desired channel. 219 */ 220 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 221 #undef DEFAULTRATES 222 } 223 224 static void 225 null_update_mcast(struct ifnet *ifp) 226 { 227 if_printf(ifp, "need multicast update callback\n"); 228 } 229 230 static void 231 null_update_promisc(struct ifnet *ifp) 232 { 233 if_printf(ifp, "need promiscuous mode update callback\n"); 234 } 235 236 static int 237 null_transmit(struct ifnet *ifp, struct mbuf *m) 238 { 239 m_freem(m); 240 ifp->if_oerrors++; 241 return EACCES; /* XXX EIO/EPERM? */ 242 } 243 244 static int 245 null_output(struct ifnet *ifp, struct mbuf *m, 246 struct sockaddr *dst, struct route *ro) 247 { 248 if_printf(ifp, "discard raw packet\n"); 249 return null_transmit(ifp, m); 250 } 251 252 static void 253 null_input(struct ifnet *ifp, struct mbuf *m) 254 { 255 if_printf(ifp, "if_input should not be called\n"); 256 m_freem(m); 257 } 258 259 /* 260 * Attach/setup the common net80211 state. Called by 261 * the driver on attach to prior to creating any vap's. 262 */ 263 void 264 ieee80211_ifattach(struct ieee80211com *ic, 265 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 266 { 267 struct ifnet *ifp = ic->ic_ifp; 268 struct sockaddr_dl *sdl; 269 struct ifaddr *ifa; 270 271 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 272 273 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 274 TAILQ_INIT(&ic->ic_vaps); 275 276 /* Create a taskqueue for all state changes */ 277 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 278 taskqueue_thread_enqueue, &ic->ic_tq); 279 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq", 280 ifp->if_xname); 281 /* 282 * Fill in 802.11 available channel set, mark all 283 * available channels as active, and pick a default 284 * channel if not already specified. 285 */ 286 ieee80211_media_init(ic); 287 288 ic->ic_update_mcast = null_update_mcast; 289 ic->ic_update_promisc = null_update_promisc; 290 291 ic->ic_hash_key = arc4random(); 292 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 293 ic->ic_lintval = ic->ic_bintval; 294 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 295 296 ieee80211_crypto_attach(ic); 297 ieee80211_node_attach(ic); 298 ieee80211_power_attach(ic); 299 ieee80211_proto_attach(ic); 300 #ifdef IEEE80211_SUPPORT_SUPERG 301 ieee80211_superg_attach(ic); 302 #endif 303 ieee80211_ht_attach(ic); 304 ieee80211_scan_attach(ic); 305 ieee80211_regdomain_attach(ic); 306 ieee80211_dfs_attach(ic); 307 308 ieee80211_sysctl_attach(ic); 309 310 ifp->if_addrlen = IEEE80211_ADDR_LEN; 311 ifp->if_hdrlen = 0; 312 if_attach(ifp); 313 ifp->if_mtu = IEEE80211_MTU_MAX; 314 ifp->if_broadcastaddr = ieee80211broadcastaddr; 315 ifp->if_output = null_output; 316 ifp->if_input = null_input; /* just in case */ 317 ifp->if_resolvemulti = NULL; /* NB: callers check */ 318 319 ifa = ifaddr_byindex(ifp->if_index); 320 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 321 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 322 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 323 sdl->sdl_alen = IEEE80211_ADDR_LEN; 324 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 325 ifa_free(ifa); 326 } 327 328 /* 329 * Detach net80211 state on device detach. Tear down 330 * all vap's and reclaim all common state prior to the 331 * device state going away. Note we may call back into 332 * driver; it must be prepared for this. 333 */ 334 void 335 ieee80211_ifdetach(struct ieee80211com *ic) 336 { 337 struct ifnet *ifp = ic->ic_ifp; 338 struct ieee80211vap *vap; 339 340 if_detach(ifp); 341 342 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 343 ieee80211_vap_destroy(vap); 344 ieee80211_waitfor_parent(ic); 345 346 ieee80211_sysctl_detach(ic); 347 ieee80211_dfs_detach(ic); 348 ieee80211_regdomain_detach(ic); 349 ieee80211_scan_detach(ic); 350 #ifdef IEEE80211_SUPPORT_SUPERG 351 ieee80211_superg_detach(ic); 352 #endif 353 ieee80211_ht_detach(ic); 354 /* NB: must be called before ieee80211_node_detach */ 355 ieee80211_proto_detach(ic); 356 ieee80211_crypto_detach(ic); 357 ieee80211_power_detach(ic); 358 ieee80211_node_detach(ic); 359 360 ifmedia_removeall(&ic->ic_media); 361 taskqueue_free(ic->ic_tq); 362 IEEE80211_LOCK_DESTROY(ic); 363 } 364 365 /* 366 * Default reset method for use with the ioctl support. This 367 * method is invoked after any state change in the 802.11 368 * layer that should be propagated to the hardware but not 369 * require re-initialization of the 802.11 state machine (e.g 370 * rescanning for an ap). We always return ENETRESET which 371 * should cause the driver to re-initialize the device. Drivers 372 * can override this method to implement more optimized support. 373 */ 374 static int 375 default_reset(struct ieee80211vap *vap, u_long cmd) 376 { 377 return ENETRESET; 378 } 379 380 /* 381 * Prepare a vap for use. Drivers use this call to 382 * setup net80211 state in new vap's prior attaching 383 * them with ieee80211_vap_attach (below). 384 */ 385 int 386 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 387 const char name[IFNAMSIZ], int unit, int opmode, int flags, 388 const uint8_t bssid[IEEE80211_ADDR_LEN], 389 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 390 { 391 struct ifnet *ifp; 392 393 ifp = if_alloc(IFT_ETHER); 394 if (ifp == NULL) { 395 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 396 __func__); 397 return ENOMEM; 398 } 399 if_initname(ifp, name, unit); 400 ifp->if_softc = vap; /* back pointer */ 401 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 402 ifp->if_start = ieee80211_start; 403 ifp->if_ioctl = ieee80211_ioctl; 404 ifp->if_init = ieee80211_init; 405 /* NB: input+output filled in by ether_ifattach */ 406 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 407 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 408 IFQ_SET_READY(&ifp->if_snd); 409 410 vap->iv_ifp = ifp; 411 vap->iv_ic = ic; 412 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 413 vap->iv_flags_ext = ic->ic_flags_ext; 414 vap->iv_flags_ven = ic->ic_flags_ven; 415 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 416 vap->iv_htcaps = ic->ic_htcaps; 417 vap->iv_htextcaps = ic->ic_htextcaps; 418 vap->iv_opmode = opmode; 419 vap->iv_caps |= ieee80211_opcap[opmode]; 420 switch (opmode) { 421 case IEEE80211_M_WDS: 422 /* 423 * WDS links must specify the bssid of the far end. 424 * For legacy operation this is a static relationship. 425 * For non-legacy operation the station must associate 426 * and be authorized to pass traffic. Plumbing the 427 * vap to the proper node happens when the vap 428 * transitions to RUN state. 429 */ 430 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 431 vap->iv_flags |= IEEE80211_F_DESBSSID; 432 if (flags & IEEE80211_CLONE_WDSLEGACY) 433 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 434 break; 435 #ifdef IEEE80211_SUPPORT_TDMA 436 case IEEE80211_M_AHDEMO: 437 if (flags & IEEE80211_CLONE_TDMA) { 438 /* NB: checked before clone operation allowed */ 439 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 440 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 441 /* 442 * Propagate TDMA capability to mark vap; this 443 * cannot be removed and is used to distinguish 444 * regular ahdemo operation from ahdemo+tdma. 445 */ 446 vap->iv_caps |= IEEE80211_C_TDMA; 447 } 448 break; 449 #endif 450 } 451 /* auto-enable s/w beacon miss support */ 452 if (flags & IEEE80211_CLONE_NOBEACONS) 453 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 454 /* auto-generated or user supplied MAC address */ 455 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 456 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 457 /* 458 * Enable various functionality by default if we're 459 * capable; the driver can override us if it knows better. 460 */ 461 if (vap->iv_caps & IEEE80211_C_WME) 462 vap->iv_flags |= IEEE80211_F_WME; 463 if (vap->iv_caps & IEEE80211_C_BURST) 464 vap->iv_flags |= IEEE80211_F_BURST; 465 /* NB: bg scanning only makes sense for station mode right now */ 466 if (vap->iv_opmode == IEEE80211_M_STA && 467 (vap->iv_caps & IEEE80211_C_BGSCAN)) 468 vap->iv_flags |= IEEE80211_F_BGSCAN; 469 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 470 /* NB: DFS support only makes sense for ap mode right now */ 471 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 472 (vap->iv_caps & IEEE80211_C_DFS)) 473 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 474 475 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 476 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 477 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 478 /* 479 * Install a default reset method for the ioctl support; 480 * the driver can override this. 481 */ 482 vap->iv_reset = default_reset; 483 484 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 485 486 ieee80211_sysctl_vattach(vap); 487 ieee80211_crypto_vattach(vap); 488 ieee80211_node_vattach(vap); 489 ieee80211_power_vattach(vap); 490 ieee80211_proto_vattach(vap); 491 #ifdef IEEE80211_SUPPORT_SUPERG 492 ieee80211_superg_vattach(vap); 493 #endif 494 ieee80211_ht_vattach(vap); 495 ieee80211_scan_vattach(vap); 496 ieee80211_regdomain_vattach(vap); 497 ieee80211_radiotap_vattach(vap); 498 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 499 500 return 0; 501 } 502 503 /* 504 * Activate a vap. State should have been prepared with a 505 * call to ieee80211_vap_setup and by the driver. On return 506 * from this call the vap is ready for use. 507 */ 508 int 509 ieee80211_vap_attach(struct ieee80211vap *vap, 510 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 511 { 512 struct ifnet *ifp = vap->iv_ifp; 513 struct ieee80211com *ic = vap->iv_ic; 514 struct ifmediareq imr; 515 int maxrate; 516 517 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 518 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 519 __func__, ieee80211_opmode_name[vap->iv_opmode], 520 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 521 522 /* 523 * Do late attach work that cannot happen until after 524 * the driver has had a chance to override defaults. 525 */ 526 ieee80211_node_latevattach(vap); 527 ieee80211_power_latevattach(vap); 528 529 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 530 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 531 ieee80211_media_status(ifp, &imr); 532 /* NB: strip explicit mode; we're actually in autoselect */ 533 ifmedia_set(&vap->iv_media, 534 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 535 if (maxrate) 536 ifp->if_baudrate = IF_Mbps(maxrate); 537 538 ether_ifattach(ifp, vap->iv_myaddr); 539 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 540 /* NB: disallow transmit */ 541 ifp->if_transmit = null_transmit; 542 ifp->if_output = null_output; 543 } else { 544 /* hook output method setup by ether_ifattach */ 545 vap->iv_output = ifp->if_output; 546 ifp->if_output = ieee80211_output; 547 } 548 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 549 550 IEEE80211_LOCK(ic); 551 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 552 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 553 #ifdef IEEE80211_SUPPORT_SUPERG 554 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 555 #endif 556 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 557 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 558 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 559 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 560 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 561 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 562 IEEE80211_UNLOCK(ic); 563 564 return 1; 565 } 566 567 /* 568 * Tear down vap state and reclaim the ifnet. 569 * The driver is assumed to have prepared for 570 * this; e.g. by turning off interrupts for the 571 * underlying device. 572 */ 573 void 574 ieee80211_vap_detach(struct ieee80211vap *vap) 575 { 576 struct ieee80211com *ic = vap->iv_ic; 577 struct ifnet *ifp = vap->iv_ifp; 578 579 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 580 __func__, ieee80211_opmode_name[vap->iv_opmode], 581 ic->ic_ifp->if_xname); 582 583 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 584 ether_ifdetach(ifp); 585 586 ieee80211_stop(vap); 587 588 /* 589 * Flush any deferred vap tasks. 590 */ 591 ieee80211_draintask(ic, &vap->iv_nstate_task); 592 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 593 594 /* XXX band-aid until ifnet handles this for us */ 595 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 596 597 IEEE80211_LOCK(ic); 598 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 599 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 600 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 601 #ifdef IEEE80211_SUPPORT_SUPERG 602 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 603 #endif 604 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 605 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 606 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 607 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 608 /* NB: this handles the bpfdetach done below */ 609 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 610 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 611 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 612 IEEE80211_UNLOCK(ic); 613 614 ifmedia_removeall(&vap->iv_media); 615 616 ieee80211_radiotap_vdetach(vap); 617 ieee80211_regdomain_vdetach(vap); 618 ieee80211_scan_vdetach(vap); 619 #ifdef IEEE80211_SUPPORT_SUPERG 620 ieee80211_superg_vdetach(vap); 621 #endif 622 ieee80211_ht_vdetach(vap); 623 /* NB: must be before ieee80211_node_vdetach */ 624 ieee80211_proto_vdetach(vap); 625 ieee80211_crypto_vdetach(vap); 626 ieee80211_power_vdetach(vap); 627 ieee80211_node_vdetach(vap); 628 ieee80211_sysctl_vdetach(vap); 629 630 if_free(ifp); 631 } 632 633 /* 634 * Synchronize flag bit state in the parent ifnet structure 635 * according to the state of all vap ifnet's. This is used, 636 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 637 */ 638 void 639 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 640 { 641 struct ifnet *ifp = ic->ic_ifp; 642 struct ieee80211vap *vap; 643 int bit, oflags; 644 645 IEEE80211_LOCK_ASSERT(ic); 646 647 bit = 0; 648 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 649 if (vap->iv_ifp->if_flags & flag) { 650 /* 651 * XXX the bridge sets PROMISC but we don't want to 652 * enable it on the device, discard here so all the 653 * drivers don't need to special-case it 654 */ 655 if (flag == IFF_PROMISC && 656 !(vap->iv_opmode == IEEE80211_M_MONITOR || 657 (vap->iv_opmode == IEEE80211_M_AHDEMO && 658 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 659 continue; 660 bit = 1; 661 break; 662 } 663 oflags = ifp->if_flags; 664 if (bit) 665 ifp->if_flags |= flag; 666 else 667 ifp->if_flags &= ~flag; 668 if ((ifp->if_flags ^ oflags) & flag) { 669 /* XXX should we return 1/0 and let caller do this? */ 670 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 671 if (flag == IFF_PROMISC) 672 ieee80211_runtask(ic, &ic->ic_promisc_task); 673 else if (flag == IFF_ALLMULTI) 674 ieee80211_runtask(ic, &ic->ic_mcast_task); 675 } 676 } 677 } 678 679 /* 680 * Synchronize flag bit state in the com structure 681 * according to the state of all vap's. This is used, 682 * for example, to handle state changes via ioctls. 683 */ 684 static void 685 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 686 { 687 struct ieee80211vap *vap; 688 int bit; 689 690 IEEE80211_LOCK_ASSERT(ic); 691 692 bit = 0; 693 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 694 if (vap->iv_flags & flag) { 695 bit = 1; 696 break; 697 } 698 if (bit) 699 ic->ic_flags |= flag; 700 else 701 ic->ic_flags &= ~flag; 702 } 703 704 void 705 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 706 { 707 struct ieee80211com *ic = vap->iv_ic; 708 709 IEEE80211_LOCK(ic); 710 if (flag < 0) { 711 flag = -flag; 712 vap->iv_flags &= ~flag; 713 } else 714 vap->iv_flags |= flag; 715 ieee80211_syncflag_locked(ic, flag); 716 IEEE80211_UNLOCK(ic); 717 } 718 719 /* 720 * Synchronize flags_ht bit state in the com structure 721 * according to the state of all vap's. This is used, 722 * for example, to handle state changes via ioctls. 723 */ 724 static void 725 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 726 { 727 struct ieee80211vap *vap; 728 int bit; 729 730 IEEE80211_LOCK_ASSERT(ic); 731 732 bit = 0; 733 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 734 if (vap->iv_flags_ht & flag) { 735 bit = 1; 736 break; 737 } 738 if (bit) 739 ic->ic_flags_ht |= flag; 740 else 741 ic->ic_flags_ht &= ~flag; 742 } 743 744 void 745 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 746 { 747 struct ieee80211com *ic = vap->iv_ic; 748 749 IEEE80211_LOCK(ic); 750 if (flag < 0) { 751 flag = -flag; 752 vap->iv_flags_ht &= ~flag; 753 } else 754 vap->iv_flags_ht |= flag; 755 ieee80211_syncflag_ht_locked(ic, flag); 756 IEEE80211_UNLOCK(ic); 757 } 758 759 /* 760 * Synchronize flags_ext bit state in the com structure 761 * according to the state of all vap's. This is used, 762 * for example, to handle state changes via ioctls. 763 */ 764 static void 765 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 766 { 767 struct ieee80211vap *vap; 768 int bit; 769 770 IEEE80211_LOCK_ASSERT(ic); 771 772 bit = 0; 773 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 774 if (vap->iv_flags_ext & flag) { 775 bit = 1; 776 break; 777 } 778 if (bit) 779 ic->ic_flags_ext |= flag; 780 else 781 ic->ic_flags_ext &= ~flag; 782 } 783 784 void 785 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 786 { 787 struct ieee80211com *ic = vap->iv_ic; 788 789 IEEE80211_LOCK(ic); 790 if (flag < 0) { 791 flag = -flag; 792 vap->iv_flags_ext &= ~flag; 793 } else 794 vap->iv_flags_ext |= flag; 795 ieee80211_syncflag_ext_locked(ic, flag); 796 IEEE80211_UNLOCK(ic); 797 } 798 799 static __inline int 800 mapgsm(u_int freq, u_int flags) 801 { 802 freq *= 10; 803 if (flags & IEEE80211_CHAN_QUARTER) 804 freq += 5; 805 else if (flags & IEEE80211_CHAN_HALF) 806 freq += 10; 807 else 808 freq += 20; 809 /* NB: there is no 907/20 wide but leave room */ 810 return (freq - 906*10) / 5; 811 } 812 813 static __inline int 814 mappsb(u_int freq, u_int flags) 815 { 816 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 817 } 818 819 /* 820 * Convert MHz frequency to IEEE channel number. 821 */ 822 int 823 ieee80211_mhz2ieee(u_int freq, u_int flags) 824 { 825 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 826 if (flags & IEEE80211_CHAN_GSM) 827 return mapgsm(freq, flags); 828 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 829 if (freq == 2484) 830 return 14; 831 if (freq < 2484) 832 return ((int) freq - 2407) / 5; 833 else 834 return 15 + ((freq - 2512) / 20); 835 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 836 if (freq <= 5000) { 837 /* XXX check regdomain? */ 838 if (IS_FREQ_IN_PSB(freq)) 839 return mappsb(freq, flags); 840 return (freq - 4000) / 5; 841 } else 842 return (freq - 5000) / 5; 843 } else { /* either, guess */ 844 if (freq == 2484) 845 return 14; 846 if (freq < 2484) { 847 if (907 <= freq && freq <= 922) 848 return mapgsm(freq, flags); 849 return ((int) freq - 2407) / 5; 850 } 851 if (freq < 5000) { 852 if (IS_FREQ_IN_PSB(freq)) 853 return mappsb(freq, flags); 854 else if (freq > 4900) 855 return (freq - 4000) / 5; 856 else 857 return 15 + ((freq - 2512) / 20); 858 } 859 return (freq - 5000) / 5; 860 } 861 #undef IS_FREQ_IN_PSB 862 } 863 864 /* 865 * Convert channel to IEEE channel number. 866 */ 867 int 868 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 869 { 870 if (c == NULL) { 871 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 872 return 0; /* XXX */ 873 } 874 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 875 } 876 877 /* 878 * Convert IEEE channel number to MHz frequency. 879 */ 880 u_int 881 ieee80211_ieee2mhz(u_int chan, u_int flags) 882 { 883 if (flags & IEEE80211_CHAN_GSM) 884 return 907 + 5 * (chan / 10); 885 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 886 if (chan == 14) 887 return 2484; 888 if (chan < 14) 889 return 2407 + chan*5; 890 else 891 return 2512 + ((chan-15)*20); 892 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 893 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 894 chan -= 37; 895 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 896 } 897 return 5000 + (chan*5); 898 } else { /* either, guess */ 899 /* XXX can't distinguish PSB+GSM channels */ 900 if (chan == 14) 901 return 2484; 902 if (chan < 14) /* 0-13 */ 903 return 2407 + chan*5; 904 if (chan < 27) /* 15-26 */ 905 return 2512 + ((chan-15)*20); 906 return 5000 + (chan*5); 907 } 908 } 909 910 /* 911 * Locate a channel given a frequency+flags. We cache 912 * the previous lookup to optimize switching between two 913 * channels--as happens with dynamic turbo. 914 */ 915 struct ieee80211_channel * 916 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 917 { 918 struct ieee80211_channel *c; 919 int i; 920 921 flags &= IEEE80211_CHAN_ALLTURBO; 922 c = ic->ic_prevchan; 923 if (c != NULL && c->ic_freq == freq && 924 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 925 return c; 926 /* brute force search */ 927 for (i = 0; i < ic->ic_nchans; i++) { 928 c = &ic->ic_channels[i]; 929 if (c->ic_freq == freq && 930 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 931 return c; 932 } 933 return NULL; 934 } 935 936 /* 937 * Locate a channel given a channel number+flags. We cache 938 * the previous lookup to optimize switching between two 939 * channels--as happens with dynamic turbo. 940 */ 941 struct ieee80211_channel * 942 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 943 { 944 struct ieee80211_channel *c; 945 int i; 946 947 flags &= IEEE80211_CHAN_ALLTURBO; 948 c = ic->ic_prevchan; 949 if (c != NULL && c->ic_ieee == ieee && 950 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 951 return c; 952 /* brute force search */ 953 for (i = 0; i < ic->ic_nchans; i++) { 954 c = &ic->ic_channels[i]; 955 if (c->ic_ieee == ieee && 956 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 957 return c; 958 } 959 return NULL; 960 } 961 962 static void 963 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 964 { 965 #define ADD(_ic, _s, _o) \ 966 ifmedia_add(media, \ 967 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 968 static const u_int mopts[IEEE80211_MODE_MAX] = { 969 [IEEE80211_MODE_AUTO] = IFM_AUTO, 970 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 971 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 972 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 973 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 974 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 975 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 976 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 977 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 978 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 979 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 980 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 981 }; 982 u_int mopt; 983 984 mopt = mopts[mode]; 985 if (addsta) 986 ADD(ic, mword, mopt); /* STA mode has no cap */ 987 if (caps & IEEE80211_C_IBSS) 988 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 989 if (caps & IEEE80211_C_HOSTAP) 990 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 991 if (caps & IEEE80211_C_AHDEMO) 992 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 993 if (caps & IEEE80211_C_MONITOR) 994 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 995 if (caps & IEEE80211_C_WDS) 996 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 997 if (caps & IEEE80211_C_MBSS) 998 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 999 #undef ADD 1000 } 1001 1002 /* 1003 * Setup the media data structures according to the channel and 1004 * rate tables. 1005 */ 1006 static int 1007 ieee80211_media_setup(struct ieee80211com *ic, 1008 struct ifmedia *media, int caps, int addsta, 1009 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1010 { 1011 int i, j, mode, rate, maxrate, mword, r; 1012 const struct ieee80211_rateset *rs; 1013 struct ieee80211_rateset allrates; 1014 1015 /* 1016 * Fill in media characteristics. 1017 */ 1018 ifmedia_init(media, 0, media_change, media_stat); 1019 maxrate = 0; 1020 /* 1021 * Add media for legacy operating modes. 1022 */ 1023 memset(&allrates, 0, sizeof(allrates)); 1024 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1025 if (isclr(ic->ic_modecaps, mode)) 1026 continue; 1027 addmedia(media, caps, addsta, mode, IFM_AUTO); 1028 if (mode == IEEE80211_MODE_AUTO) 1029 continue; 1030 rs = &ic->ic_sup_rates[mode]; 1031 for (i = 0; i < rs->rs_nrates; i++) { 1032 rate = rs->rs_rates[i]; 1033 mword = ieee80211_rate2media(ic, rate, mode); 1034 if (mword == 0) 1035 continue; 1036 addmedia(media, caps, addsta, mode, mword); 1037 /* 1038 * Add legacy rate to the collection of all rates. 1039 */ 1040 r = rate & IEEE80211_RATE_VAL; 1041 for (j = 0; j < allrates.rs_nrates; j++) 1042 if (allrates.rs_rates[j] == r) 1043 break; 1044 if (j == allrates.rs_nrates) { 1045 /* unique, add to the set */ 1046 allrates.rs_rates[j] = r; 1047 allrates.rs_nrates++; 1048 } 1049 rate = (rate & IEEE80211_RATE_VAL) / 2; 1050 if (rate > maxrate) 1051 maxrate = rate; 1052 } 1053 } 1054 for (i = 0; i < allrates.rs_nrates; i++) { 1055 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1056 IEEE80211_MODE_AUTO); 1057 if (mword == 0) 1058 continue; 1059 /* NB: remove media options from mword */ 1060 addmedia(media, caps, addsta, 1061 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1062 } 1063 /* 1064 * Add HT/11n media. Note that we do not have enough 1065 * bits in the media subtype to express the MCS so we 1066 * use a "placeholder" media subtype and any fixed MCS 1067 * must be specified with a different mechanism. 1068 */ 1069 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1070 if (isclr(ic->ic_modecaps, mode)) 1071 continue; 1072 addmedia(media, caps, addsta, mode, IFM_AUTO); 1073 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1074 } 1075 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1076 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1077 addmedia(media, caps, addsta, 1078 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1079 i = ic->ic_txstream * 8 - 1; 1080 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1081 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1082 rate = ieee80211_htrates[i].ht40_rate_400ns; 1083 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1084 rate = ieee80211_htrates[i].ht40_rate_800ns; 1085 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1086 rate = ieee80211_htrates[i].ht20_rate_400ns; 1087 else 1088 rate = ieee80211_htrates[i].ht20_rate_800ns; 1089 if (rate > maxrate) 1090 maxrate = rate; 1091 } 1092 return maxrate; 1093 } 1094 1095 void 1096 ieee80211_media_init(struct ieee80211com *ic) 1097 { 1098 struct ifnet *ifp = ic->ic_ifp; 1099 int maxrate; 1100 1101 /* NB: this works because the structure is initialized to zero */ 1102 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1103 /* 1104 * We are re-initializing the channel list; clear 1105 * the existing media state as the media routines 1106 * don't suppress duplicates. 1107 */ 1108 ifmedia_removeall(&ic->ic_media); 1109 } 1110 ieee80211_chan_init(ic); 1111 1112 /* 1113 * Recalculate media settings in case new channel list changes 1114 * the set of available modes. 1115 */ 1116 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1117 ieee80211com_media_change, ieee80211com_media_status); 1118 /* NB: strip explicit mode; we're actually in autoselect */ 1119 ifmedia_set(&ic->ic_media, 1120 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1121 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1122 if (maxrate) 1123 ifp->if_baudrate = IF_Mbps(maxrate); 1124 1125 /* XXX need to propagate new media settings to vap's */ 1126 } 1127 1128 /* XXX inline or eliminate? */ 1129 const struct ieee80211_rateset * 1130 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1131 { 1132 /* XXX does this work for 11ng basic rates? */ 1133 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1134 } 1135 1136 void 1137 ieee80211_announce(struct ieee80211com *ic) 1138 { 1139 struct ifnet *ifp = ic->ic_ifp; 1140 int i, mode, rate, mword; 1141 const struct ieee80211_rateset *rs; 1142 1143 /* NB: skip AUTO since it has no rates */ 1144 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1145 if (isclr(ic->ic_modecaps, mode)) 1146 continue; 1147 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1148 rs = &ic->ic_sup_rates[mode]; 1149 for (i = 0; i < rs->rs_nrates; i++) { 1150 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1151 if (mword == 0) 1152 continue; 1153 rate = ieee80211_media2rate(mword); 1154 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1155 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1156 } 1157 printf("\n"); 1158 } 1159 ieee80211_ht_announce(ic); 1160 } 1161 1162 void 1163 ieee80211_announce_channels(struct ieee80211com *ic) 1164 { 1165 const struct ieee80211_channel *c; 1166 char type; 1167 int i, cw; 1168 1169 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1170 for (i = 0; i < ic->ic_nchans; i++) { 1171 c = &ic->ic_channels[i]; 1172 if (IEEE80211_IS_CHAN_ST(c)) 1173 type = 'S'; 1174 else if (IEEE80211_IS_CHAN_108A(c)) 1175 type = 'T'; 1176 else if (IEEE80211_IS_CHAN_108G(c)) 1177 type = 'G'; 1178 else if (IEEE80211_IS_CHAN_HT(c)) 1179 type = 'n'; 1180 else if (IEEE80211_IS_CHAN_A(c)) 1181 type = 'a'; 1182 else if (IEEE80211_IS_CHAN_ANYG(c)) 1183 type = 'g'; 1184 else if (IEEE80211_IS_CHAN_B(c)) 1185 type = 'b'; 1186 else 1187 type = 'f'; 1188 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1189 cw = 40; 1190 else if (IEEE80211_IS_CHAN_HALF(c)) 1191 cw = 10; 1192 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1193 cw = 5; 1194 else 1195 cw = 20; 1196 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1197 , c->ic_ieee, c->ic_freq, type 1198 , cw 1199 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1200 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1201 , c->ic_maxregpower 1202 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1203 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1204 ); 1205 } 1206 } 1207 1208 static int 1209 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1210 { 1211 switch (IFM_MODE(ime->ifm_media)) { 1212 case IFM_IEEE80211_11A: 1213 *mode = IEEE80211_MODE_11A; 1214 break; 1215 case IFM_IEEE80211_11B: 1216 *mode = IEEE80211_MODE_11B; 1217 break; 1218 case IFM_IEEE80211_11G: 1219 *mode = IEEE80211_MODE_11G; 1220 break; 1221 case IFM_IEEE80211_FH: 1222 *mode = IEEE80211_MODE_FH; 1223 break; 1224 case IFM_IEEE80211_11NA: 1225 *mode = IEEE80211_MODE_11NA; 1226 break; 1227 case IFM_IEEE80211_11NG: 1228 *mode = IEEE80211_MODE_11NG; 1229 break; 1230 case IFM_AUTO: 1231 *mode = IEEE80211_MODE_AUTO; 1232 break; 1233 default: 1234 return 0; 1235 } 1236 /* 1237 * Turbo mode is an ``option''. 1238 * XXX does not apply to AUTO 1239 */ 1240 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1241 if (*mode == IEEE80211_MODE_11A) { 1242 if (flags & IEEE80211_F_TURBOP) 1243 *mode = IEEE80211_MODE_TURBO_A; 1244 else 1245 *mode = IEEE80211_MODE_STURBO_A; 1246 } else if (*mode == IEEE80211_MODE_11G) 1247 *mode = IEEE80211_MODE_TURBO_G; 1248 else 1249 return 0; 1250 } 1251 /* XXX HT40 +/- */ 1252 return 1; 1253 } 1254 1255 /* 1256 * Handle a media change request on the underlying interface. 1257 */ 1258 int 1259 ieee80211com_media_change(struct ifnet *ifp) 1260 { 1261 return EINVAL; 1262 } 1263 1264 /* 1265 * Handle a media change request on the vap interface. 1266 */ 1267 int 1268 ieee80211_media_change(struct ifnet *ifp) 1269 { 1270 struct ieee80211vap *vap = ifp->if_softc; 1271 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1272 uint16_t newmode; 1273 1274 if (!media2mode(ime, vap->iv_flags, &newmode)) 1275 return EINVAL; 1276 if (vap->iv_des_mode != newmode) { 1277 vap->iv_des_mode = newmode; 1278 /* XXX kick state machine if up+running */ 1279 } 1280 return 0; 1281 } 1282 1283 /* 1284 * Common code to calculate the media status word 1285 * from the operating mode and channel state. 1286 */ 1287 static int 1288 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1289 { 1290 int status; 1291 1292 status = IFM_IEEE80211; 1293 switch (opmode) { 1294 case IEEE80211_M_STA: 1295 break; 1296 case IEEE80211_M_IBSS: 1297 status |= IFM_IEEE80211_ADHOC; 1298 break; 1299 case IEEE80211_M_HOSTAP: 1300 status |= IFM_IEEE80211_HOSTAP; 1301 break; 1302 case IEEE80211_M_MONITOR: 1303 status |= IFM_IEEE80211_MONITOR; 1304 break; 1305 case IEEE80211_M_AHDEMO: 1306 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1307 break; 1308 case IEEE80211_M_WDS: 1309 status |= IFM_IEEE80211_WDS; 1310 break; 1311 case IEEE80211_M_MBSS: 1312 status |= IFM_IEEE80211_MBSS; 1313 break; 1314 } 1315 if (IEEE80211_IS_CHAN_HTA(chan)) { 1316 status |= IFM_IEEE80211_11NA; 1317 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1318 status |= IFM_IEEE80211_11NG; 1319 } else if (IEEE80211_IS_CHAN_A(chan)) { 1320 status |= IFM_IEEE80211_11A; 1321 } else if (IEEE80211_IS_CHAN_B(chan)) { 1322 status |= IFM_IEEE80211_11B; 1323 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1324 status |= IFM_IEEE80211_11G; 1325 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1326 status |= IFM_IEEE80211_FH; 1327 } 1328 /* XXX else complain? */ 1329 1330 if (IEEE80211_IS_CHAN_TURBO(chan)) 1331 status |= IFM_IEEE80211_TURBO; 1332 #if 0 1333 if (IEEE80211_IS_CHAN_HT20(chan)) 1334 status |= IFM_IEEE80211_HT20; 1335 if (IEEE80211_IS_CHAN_HT40(chan)) 1336 status |= IFM_IEEE80211_HT40; 1337 #endif 1338 return status; 1339 } 1340 1341 static void 1342 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1343 { 1344 struct ieee80211com *ic = ifp->if_l2com; 1345 struct ieee80211vap *vap; 1346 1347 imr->ifm_status = IFM_AVALID; 1348 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1349 if (vap->iv_ifp->if_flags & IFF_UP) { 1350 imr->ifm_status |= IFM_ACTIVE; 1351 break; 1352 } 1353 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1354 if (imr->ifm_status & IFM_ACTIVE) 1355 imr->ifm_current = imr->ifm_active; 1356 } 1357 1358 void 1359 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1360 { 1361 struct ieee80211vap *vap = ifp->if_softc; 1362 struct ieee80211com *ic = vap->iv_ic; 1363 enum ieee80211_phymode mode; 1364 1365 imr->ifm_status = IFM_AVALID; 1366 /* 1367 * NB: use the current channel's mode to lock down a xmit 1368 * rate only when running; otherwise we may have a mismatch 1369 * in which case the rate will not be convertible. 1370 */ 1371 if (vap->iv_state == IEEE80211_S_RUN) { 1372 imr->ifm_status |= IFM_ACTIVE; 1373 mode = ieee80211_chan2mode(ic->ic_curchan); 1374 } else 1375 mode = IEEE80211_MODE_AUTO; 1376 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1377 /* 1378 * Calculate a current rate if possible. 1379 */ 1380 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1381 /* 1382 * A fixed rate is set, report that. 1383 */ 1384 imr->ifm_active |= ieee80211_rate2media(ic, 1385 vap->iv_txparms[mode].ucastrate, mode); 1386 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1387 /* 1388 * In station mode report the current transmit rate. 1389 */ 1390 imr->ifm_active |= ieee80211_rate2media(ic, 1391 vap->iv_bss->ni_txrate, mode); 1392 } else 1393 imr->ifm_active |= IFM_AUTO; 1394 if (imr->ifm_status & IFM_ACTIVE) 1395 imr->ifm_current = imr->ifm_active; 1396 } 1397 1398 /* 1399 * Set the current phy mode and recalculate the active channel 1400 * set based on the available channels for this mode. Also 1401 * select a new default/current channel if the current one is 1402 * inappropriate for this mode. 1403 */ 1404 int 1405 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1406 { 1407 /* 1408 * Adjust basic rates in 11b/11g supported rate set. 1409 * Note that if operating on a hal/quarter rate channel 1410 * this is a noop as those rates sets are different 1411 * and used instead. 1412 */ 1413 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1414 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1415 1416 ic->ic_curmode = mode; 1417 ieee80211_reset_erp(ic); /* reset ERP state */ 1418 1419 return 0; 1420 } 1421 1422 /* 1423 * Return the phy mode for with the specified channel. 1424 */ 1425 enum ieee80211_phymode 1426 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1427 { 1428 1429 if (IEEE80211_IS_CHAN_HTA(chan)) 1430 return IEEE80211_MODE_11NA; 1431 else if (IEEE80211_IS_CHAN_HTG(chan)) 1432 return IEEE80211_MODE_11NG; 1433 else if (IEEE80211_IS_CHAN_108G(chan)) 1434 return IEEE80211_MODE_TURBO_G; 1435 else if (IEEE80211_IS_CHAN_ST(chan)) 1436 return IEEE80211_MODE_STURBO_A; 1437 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1438 return IEEE80211_MODE_TURBO_A; 1439 else if (IEEE80211_IS_CHAN_HALF(chan)) 1440 return IEEE80211_MODE_HALF; 1441 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1442 return IEEE80211_MODE_QUARTER; 1443 else if (IEEE80211_IS_CHAN_A(chan)) 1444 return IEEE80211_MODE_11A; 1445 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1446 return IEEE80211_MODE_11G; 1447 else if (IEEE80211_IS_CHAN_B(chan)) 1448 return IEEE80211_MODE_11B; 1449 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1450 return IEEE80211_MODE_FH; 1451 1452 /* NB: should not get here */ 1453 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1454 __func__, chan->ic_freq, chan->ic_flags); 1455 return IEEE80211_MODE_11B; 1456 } 1457 1458 struct ratemedia { 1459 u_int match; /* rate + mode */ 1460 u_int media; /* if_media rate */ 1461 }; 1462 1463 static int 1464 findmedia(const struct ratemedia rates[], int n, u_int match) 1465 { 1466 int i; 1467 1468 for (i = 0; i < n; i++) 1469 if (rates[i].match == match) 1470 return rates[i].media; 1471 return IFM_AUTO; 1472 } 1473 1474 /* 1475 * Convert IEEE80211 rate value to ifmedia subtype. 1476 * Rate is either a legacy rate in units of 0.5Mbps 1477 * or an MCS index. 1478 */ 1479 int 1480 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1481 { 1482 #define N(a) (sizeof(a) / sizeof(a[0])) 1483 static const struct ratemedia rates[] = { 1484 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1485 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1486 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1487 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1488 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1489 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1490 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1491 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1492 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1493 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1494 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1495 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1496 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1497 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1498 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1499 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1500 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1501 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1502 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1503 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1504 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1505 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1506 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1507 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1508 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1509 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1510 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1511 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1512 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1513 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1514 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1515 }; 1516 static const struct ratemedia htrates[] = { 1517 { 0, IFM_IEEE80211_MCS }, 1518 { 1, IFM_IEEE80211_MCS }, 1519 { 2, IFM_IEEE80211_MCS }, 1520 { 3, IFM_IEEE80211_MCS }, 1521 { 4, IFM_IEEE80211_MCS }, 1522 { 5, IFM_IEEE80211_MCS }, 1523 { 6, IFM_IEEE80211_MCS }, 1524 { 7, IFM_IEEE80211_MCS }, 1525 { 8, IFM_IEEE80211_MCS }, 1526 { 9, IFM_IEEE80211_MCS }, 1527 { 10, IFM_IEEE80211_MCS }, 1528 { 11, IFM_IEEE80211_MCS }, 1529 { 12, IFM_IEEE80211_MCS }, 1530 { 13, IFM_IEEE80211_MCS }, 1531 { 14, IFM_IEEE80211_MCS }, 1532 { 15, IFM_IEEE80211_MCS }, 1533 { 16, IFM_IEEE80211_MCS }, 1534 { 17, IFM_IEEE80211_MCS }, 1535 { 18, IFM_IEEE80211_MCS }, 1536 { 19, IFM_IEEE80211_MCS }, 1537 { 20, IFM_IEEE80211_MCS }, 1538 { 21, IFM_IEEE80211_MCS }, 1539 { 22, IFM_IEEE80211_MCS }, 1540 { 23, IFM_IEEE80211_MCS }, 1541 { 24, IFM_IEEE80211_MCS }, 1542 { 25, IFM_IEEE80211_MCS }, 1543 { 26, IFM_IEEE80211_MCS }, 1544 { 27, IFM_IEEE80211_MCS }, 1545 { 28, IFM_IEEE80211_MCS }, 1546 { 29, IFM_IEEE80211_MCS }, 1547 { 30, IFM_IEEE80211_MCS }, 1548 { 31, IFM_IEEE80211_MCS }, 1549 { 32, IFM_IEEE80211_MCS }, 1550 { 33, IFM_IEEE80211_MCS }, 1551 { 34, IFM_IEEE80211_MCS }, 1552 { 35, IFM_IEEE80211_MCS }, 1553 { 36, IFM_IEEE80211_MCS }, 1554 { 37, IFM_IEEE80211_MCS }, 1555 { 38, IFM_IEEE80211_MCS }, 1556 { 39, IFM_IEEE80211_MCS }, 1557 { 40, IFM_IEEE80211_MCS }, 1558 { 41, IFM_IEEE80211_MCS }, 1559 { 42, IFM_IEEE80211_MCS }, 1560 { 43, IFM_IEEE80211_MCS }, 1561 { 44, IFM_IEEE80211_MCS }, 1562 { 45, IFM_IEEE80211_MCS }, 1563 { 46, IFM_IEEE80211_MCS }, 1564 { 47, IFM_IEEE80211_MCS }, 1565 { 48, IFM_IEEE80211_MCS }, 1566 { 49, IFM_IEEE80211_MCS }, 1567 { 50, IFM_IEEE80211_MCS }, 1568 { 51, IFM_IEEE80211_MCS }, 1569 { 52, IFM_IEEE80211_MCS }, 1570 { 53, IFM_IEEE80211_MCS }, 1571 { 54, IFM_IEEE80211_MCS }, 1572 { 55, IFM_IEEE80211_MCS }, 1573 { 56, IFM_IEEE80211_MCS }, 1574 { 57, IFM_IEEE80211_MCS }, 1575 { 58, IFM_IEEE80211_MCS }, 1576 { 59, IFM_IEEE80211_MCS }, 1577 { 60, IFM_IEEE80211_MCS }, 1578 { 61, IFM_IEEE80211_MCS }, 1579 { 62, IFM_IEEE80211_MCS }, 1580 { 63, IFM_IEEE80211_MCS }, 1581 { 64, IFM_IEEE80211_MCS }, 1582 { 65, IFM_IEEE80211_MCS }, 1583 { 66, IFM_IEEE80211_MCS }, 1584 { 67, IFM_IEEE80211_MCS }, 1585 { 68, IFM_IEEE80211_MCS }, 1586 { 69, IFM_IEEE80211_MCS }, 1587 { 70, IFM_IEEE80211_MCS }, 1588 { 71, IFM_IEEE80211_MCS }, 1589 { 72, IFM_IEEE80211_MCS }, 1590 { 73, IFM_IEEE80211_MCS }, 1591 { 74, IFM_IEEE80211_MCS }, 1592 { 75, IFM_IEEE80211_MCS }, 1593 { 76, IFM_IEEE80211_MCS }, 1594 }; 1595 int m; 1596 1597 /* 1598 * Check 11n rates first for match as an MCS. 1599 */ 1600 if (mode == IEEE80211_MODE_11NA) { 1601 if (rate & IEEE80211_RATE_MCS) { 1602 rate &= ~IEEE80211_RATE_MCS; 1603 m = findmedia(htrates, N(htrates), rate); 1604 if (m != IFM_AUTO) 1605 return m | IFM_IEEE80211_11NA; 1606 } 1607 } else if (mode == IEEE80211_MODE_11NG) { 1608 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1609 if (rate & IEEE80211_RATE_MCS) { 1610 rate &= ~IEEE80211_RATE_MCS; 1611 m = findmedia(htrates, N(htrates), rate); 1612 if (m != IFM_AUTO) 1613 return m | IFM_IEEE80211_11NG; 1614 } 1615 } 1616 rate &= IEEE80211_RATE_VAL; 1617 switch (mode) { 1618 case IEEE80211_MODE_11A: 1619 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1620 case IEEE80211_MODE_QUARTER: 1621 case IEEE80211_MODE_11NA: 1622 case IEEE80211_MODE_TURBO_A: 1623 case IEEE80211_MODE_STURBO_A: 1624 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1625 case IEEE80211_MODE_11B: 1626 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1627 case IEEE80211_MODE_FH: 1628 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1629 case IEEE80211_MODE_AUTO: 1630 /* NB: ic may be NULL for some drivers */ 1631 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1632 return findmedia(rates, N(rates), 1633 rate | IFM_IEEE80211_FH); 1634 /* NB: hack, 11g matches both 11b+11a rates */ 1635 /* fall thru... */ 1636 case IEEE80211_MODE_11G: 1637 case IEEE80211_MODE_11NG: 1638 case IEEE80211_MODE_TURBO_G: 1639 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1640 } 1641 return IFM_AUTO; 1642 #undef N 1643 } 1644 1645 int 1646 ieee80211_media2rate(int mword) 1647 { 1648 #define N(a) (sizeof(a) / sizeof(a[0])) 1649 static const int ieeerates[] = { 1650 -1, /* IFM_AUTO */ 1651 0, /* IFM_MANUAL */ 1652 0, /* IFM_NONE */ 1653 2, /* IFM_IEEE80211_FH1 */ 1654 4, /* IFM_IEEE80211_FH2 */ 1655 2, /* IFM_IEEE80211_DS1 */ 1656 4, /* IFM_IEEE80211_DS2 */ 1657 11, /* IFM_IEEE80211_DS5 */ 1658 22, /* IFM_IEEE80211_DS11 */ 1659 44, /* IFM_IEEE80211_DS22 */ 1660 12, /* IFM_IEEE80211_OFDM6 */ 1661 18, /* IFM_IEEE80211_OFDM9 */ 1662 24, /* IFM_IEEE80211_OFDM12 */ 1663 36, /* IFM_IEEE80211_OFDM18 */ 1664 48, /* IFM_IEEE80211_OFDM24 */ 1665 72, /* IFM_IEEE80211_OFDM36 */ 1666 96, /* IFM_IEEE80211_OFDM48 */ 1667 108, /* IFM_IEEE80211_OFDM54 */ 1668 144, /* IFM_IEEE80211_OFDM72 */ 1669 0, /* IFM_IEEE80211_DS354k */ 1670 0, /* IFM_IEEE80211_DS512k */ 1671 6, /* IFM_IEEE80211_OFDM3 */ 1672 9, /* IFM_IEEE80211_OFDM4 */ 1673 54, /* IFM_IEEE80211_OFDM27 */ 1674 -1, /* IFM_IEEE80211_MCS */ 1675 }; 1676 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1677 ieeerates[IFM_SUBTYPE(mword)] : 0; 1678 #undef N 1679 } 1680 1681 /* 1682 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1683 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1684 */ 1685 #define mix(a, b, c) \ 1686 do { \ 1687 a -= b; a -= c; a ^= (c >> 13); \ 1688 b -= c; b -= a; b ^= (a << 8); \ 1689 c -= a; c -= b; c ^= (b >> 13); \ 1690 a -= b; a -= c; a ^= (c >> 12); \ 1691 b -= c; b -= a; b ^= (a << 16); \ 1692 c -= a; c -= b; c ^= (b >> 5); \ 1693 a -= b; a -= c; a ^= (c >> 3); \ 1694 b -= c; b -= a; b ^= (a << 10); \ 1695 c -= a; c -= b; c ^= (b >> 15); \ 1696 } while (/*CONSTCOND*/0) 1697 1698 uint32_t 1699 ieee80211_mac_hash(const struct ieee80211com *ic, 1700 const uint8_t addr[IEEE80211_ADDR_LEN]) 1701 { 1702 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1703 1704 b += addr[5] << 8; 1705 b += addr[4]; 1706 a += addr[3] << 24; 1707 a += addr[2] << 16; 1708 a += addr[1] << 8; 1709 a += addr[0]; 1710 1711 mix(a, b, c); 1712 1713 return c; 1714 } 1715 #undef mix 1716