xref: /freebsd/sys/net80211/ieee80211.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ethernet.h>
46 
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_regdomain.h>
49 #ifdef IEEE80211_SUPPORT_SUPERG
50 #include <net80211/ieee80211_superg.h>
51 #endif
52 #include <net80211/ieee80211_ratectl.h>
53 
54 #include <net/bpf.h>
55 
56 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
57 	[IEEE80211_MODE_AUTO]	  = "auto",
58 	[IEEE80211_MODE_11A]	  = "11a",
59 	[IEEE80211_MODE_11B]	  = "11b",
60 	[IEEE80211_MODE_11G]	  = "11g",
61 	[IEEE80211_MODE_FH]	  = "FH",
62 	[IEEE80211_MODE_TURBO_A]  = "turboA",
63 	[IEEE80211_MODE_TURBO_G]  = "turboG",
64 	[IEEE80211_MODE_STURBO_A] = "sturboA",
65 	[IEEE80211_MODE_HALF]	  = "half",
66 	[IEEE80211_MODE_QUARTER]  = "quarter",
67 	[IEEE80211_MODE_11NA]	  = "11na",
68 	[IEEE80211_MODE_11NG]	  = "11ng",
69 };
70 /* map ieee80211_opmode to the corresponding capability bit */
71 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
72 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
73 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
74 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
75 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
76 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
77 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
78 #ifdef IEEE80211_SUPPORT_MESH
79 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
80 #endif
81 };
82 
83 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
84 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
85 
86 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
87 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
88 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
89 static	int ieee80211_media_setup(struct ieee80211com *ic,
90 		struct ifmedia *media, int caps, int addsta,
91 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
92 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
93 static	int ieee80211com_media_change(struct ifnet *);
94 static	int media_status(enum ieee80211_opmode,
95 		const struct ieee80211_channel *);
96 
97 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
98 
99 /*
100  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
101  */
102 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
103 static const struct ieee80211_rateset ieee80211_rateset_11a =
104 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
105 static const struct ieee80211_rateset ieee80211_rateset_half =
106 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
107 static const struct ieee80211_rateset ieee80211_rateset_quarter =
108 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
109 static const struct ieee80211_rateset ieee80211_rateset_11b =
110 	{ 4, { B(2), B(4), B(11), B(22) } };
111 /* NB: OFDM rates are handled specially based on mode */
112 static const struct ieee80211_rateset ieee80211_rateset_11g =
113 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
114 #undef B
115 
116 /*
117  * Fill in 802.11 available channel set, mark
118  * all available channels as active, and pick
119  * a default channel if not already specified.
120  */
121 static void
122 ieee80211_chan_init(struct ieee80211com *ic)
123 {
124 #define	DEFAULTRATES(m, def) do { \
125 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
126 		ic->ic_sup_rates[m] = def; \
127 } while (0)
128 	struct ieee80211_channel *c;
129 	int i;
130 
131 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
132 		("invalid number of channels specified: %u", ic->ic_nchans));
133 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
134 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
135 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
136 	for (i = 0; i < ic->ic_nchans; i++) {
137 		c = &ic->ic_channels[i];
138 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
139 		/*
140 		 * Help drivers that work only with frequencies by filling
141 		 * in IEEE channel #'s if not already calculated.  Note this
142 		 * mimics similar work done in ieee80211_setregdomain when
143 		 * changing regulatory state.
144 		 */
145 		if (c->ic_ieee == 0)
146 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
147 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
148 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
149 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
150 			    c->ic_flags);
151 		/* default max tx power to max regulatory */
152 		if (c->ic_maxpower == 0)
153 			c->ic_maxpower = 2*c->ic_maxregpower;
154 		setbit(ic->ic_chan_avail, c->ic_ieee);
155 		/*
156 		 * Identify mode capabilities.
157 		 */
158 		if (IEEE80211_IS_CHAN_A(c))
159 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
160 		if (IEEE80211_IS_CHAN_B(c))
161 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
162 		if (IEEE80211_IS_CHAN_ANYG(c))
163 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
164 		if (IEEE80211_IS_CHAN_FHSS(c))
165 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
166 		if (IEEE80211_IS_CHAN_108A(c))
167 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
168 		if (IEEE80211_IS_CHAN_108G(c))
169 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
170 		if (IEEE80211_IS_CHAN_ST(c))
171 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
172 		if (IEEE80211_IS_CHAN_HALF(c))
173 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
174 		if (IEEE80211_IS_CHAN_QUARTER(c))
175 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
176 		if (IEEE80211_IS_CHAN_HTA(c))
177 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
178 		if (IEEE80211_IS_CHAN_HTG(c))
179 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
180 	}
181 	/* initialize candidate channels to all available */
182 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
183 		sizeof(ic->ic_chan_avail));
184 
185 	/* sort channel table to allow lookup optimizations */
186 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
187 
188 	/* invalidate any previous state */
189 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
190 	ic->ic_prevchan = NULL;
191 	ic->ic_csa_newchan = NULL;
192 	/* arbitrarily pick the first channel */
193 	ic->ic_curchan = &ic->ic_channels[0];
194 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
195 
196 	/* fillin well-known rate sets if driver has not specified */
197 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
198 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
199 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
200 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
201 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
202 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
203 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
204 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
205 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
207 
208 	/*
209 	 * Setup required information to fill the mcsset field, if driver did
210 	 * not. Assume a 2T2R setup for historic reasons.
211 	 */
212 	if (ic->ic_rxstream == 0)
213 		ic->ic_rxstream = 2;
214 	if (ic->ic_txstream == 0)
215 		ic->ic_txstream = 2;
216 
217 	/*
218 	 * Set auto mode to reset active channel state and any desired channel.
219 	 */
220 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
221 #undef DEFAULTRATES
222 }
223 
224 static void
225 null_update_mcast(struct ifnet *ifp)
226 {
227 	if_printf(ifp, "need multicast update callback\n");
228 }
229 
230 static void
231 null_update_promisc(struct ifnet *ifp)
232 {
233 	if_printf(ifp, "need promiscuous mode update callback\n");
234 }
235 
236 static int
237 null_transmit(struct ifnet *ifp, struct mbuf *m)
238 {
239 	m_freem(m);
240 	ifp->if_oerrors++;
241 	return EACCES;		/* XXX EIO/EPERM? */
242 }
243 
244 static int
245 null_output(struct ifnet *ifp, struct mbuf *m,
246 	struct sockaddr *dst, struct route *ro)
247 {
248 	if_printf(ifp, "discard raw packet\n");
249 	return null_transmit(ifp, m);
250 }
251 
252 static void
253 null_input(struct ifnet *ifp, struct mbuf *m)
254 {
255 	if_printf(ifp, "if_input should not be called\n");
256 	m_freem(m);
257 }
258 
259 /*
260  * Attach/setup the common net80211 state.  Called by
261  * the driver on attach to prior to creating any vap's.
262  */
263 void
264 ieee80211_ifattach(struct ieee80211com *ic,
265 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
266 {
267 	struct ifnet *ifp = ic->ic_ifp;
268 	struct sockaddr_dl *sdl;
269 	struct ifaddr *ifa;
270 
271 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
272 
273 	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
274 	TAILQ_INIT(&ic->ic_vaps);
275 
276 	/* Create a taskqueue for all state changes */
277 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
278 	    taskqueue_thread_enqueue, &ic->ic_tq);
279 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq",
280 	    ifp->if_xname);
281 	/*
282 	 * Fill in 802.11 available channel set, mark all
283 	 * available channels as active, and pick a default
284 	 * channel if not already specified.
285 	 */
286 	ieee80211_media_init(ic);
287 
288 	ic->ic_update_mcast = null_update_mcast;
289 	ic->ic_update_promisc = null_update_promisc;
290 
291 	ic->ic_hash_key = arc4random();
292 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
293 	ic->ic_lintval = ic->ic_bintval;
294 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
295 
296 	ieee80211_crypto_attach(ic);
297 	ieee80211_node_attach(ic);
298 	ieee80211_power_attach(ic);
299 	ieee80211_proto_attach(ic);
300 #ifdef IEEE80211_SUPPORT_SUPERG
301 	ieee80211_superg_attach(ic);
302 #endif
303 	ieee80211_ht_attach(ic);
304 	ieee80211_scan_attach(ic);
305 	ieee80211_regdomain_attach(ic);
306 	ieee80211_dfs_attach(ic);
307 
308 	ieee80211_sysctl_attach(ic);
309 
310 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
311 	ifp->if_hdrlen = 0;
312 	if_attach(ifp);
313 	ifp->if_mtu = IEEE80211_MTU_MAX;
314 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
315 	ifp->if_output = null_output;
316 	ifp->if_input = null_input;	/* just in case */
317 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
318 
319 	ifa = ifaddr_byindex(ifp->if_index);
320 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
321 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
322 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
323 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
324 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
325 	ifa_free(ifa);
326 }
327 
328 /*
329  * Detach net80211 state on device detach.  Tear down
330  * all vap's and reclaim all common state prior to the
331  * device state going away.  Note we may call back into
332  * driver; it must be prepared for this.
333  */
334 void
335 ieee80211_ifdetach(struct ieee80211com *ic)
336 {
337 	struct ifnet *ifp = ic->ic_ifp;
338 	struct ieee80211vap *vap;
339 
340 	if_detach(ifp);
341 
342 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
343 		ieee80211_vap_destroy(vap);
344 	ieee80211_waitfor_parent(ic);
345 
346 	ieee80211_sysctl_detach(ic);
347 	ieee80211_dfs_detach(ic);
348 	ieee80211_regdomain_detach(ic);
349 	ieee80211_scan_detach(ic);
350 #ifdef IEEE80211_SUPPORT_SUPERG
351 	ieee80211_superg_detach(ic);
352 #endif
353 	ieee80211_ht_detach(ic);
354 	/* NB: must be called before ieee80211_node_detach */
355 	ieee80211_proto_detach(ic);
356 	ieee80211_crypto_detach(ic);
357 	ieee80211_power_detach(ic);
358 	ieee80211_node_detach(ic);
359 
360 	ifmedia_removeall(&ic->ic_media);
361 	taskqueue_free(ic->ic_tq);
362 	IEEE80211_LOCK_DESTROY(ic);
363 }
364 
365 /*
366  * Default reset method for use with the ioctl support.  This
367  * method is invoked after any state change in the 802.11
368  * layer that should be propagated to the hardware but not
369  * require re-initialization of the 802.11 state machine (e.g
370  * rescanning for an ap).  We always return ENETRESET which
371  * should cause the driver to re-initialize the device. Drivers
372  * can override this method to implement more optimized support.
373  */
374 static int
375 default_reset(struct ieee80211vap *vap, u_long cmd)
376 {
377 	return ENETRESET;
378 }
379 
380 /*
381  * Prepare a vap for use.  Drivers use this call to
382  * setup net80211 state in new vap's prior attaching
383  * them with ieee80211_vap_attach (below).
384  */
385 int
386 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
387 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
388 	const uint8_t bssid[IEEE80211_ADDR_LEN],
389 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
390 {
391 	struct ifnet *ifp;
392 
393 	ifp = if_alloc(IFT_ETHER);
394 	if (ifp == NULL) {
395 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
396 		    __func__);
397 		return ENOMEM;
398 	}
399 	if_initname(ifp, name, unit);
400 	ifp->if_softc = vap;			/* back pointer */
401 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
402 	ifp->if_start = ieee80211_start;
403 	ifp->if_ioctl = ieee80211_ioctl;
404 	ifp->if_init = ieee80211_init;
405 	/* NB: input+output filled in by ether_ifattach */
406 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
407 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
408 	IFQ_SET_READY(&ifp->if_snd);
409 
410 	vap->iv_ifp = ifp;
411 	vap->iv_ic = ic;
412 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
413 	vap->iv_flags_ext = ic->ic_flags_ext;
414 	vap->iv_flags_ven = ic->ic_flags_ven;
415 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
416 	vap->iv_htcaps = ic->ic_htcaps;
417 	vap->iv_htextcaps = ic->ic_htextcaps;
418 	vap->iv_opmode = opmode;
419 	vap->iv_caps |= ieee80211_opcap[opmode];
420 	switch (opmode) {
421 	case IEEE80211_M_WDS:
422 		/*
423 		 * WDS links must specify the bssid of the far end.
424 		 * For legacy operation this is a static relationship.
425 		 * For non-legacy operation the station must associate
426 		 * and be authorized to pass traffic.  Plumbing the
427 		 * vap to the proper node happens when the vap
428 		 * transitions to RUN state.
429 		 */
430 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
431 		vap->iv_flags |= IEEE80211_F_DESBSSID;
432 		if (flags & IEEE80211_CLONE_WDSLEGACY)
433 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
434 		break;
435 #ifdef IEEE80211_SUPPORT_TDMA
436 	case IEEE80211_M_AHDEMO:
437 		if (flags & IEEE80211_CLONE_TDMA) {
438 			/* NB: checked before clone operation allowed */
439 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
440 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
441 			/*
442 			 * Propagate TDMA capability to mark vap; this
443 			 * cannot be removed and is used to distinguish
444 			 * regular ahdemo operation from ahdemo+tdma.
445 			 */
446 			vap->iv_caps |= IEEE80211_C_TDMA;
447 		}
448 		break;
449 #endif
450 	}
451 	/* auto-enable s/w beacon miss support */
452 	if (flags & IEEE80211_CLONE_NOBEACONS)
453 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
454 	/* auto-generated or user supplied MAC address */
455 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
456 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
457 	/*
458 	 * Enable various functionality by default if we're
459 	 * capable; the driver can override us if it knows better.
460 	 */
461 	if (vap->iv_caps & IEEE80211_C_WME)
462 		vap->iv_flags |= IEEE80211_F_WME;
463 	if (vap->iv_caps & IEEE80211_C_BURST)
464 		vap->iv_flags |= IEEE80211_F_BURST;
465 	/* NB: bg scanning only makes sense for station mode right now */
466 	if (vap->iv_opmode == IEEE80211_M_STA &&
467 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
468 		vap->iv_flags |= IEEE80211_F_BGSCAN;
469 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
470 	/* NB: DFS support only makes sense for ap mode right now */
471 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
472 	    (vap->iv_caps & IEEE80211_C_DFS))
473 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
474 
475 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
476 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
477 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
478 	/*
479 	 * Install a default reset method for the ioctl support;
480 	 * the driver can override this.
481 	 */
482 	vap->iv_reset = default_reset;
483 
484 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
485 
486 	ieee80211_sysctl_vattach(vap);
487 	ieee80211_crypto_vattach(vap);
488 	ieee80211_node_vattach(vap);
489 	ieee80211_power_vattach(vap);
490 	ieee80211_proto_vattach(vap);
491 #ifdef IEEE80211_SUPPORT_SUPERG
492 	ieee80211_superg_vattach(vap);
493 #endif
494 	ieee80211_ht_vattach(vap);
495 	ieee80211_scan_vattach(vap);
496 	ieee80211_regdomain_vattach(vap);
497 	ieee80211_radiotap_vattach(vap);
498 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
499 
500 	return 0;
501 }
502 
503 /*
504  * Activate a vap.  State should have been prepared with a
505  * call to ieee80211_vap_setup and by the driver.  On return
506  * from this call the vap is ready for use.
507  */
508 int
509 ieee80211_vap_attach(struct ieee80211vap *vap,
510 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
511 {
512 	struct ifnet *ifp = vap->iv_ifp;
513 	struct ieee80211com *ic = vap->iv_ic;
514 	struct ifmediareq imr;
515 	int maxrate;
516 
517 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
518 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
519 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
520 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
521 
522 	/*
523 	 * Do late attach work that cannot happen until after
524 	 * the driver has had a chance to override defaults.
525 	 */
526 	ieee80211_node_latevattach(vap);
527 	ieee80211_power_latevattach(vap);
528 
529 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
530 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
531 	ieee80211_media_status(ifp, &imr);
532 	/* NB: strip explicit mode; we're actually in autoselect */
533 	ifmedia_set(&vap->iv_media,
534 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
535 	if (maxrate)
536 		ifp->if_baudrate = IF_Mbps(maxrate);
537 
538 	ether_ifattach(ifp, vap->iv_myaddr);
539 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
540 		/* NB: disallow transmit */
541 		ifp->if_transmit = null_transmit;
542 		ifp->if_output = null_output;
543 	} else {
544 		/* hook output method setup by ether_ifattach */
545 		vap->iv_output = ifp->if_output;
546 		ifp->if_output = ieee80211_output;
547 	}
548 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
549 
550 	IEEE80211_LOCK(ic);
551 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
552 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
553 #ifdef IEEE80211_SUPPORT_SUPERG
554 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
555 #endif
556 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
557 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
558 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
559 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
560 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
561 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
562 	IEEE80211_UNLOCK(ic);
563 
564 	return 1;
565 }
566 
567 /*
568  * Tear down vap state and reclaim the ifnet.
569  * The driver is assumed to have prepared for
570  * this; e.g. by turning off interrupts for the
571  * underlying device.
572  */
573 void
574 ieee80211_vap_detach(struct ieee80211vap *vap)
575 {
576 	struct ieee80211com *ic = vap->iv_ic;
577 	struct ifnet *ifp = vap->iv_ifp;
578 
579 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
580 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
581 	    ic->ic_ifp->if_xname);
582 
583 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
584 	ether_ifdetach(ifp);
585 
586 	ieee80211_stop(vap);
587 
588 	/*
589 	 * Flush any deferred vap tasks.
590 	 */
591 	ieee80211_draintask(ic, &vap->iv_nstate_task);
592 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
593 
594 	/* XXX band-aid until ifnet handles this for us */
595 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
596 
597 	IEEE80211_LOCK(ic);
598 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
599 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
600 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
601 #ifdef IEEE80211_SUPPORT_SUPERG
602 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
603 #endif
604 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
605 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
606 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
607 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
608 	/* NB: this handles the bpfdetach done below */
609 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
610 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
611 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
612 	IEEE80211_UNLOCK(ic);
613 
614 	ifmedia_removeall(&vap->iv_media);
615 
616 	ieee80211_radiotap_vdetach(vap);
617 	ieee80211_regdomain_vdetach(vap);
618 	ieee80211_scan_vdetach(vap);
619 #ifdef IEEE80211_SUPPORT_SUPERG
620 	ieee80211_superg_vdetach(vap);
621 #endif
622 	ieee80211_ht_vdetach(vap);
623 	/* NB: must be before ieee80211_node_vdetach */
624 	ieee80211_proto_vdetach(vap);
625 	ieee80211_crypto_vdetach(vap);
626 	ieee80211_power_vdetach(vap);
627 	ieee80211_node_vdetach(vap);
628 	ieee80211_sysctl_vdetach(vap);
629 
630 	if_free(ifp);
631 }
632 
633 /*
634  * Synchronize flag bit state in the parent ifnet structure
635  * according to the state of all vap ifnet's.  This is used,
636  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
637  */
638 void
639 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
640 {
641 	struct ifnet *ifp = ic->ic_ifp;
642 	struct ieee80211vap *vap;
643 	int bit, oflags;
644 
645 	IEEE80211_LOCK_ASSERT(ic);
646 
647 	bit = 0;
648 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
649 		if (vap->iv_ifp->if_flags & flag) {
650 			/*
651 			 * XXX the bridge sets PROMISC but we don't want to
652 			 * enable it on the device, discard here so all the
653 			 * drivers don't need to special-case it
654 			 */
655 			if (flag == IFF_PROMISC &&
656 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
657 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
658 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
659 				continue;
660 			bit = 1;
661 			break;
662 		}
663 	oflags = ifp->if_flags;
664 	if (bit)
665 		ifp->if_flags |= flag;
666 	else
667 		ifp->if_flags &= ~flag;
668 	if ((ifp->if_flags ^ oflags) & flag) {
669 		/* XXX should we return 1/0 and let caller do this? */
670 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
671 			if (flag == IFF_PROMISC)
672 				ieee80211_runtask(ic, &ic->ic_promisc_task);
673 			else if (flag == IFF_ALLMULTI)
674 				ieee80211_runtask(ic, &ic->ic_mcast_task);
675 		}
676 	}
677 }
678 
679 /*
680  * Synchronize flag bit state in the com structure
681  * according to the state of all vap's.  This is used,
682  * for example, to handle state changes via ioctls.
683  */
684 static void
685 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
686 {
687 	struct ieee80211vap *vap;
688 	int bit;
689 
690 	IEEE80211_LOCK_ASSERT(ic);
691 
692 	bit = 0;
693 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
694 		if (vap->iv_flags & flag) {
695 			bit = 1;
696 			break;
697 		}
698 	if (bit)
699 		ic->ic_flags |= flag;
700 	else
701 		ic->ic_flags &= ~flag;
702 }
703 
704 void
705 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
706 {
707 	struct ieee80211com *ic = vap->iv_ic;
708 
709 	IEEE80211_LOCK(ic);
710 	if (flag < 0) {
711 		flag = -flag;
712 		vap->iv_flags &= ~flag;
713 	} else
714 		vap->iv_flags |= flag;
715 	ieee80211_syncflag_locked(ic, flag);
716 	IEEE80211_UNLOCK(ic);
717 }
718 
719 /*
720  * Synchronize flags_ht bit state in the com structure
721  * according to the state of all vap's.  This is used,
722  * for example, to handle state changes via ioctls.
723  */
724 static void
725 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
726 {
727 	struct ieee80211vap *vap;
728 	int bit;
729 
730 	IEEE80211_LOCK_ASSERT(ic);
731 
732 	bit = 0;
733 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
734 		if (vap->iv_flags_ht & flag) {
735 			bit = 1;
736 			break;
737 		}
738 	if (bit)
739 		ic->ic_flags_ht |= flag;
740 	else
741 		ic->ic_flags_ht &= ~flag;
742 }
743 
744 void
745 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
746 {
747 	struct ieee80211com *ic = vap->iv_ic;
748 
749 	IEEE80211_LOCK(ic);
750 	if (flag < 0) {
751 		flag = -flag;
752 		vap->iv_flags_ht &= ~flag;
753 	} else
754 		vap->iv_flags_ht |= flag;
755 	ieee80211_syncflag_ht_locked(ic, flag);
756 	IEEE80211_UNLOCK(ic);
757 }
758 
759 /*
760  * Synchronize flags_ext bit state in the com structure
761  * according to the state of all vap's.  This is used,
762  * for example, to handle state changes via ioctls.
763  */
764 static void
765 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
766 {
767 	struct ieee80211vap *vap;
768 	int bit;
769 
770 	IEEE80211_LOCK_ASSERT(ic);
771 
772 	bit = 0;
773 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
774 		if (vap->iv_flags_ext & flag) {
775 			bit = 1;
776 			break;
777 		}
778 	if (bit)
779 		ic->ic_flags_ext |= flag;
780 	else
781 		ic->ic_flags_ext &= ~flag;
782 }
783 
784 void
785 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
786 {
787 	struct ieee80211com *ic = vap->iv_ic;
788 
789 	IEEE80211_LOCK(ic);
790 	if (flag < 0) {
791 		flag = -flag;
792 		vap->iv_flags_ext &= ~flag;
793 	} else
794 		vap->iv_flags_ext |= flag;
795 	ieee80211_syncflag_ext_locked(ic, flag);
796 	IEEE80211_UNLOCK(ic);
797 }
798 
799 static __inline int
800 mapgsm(u_int freq, u_int flags)
801 {
802 	freq *= 10;
803 	if (flags & IEEE80211_CHAN_QUARTER)
804 		freq += 5;
805 	else if (flags & IEEE80211_CHAN_HALF)
806 		freq += 10;
807 	else
808 		freq += 20;
809 	/* NB: there is no 907/20 wide but leave room */
810 	return (freq - 906*10) / 5;
811 }
812 
813 static __inline int
814 mappsb(u_int freq, u_int flags)
815 {
816 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
817 }
818 
819 /*
820  * Convert MHz frequency to IEEE channel number.
821  */
822 int
823 ieee80211_mhz2ieee(u_int freq, u_int flags)
824 {
825 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
826 	if (flags & IEEE80211_CHAN_GSM)
827 		return mapgsm(freq, flags);
828 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
829 		if (freq == 2484)
830 			return 14;
831 		if (freq < 2484)
832 			return ((int) freq - 2407) / 5;
833 		else
834 			return 15 + ((freq - 2512) / 20);
835 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
836 		if (freq <= 5000) {
837 			/* XXX check regdomain? */
838 			if (IS_FREQ_IN_PSB(freq))
839 				return mappsb(freq, flags);
840 			return (freq - 4000) / 5;
841 		} else
842 			return (freq - 5000) / 5;
843 	} else {				/* either, guess */
844 		if (freq == 2484)
845 			return 14;
846 		if (freq < 2484) {
847 			if (907 <= freq && freq <= 922)
848 				return mapgsm(freq, flags);
849 			return ((int) freq - 2407) / 5;
850 		}
851 		if (freq < 5000) {
852 			if (IS_FREQ_IN_PSB(freq))
853 				return mappsb(freq, flags);
854 			else if (freq > 4900)
855 				return (freq - 4000) / 5;
856 			else
857 				return 15 + ((freq - 2512) / 20);
858 		}
859 		return (freq - 5000) / 5;
860 	}
861 #undef IS_FREQ_IN_PSB
862 }
863 
864 /*
865  * Convert channel to IEEE channel number.
866  */
867 int
868 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
869 {
870 	if (c == NULL) {
871 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
872 		return 0;		/* XXX */
873 	}
874 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
875 }
876 
877 /*
878  * Convert IEEE channel number to MHz frequency.
879  */
880 u_int
881 ieee80211_ieee2mhz(u_int chan, u_int flags)
882 {
883 	if (flags & IEEE80211_CHAN_GSM)
884 		return 907 + 5 * (chan / 10);
885 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
886 		if (chan == 14)
887 			return 2484;
888 		if (chan < 14)
889 			return 2407 + chan*5;
890 		else
891 			return 2512 + ((chan-15)*20);
892 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
893 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
894 			chan -= 37;
895 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
896 		}
897 		return 5000 + (chan*5);
898 	} else {				/* either, guess */
899 		/* XXX can't distinguish PSB+GSM channels */
900 		if (chan == 14)
901 			return 2484;
902 		if (chan < 14)			/* 0-13 */
903 			return 2407 + chan*5;
904 		if (chan < 27)			/* 15-26 */
905 			return 2512 + ((chan-15)*20);
906 		return 5000 + (chan*5);
907 	}
908 }
909 
910 /*
911  * Locate a channel given a frequency+flags.  We cache
912  * the previous lookup to optimize switching between two
913  * channels--as happens with dynamic turbo.
914  */
915 struct ieee80211_channel *
916 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
917 {
918 	struct ieee80211_channel *c;
919 	int i;
920 
921 	flags &= IEEE80211_CHAN_ALLTURBO;
922 	c = ic->ic_prevchan;
923 	if (c != NULL && c->ic_freq == freq &&
924 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
925 		return c;
926 	/* brute force search */
927 	for (i = 0; i < ic->ic_nchans; i++) {
928 		c = &ic->ic_channels[i];
929 		if (c->ic_freq == freq &&
930 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
931 			return c;
932 	}
933 	return NULL;
934 }
935 
936 /*
937  * Locate a channel given a channel number+flags.  We cache
938  * the previous lookup to optimize switching between two
939  * channels--as happens with dynamic turbo.
940  */
941 struct ieee80211_channel *
942 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
943 {
944 	struct ieee80211_channel *c;
945 	int i;
946 
947 	flags &= IEEE80211_CHAN_ALLTURBO;
948 	c = ic->ic_prevchan;
949 	if (c != NULL && c->ic_ieee == ieee &&
950 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
951 		return c;
952 	/* brute force search */
953 	for (i = 0; i < ic->ic_nchans; i++) {
954 		c = &ic->ic_channels[i];
955 		if (c->ic_ieee == ieee &&
956 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
957 			return c;
958 	}
959 	return NULL;
960 }
961 
962 static void
963 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
964 {
965 #define	ADD(_ic, _s, _o) \
966 	ifmedia_add(media, \
967 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
968 	static const u_int mopts[IEEE80211_MODE_MAX] = {
969 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
970 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
971 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
972 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
973 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
974 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
975 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
976 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
977 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
978 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
979 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
980 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
981 	};
982 	u_int mopt;
983 
984 	mopt = mopts[mode];
985 	if (addsta)
986 		ADD(ic, mword, mopt);	/* STA mode has no cap */
987 	if (caps & IEEE80211_C_IBSS)
988 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
989 	if (caps & IEEE80211_C_HOSTAP)
990 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
991 	if (caps & IEEE80211_C_AHDEMO)
992 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
993 	if (caps & IEEE80211_C_MONITOR)
994 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
995 	if (caps & IEEE80211_C_WDS)
996 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
997 	if (caps & IEEE80211_C_MBSS)
998 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
999 #undef ADD
1000 }
1001 
1002 /*
1003  * Setup the media data structures according to the channel and
1004  * rate tables.
1005  */
1006 static int
1007 ieee80211_media_setup(struct ieee80211com *ic,
1008 	struct ifmedia *media, int caps, int addsta,
1009 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1010 {
1011 	int i, j, mode, rate, maxrate, mword, r;
1012 	const struct ieee80211_rateset *rs;
1013 	struct ieee80211_rateset allrates;
1014 
1015 	/*
1016 	 * Fill in media characteristics.
1017 	 */
1018 	ifmedia_init(media, 0, media_change, media_stat);
1019 	maxrate = 0;
1020 	/*
1021 	 * Add media for legacy operating modes.
1022 	 */
1023 	memset(&allrates, 0, sizeof(allrates));
1024 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1025 		if (isclr(ic->ic_modecaps, mode))
1026 			continue;
1027 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1028 		if (mode == IEEE80211_MODE_AUTO)
1029 			continue;
1030 		rs = &ic->ic_sup_rates[mode];
1031 		for (i = 0; i < rs->rs_nrates; i++) {
1032 			rate = rs->rs_rates[i];
1033 			mword = ieee80211_rate2media(ic, rate, mode);
1034 			if (mword == 0)
1035 				continue;
1036 			addmedia(media, caps, addsta, mode, mword);
1037 			/*
1038 			 * Add legacy rate to the collection of all rates.
1039 			 */
1040 			r = rate & IEEE80211_RATE_VAL;
1041 			for (j = 0; j < allrates.rs_nrates; j++)
1042 				if (allrates.rs_rates[j] == r)
1043 					break;
1044 			if (j == allrates.rs_nrates) {
1045 				/* unique, add to the set */
1046 				allrates.rs_rates[j] = r;
1047 				allrates.rs_nrates++;
1048 			}
1049 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1050 			if (rate > maxrate)
1051 				maxrate = rate;
1052 		}
1053 	}
1054 	for (i = 0; i < allrates.rs_nrates; i++) {
1055 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1056 				IEEE80211_MODE_AUTO);
1057 		if (mword == 0)
1058 			continue;
1059 		/* NB: remove media options from mword */
1060 		addmedia(media, caps, addsta,
1061 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1062 	}
1063 	/*
1064 	 * Add HT/11n media.  Note that we do not have enough
1065 	 * bits in the media subtype to express the MCS so we
1066 	 * use a "placeholder" media subtype and any fixed MCS
1067 	 * must be specified with a different mechanism.
1068 	 */
1069 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1070 		if (isclr(ic->ic_modecaps, mode))
1071 			continue;
1072 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1073 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1074 	}
1075 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1076 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1077 		addmedia(media, caps, addsta,
1078 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1079 		i = ic->ic_txstream * 8 - 1;
1080 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1081 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1082 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1083 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1084 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1085 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1086 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1087 		else
1088 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1089 		if (rate > maxrate)
1090 			maxrate = rate;
1091 	}
1092 	return maxrate;
1093 }
1094 
1095 void
1096 ieee80211_media_init(struct ieee80211com *ic)
1097 {
1098 	struct ifnet *ifp = ic->ic_ifp;
1099 	int maxrate;
1100 
1101 	/* NB: this works because the structure is initialized to zero */
1102 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1103 		/*
1104 		 * We are re-initializing the channel list; clear
1105 		 * the existing media state as the media routines
1106 		 * don't suppress duplicates.
1107 		 */
1108 		ifmedia_removeall(&ic->ic_media);
1109 	}
1110 	ieee80211_chan_init(ic);
1111 
1112 	/*
1113 	 * Recalculate media settings in case new channel list changes
1114 	 * the set of available modes.
1115 	 */
1116 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1117 		ieee80211com_media_change, ieee80211com_media_status);
1118 	/* NB: strip explicit mode; we're actually in autoselect */
1119 	ifmedia_set(&ic->ic_media,
1120 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1121 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1122 	if (maxrate)
1123 		ifp->if_baudrate = IF_Mbps(maxrate);
1124 
1125 	/* XXX need to propagate new media settings to vap's */
1126 }
1127 
1128 /* XXX inline or eliminate? */
1129 const struct ieee80211_rateset *
1130 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1131 {
1132 	/* XXX does this work for 11ng basic rates? */
1133 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1134 }
1135 
1136 void
1137 ieee80211_announce(struct ieee80211com *ic)
1138 {
1139 	struct ifnet *ifp = ic->ic_ifp;
1140 	int i, mode, rate, mword;
1141 	const struct ieee80211_rateset *rs;
1142 
1143 	/* NB: skip AUTO since it has no rates */
1144 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1145 		if (isclr(ic->ic_modecaps, mode))
1146 			continue;
1147 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1148 		rs = &ic->ic_sup_rates[mode];
1149 		for (i = 0; i < rs->rs_nrates; i++) {
1150 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1151 			if (mword == 0)
1152 				continue;
1153 			rate = ieee80211_media2rate(mword);
1154 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1155 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1156 		}
1157 		printf("\n");
1158 	}
1159 	ieee80211_ht_announce(ic);
1160 }
1161 
1162 void
1163 ieee80211_announce_channels(struct ieee80211com *ic)
1164 {
1165 	const struct ieee80211_channel *c;
1166 	char type;
1167 	int i, cw;
1168 
1169 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1170 	for (i = 0; i < ic->ic_nchans; i++) {
1171 		c = &ic->ic_channels[i];
1172 		if (IEEE80211_IS_CHAN_ST(c))
1173 			type = 'S';
1174 		else if (IEEE80211_IS_CHAN_108A(c))
1175 			type = 'T';
1176 		else if (IEEE80211_IS_CHAN_108G(c))
1177 			type = 'G';
1178 		else if (IEEE80211_IS_CHAN_HT(c))
1179 			type = 'n';
1180 		else if (IEEE80211_IS_CHAN_A(c))
1181 			type = 'a';
1182 		else if (IEEE80211_IS_CHAN_ANYG(c))
1183 			type = 'g';
1184 		else if (IEEE80211_IS_CHAN_B(c))
1185 			type = 'b';
1186 		else
1187 			type = 'f';
1188 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1189 			cw = 40;
1190 		else if (IEEE80211_IS_CHAN_HALF(c))
1191 			cw = 10;
1192 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1193 			cw = 5;
1194 		else
1195 			cw = 20;
1196 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1197 			, c->ic_ieee, c->ic_freq, type
1198 			, cw
1199 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1200 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1201 			, c->ic_maxregpower
1202 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1203 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1204 		);
1205 	}
1206 }
1207 
1208 static int
1209 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1210 {
1211 	switch (IFM_MODE(ime->ifm_media)) {
1212 	case IFM_IEEE80211_11A:
1213 		*mode = IEEE80211_MODE_11A;
1214 		break;
1215 	case IFM_IEEE80211_11B:
1216 		*mode = IEEE80211_MODE_11B;
1217 		break;
1218 	case IFM_IEEE80211_11G:
1219 		*mode = IEEE80211_MODE_11G;
1220 		break;
1221 	case IFM_IEEE80211_FH:
1222 		*mode = IEEE80211_MODE_FH;
1223 		break;
1224 	case IFM_IEEE80211_11NA:
1225 		*mode = IEEE80211_MODE_11NA;
1226 		break;
1227 	case IFM_IEEE80211_11NG:
1228 		*mode = IEEE80211_MODE_11NG;
1229 		break;
1230 	case IFM_AUTO:
1231 		*mode = IEEE80211_MODE_AUTO;
1232 		break;
1233 	default:
1234 		return 0;
1235 	}
1236 	/*
1237 	 * Turbo mode is an ``option''.
1238 	 * XXX does not apply to AUTO
1239 	 */
1240 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1241 		if (*mode == IEEE80211_MODE_11A) {
1242 			if (flags & IEEE80211_F_TURBOP)
1243 				*mode = IEEE80211_MODE_TURBO_A;
1244 			else
1245 				*mode = IEEE80211_MODE_STURBO_A;
1246 		} else if (*mode == IEEE80211_MODE_11G)
1247 			*mode = IEEE80211_MODE_TURBO_G;
1248 		else
1249 			return 0;
1250 	}
1251 	/* XXX HT40 +/- */
1252 	return 1;
1253 }
1254 
1255 /*
1256  * Handle a media change request on the underlying interface.
1257  */
1258 int
1259 ieee80211com_media_change(struct ifnet *ifp)
1260 {
1261 	return EINVAL;
1262 }
1263 
1264 /*
1265  * Handle a media change request on the vap interface.
1266  */
1267 int
1268 ieee80211_media_change(struct ifnet *ifp)
1269 {
1270 	struct ieee80211vap *vap = ifp->if_softc;
1271 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1272 	uint16_t newmode;
1273 
1274 	if (!media2mode(ime, vap->iv_flags, &newmode))
1275 		return EINVAL;
1276 	if (vap->iv_des_mode != newmode) {
1277 		vap->iv_des_mode = newmode;
1278 		/* XXX kick state machine if up+running */
1279 	}
1280 	return 0;
1281 }
1282 
1283 /*
1284  * Common code to calculate the media status word
1285  * from the operating mode and channel state.
1286  */
1287 static int
1288 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1289 {
1290 	int status;
1291 
1292 	status = IFM_IEEE80211;
1293 	switch (opmode) {
1294 	case IEEE80211_M_STA:
1295 		break;
1296 	case IEEE80211_M_IBSS:
1297 		status |= IFM_IEEE80211_ADHOC;
1298 		break;
1299 	case IEEE80211_M_HOSTAP:
1300 		status |= IFM_IEEE80211_HOSTAP;
1301 		break;
1302 	case IEEE80211_M_MONITOR:
1303 		status |= IFM_IEEE80211_MONITOR;
1304 		break;
1305 	case IEEE80211_M_AHDEMO:
1306 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1307 		break;
1308 	case IEEE80211_M_WDS:
1309 		status |= IFM_IEEE80211_WDS;
1310 		break;
1311 	case IEEE80211_M_MBSS:
1312 		status |= IFM_IEEE80211_MBSS;
1313 		break;
1314 	}
1315 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1316 		status |= IFM_IEEE80211_11NA;
1317 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1318 		status |= IFM_IEEE80211_11NG;
1319 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1320 		status |= IFM_IEEE80211_11A;
1321 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1322 		status |= IFM_IEEE80211_11B;
1323 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1324 		status |= IFM_IEEE80211_11G;
1325 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1326 		status |= IFM_IEEE80211_FH;
1327 	}
1328 	/* XXX else complain? */
1329 
1330 	if (IEEE80211_IS_CHAN_TURBO(chan))
1331 		status |= IFM_IEEE80211_TURBO;
1332 #if 0
1333 	if (IEEE80211_IS_CHAN_HT20(chan))
1334 		status |= IFM_IEEE80211_HT20;
1335 	if (IEEE80211_IS_CHAN_HT40(chan))
1336 		status |= IFM_IEEE80211_HT40;
1337 #endif
1338 	return status;
1339 }
1340 
1341 static void
1342 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1343 {
1344 	struct ieee80211com *ic = ifp->if_l2com;
1345 	struct ieee80211vap *vap;
1346 
1347 	imr->ifm_status = IFM_AVALID;
1348 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1349 		if (vap->iv_ifp->if_flags & IFF_UP) {
1350 			imr->ifm_status |= IFM_ACTIVE;
1351 			break;
1352 		}
1353 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1354 	if (imr->ifm_status & IFM_ACTIVE)
1355 		imr->ifm_current = imr->ifm_active;
1356 }
1357 
1358 void
1359 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1360 {
1361 	struct ieee80211vap *vap = ifp->if_softc;
1362 	struct ieee80211com *ic = vap->iv_ic;
1363 	enum ieee80211_phymode mode;
1364 
1365 	imr->ifm_status = IFM_AVALID;
1366 	/*
1367 	 * NB: use the current channel's mode to lock down a xmit
1368 	 * rate only when running; otherwise we may have a mismatch
1369 	 * in which case the rate will not be convertible.
1370 	 */
1371 	if (vap->iv_state == IEEE80211_S_RUN) {
1372 		imr->ifm_status |= IFM_ACTIVE;
1373 		mode = ieee80211_chan2mode(ic->ic_curchan);
1374 	} else
1375 		mode = IEEE80211_MODE_AUTO;
1376 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1377 	/*
1378 	 * Calculate a current rate if possible.
1379 	 */
1380 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1381 		/*
1382 		 * A fixed rate is set, report that.
1383 		 */
1384 		imr->ifm_active |= ieee80211_rate2media(ic,
1385 			vap->iv_txparms[mode].ucastrate, mode);
1386 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1387 		/*
1388 		 * In station mode report the current transmit rate.
1389 		 */
1390 		imr->ifm_active |= ieee80211_rate2media(ic,
1391 			vap->iv_bss->ni_txrate, mode);
1392 	} else
1393 		imr->ifm_active |= IFM_AUTO;
1394 	if (imr->ifm_status & IFM_ACTIVE)
1395 		imr->ifm_current = imr->ifm_active;
1396 }
1397 
1398 /*
1399  * Set the current phy mode and recalculate the active channel
1400  * set based on the available channels for this mode.  Also
1401  * select a new default/current channel if the current one is
1402  * inappropriate for this mode.
1403  */
1404 int
1405 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1406 {
1407 	/*
1408 	 * Adjust basic rates in 11b/11g supported rate set.
1409 	 * Note that if operating on a hal/quarter rate channel
1410 	 * this is a noop as those rates sets are different
1411 	 * and used instead.
1412 	 */
1413 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1414 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1415 
1416 	ic->ic_curmode = mode;
1417 	ieee80211_reset_erp(ic);	/* reset ERP state */
1418 
1419 	return 0;
1420 }
1421 
1422 /*
1423  * Return the phy mode for with the specified channel.
1424  */
1425 enum ieee80211_phymode
1426 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1427 {
1428 
1429 	if (IEEE80211_IS_CHAN_HTA(chan))
1430 		return IEEE80211_MODE_11NA;
1431 	else if (IEEE80211_IS_CHAN_HTG(chan))
1432 		return IEEE80211_MODE_11NG;
1433 	else if (IEEE80211_IS_CHAN_108G(chan))
1434 		return IEEE80211_MODE_TURBO_G;
1435 	else if (IEEE80211_IS_CHAN_ST(chan))
1436 		return IEEE80211_MODE_STURBO_A;
1437 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1438 		return IEEE80211_MODE_TURBO_A;
1439 	else if (IEEE80211_IS_CHAN_HALF(chan))
1440 		return IEEE80211_MODE_HALF;
1441 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1442 		return IEEE80211_MODE_QUARTER;
1443 	else if (IEEE80211_IS_CHAN_A(chan))
1444 		return IEEE80211_MODE_11A;
1445 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1446 		return IEEE80211_MODE_11G;
1447 	else if (IEEE80211_IS_CHAN_B(chan))
1448 		return IEEE80211_MODE_11B;
1449 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1450 		return IEEE80211_MODE_FH;
1451 
1452 	/* NB: should not get here */
1453 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1454 		__func__, chan->ic_freq, chan->ic_flags);
1455 	return IEEE80211_MODE_11B;
1456 }
1457 
1458 struct ratemedia {
1459 	u_int	match;	/* rate + mode */
1460 	u_int	media;	/* if_media rate */
1461 };
1462 
1463 static int
1464 findmedia(const struct ratemedia rates[], int n, u_int match)
1465 {
1466 	int i;
1467 
1468 	for (i = 0; i < n; i++)
1469 		if (rates[i].match == match)
1470 			return rates[i].media;
1471 	return IFM_AUTO;
1472 }
1473 
1474 /*
1475  * Convert IEEE80211 rate value to ifmedia subtype.
1476  * Rate is either a legacy rate in units of 0.5Mbps
1477  * or an MCS index.
1478  */
1479 int
1480 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1481 {
1482 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1483 	static const struct ratemedia rates[] = {
1484 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1485 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1486 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1487 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1488 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1489 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1490 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1491 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1492 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1493 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1494 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1495 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1496 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1497 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1498 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1499 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1500 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1501 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1502 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1503 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1504 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1505 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1506 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1507 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1508 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1509 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1510 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1511 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1512 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1513 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1514 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1515 	};
1516 	static const struct ratemedia htrates[] = {
1517 		{   0, IFM_IEEE80211_MCS },
1518 		{   1, IFM_IEEE80211_MCS },
1519 		{   2, IFM_IEEE80211_MCS },
1520 		{   3, IFM_IEEE80211_MCS },
1521 		{   4, IFM_IEEE80211_MCS },
1522 		{   5, IFM_IEEE80211_MCS },
1523 		{   6, IFM_IEEE80211_MCS },
1524 		{   7, IFM_IEEE80211_MCS },
1525 		{   8, IFM_IEEE80211_MCS },
1526 		{   9, IFM_IEEE80211_MCS },
1527 		{  10, IFM_IEEE80211_MCS },
1528 		{  11, IFM_IEEE80211_MCS },
1529 		{  12, IFM_IEEE80211_MCS },
1530 		{  13, IFM_IEEE80211_MCS },
1531 		{  14, IFM_IEEE80211_MCS },
1532 		{  15, IFM_IEEE80211_MCS },
1533 		{  16, IFM_IEEE80211_MCS },
1534 		{  17, IFM_IEEE80211_MCS },
1535 		{  18, IFM_IEEE80211_MCS },
1536 		{  19, IFM_IEEE80211_MCS },
1537 		{  20, IFM_IEEE80211_MCS },
1538 		{  21, IFM_IEEE80211_MCS },
1539 		{  22, IFM_IEEE80211_MCS },
1540 		{  23, IFM_IEEE80211_MCS },
1541 		{  24, IFM_IEEE80211_MCS },
1542 		{  25, IFM_IEEE80211_MCS },
1543 		{  26, IFM_IEEE80211_MCS },
1544 		{  27, IFM_IEEE80211_MCS },
1545 		{  28, IFM_IEEE80211_MCS },
1546 		{  29, IFM_IEEE80211_MCS },
1547 		{  30, IFM_IEEE80211_MCS },
1548 		{  31, IFM_IEEE80211_MCS },
1549 		{  32, IFM_IEEE80211_MCS },
1550 		{  33, IFM_IEEE80211_MCS },
1551 		{  34, IFM_IEEE80211_MCS },
1552 		{  35, IFM_IEEE80211_MCS },
1553 		{  36, IFM_IEEE80211_MCS },
1554 		{  37, IFM_IEEE80211_MCS },
1555 		{  38, IFM_IEEE80211_MCS },
1556 		{  39, IFM_IEEE80211_MCS },
1557 		{  40, IFM_IEEE80211_MCS },
1558 		{  41, IFM_IEEE80211_MCS },
1559 		{  42, IFM_IEEE80211_MCS },
1560 		{  43, IFM_IEEE80211_MCS },
1561 		{  44, IFM_IEEE80211_MCS },
1562 		{  45, IFM_IEEE80211_MCS },
1563 		{  46, IFM_IEEE80211_MCS },
1564 		{  47, IFM_IEEE80211_MCS },
1565 		{  48, IFM_IEEE80211_MCS },
1566 		{  49, IFM_IEEE80211_MCS },
1567 		{  50, IFM_IEEE80211_MCS },
1568 		{  51, IFM_IEEE80211_MCS },
1569 		{  52, IFM_IEEE80211_MCS },
1570 		{  53, IFM_IEEE80211_MCS },
1571 		{  54, IFM_IEEE80211_MCS },
1572 		{  55, IFM_IEEE80211_MCS },
1573 		{  56, IFM_IEEE80211_MCS },
1574 		{  57, IFM_IEEE80211_MCS },
1575 		{  58, IFM_IEEE80211_MCS },
1576 		{  59, IFM_IEEE80211_MCS },
1577 		{  60, IFM_IEEE80211_MCS },
1578 		{  61, IFM_IEEE80211_MCS },
1579 		{  62, IFM_IEEE80211_MCS },
1580 		{  63, IFM_IEEE80211_MCS },
1581 		{  64, IFM_IEEE80211_MCS },
1582 		{  65, IFM_IEEE80211_MCS },
1583 		{  66, IFM_IEEE80211_MCS },
1584 		{  67, IFM_IEEE80211_MCS },
1585 		{  68, IFM_IEEE80211_MCS },
1586 		{  69, IFM_IEEE80211_MCS },
1587 		{  70, IFM_IEEE80211_MCS },
1588 		{  71, IFM_IEEE80211_MCS },
1589 		{  72, IFM_IEEE80211_MCS },
1590 		{  73, IFM_IEEE80211_MCS },
1591 		{  74, IFM_IEEE80211_MCS },
1592 		{  75, IFM_IEEE80211_MCS },
1593 		{  76, IFM_IEEE80211_MCS },
1594 	};
1595 	int m;
1596 
1597 	/*
1598 	 * Check 11n rates first for match as an MCS.
1599 	 */
1600 	if (mode == IEEE80211_MODE_11NA) {
1601 		if (rate & IEEE80211_RATE_MCS) {
1602 			rate &= ~IEEE80211_RATE_MCS;
1603 			m = findmedia(htrates, N(htrates), rate);
1604 			if (m != IFM_AUTO)
1605 				return m | IFM_IEEE80211_11NA;
1606 		}
1607 	} else if (mode == IEEE80211_MODE_11NG) {
1608 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1609 		if (rate & IEEE80211_RATE_MCS) {
1610 			rate &= ~IEEE80211_RATE_MCS;
1611 			m = findmedia(htrates, N(htrates), rate);
1612 			if (m != IFM_AUTO)
1613 				return m | IFM_IEEE80211_11NG;
1614 		}
1615 	}
1616 	rate &= IEEE80211_RATE_VAL;
1617 	switch (mode) {
1618 	case IEEE80211_MODE_11A:
1619 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1620 	case IEEE80211_MODE_QUARTER:
1621 	case IEEE80211_MODE_11NA:
1622 	case IEEE80211_MODE_TURBO_A:
1623 	case IEEE80211_MODE_STURBO_A:
1624 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A);
1625 	case IEEE80211_MODE_11B:
1626 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B);
1627 	case IEEE80211_MODE_FH:
1628 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH);
1629 	case IEEE80211_MODE_AUTO:
1630 		/* NB: ic may be NULL for some drivers */
1631 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1632 			return findmedia(rates, N(rates),
1633 			    rate | IFM_IEEE80211_FH);
1634 		/* NB: hack, 11g matches both 11b+11a rates */
1635 		/* fall thru... */
1636 	case IEEE80211_MODE_11G:
1637 	case IEEE80211_MODE_11NG:
1638 	case IEEE80211_MODE_TURBO_G:
1639 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G);
1640 	}
1641 	return IFM_AUTO;
1642 #undef N
1643 }
1644 
1645 int
1646 ieee80211_media2rate(int mword)
1647 {
1648 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1649 	static const int ieeerates[] = {
1650 		-1,		/* IFM_AUTO */
1651 		0,		/* IFM_MANUAL */
1652 		0,		/* IFM_NONE */
1653 		2,		/* IFM_IEEE80211_FH1 */
1654 		4,		/* IFM_IEEE80211_FH2 */
1655 		2,		/* IFM_IEEE80211_DS1 */
1656 		4,		/* IFM_IEEE80211_DS2 */
1657 		11,		/* IFM_IEEE80211_DS5 */
1658 		22,		/* IFM_IEEE80211_DS11 */
1659 		44,		/* IFM_IEEE80211_DS22 */
1660 		12,		/* IFM_IEEE80211_OFDM6 */
1661 		18,		/* IFM_IEEE80211_OFDM9 */
1662 		24,		/* IFM_IEEE80211_OFDM12 */
1663 		36,		/* IFM_IEEE80211_OFDM18 */
1664 		48,		/* IFM_IEEE80211_OFDM24 */
1665 		72,		/* IFM_IEEE80211_OFDM36 */
1666 		96,		/* IFM_IEEE80211_OFDM48 */
1667 		108,		/* IFM_IEEE80211_OFDM54 */
1668 		144,		/* IFM_IEEE80211_OFDM72 */
1669 		0,		/* IFM_IEEE80211_DS354k */
1670 		0,		/* IFM_IEEE80211_DS512k */
1671 		6,		/* IFM_IEEE80211_OFDM3 */
1672 		9,		/* IFM_IEEE80211_OFDM4 */
1673 		54,		/* IFM_IEEE80211_OFDM27 */
1674 		-1,		/* IFM_IEEE80211_MCS */
1675 	};
1676 	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1677 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1678 #undef N
1679 }
1680 
1681 /*
1682  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1683  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1684  */
1685 #define	mix(a, b, c)							\
1686 do {									\
1687 	a -= b; a -= c; a ^= (c >> 13);					\
1688 	b -= c; b -= a; b ^= (a << 8);					\
1689 	c -= a; c -= b; c ^= (b >> 13);					\
1690 	a -= b; a -= c; a ^= (c >> 12);					\
1691 	b -= c; b -= a; b ^= (a << 16);					\
1692 	c -= a; c -= b; c ^= (b >> 5);					\
1693 	a -= b; a -= c; a ^= (c >> 3);					\
1694 	b -= c; b -= a; b ^= (a << 10);					\
1695 	c -= a; c -= b; c ^= (b >> 15);					\
1696 } while (/*CONSTCOND*/0)
1697 
1698 uint32_t
1699 ieee80211_mac_hash(const struct ieee80211com *ic,
1700 	const uint8_t addr[IEEE80211_ADDR_LEN])
1701 {
1702 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1703 
1704 	b += addr[5] << 8;
1705 	b += addr[4];
1706 	a += addr[3] << 24;
1707 	a += addr[2] << 16;
1708 	a += addr[1] << 8;
1709 	a += addr[0];
1710 
1711 	mix(a, b, c);
1712 
1713 	return c;
1714 }
1715 #undef mix
1716