1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/socket.h> 40 #include <sys/sbuf.h> 41 42 #include <machine/stdarg.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 #include <net/ethernet.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_regdomain.h> 53 #ifdef IEEE80211_SUPPORT_SUPERG 54 #include <net80211/ieee80211_superg.h> 55 #endif 56 #include <net80211/ieee80211_ratectl.h> 57 #include <net80211/ieee80211_vht.h> 58 59 #include <net/bpf.h> 60 61 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 62 [IEEE80211_MODE_AUTO] = "auto", 63 [IEEE80211_MODE_11A] = "11a", 64 [IEEE80211_MODE_11B] = "11b", 65 [IEEE80211_MODE_11G] = "11g", 66 [IEEE80211_MODE_FH] = "FH", 67 [IEEE80211_MODE_TURBO_A] = "turboA", 68 [IEEE80211_MODE_TURBO_G] = "turboG", 69 [IEEE80211_MODE_STURBO_A] = "sturboA", 70 [IEEE80211_MODE_HALF] = "half", 71 [IEEE80211_MODE_QUARTER] = "quarter", 72 [IEEE80211_MODE_11NA] = "11na", 73 [IEEE80211_MODE_11NG] = "11ng", 74 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 75 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 76 }; 77 /* map ieee80211_opmode to the corresponding capability bit */ 78 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 79 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 80 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 81 [IEEE80211_M_STA] = IEEE80211_C_STA, 82 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 83 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 84 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 85 #ifdef IEEE80211_SUPPORT_MESH 86 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 87 #endif 88 }; 89 90 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 91 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 92 93 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 94 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 95 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 96 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 97 static int ieee80211_media_setup(struct ieee80211com *ic, 98 struct ifmedia *media, int caps, int addsta, 99 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 100 static int media_status(enum ieee80211_opmode, 101 const struct ieee80211_channel *); 102 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 103 104 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 105 106 /* 107 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 108 */ 109 #define B(r) ((r) | IEEE80211_RATE_BASIC) 110 static const struct ieee80211_rateset ieee80211_rateset_11a = 111 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 112 static const struct ieee80211_rateset ieee80211_rateset_half = 113 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 114 static const struct ieee80211_rateset ieee80211_rateset_quarter = 115 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 116 static const struct ieee80211_rateset ieee80211_rateset_11b = 117 { 4, { B(2), B(4), B(11), B(22) } }; 118 /* NB: OFDM rates are handled specially based on mode */ 119 static const struct ieee80211_rateset ieee80211_rateset_11g = 120 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 121 #undef B 122 123 static int set_vht_extchan(struct ieee80211_channel *c); 124 125 /* 126 * Fill in 802.11 available channel set, mark 127 * all available channels as active, and pick 128 * a default channel if not already specified. 129 */ 130 void 131 ieee80211_chan_init(struct ieee80211com *ic) 132 { 133 #define DEFAULTRATES(m, def) do { \ 134 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 135 ic->ic_sup_rates[m] = def; \ 136 } while (0) 137 struct ieee80211_channel *c; 138 int i; 139 140 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 141 ("invalid number of channels specified: %u", ic->ic_nchans)); 142 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 143 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 144 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 145 for (i = 0; i < ic->ic_nchans; i++) { 146 c = &ic->ic_channels[i]; 147 KASSERT(c->ic_flags != 0, ("channel with no flags")); 148 /* 149 * Help drivers that work only with frequencies by filling 150 * in IEEE channel #'s if not already calculated. Note this 151 * mimics similar work done in ieee80211_setregdomain when 152 * changing regulatory state. 153 */ 154 if (c->ic_ieee == 0) 155 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 156 157 /* 158 * Setup the HT40/VHT40 upper/lower bits. 159 * The VHT80 math is done elsewhere. 160 */ 161 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 162 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 163 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 164 c->ic_flags); 165 166 /* Update VHT math */ 167 /* 168 * XXX VHT again, note that this assumes VHT80 channels 169 * are legit already 170 */ 171 set_vht_extchan(c); 172 173 /* default max tx power to max regulatory */ 174 if (c->ic_maxpower == 0) 175 c->ic_maxpower = 2*c->ic_maxregpower; 176 setbit(ic->ic_chan_avail, c->ic_ieee); 177 /* 178 * Identify mode capabilities. 179 */ 180 if (IEEE80211_IS_CHAN_A(c)) 181 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 182 if (IEEE80211_IS_CHAN_B(c)) 183 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 184 if (IEEE80211_IS_CHAN_ANYG(c)) 185 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 186 if (IEEE80211_IS_CHAN_FHSS(c)) 187 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 188 if (IEEE80211_IS_CHAN_108A(c)) 189 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 190 if (IEEE80211_IS_CHAN_108G(c)) 191 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 192 if (IEEE80211_IS_CHAN_ST(c)) 193 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 194 if (IEEE80211_IS_CHAN_HALF(c)) 195 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 196 if (IEEE80211_IS_CHAN_QUARTER(c)) 197 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 198 if (IEEE80211_IS_CHAN_HTA(c)) 199 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 200 if (IEEE80211_IS_CHAN_HTG(c)) 201 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 202 if (IEEE80211_IS_CHAN_VHTA(c)) 203 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 204 if (IEEE80211_IS_CHAN_VHTG(c)) 205 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 206 } 207 /* initialize candidate channels to all available */ 208 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 209 sizeof(ic->ic_chan_avail)); 210 211 /* sort channel table to allow lookup optimizations */ 212 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 213 214 /* invalidate any previous state */ 215 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 216 ic->ic_prevchan = NULL; 217 ic->ic_csa_newchan = NULL; 218 /* arbitrarily pick the first channel */ 219 ic->ic_curchan = &ic->ic_channels[0]; 220 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 221 222 /* fillin well-known rate sets if driver has not specified */ 223 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 224 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 225 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 226 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 227 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 228 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 229 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 230 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 231 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 232 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 233 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 234 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 235 236 /* 237 * Setup required information to fill the mcsset field, if driver did 238 * not. Assume a 2T2R setup for historic reasons. 239 */ 240 if (ic->ic_rxstream == 0) 241 ic->ic_rxstream = 2; 242 if (ic->ic_txstream == 0) 243 ic->ic_txstream = 2; 244 245 ieee80211_init_suphtrates(ic); 246 247 /* 248 * Set auto mode to reset active channel state and any desired channel. 249 */ 250 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 251 #undef DEFAULTRATES 252 } 253 254 static void 255 null_update_mcast(struct ieee80211com *ic) 256 { 257 258 ic_printf(ic, "need multicast update callback\n"); 259 } 260 261 static void 262 null_update_promisc(struct ieee80211com *ic) 263 { 264 265 ic_printf(ic, "need promiscuous mode update callback\n"); 266 } 267 268 static void 269 null_update_chw(struct ieee80211com *ic) 270 { 271 272 ic_printf(ic, "%s: need callback\n", __func__); 273 } 274 275 int 276 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 277 { 278 va_list ap; 279 int retval; 280 281 retval = printf("%s: ", ic->ic_name); 282 va_start(ap, fmt); 283 retval += vprintf(fmt, ap); 284 va_end(ap); 285 return (retval); 286 } 287 288 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 289 static struct mtx ic_list_mtx; 290 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 291 292 static int 293 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 294 { 295 struct ieee80211com *ic; 296 struct sbuf sb; 297 char *sp; 298 int error; 299 300 error = sysctl_wire_old_buffer(req, 0); 301 if (error) 302 return (error); 303 sbuf_new_for_sysctl(&sb, NULL, 8, req); 304 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 305 sp = ""; 306 mtx_lock(&ic_list_mtx); 307 LIST_FOREACH(ic, &ic_head, ic_next) { 308 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 309 sp = " "; 310 } 311 mtx_unlock(&ic_list_mtx); 312 error = sbuf_finish(&sb); 313 sbuf_delete(&sb); 314 return (error); 315 } 316 317 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 318 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 319 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 320 321 /* 322 * Attach/setup the common net80211 state. Called by 323 * the driver on attach to prior to creating any vap's. 324 */ 325 void 326 ieee80211_ifattach(struct ieee80211com *ic) 327 { 328 329 IEEE80211_LOCK_INIT(ic, ic->ic_name); 330 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 331 TAILQ_INIT(&ic->ic_vaps); 332 333 /* Create a taskqueue for all state changes */ 334 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 335 taskqueue_thread_enqueue, &ic->ic_tq); 336 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 337 ic->ic_name); 338 ic->ic_ierrors = counter_u64_alloc(M_WAITOK); 339 ic->ic_oerrors = counter_u64_alloc(M_WAITOK); 340 /* 341 * Fill in 802.11 available channel set, mark all 342 * available channels as active, and pick a default 343 * channel if not already specified. 344 */ 345 ieee80211_chan_init(ic); 346 347 ic->ic_update_mcast = null_update_mcast; 348 ic->ic_update_promisc = null_update_promisc; 349 ic->ic_update_chw = null_update_chw; 350 351 ic->ic_hash_key = arc4random(); 352 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 353 ic->ic_lintval = ic->ic_bintval; 354 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 355 356 ieee80211_crypto_attach(ic); 357 ieee80211_node_attach(ic); 358 ieee80211_power_attach(ic); 359 ieee80211_proto_attach(ic); 360 #ifdef IEEE80211_SUPPORT_SUPERG 361 ieee80211_superg_attach(ic); 362 #endif 363 ieee80211_ht_attach(ic); 364 ieee80211_vht_attach(ic); 365 ieee80211_scan_attach(ic); 366 ieee80211_regdomain_attach(ic); 367 ieee80211_dfs_attach(ic); 368 369 ieee80211_sysctl_attach(ic); 370 371 mtx_lock(&ic_list_mtx); 372 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 373 mtx_unlock(&ic_list_mtx); 374 } 375 376 /* 377 * Detach net80211 state on device detach. Tear down 378 * all vap's and reclaim all common state prior to the 379 * device state going away. Note we may call back into 380 * driver; it must be prepared for this. 381 */ 382 void 383 ieee80211_ifdetach(struct ieee80211com *ic) 384 { 385 struct ieee80211vap *vap; 386 387 mtx_lock(&ic_list_mtx); 388 LIST_REMOVE(ic, ic_next); 389 mtx_unlock(&ic_list_mtx); 390 391 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 392 393 /* 394 * The VAP is responsible for setting and clearing 395 * the VIMAGE context. 396 */ 397 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 398 ieee80211_vap_destroy(vap); 399 ieee80211_waitfor_parent(ic); 400 401 ieee80211_sysctl_detach(ic); 402 ieee80211_dfs_detach(ic); 403 ieee80211_regdomain_detach(ic); 404 ieee80211_scan_detach(ic); 405 #ifdef IEEE80211_SUPPORT_SUPERG 406 ieee80211_superg_detach(ic); 407 #endif 408 ieee80211_vht_detach(ic); 409 ieee80211_ht_detach(ic); 410 /* NB: must be called before ieee80211_node_detach */ 411 ieee80211_proto_detach(ic); 412 ieee80211_crypto_detach(ic); 413 ieee80211_power_detach(ic); 414 ieee80211_node_detach(ic); 415 416 counter_u64_free(ic->ic_ierrors); 417 counter_u64_free(ic->ic_oerrors); 418 419 taskqueue_free(ic->ic_tq); 420 IEEE80211_TX_LOCK_DESTROY(ic); 421 IEEE80211_LOCK_DESTROY(ic); 422 } 423 424 struct ieee80211com * 425 ieee80211_find_com(const char *name) 426 { 427 struct ieee80211com *ic; 428 429 mtx_lock(&ic_list_mtx); 430 LIST_FOREACH(ic, &ic_head, ic_next) 431 if (strcmp(ic->ic_name, name) == 0) 432 break; 433 mtx_unlock(&ic_list_mtx); 434 435 return (ic); 436 } 437 438 void 439 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 440 { 441 struct ieee80211com *ic; 442 443 mtx_lock(&ic_list_mtx); 444 LIST_FOREACH(ic, &ic_head, ic_next) 445 (*f)(arg, ic); 446 mtx_unlock(&ic_list_mtx); 447 } 448 449 /* 450 * Default reset method for use with the ioctl support. This 451 * method is invoked after any state change in the 802.11 452 * layer that should be propagated to the hardware but not 453 * require re-initialization of the 802.11 state machine (e.g 454 * rescanning for an ap). We always return ENETRESET which 455 * should cause the driver to re-initialize the device. Drivers 456 * can override this method to implement more optimized support. 457 */ 458 static int 459 default_reset(struct ieee80211vap *vap, u_long cmd) 460 { 461 return ENETRESET; 462 } 463 464 /* 465 * Default for updating the VAP default TX key index. 466 * 467 * Drivers that support TX offload as well as hardware encryption offload 468 * may need to be informed of key index changes separate from the key 469 * update. 470 */ 471 static void 472 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 473 { 474 475 /* XXX assert validity */ 476 /* XXX assert we're in a key update block */ 477 vap->iv_def_txkey = kid; 478 } 479 480 /* 481 * Add underlying device errors to vap errors. 482 */ 483 static uint64_t 484 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 485 { 486 struct ieee80211vap *vap = ifp->if_softc; 487 struct ieee80211com *ic = vap->iv_ic; 488 uint64_t rv; 489 490 rv = if_get_counter_default(ifp, cnt); 491 switch (cnt) { 492 case IFCOUNTER_OERRORS: 493 rv += counter_u64_fetch(ic->ic_oerrors); 494 break; 495 case IFCOUNTER_IERRORS: 496 rv += counter_u64_fetch(ic->ic_ierrors); 497 break; 498 default: 499 break; 500 } 501 502 return (rv); 503 } 504 505 /* 506 * Prepare a vap for use. Drivers use this call to 507 * setup net80211 state in new vap's prior attaching 508 * them with ieee80211_vap_attach (below). 509 */ 510 int 511 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 512 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 513 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 514 { 515 struct ifnet *ifp; 516 517 ifp = if_alloc(IFT_ETHER); 518 if (ifp == NULL) { 519 ic_printf(ic, "%s: unable to allocate ifnet\n", 520 __func__); 521 return ENOMEM; 522 } 523 if_initname(ifp, name, unit); 524 ifp->if_softc = vap; /* back pointer */ 525 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 526 ifp->if_transmit = ieee80211_vap_transmit; 527 ifp->if_qflush = ieee80211_vap_qflush; 528 ifp->if_ioctl = ieee80211_ioctl; 529 ifp->if_init = ieee80211_init; 530 ifp->if_get_counter = ieee80211_get_counter; 531 532 vap->iv_ifp = ifp; 533 vap->iv_ic = ic; 534 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 535 vap->iv_flags_ext = ic->ic_flags_ext; 536 vap->iv_flags_ven = ic->ic_flags_ven; 537 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 538 539 /* 11n capabilities - XXX methodize */ 540 vap->iv_htcaps = ic->ic_htcaps; 541 vap->iv_htextcaps = ic->ic_htextcaps; 542 543 /* 11ac capabilities - XXX methodize */ 544 vap->iv_vhtcaps = ic->ic_vhtcaps; 545 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 546 547 vap->iv_opmode = opmode; 548 vap->iv_caps |= ieee80211_opcap[opmode]; 549 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 550 switch (opmode) { 551 case IEEE80211_M_WDS: 552 /* 553 * WDS links must specify the bssid of the far end. 554 * For legacy operation this is a static relationship. 555 * For non-legacy operation the station must associate 556 * and be authorized to pass traffic. Plumbing the 557 * vap to the proper node happens when the vap 558 * transitions to RUN state. 559 */ 560 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 561 vap->iv_flags |= IEEE80211_F_DESBSSID; 562 if (flags & IEEE80211_CLONE_WDSLEGACY) 563 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 564 break; 565 #ifdef IEEE80211_SUPPORT_TDMA 566 case IEEE80211_M_AHDEMO: 567 if (flags & IEEE80211_CLONE_TDMA) { 568 /* NB: checked before clone operation allowed */ 569 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 570 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 571 /* 572 * Propagate TDMA capability to mark vap; this 573 * cannot be removed and is used to distinguish 574 * regular ahdemo operation from ahdemo+tdma. 575 */ 576 vap->iv_caps |= IEEE80211_C_TDMA; 577 } 578 break; 579 #endif 580 default: 581 break; 582 } 583 /* auto-enable s/w beacon miss support */ 584 if (flags & IEEE80211_CLONE_NOBEACONS) 585 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 586 /* auto-generated or user supplied MAC address */ 587 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 588 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 589 /* 590 * Enable various functionality by default if we're 591 * capable; the driver can override us if it knows better. 592 */ 593 if (vap->iv_caps & IEEE80211_C_WME) 594 vap->iv_flags |= IEEE80211_F_WME; 595 if (vap->iv_caps & IEEE80211_C_BURST) 596 vap->iv_flags |= IEEE80211_F_BURST; 597 /* NB: bg scanning only makes sense for station mode right now */ 598 if (vap->iv_opmode == IEEE80211_M_STA && 599 (vap->iv_caps & IEEE80211_C_BGSCAN)) 600 vap->iv_flags |= IEEE80211_F_BGSCAN; 601 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 602 /* NB: DFS support only makes sense for ap mode right now */ 603 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 604 (vap->iv_caps & IEEE80211_C_DFS)) 605 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 606 607 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 608 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 609 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 610 /* 611 * Install a default reset method for the ioctl support; 612 * the driver can override this. 613 */ 614 vap->iv_reset = default_reset; 615 616 /* 617 * Install a default crypto key update method, the driver 618 * can override this. 619 */ 620 vap->iv_update_deftxkey = default_update_deftxkey; 621 622 ieee80211_sysctl_vattach(vap); 623 ieee80211_crypto_vattach(vap); 624 ieee80211_node_vattach(vap); 625 ieee80211_power_vattach(vap); 626 ieee80211_proto_vattach(vap); 627 #ifdef IEEE80211_SUPPORT_SUPERG 628 ieee80211_superg_vattach(vap); 629 #endif 630 ieee80211_ht_vattach(vap); 631 ieee80211_vht_vattach(vap); 632 ieee80211_scan_vattach(vap); 633 ieee80211_regdomain_vattach(vap); 634 ieee80211_radiotap_vattach(vap); 635 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 636 637 return 0; 638 } 639 640 /* 641 * Activate a vap. State should have been prepared with a 642 * call to ieee80211_vap_setup and by the driver. On return 643 * from this call the vap is ready for use. 644 */ 645 int 646 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 647 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 648 { 649 struct ifnet *ifp = vap->iv_ifp; 650 struct ieee80211com *ic = vap->iv_ic; 651 struct ifmediareq imr; 652 int maxrate; 653 654 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 655 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 656 __func__, ieee80211_opmode_name[vap->iv_opmode], 657 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 658 659 /* 660 * Do late attach work that cannot happen until after 661 * the driver has had a chance to override defaults. 662 */ 663 ieee80211_node_latevattach(vap); 664 ieee80211_power_latevattach(vap); 665 666 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 667 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 668 ieee80211_media_status(ifp, &imr); 669 /* NB: strip explicit mode; we're actually in autoselect */ 670 ifmedia_set(&vap->iv_media, 671 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 672 if (maxrate) 673 ifp->if_baudrate = IF_Mbps(maxrate); 674 675 ether_ifattach(ifp, macaddr); 676 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 677 /* hook output method setup by ether_ifattach */ 678 vap->iv_output = ifp->if_output; 679 ifp->if_output = ieee80211_output; 680 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 681 682 IEEE80211_LOCK(ic); 683 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 684 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 685 #ifdef IEEE80211_SUPPORT_SUPERG 686 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 687 #endif 688 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 689 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 690 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 691 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 692 693 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 694 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 695 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 696 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 697 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 698 IEEE80211_UNLOCK(ic); 699 700 return 1; 701 } 702 703 /* 704 * Tear down vap state and reclaim the ifnet. 705 * The driver is assumed to have prepared for 706 * this; e.g. by turning off interrupts for the 707 * underlying device. 708 */ 709 void 710 ieee80211_vap_detach(struct ieee80211vap *vap) 711 { 712 struct ieee80211com *ic = vap->iv_ic; 713 struct ifnet *ifp = vap->iv_ifp; 714 715 CURVNET_SET(ifp->if_vnet); 716 717 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 718 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 719 720 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 721 ether_ifdetach(ifp); 722 723 ieee80211_stop(vap); 724 725 /* 726 * Flush any deferred vap tasks. 727 */ 728 ieee80211_draintask(ic, &vap->iv_nstate_task); 729 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 730 ieee80211_draintask(ic, &vap->iv_wme_task); 731 ieee80211_draintask(ic, &ic->ic_parent_task); 732 733 /* XXX band-aid until ifnet handles this for us */ 734 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 735 736 IEEE80211_LOCK(ic); 737 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 738 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 739 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 740 #ifdef IEEE80211_SUPPORT_SUPERG 741 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 742 #endif 743 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 744 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 745 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 746 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 747 748 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 749 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 750 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 751 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 752 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 753 754 /* NB: this handles the bpfdetach done below */ 755 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 756 if (vap->iv_ifflags & IFF_PROMISC) 757 ieee80211_promisc(vap, false); 758 if (vap->iv_ifflags & IFF_ALLMULTI) 759 ieee80211_allmulti(vap, false); 760 IEEE80211_UNLOCK(ic); 761 762 ifmedia_removeall(&vap->iv_media); 763 764 ieee80211_radiotap_vdetach(vap); 765 ieee80211_regdomain_vdetach(vap); 766 ieee80211_scan_vdetach(vap); 767 #ifdef IEEE80211_SUPPORT_SUPERG 768 ieee80211_superg_vdetach(vap); 769 #endif 770 ieee80211_vht_vdetach(vap); 771 ieee80211_ht_vdetach(vap); 772 /* NB: must be before ieee80211_node_vdetach */ 773 ieee80211_proto_vdetach(vap); 774 ieee80211_crypto_vdetach(vap); 775 ieee80211_power_vdetach(vap); 776 ieee80211_node_vdetach(vap); 777 ieee80211_sysctl_vdetach(vap); 778 779 if_free(ifp); 780 781 CURVNET_RESTORE(); 782 } 783 784 /* 785 * Count number of vaps in promisc, and issue promisc on 786 * parent respectively. 787 */ 788 void 789 ieee80211_promisc(struct ieee80211vap *vap, bool on) 790 { 791 struct ieee80211com *ic = vap->iv_ic; 792 793 IEEE80211_LOCK_ASSERT(ic); 794 795 if (on) { 796 if (++ic->ic_promisc == 1) 797 ieee80211_runtask(ic, &ic->ic_promisc_task); 798 } else { 799 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 800 __func__, ic)); 801 if (--ic->ic_promisc == 0) 802 ieee80211_runtask(ic, &ic->ic_promisc_task); 803 } 804 } 805 806 /* 807 * Count number of vaps in allmulti, and issue allmulti on 808 * parent respectively. 809 */ 810 void 811 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 812 { 813 struct ieee80211com *ic = vap->iv_ic; 814 815 IEEE80211_LOCK_ASSERT(ic); 816 817 if (on) { 818 if (++ic->ic_allmulti == 1) 819 ieee80211_runtask(ic, &ic->ic_mcast_task); 820 } else { 821 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 822 __func__, ic)); 823 if (--ic->ic_allmulti == 0) 824 ieee80211_runtask(ic, &ic->ic_mcast_task); 825 } 826 } 827 828 /* 829 * Synchronize flag bit state in the com structure 830 * according to the state of all vap's. This is used, 831 * for example, to handle state changes via ioctls. 832 */ 833 static void 834 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 835 { 836 struct ieee80211vap *vap; 837 int bit; 838 839 IEEE80211_LOCK_ASSERT(ic); 840 841 bit = 0; 842 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 843 if (vap->iv_flags & flag) { 844 bit = 1; 845 break; 846 } 847 if (bit) 848 ic->ic_flags |= flag; 849 else 850 ic->ic_flags &= ~flag; 851 } 852 853 void 854 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 855 { 856 struct ieee80211com *ic = vap->iv_ic; 857 858 IEEE80211_LOCK(ic); 859 if (flag < 0) { 860 flag = -flag; 861 vap->iv_flags &= ~flag; 862 } else 863 vap->iv_flags |= flag; 864 ieee80211_syncflag_locked(ic, flag); 865 IEEE80211_UNLOCK(ic); 866 } 867 868 /* 869 * Synchronize flags_ht bit state in the com structure 870 * according to the state of all vap's. This is used, 871 * for example, to handle state changes via ioctls. 872 */ 873 static void 874 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 875 { 876 struct ieee80211vap *vap; 877 int bit; 878 879 IEEE80211_LOCK_ASSERT(ic); 880 881 bit = 0; 882 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 883 if (vap->iv_flags_ht & flag) { 884 bit = 1; 885 break; 886 } 887 if (bit) 888 ic->ic_flags_ht |= flag; 889 else 890 ic->ic_flags_ht &= ~flag; 891 } 892 893 void 894 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 895 { 896 struct ieee80211com *ic = vap->iv_ic; 897 898 IEEE80211_LOCK(ic); 899 if (flag < 0) { 900 flag = -flag; 901 vap->iv_flags_ht &= ~flag; 902 } else 903 vap->iv_flags_ht |= flag; 904 ieee80211_syncflag_ht_locked(ic, flag); 905 IEEE80211_UNLOCK(ic); 906 } 907 908 /* 909 * Synchronize flags_vht bit state in the com structure 910 * according to the state of all vap's. This is used, 911 * for example, to handle state changes via ioctls. 912 */ 913 static void 914 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 915 { 916 struct ieee80211vap *vap; 917 int bit; 918 919 IEEE80211_LOCK_ASSERT(ic); 920 921 bit = 0; 922 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 923 if (vap->iv_flags_vht & flag) { 924 bit = 1; 925 break; 926 } 927 if (bit) 928 ic->ic_flags_vht |= flag; 929 else 930 ic->ic_flags_vht &= ~flag; 931 } 932 933 void 934 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 935 { 936 struct ieee80211com *ic = vap->iv_ic; 937 938 IEEE80211_LOCK(ic); 939 if (flag < 0) { 940 flag = -flag; 941 vap->iv_flags_vht &= ~flag; 942 } else 943 vap->iv_flags_vht |= flag; 944 ieee80211_syncflag_vht_locked(ic, flag); 945 IEEE80211_UNLOCK(ic); 946 } 947 948 /* 949 * Synchronize flags_ext bit state in the com structure 950 * according to the state of all vap's. This is used, 951 * for example, to handle state changes via ioctls. 952 */ 953 static void 954 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 955 { 956 struct ieee80211vap *vap; 957 int bit; 958 959 IEEE80211_LOCK_ASSERT(ic); 960 961 bit = 0; 962 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 963 if (vap->iv_flags_ext & flag) { 964 bit = 1; 965 break; 966 } 967 if (bit) 968 ic->ic_flags_ext |= flag; 969 else 970 ic->ic_flags_ext &= ~flag; 971 } 972 973 void 974 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 975 { 976 struct ieee80211com *ic = vap->iv_ic; 977 978 IEEE80211_LOCK(ic); 979 if (flag < 0) { 980 flag = -flag; 981 vap->iv_flags_ext &= ~flag; 982 } else 983 vap->iv_flags_ext |= flag; 984 ieee80211_syncflag_ext_locked(ic, flag); 985 IEEE80211_UNLOCK(ic); 986 } 987 988 static __inline int 989 mapgsm(u_int freq, u_int flags) 990 { 991 freq *= 10; 992 if (flags & IEEE80211_CHAN_QUARTER) 993 freq += 5; 994 else if (flags & IEEE80211_CHAN_HALF) 995 freq += 10; 996 else 997 freq += 20; 998 /* NB: there is no 907/20 wide but leave room */ 999 return (freq - 906*10) / 5; 1000 } 1001 1002 static __inline int 1003 mappsb(u_int freq, u_int flags) 1004 { 1005 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1006 } 1007 1008 /* 1009 * Convert MHz frequency to IEEE channel number. 1010 */ 1011 int 1012 ieee80211_mhz2ieee(u_int freq, u_int flags) 1013 { 1014 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1015 if (flags & IEEE80211_CHAN_GSM) 1016 return mapgsm(freq, flags); 1017 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1018 if (freq == 2484) 1019 return 14; 1020 if (freq < 2484) 1021 return ((int) freq - 2407) / 5; 1022 else 1023 return 15 + ((freq - 2512) / 20); 1024 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1025 if (freq <= 5000) { 1026 /* XXX check regdomain? */ 1027 if (IS_FREQ_IN_PSB(freq)) 1028 return mappsb(freq, flags); 1029 return (freq - 4000) / 5; 1030 } else 1031 return (freq - 5000) / 5; 1032 } else { /* either, guess */ 1033 if (freq == 2484) 1034 return 14; 1035 if (freq < 2484) { 1036 if (907 <= freq && freq <= 922) 1037 return mapgsm(freq, flags); 1038 return ((int) freq - 2407) / 5; 1039 } 1040 if (freq < 5000) { 1041 if (IS_FREQ_IN_PSB(freq)) 1042 return mappsb(freq, flags); 1043 else if (freq > 4900) 1044 return (freq - 4000) / 5; 1045 else 1046 return 15 + ((freq - 2512) / 20); 1047 } 1048 return (freq - 5000) / 5; 1049 } 1050 #undef IS_FREQ_IN_PSB 1051 } 1052 1053 /* 1054 * Convert channel to IEEE channel number. 1055 */ 1056 int 1057 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1058 { 1059 if (c == NULL) { 1060 ic_printf(ic, "invalid channel (NULL)\n"); 1061 return 0; /* XXX */ 1062 } 1063 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1064 } 1065 1066 /* 1067 * Convert IEEE channel number to MHz frequency. 1068 */ 1069 u_int 1070 ieee80211_ieee2mhz(u_int chan, u_int flags) 1071 { 1072 if (flags & IEEE80211_CHAN_GSM) 1073 return 907 + 5 * (chan / 10); 1074 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1075 if (chan == 14) 1076 return 2484; 1077 if (chan < 14) 1078 return 2407 + chan*5; 1079 else 1080 return 2512 + ((chan-15)*20); 1081 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1082 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1083 chan -= 37; 1084 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1085 } 1086 return 5000 + (chan*5); 1087 } else { /* either, guess */ 1088 /* XXX can't distinguish PSB+GSM channels */ 1089 if (chan == 14) 1090 return 2484; 1091 if (chan < 14) /* 0-13 */ 1092 return 2407 + chan*5; 1093 if (chan < 27) /* 15-26 */ 1094 return 2512 + ((chan-15)*20); 1095 return 5000 + (chan*5); 1096 } 1097 } 1098 1099 static __inline void 1100 set_extchan(struct ieee80211_channel *c) 1101 { 1102 1103 /* 1104 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1105 * "the secondary channel number shall be 'N + [1,-1] * 4' 1106 */ 1107 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1108 c->ic_extieee = c->ic_ieee + 4; 1109 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1110 c->ic_extieee = c->ic_ieee - 4; 1111 else 1112 c->ic_extieee = 0; 1113 } 1114 1115 /* 1116 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1117 * 1118 * This for now uses a hard-coded list of 80MHz wide channels. 1119 * 1120 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1121 * wide channel we've already decided upon. 1122 * 1123 * For VHT80 and VHT160, there are only a small number of fixed 1124 * 80/160MHz wide channels, so we just use those. 1125 * 1126 * This is all likely very very wrong - both the regulatory code 1127 * and this code needs to ensure that all four channels are 1128 * available and valid before the VHT80 (and eight for VHT160) channel 1129 * is created. 1130 */ 1131 1132 struct vht_chan_range { 1133 uint16_t freq_start; 1134 uint16_t freq_end; 1135 }; 1136 1137 struct vht_chan_range vht80_chan_ranges[] = { 1138 { 5170, 5250 }, 1139 { 5250, 5330 }, 1140 { 5490, 5570 }, 1141 { 5570, 5650 }, 1142 { 5650, 5730 }, 1143 { 5735, 5815 }, 1144 { 0, 0, } 1145 }; 1146 1147 static int 1148 set_vht_extchan(struct ieee80211_channel *c) 1149 { 1150 int i; 1151 1152 if (! IEEE80211_IS_CHAN_VHT(c)) { 1153 return (0); 1154 } 1155 1156 if (IEEE80211_IS_CHAN_VHT20(c)) { 1157 c->ic_vht_ch_freq1 = c->ic_ieee; 1158 return (1); 1159 } 1160 1161 if (IEEE80211_IS_CHAN_VHT40(c)) { 1162 if (IEEE80211_IS_CHAN_HT40U(c)) 1163 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1164 else if (IEEE80211_IS_CHAN_HT40D(c)) 1165 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1166 else 1167 return (0); 1168 return (1); 1169 } 1170 1171 if (IEEE80211_IS_CHAN_VHT80(c)) { 1172 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1173 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1174 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1175 int midpoint; 1176 1177 midpoint = vht80_chan_ranges[i].freq_start + 40; 1178 c->ic_vht_ch_freq1 = 1179 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1180 c->ic_vht_ch_freq2 = 0; 1181 #if 0 1182 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1183 __func__, c->ic_ieee, c->ic_freq, midpoint, 1184 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1185 #endif 1186 return (1); 1187 } 1188 } 1189 return (0); 1190 } 1191 1192 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1193 __func__, 1194 c->ic_ieee, 1195 c->ic_flags); 1196 1197 return (0); 1198 } 1199 1200 /* 1201 * Return whether the current channel could possibly be a part of 1202 * a VHT80 channel. 1203 * 1204 * This doesn't check that the whole range is in the allowed list 1205 * according to regulatory. 1206 */ 1207 static int 1208 is_vht80_valid_freq(uint16_t freq) 1209 { 1210 int i; 1211 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1212 if (freq >= vht80_chan_ranges[i].freq_start && 1213 freq < vht80_chan_ranges[i].freq_end) 1214 return (1); 1215 } 1216 return (0); 1217 } 1218 1219 static int 1220 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1221 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1222 { 1223 struct ieee80211_channel *c; 1224 1225 if (*nchans >= maxchans) 1226 return (ENOBUFS); 1227 1228 #if 0 1229 printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n", 1230 __func__, 1231 *nchans, 1232 ieee, 1233 freq, 1234 flags); 1235 #endif 1236 1237 c = &chans[(*nchans)++]; 1238 c->ic_ieee = ieee; 1239 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1240 c->ic_maxregpower = maxregpower; 1241 c->ic_maxpower = 2 * maxregpower; 1242 c->ic_flags = flags; 1243 c->ic_vht_ch_freq1 = 0; 1244 c->ic_vht_ch_freq2 = 0; 1245 set_extchan(c); 1246 set_vht_extchan(c); 1247 1248 return (0); 1249 } 1250 1251 static int 1252 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1253 uint32_t flags) 1254 { 1255 struct ieee80211_channel *c; 1256 1257 KASSERT(*nchans > 0, ("channel list is empty\n")); 1258 1259 if (*nchans >= maxchans) 1260 return (ENOBUFS); 1261 1262 #if 0 1263 printf("%s: %d: flags=0x%08x\n", 1264 __func__, 1265 *nchans, 1266 flags); 1267 #endif 1268 1269 c = &chans[(*nchans)++]; 1270 c[0] = c[-1]; 1271 c->ic_flags = flags; 1272 c->ic_vht_ch_freq1 = 0; 1273 c->ic_vht_ch_freq2 = 0; 1274 set_extchan(c); 1275 set_vht_extchan(c); 1276 1277 return (0); 1278 } 1279 1280 /* 1281 * XXX VHT-2GHz 1282 */ 1283 static void 1284 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40) 1285 { 1286 int nmodes; 1287 1288 nmodes = 0; 1289 if (isset(bands, IEEE80211_MODE_11B)) 1290 flags[nmodes++] = IEEE80211_CHAN_B; 1291 if (isset(bands, IEEE80211_MODE_11G)) 1292 flags[nmodes++] = IEEE80211_CHAN_G; 1293 if (isset(bands, IEEE80211_MODE_11NG)) 1294 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1295 if (ht40) { 1296 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1297 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1298 } 1299 flags[nmodes] = 0; 1300 } 1301 1302 static void 1303 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1304 { 1305 int nmodes; 1306 1307 /* 1308 * the addchan_list function seems to expect the flags array to 1309 * be in channel width order, so the VHT bits are interspersed 1310 * as appropriate to maintain said order. 1311 * 1312 * It also assumes HT40U is before HT40D. 1313 */ 1314 nmodes = 0; 1315 1316 /* 20MHz */ 1317 if (isset(bands, IEEE80211_MODE_11A)) 1318 flags[nmodes++] = IEEE80211_CHAN_A; 1319 if (isset(bands, IEEE80211_MODE_11NA)) 1320 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1321 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1322 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1323 IEEE80211_CHAN_VHT20; 1324 } 1325 1326 /* 40MHz */ 1327 if (ht40) { 1328 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1329 } 1330 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1331 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U 1332 | IEEE80211_CHAN_VHT40U; 1333 } 1334 if (ht40) { 1335 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1336 } 1337 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1338 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D 1339 | IEEE80211_CHAN_VHT40D; 1340 } 1341 1342 /* 80MHz */ 1343 if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1344 flags[nmodes++] = IEEE80211_CHAN_A | 1345 IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80; 1346 flags[nmodes++] = IEEE80211_CHAN_A | 1347 IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80; 1348 } 1349 1350 /* XXX VHT80+80 */ 1351 /* XXX VHT160 */ 1352 flags[nmodes] = 0; 1353 } 1354 1355 static void 1356 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1357 { 1358 1359 flags[0] = 0; 1360 if (isset(bands, IEEE80211_MODE_11A) || 1361 isset(bands, IEEE80211_MODE_11NA) || 1362 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1363 if (isset(bands, IEEE80211_MODE_11B) || 1364 isset(bands, IEEE80211_MODE_11G) || 1365 isset(bands, IEEE80211_MODE_11NG) || 1366 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1367 return; 1368 1369 getflags_5ghz(bands, flags, ht40, vht80); 1370 } else 1371 getflags_2ghz(bands, flags, ht40); 1372 } 1373 1374 /* 1375 * Add one 20 MHz channel into specified channel list. 1376 */ 1377 /* XXX VHT */ 1378 int 1379 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1380 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1381 uint32_t chan_flags, const uint8_t bands[]) 1382 { 1383 uint32_t flags[IEEE80211_MODE_MAX]; 1384 int i, error; 1385 1386 getflags(bands, flags, 0, 0); 1387 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1388 1389 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1390 flags[0] | chan_flags); 1391 for (i = 1; flags[i] != 0 && error == 0; i++) { 1392 error = copychan_prev(chans, maxchans, nchans, 1393 flags[i] | chan_flags); 1394 } 1395 1396 return (error); 1397 } 1398 1399 static struct ieee80211_channel * 1400 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1401 uint32_t flags) 1402 { 1403 struct ieee80211_channel *c; 1404 int i; 1405 1406 flags &= IEEE80211_CHAN_ALLTURBO; 1407 /* brute force search */ 1408 for (i = 0; i < nchans; i++) { 1409 c = &chans[i]; 1410 if (c->ic_freq == freq && 1411 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1412 return c; 1413 } 1414 return NULL; 1415 } 1416 1417 /* 1418 * Add 40 MHz channel pair into specified channel list. 1419 */ 1420 /* XXX VHT */ 1421 int 1422 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1423 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1424 { 1425 struct ieee80211_channel *cent, *extc; 1426 uint16_t freq; 1427 int error; 1428 1429 freq = ieee80211_ieee2mhz(ieee, flags); 1430 1431 /* 1432 * Each entry defines an HT40 channel pair; find the 1433 * center channel, then the extension channel above. 1434 */ 1435 flags |= IEEE80211_CHAN_HT20; 1436 cent = findchannel(chans, *nchans, freq, flags); 1437 if (cent == NULL) 1438 return (EINVAL); 1439 1440 extc = findchannel(chans, *nchans, freq + 20, flags); 1441 if (extc == NULL) 1442 return (ENOENT); 1443 1444 flags &= ~IEEE80211_CHAN_HT; 1445 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1446 maxregpower, flags | IEEE80211_CHAN_HT40U); 1447 if (error != 0) 1448 return (error); 1449 1450 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1451 maxregpower, flags | IEEE80211_CHAN_HT40D); 1452 1453 return (error); 1454 } 1455 1456 /* 1457 * Fetch the center frequency for the primary channel. 1458 */ 1459 uint32_t 1460 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1461 { 1462 1463 return (c->ic_freq); 1464 } 1465 1466 /* 1467 * Fetch the center frequency for the primary BAND channel. 1468 * 1469 * For 5, 10, 20MHz channels it'll be the normally configured channel 1470 * frequency. 1471 * 1472 * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the 1473 * wide channel, not the centre of the primary channel (that's ic_freq). 1474 * 1475 * For 80+80MHz channels this will be the centre of the primary 1476 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1477 */ 1478 uint32_t 1479 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1480 { 1481 1482 /* 1483 * VHT - use the pre-calculated centre frequency 1484 * of the given channel. 1485 */ 1486 if (IEEE80211_IS_CHAN_VHT(c)) 1487 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1488 1489 if (IEEE80211_IS_CHAN_HT40U(c)) { 1490 return (c->ic_freq + 10); 1491 } 1492 if (IEEE80211_IS_CHAN_HT40D(c)) { 1493 return (c->ic_freq - 10); 1494 } 1495 1496 return (c->ic_freq); 1497 } 1498 1499 /* 1500 * For now, no 80+80 support; it will likely always return 0. 1501 */ 1502 uint32_t 1503 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1504 { 1505 1506 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1507 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1508 1509 return (0); 1510 } 1511 1512 /* 1513 * Adds channels into specified channel list (ieee[] array must be sorted). 1514 * Channels are already sorted. 1515 */ 1516 static int 1517 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1518 const uint8_t ieee[], int nieee, uint32_t flags[]) 1519 { 1520 uint16_t freq; 1521 int i, j, error; 1522 int is_vht; 1523 1524 for (i = 0; i < nieee; i++) { 1525 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1526 for (j = 0; flags[j] != 0; j++) { 1527 /* 1528 * Notes: 1529 * + HT40 and VHT40 channels occur together, so 1530 * we need to be careful that we actually allow that. 1531 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1532 * make sure it's not skipped because of the overlap 1533 * check used for (V)HT40. 1534 */ 1535 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1536 1537 /* 1538 * Test for VHT80. 1539 * XXX This is all very broken right now. 1540 * What we /should/ do is: 1541 * 1542 * + check that the frequency is in the list of 1543 * allowed VHT80 ranges; and 1544 * + the other 3 channels in the list are actually 1545 * also available. 1546 */ 1547 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1548 if (! is_vht80_valid_freq(freq)) 1549 continue; 1550 1551 /* 1552 * Test for (V)HT40. 1553 * 1554 * This is also a fall through from VHT80; as we only 1555 * allow a VHT80 channel if the VHT40 combination is 1556 * also valid. If the VHT40 form is not valid then 1557 * we certainly can't do VHT80.. 1558 */ 1559 if (flags[j] & IEEE80211_CHAN_HT40D) 1560 /* 1561 * Can't have a "lower" channel if we are the 1562 * first channel. 1563 * 1564 * Can't have a "lower" channel if it's below/ 1565 * within 20MHz of the first channel. 1566 * 1567 * Can't have a "lower" channel if the channel 1568 * below it is not 20MHz away. 1569 */ 1570 if (i == 0 || ieee[i] < ieee[0] + 4 || 1571 freq - 20 != 1572 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1573 continue; 1574 if (flags[j] & IEEE80211_CHAN_HT40U) 1575 /* 1576 * Can't have an "upper" channel if we are 1577 * the last channel. 1578 * 1579 * Can't have an "upper" channel be above the 1580 * last channel in the list. 1581 * 1582 * Can't have an "upper" channel if the next 1583 * channel according to the math isn't 20MHz 1584 * away. (Likely for channel 13/14.) 1585 */ 1586 if (i == nieee - 1 || 1587 ieee[i] + 4 > ieee[nieee - 1] || 1588 freq + 20 != 1589 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1590 continue; 1591 1592 if (j == 0) { 1593 error = addchan(chans, maxchans, nchans, 1594 ieee[i], freq, 0, flags[j]); 1595 } else { 1596 error = copychan_prev(chans, maxchans, nchans, 1597 flags[j]); 1598 } 1599 if (error != 0) 1600 return (error); 1601 } 1602 } 1603 1604 return (0); 1605 } 1606 1607 int 1608 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1609 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1610 int ht40) 1611 { 1612 uint32_t flags[IEEE80211_MODE_MAX]; 1613 1614 /* XXX no VHT for now */ 1615 getflags_2ghz(bands, flags, ht40); 1616 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1617 1618 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1619 } 1620 1621 int 1622 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1623 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1624 int ht40) 1625 { 1626 uint32_t flags[IEEE80211_MODE_MAX]; 1627 int vht80 = 0; 1628 1629 /* 1630 * For now, assume VHT == VHT80 support as a minimum. 1631 */ 1632 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1633 vht80 = 1; 1634 1635 getflags_5ghz(bands, flags, ht40, vht80); 1636 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1637 1638 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1639 } 1640 1641 /* 1642 * Locate a channel given a frequency+flags. We cache 1643 * the previous lookup to optimize switching between two 1644 * channels--as happens with dynamic turbo. 1645 */ 1646 struct ieee80211_channel * 1647 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1648 { 1649 struct ieee80211_channel *c; 1650 1651 flags &= IEEE80211_CHAN_ALLTURBO; 1652 c = ic->ic_prevchan; 1653 if (c != NULL && c->ic_freq == freq && 1654 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1655 return c; 1656 /* brute force search */ 1657 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1658 } 1659 1660 /* 1661 * Locate a channel given a channel number+flags. We cache 1662 * the previous lookup to optimize switching between two 1663 * channels--as happens with dynamic turbo. 1664 */ 1665 struct ieee80211_channel * 1666 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1667 { 1668 struct ieee80211_channel *c; 1669 int i; 1670 1671 flags &= IEEE80211_CHAN_ALLTURBO; 1672 c = ic->ic_prevchan; 1673 if (c != NULL && c->ic_ieee == ieee && 1674 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1675 return c; 1676 /* brute force search */ 1677 for (i = 0; i < ic->ic_nchans; i++) { 1678 c = &ic->ic_channels[i]; 1679 if (c->ic_ieee == ieee && 1680 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1681 return c; 1682 } 1683 return NULL; 1684 } 1685 1686 /* 1687 * Lookup a channel suitable for the given rx status. 1688 * 1689 * This is used to find a channel for a frame (eg beacon, probe 1690 * response) based purely on the received PHY information. 1691 * 1692 * For now it tries to do it based on R_FREQ / R_IEEE. 1693 * This is enough for 11bg and 11a (and thus 11ng/11na) 1694 * but it will not be enough for GSM, PSB channels and the 1695 * like. It also doesn't know about legacy-turbog and 1696 * legacy-turbo modes, which some offload NICs actually 1697 * support in weird ways. 1698 * 1699 * Takes the ic and rxstatus; returns the channel or NULL 1700 * if not found. 1701 * 1702 * XXX TODO: Add support for that when the need arises. 1703 */ 1704 struct ieee80211_channel * 1705 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1706 const struct ieee80211_rx_stats *rxs) 1707 { 1708 struct ieee80211com *ic = vap->iv_ic; 1709 uint32_t flags; 1710 struct ieee80211_channel *c; 1711 1712 if (rxs == NULL) 1713 return (NULL); 1714 1715 /* 1716 * Strictly speaking we only use freq for now, 1717 * however later on we may wish to just store 1718 * the ieee for verification. 1719 */ 1720 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1721 return (NULL); 1722 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1723 return (NULL); 1724 1725 /* 1726 * If the rx status contains a valid ieee/freq, then 1727 * ensure we populate the correct channel information 1728 * in rxchan before passing it up to the scan infrastructure. 1729 * Offload NICs will pass up beacons from all channels 1730 * during background scans. 1731 */ 1732 1733 /* Determine a band */ 1734 /* XXX should be done by the driver? */ 1735 if (rxs->c_freq < 3000) { 1736 flags = IEEE80211_CHAN_G; 1737 } else { 1738 flags = IEEE80211_CHAN_A; 1739 } 1740 1741 /* Channel lookup */ 1742 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1743 1744 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1745 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1746 __func__, 1747 (int) rxs->c_freq, 1748 (int) rxs->c_ieee, 1749 flags, 1750 c); 1751 1752 return (c); 1753 } 1754 1755 static void 1756 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1757 { 1758 #define ADD(_ic, _s, _o) \ 1759 ifmedia_add(media, \ 1760 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1761 static const u_int mopts[IEEE80211_MODE_MAX] = { 1762 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1763 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1764 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1765 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1766 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1767 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1768 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1769 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1770 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1771 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1772 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1773 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1774 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1775 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1776 }; 1777 u_int mopt; 1778 1779 mopt = mopts[mode]; 1780 if (addsta) 1781 ADD(ic, mword, mopt); /* STA mode has no cap */ 1782 if (caps & IEEE80211_C_IBSS) 1783 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1784 if (caps & IEEE80211_C_HOSTAP) 1785 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1786 if (caps & IEEE80211_C_AHDEMO) 1787 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1788 if (caps & IEEE80211_C_MONITOR) 1789 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1790 if (caps & IEEE80211_C_WDS) 1791 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1792 if (caps & IEEE80211_C_MBSS) 1793 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1794 #undef ADD 1795 } 1796 1797 /* 1798 * Setup the media data structures according to the channel and 1799 * rate tables. 1800 */ 1801 static int 1802 ieee80211_media_setup(struct ieee80211com *ic, 1803 struct ifmedia *media, int caps, int addsta, 1804 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1805 { 1806 int i, j, rate, maxrate, mword, r; 1807 enum ieee80211_phymode mode; 1808 const struct ieee80211_rateset *rs; 1809 struct ieee80211_rateset allrates; 1810 1811 /* 1812 * Fill in media characteristics. 1813 */ 1814 ifmedia_init(media, 0, media_change, media_stat); 1815 maxrate = 0; 1816 /* 1817 * Add media for legacy operating modes. 1818 */ 1819 memset(&allrates, 0, sizeof(allrates)); 1820 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1821 if (isclr(ic->ic_modecaps, mode)) 1822 continue; 1823 addmedia(media, caps, addsta, mode, IFM_AUTO); 1824 if (mode == IEEE80211_MODE_AUTO) 1825 continue; 1826 rs = &ic->ic_sup_rates[mode]; 1827 for (i = 0; i < rs->rs_nrates; i++) { 1828 rate = rs->rs_rates[i]; 1829 mword = ieee80211_rate2media(ic, rate, mode); 1830 if (mword == 0) 1831 continue; 1832 addmedia(media, caps, addsta, mode, mword); 1833 /* 1834 * Add legacy rate to the collection of all rates. 1835 */ 1836 r = rate & IEEE80211_RATE_VAL; 1837 for (j = 0; j < allrates.rs_nrates; j++) 1838 if (allrates.rs_rates[j] == r) 1839 break; 1840 if (j == allrates.rs_nrates) { 1841 /* unique, add to the set */ 1842 allrates.rs_rates[j] = r; 1843 allrates.rs_nrates++; 1844 } 1845 rate = (rate & IEEE80211_RATE_VAL) / 2; 1846 if (rate > maxrate) 1847 maxrate = rate; 1848 } 1849 } 1850 for (i = 0; i < allrates.rs_nrates; i++) { 1851 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1852 IEEE80211_MODE_AUTO); 1853 if (mword == 0) 1854 continue; 1855 /* NB: remove media options from mword */ 1856 addmedia(media, caps, addsta, 1857 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1858 } 1859 /* 1860 * Add HT/11n media. Note that we do not have enough 1861 * bits in the media subtype to express the MCS so we 1862 * use a "placeholder" media subtype and any fixed MCS 1863 * must be specified with a different mechanism. 1864 */ 1865 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1866 if (isclr(ic->ic_modecaps, mode)) 1867 continue; 1868 addmedia(media, caps, addsta, mode, IFM_AUTO); 1869 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1870 } 1871 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1872 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1873 addmedia(media, caps, addsta, 1874 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1875 i = ic->ic_txstream * 8 - 1; 1876 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1877 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1878 rate = ieee80211_htrates[i].ht40_rate_400ns; 1879 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1880 rate = ieee80211_htrates[i].ht40_rate_800ns; 1881 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1882 rate = ieee80211_htrates[i].ht20_rate_400ns; 1883 else 1884 rate = ieee80211_htrates[i].ht20_rate_800ns; 1885 if (rate > maxrate) 1886 maxrate = rate; 1887 } 1888 1889 /* 1890 * Add VHT media. 1891 */ 1892 for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) { 1893 if (isclr(ic->ic_modecaps, mode)) 1894 continue; 1895 addmedia(media, caps, addsta, mode, IFM_AUTO); 1896 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 1897 1898 /* XXX TODO: VHT maxrate */ 1899 } 1900 1901 return maxrate; 1902 } 1903 1904 /* XXX inline or eliminate? */ 1905 const struct ieee80211_rateset * 1906 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1907 { 1908 /* XXX does this work for 11ng basic rates? */ 1909 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1910 } 1911 1912 /* XXX inline or eliminate? */ 1913 const struct ieee80211_htrateset * 1914 ieee80211_get_suphtrates(struct ieee80211com *ic, 1915 const struct ieee80211_channel *c) 1916 { 1917 return &ic->ic_sup_htrates; 1918 } 1919 1920 void 1921 ieee80211_announce(struct ieee80211com *ic) 1922 { 1923 int i, rate, mword; 1924 enum ieee80211_phymode mode; 1925 const struct ieee80211_rateset *rs; 1926 1927 /* NB: skip AUTO since it has no rates */ 1928 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1929 if (isclr(ic->ic_modecaps, mode)) 1930 continue; 1931 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 1932 rs = &ic->ic_sup_rates[mode]; 1933 for (i = 0; i < rs->rs_nrates; i++) { 1934 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1935 if (mword == 0) 1936 continue; 1937 rate = ieee80211_media2rate(mword); 1938 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1939 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1940 } 1941 printf("\n"); 1942 } 1943 ieee80211_ht_announce(ic); 1944 ieee80211_vht_announce(ic); 1945 } 1946 1947 void 1948 ieee80211_announce_channels(struct ieee80211com *ic) 1949 { 1950 const struct ieee80211_channel *c; 1951 char type; 1952 int i, cw; 1953 1954 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1955 for (i = 0; i < ic->ic_nchans; i++) { 1956 c = &ic->ic_channels[i]; 1957 if (IEEE80211_IS_CHAN_ST(c)) 1958 type = 'S'; 1959 else if (IEEE80211_IS_CHAN_108A(c)) 1960 type = 'T'; 1961 else if (IEEE80211_IS_CHAN_108G(c)) 1962 type = 'G'; 1963 else if (IEEE80211_IS_CHAN_HT(c)) 1964 type = 'n'; 1965 else if (IEEE80211_IS_CHAN_A(c)) 1966 type = 'a'; 1967 else if (IEEE80211_IS_CHAN_ANYG(c)) 1968 type = 'g'; 1969 else if (IEEE80211_IS_CHAN_B(c)) 1970 type = 'b'; 1971 else 1972 type = 'f'; 1973 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1974 cw = 40; 1975 else if (IEEE80211_IS_CHAN_HALF(c)) 1976 cw = 10; 1977 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1978 cw = 5; 1979 else 1980 cw = 20; 1981 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1982 , c->ic_ieee, c->ic_freq, type 1983 , cw 1984 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1985 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1986 , c->ic_maxregpower 1987 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1988 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1989 ); 1990 } 1991 } 1992 1993 static int 1994 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1995 { 1996 switch (IFM_MODE(ime->ifm_media)) { 1997 case IFM_IEEE80211_11A: 1998 *mode = IEEE80211_MODE_11A; 1999 break; 2000 case IFM_IEEE80211_11B: 2001 *mode = IEEE80211_MODE_11B; 2002 break; 2003 case IFM_IEEE80211_11G: 2004 *mode = IEEE80211_MODE_11G; 2005 break; 2006 case IFM_IEEE80211_FH: 2007 *mode = IEEE80211_MODE_FH; 2008 break; 2009 case IFM_IEEE80211_11NA: 2010 *mode = IEEE80211_MODE_11NA; 2011 break; 2012 case IFM_IEEE80211_11NG: 2013 *mode = IEEE80211_MODE_11NG; 2014 break; 2015 case IFM_AUTO: 2016 *mode = IEEE80211_MODE_AUTO; 2017 break; 2018 default: 2019 return 0; 2020 } 2021 /* 2022 * Turbo mode is an ``option''. 2023 * XXX does not apply to AUTO 2024 */ 2025 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2026 if (*mode == IEEE80211_MODE_11A) { 2027 if (flags & IEEE80211_F_TURBOP) 2028 *mode = IEEE80211_MODE_TURBO_A; 2029 else 2030 *mode = IEEE80211_MODE_STURBO_A; 2031 } else if (*mode == IEEE80211_MODE_11G) 2032 *mode = IEEE80211_MODE_TURBO_G; 2033 else 2034 return 0; 2035 } 2036 /* XXX HT40 +/- */ 2037 return 1; 2038 } 2039 2040 /* 2041 * Handle a media change request on the vap interface. 2042 */ 2043 int 2044 ieee80211_media_change(struct ifnet *ifp) 2045 { 2046 struct ieee80211vap *vap = ifp->if_softc; 2047 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2048 uint16_t newmode; 2049 2050 if (!media2mode(ime, vap->iv_flags, &newmode)) 2051 return EINVAL; 2052 if (vap->iv_des_mode != newmode) { 2053 vap->iv_des_mode = newmode; 2054 /* XXX kick state machine if up+running */ 2055 } 2056 return 0; 2057 } 2058 2059 /* 2060 * Common code to calculate the media status word 2061 * from the operating mode and channel state. 2062 */ 2063 static int 2064 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2065 { 2066 int status; 2067 2068 status = IFM_IEEE80211; 2069 switch (opmode) { 2070 case IEEE80211_M_STA: 2071 break; 2072 case IEEE80211_M_IBSS: 2073 status |= IFM_IEEE80211_ADHOC; 2074 break; 2075 case IEEE80211_M_HOSTAP: 2076 status |= IFM_IEEE80211_HOSTAP; 2077 break; 2078 case IEEE80211_M_MONITOR: 2079 status |= IFM_IEEE80211_MONITOR; 2080 break; 2081 case IEEE80211_M_AHDEMO: 2082 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2083 break; 2084 case IEEE80211_M_WDS: 2085 status |= IFM_IEEE80211_WDS; 2086 break; 2087 case IEEE80211_M_MBSS: 2088 status |= IFM_IEEE80211_MBSS; 2089 break; 2090 } 2091 if (IEEE80211_IS_CHAN_HTA(chan)) { 2092 status |= IFM_IEEE80211_11NA; 2093 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2094 status |= IFM_IEEE80211_11NG; 2095 } else if (IEEE80211_IS_CHAN_A(chan)) { 2096 status |= IFM_IEEE80211_11A; 2097 } else if (IEEE80211_IS_CHAN_B(chan)) { 2098 status |= IFM_IEEE80211_11B; 2099 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2100 status |= IFM_IEEE80211_11G; 2101 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2102 status |= IFM_IEEE80211_FH; 2103 } 2104 /* XXX else complain? */ 2105 2106 if (IEEE80211_IS_CHAN_TURBO(chan)) 2107 status |= IFM_IEEE80211_TURBO; 2108 #if 0 2109 if (IEEE80211_IS_CHAN_HT20(chan)) 2110 status |= IFM_IEEE80211_HT20; 2111 if (IEEE80211_IS_CHAN_HT40(chan)) 2112 status |= IFM_IEEE80211_HT40; 2113 #endif 2114 return status; 2115 } 2116 2117 void 2118 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2119 { 2120 struct ieee80211vap *vap = ifp->if_softc; 2121 struct ieee80211com *ic = vap->iv_ic; 2122 enum ieee80211_phymode mode; 2123 2124 imr->ifm_status = IFM_AVALID; 2125 /* 2126 * NB: use the current channel's mode to lock down a xmit 2127 * rate only when running; otherwise we may have a mismatch 2128 * in which case the rate will not be convertible. 2129 */ 2130 if (vap->iv_state == IEEE80211_S_RUN || 2131 vap->iv_state == IEEE80211_S_SLEEP) { 2132 imr->ifm_status |= IFM_ACTIVE; 2133 mode = ieee80211_chan2mode(ic->ic_curchan); 2134 } else 2135 mode = IEEE80211_MODE_AUTO; 2136 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2137 /* 2138 * Calculate a current rate if possible. 2139 */ 2140 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2141 /* 2142 * A fixed rate is set, report that. 2143 */ 2144 imr->ifm_active |= ieee80211_rate2media(ic, 2145 vap->iv_txparms[mode].ucastrate, mode); 2146 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2147 /* 2148 * In station mode report the current transmit rate. 2149 */ 2150 imr->ifm_active |= ieee80211_rate2media(ic, 2151 vap->iv_bss->ni_txrate, mode); 2152 } else 2153 imr->ifm_active |= IFM_AUTO; 2154 if (imr->ifm_status & IFM_ACTIVE) 2155 imr->ifm_current = imr->ifm_active; 2156 } 2157 2158 /* 2159 * Set the current phy mode and recalculate the active channel 2160 * set based on the available channels for this mode. Also 2161 * select a new default/current channel if the current one is 2162 * inappropriate for this mode. 2163 */ 2164 int 2165 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2166 { 2167 /* 2168 * Adjust basic rates in 11b/11g supported rate set. 2169 * Note that if operating on a hal/quarter rate channel 2170 * this is a noop as those rates sets are different 2171 * and used instead. 2172 */ 2173 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2174 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2175 2176 ic->ic_curmode = mode; 2177 ieee80211_reset_erp(ic); /* reset ERP state */ 2178 2179 return 0; 2180 } 2181 2182 /* 2183 * Return the phy mode for with the specified channel. 2184 */ 2185 enum ieee80211_phymode 2186 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2187 { 2188 2189 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2190 return IEEE80211_MODE_VHT_2GHZ; 2191 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2192 return IEEE80211_MODE_VHT_5GHZ; 2193 else if (IEEE80211_IS_CHAN_HTA(chan)) 2194 return IEEE80211_MODE_11NA; 2195 else if (IEEE80211_IS_CHAN_HTG(chan)) 2196 return IEEE80211_MODE_11NG; 2197 else if (IEEE80211_IS_CHAN_108G(chan)) 2198 return IEEE80211_MODE_TURBO_G; 2199 else if (IEEE80211_IS_CHAN_ST(chan)) 2200 return IEEE80211_MODE_STURBO_A; 2201 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2202 return IEEE80211_MODE_TURBO_A; 2203 else if (IEEE80211_IS_CHAN_HALF(chan)) 2204 return IEEE80211_MODE_HALF; 2205 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2206 return IEEE80211_MODE_QUARTER; 2207 else if (IEEE80211_IS_CHAN_A(chan)) 2208 return IEEE80211_MODE_11A; 2209 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2210 return IEEE80211_MODE_11G; 2211 else if (IEEE80211_IS_CHAN_B(chan)) 2212 return IEEE80211_MODE_11B; 2213 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2214 return IEEE80211_MODE_FH; 2215 2216 /* NB: should not get here */ 2217 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2218 __func__, chan->ic_freq, chan->ic_flags); 2219 return IEEE80211_MODE_11B; 2220 } 2221 2222 struct ratemedia { 2223 u_int match; /* rate + mode */ 2224 u_int media; /* if_media rate */ 2225 }; 2226 2227 static int 2228 findmedia(const struct ratemedia rates[], int n, u_int match) 2229 { 2230 int i; 2231 2232 for (i = 0; i < n; i++) 2233 if (rates[i].match == match) 2234 return rates[i].media; 2235 return IFM_AUTO; 2236 } 2237 2238 /* 2239 * Convert IEEE80211 rate value to ifmedia subtype. 2240 * Rate is either a legacy rate in units of 0.5Mbps 2241 * or an MCS index. 2242 */ 2243 int 2244 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2245 { 2246 static const struct ratemedia rates[] = { 2247 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2248 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2249 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2250 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2251 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2252 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2253 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2254 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2255 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2256 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2257 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2258 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2259 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2260 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2261 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2262 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2263 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2264 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2265 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2266 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2267 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2268 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2269 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2270 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2271 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2272 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2273 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2274 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2275 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2276 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2277 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2278 }; 2279 static const struct ratemedia htrates[] = { 2280 { 0, IFM_IEEE80211_MCS }, 2281 { 1, IFM_IEEE80211_MCS }, 2282 { 2, IFM_IEEE80211_MCS }, 2283 { 3, IFM_IEEE80211_MCS }, 2284 { 4, IFM_IEEE80211_MCS }, 2285 { 5, IFM_IEEE80211_MCS }, 2286 { 6, IFM_IEEE80211_MCS }, 2287 { 7, IFM_IEEE80211_MCS }, 2288 { 8, IFM_IEEE80211_MCS }, 2289 { 9, IFM_IEEE80211_MCS }, 2290 { 10, IFM_IEEE80211_MCS }, 2291 { 11, IFM_IEEE80211_MCS }, 2292 { 12, IFM_IEEE80211_MCS }, 2293 { 13, IFM_IEEE80211_MCS }, 2294 { 14, IFM_IEEE80211_MCS }, 2295 { 15, IFM_IEEE80211_MCS }, 2296 { 16, IFM_IEEE80211_MCS }, 2297 { 17, IFM_IEEE80211_MCS }, 2298 { 18, IFM_IEEE80211_MCS }, 2299 { 19, IFM_IEEE80211_MCS }, 2300 { 20, IFM_IEEE80211_MCS }, 2301 { 21, IFM_IEEE80211_MCS }, 2302 { 22, IFM_IEEE80211_MCS }, 2303 { 23, IFM_IEEE80211_MCS }, 2304 { 24, IFM_IEEE80211_MCS }, 2305 { 25, IFM_IEEE80211_MCS }, 2306 { 26, IFM_IEEE80211_MCS }, 2307 { 27, IFM_IEEE80211_MCS }, 2308 { 28, IFM_IEEE80211_MCS }, 2309 { 29, IFM_IEEE80211_MCS }, 2310 { 30, IFM_IEEE80211_MCS }, 2311 { 31, IFM_IEEE80211_MCS }, 2312 { 32, IFM_IEEE80211_MCS }, 2313 { 33, IFM_IEEE80211_MCS }, 2314 { 34, IFM_IEEE80211_MCS }, 2315 { 35, IFM_IEEE80211_MCS }, 2316 { 36, IFM_IEEE80211_MCS }, 2317 { 37, IFM_IEEE80211_MCS }, 2318 { 38, IFM_IEEE80211_MCS }, 2319 { 39, IFM_IEEE80211_MCS }, 2320 { 40, IFM_IEEE80211_MCS }, 2321 { 41, IFM_IEEE80211_MCS }, 2322 { 42, IFM_IEEE80211_MCS }, 2323 { 43, IFM_IEEE80211_MCS }, 2324 { 44, IFM_IEEE80211_MCS }, 2325 { 45, IFM_IEEE80211_MCS }, 2326 { 46, IFM_IEEE80211_MCS }, 2327 { 47, IFM_IEEE80211_MCS }, 2328 { 48, IFM_IEEE80211_MCS }, 2329 { 49, IFM_IEEE80211_MCS }, 2330 { 50, IFM_IEEE80211_MCS }, 2331 { 51, IFM_IEEE80211_MCS }, 2332 { 52, IFM_IEEE80211_MCS }, 2333 { 53, IFM_IEEE80211_MCS }, 2334 { 54, IFM_IEEE80211_MCS }, 2335 { 55, IFM_IEEE80211_MCS }, 2336 { 56, IFM_IEEE80211_MCS }, 2337 { 57, IFM_IEEE80211_MCS }, 2338 { 58, IFM_IEEE80211_MCS }, 2339 { 59, IFM_IEEE80211_MCS }, 2340 { 60, IFM_IEEE80211_MCS }, 2341 { 61, IFM_IEEE80211_MCS }, 2342 { 62, IFM_IEEE80211_MCS }, 2343 { 63, IFM_IEEE80211_MCS }, 2344 { 64, IFM_IEEE80211_MCS }, 2345 { 65, IFM_IEEE80211_MCS }, 2346 { 66, IFM_IEEE80211_MCS }, 2347 { 67, IFM_IEEE80211_MCS }, 2348 { 68, IFM_IEEE80211_MCS }, 2349 { 69, IFM_IEEE80211_MCS }, 2350 { 70, IFM_IEEE80211_MCS }, 2351 { 71, IFM_IEEE80211_MCS }, 2352 { 72, IFM_IEEE80211_MCS }, 2353 { 73, IFM_IEEE80211_MCS }, 2354 { 74, IFM_IEEE80211_MCS }, 2355 { 75, IFM_IEEE80211_MCS }, 2356 { 76, IFM_IEEE80211_MCS }, 2357 }; 2358 int m; 2359 2360 /* 2361 * Check 11n rates first for match as an MCS. 2362 */ 2363 if (mode == IEEE80211_MODE_11NA) { 2364 if (rate & IEEE80211_RATE_MCS) { 2365 rate &= ~IEEE80211_RATE_MCS; 2366 m = findmedia(htrates, nitems(htrates), rate); 2367 if (m != IFM_AUTO) 2368 return m | IFM_IEEE80211_11NA; 2369 } 2370 } else if (mode == IEEE80211_MODE_11NG) { 2371 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2372 if (rate & IEEE80211_RATE_MCS) { 2373 rate &= ~IEEE80211_RATE_MCS; 2374 m = findmedia(htrates, nitems(htrates), rate); 2375 if (m != IFM_AUTO) 2376 return m | IFM_IEEE80211_11NG; 2377 } 2378 } 2379 rate &= IEEE80211_RATE_VAL; 2380 switch (mode) { 2381 case IEEE80211_MODE_11A: 2382 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2383 case IEEE80211_MODE_QUARTER: 2384 case IEEE80211_MODE_11NA: 2385 case IEEE80211_MODE_TURBO_A: 2386 case IEEE80211_MODE_STURBO_A: 2387 return findmedia(rates, nitems(rates), 2388 rate | IFM_IEEE80211_11A); 2389 case IEEE80211_MODE_11B: 2390 return findmedia(rates, nitems(rates), 2391 rate | IFM_IEEE80211_11B); 2392 case IEEE80211_MODE_FH: 2393 return findmedia(rates, nitems(rates), 2394 rate | IFM_IEEE80211_FH); 2395 case IEEE80211_MODE_AUTO: 2396 /* NB: ic may be NULL for some drivers */ 2397 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2398 return findmedia(rates, nitems(rates), 2399 rate | IFM_IEEE80211_FH); 2400 /* NB: hack, 11g matches both 11b+11a rates */ 2401 /* fall thru... */ 2402 case IEEE80211_MODE_11G: 2403 case IEEE80211_MODE_11NG: 2404 case IEEE80211_MODE_TURBO_G: 2405 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2406 case IEEE80211_MODE_VHT_2GHZ: 2407 case IEEE80211_MODE_VHT_5GHZ: 2408 /* XXX TODO: need to figure out mapping for VHT rates */ 2409 return IFM_AUTO; 2410 } 2411 return IFM_AUTO; 2412 } 2413 2414 int 2415 ieee80211_media2rate(int mword) 2416 { 2417 static const int ieeerates[] = { 2418 -1, /* IFM_AUTO */ 2419 0, /* IFM_MANUAL */ 2420 0, /* IFM_NONE */ 2421 2, /* IFM_IEEE80211_FH1 */ 2422 4, /* IFM_IEEE80211_FH2 */ 2423 2, /* IFM_IEEE80211_DS1 */ 2424 4, /* IFM_IEEE80211_DS2 */ 2425 11, /* IFM_IEEE80211_DS5 */ 2426 22, /* IFM_IEEE80211_DS11 */ 2427 44, /* IFM_IEEE80211_DS22 */ 2428 12, /* IFM_IEEE80211_OFDM6 */ 2429 18, /* IFM_IEEE80211_OFDM9 */ 2430 24, /* IFM_IEEE80211_OFDM12 */ 2431 36, /* IFM_IEEE80211_OFDM18 */ 2432 48, /* IFM_IEEE80211_OFDM24 */ 2433 72, /* IFM_IEEE80211_OFDM36 */ 2434 96, /* IFM_IEEE80211_OFDM48 */ 2435 108, /* IFM_IEEE80211_OFDM54 */ 2436 144, /* IFM_IEEE80211_OFDM72 */ 2437 0, /* IFM_IEEE80211_DS354k */ 2438 0, /* IFM_IEEE80211_DS512k */ 2439 6, /* IFM_IEEE80211_OFDM3 */ 2440 9, /* IFM_IEEE80211_OFDM4 */ 2441 54, /* IFM_IEEE80211_OFDM27 */ 2442 -1, /* IFM_IEEE80211_MCS */ 2443 -1, /* IFM_IEEE80211_VHT */ 2444 }; 2445 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2446 ieeerates[IFM_SUBTYPE(mword)] : 0; 2447 } 2448 2449 /* 2450 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2451 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2452 */ 2453 #define mix(a, b, c) \ 2454 do { \ 2455 a -= b; a -= c; a ^= (c >> 13); \ 2456 b -= c; b -= a; b ^= (a << 8); \ 2457 c -= a; c -= b; c ^= (b >> 13); \ 2458 a -= b; a -= c; a ^= (c >> 12); \ 2459 b -= c; b -= a; b ^= (a << 16); \ 2460 c -= a; c -= b; c ^= (b >> 5); \ 2461 a -= b; a -= c; a ^= (c >> 3); \ 2462 b -= c; b -= a; b ^= (a << 10); \ 2463 c -= a; c -= b; c ^= (b >> 15); \ 2464 } while (/*CONSTCOND*/0) 2465 2466 uint32_t 2467 ieee80211_mac_hash(const struct ieee80211com *ic, 2468 const uint8_t addr[IEEE80211_ADDR_LEN]) 2469 { 2470 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2471 2472 b += addr[5] << 8; 2473 b += addr[4]; 2474 a += addr[3] << 24; 2475 a += addr[2] << 16; 2476 a += addr[1] << 8; 2477 a += addr[0]; 2478 2479 mix(a, b, c); 2480 2481 return c; 2482 } 2483 #undef mix 2484 2485 char 2486 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2487 { 2488 if (IEEE80211_IS_CHAN_ST(c)) 2489 return 'S'; 2490 if (IEEE80211_IS_CHAN_108A(c)) 2491 return 'T'; 2492 if (IEEE80211_IS_CHAN_108G(c)) 2493 return 'G'; 2494 if (IEEE80211_IS_CHAN_VHT(c)) 2495 return 'v'; 2496 if (IEEE80211_IS_CHAN_HT(c)) 2497 return 'n'; 2498 if (IEEE80211_IS_CHAN_A(c)) 2499 return 'a'; 2500 if (IEEE80211_IS_CHAN_ANYG(c)) 2501 return 'g'; 2502 if (IEEE80211_IS_CHAN_B(c)) 2503 return 'b'; 2504 return 'f'; 2505 } 2506