xref: /freebsd/sys/net80211/ieee80211.c (revision 7f9dff23d3092aa33ad45b2b63e52469b3c13a6e)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 #include <net/ethernet.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #include <net80211/ieee80211_ratectl.h>
57 
58 #include <net/bpf.h>
59 
60 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
61 	[IEEE80211_MODE_AUTO]	  = "auto",
62 	[IEEE80211_MODE_11A]	  = "11a",
63 	[IEEE80211_MODE_11B]	  = "11b",
64 	[IEEE80211_MODE_11G]	  = "11g",
65 	[IEEE80211_MODE_FH]	  = "FH",
66 	[IEEE80211_MODE_TURBO_A]  = "turboA",
67 	[IEEE80211_MODE_TURBO_G]  = "turboG",
68 	[IEEE80211_MODE_STURBO_A] = "sturboA",
69 	[IEEE80211_MODE_HALF]	  = "half",
70 	[IEEE80211_MODE_QUARTER]  = "quarter",
71 	[IEEE80211_MODE_11NA]	  = "11na",
72 	[IEEE80211_MODE_11NG]	  = "11ng",
73 };
74 /* map ieee80211_opmode to the corresponding capability bit */
75 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
76 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
77 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
78 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
79 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
80 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
81 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
82 #ifdef IEEE80211_SUPPORT_MESH
83 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
84 #endif
85 };
86 
87 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
88 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
89 
90 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
91 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
92 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
93 static	int ieee80211_media_setup(struct ieee80211com *ic,
94 		struct ifmedia *media, int caps, int addsta,
95 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
96 static	int media_status(enum ieee80211_opmode,
97 		const struct ieee80211_channel *);
98 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
99 
100 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
101 
102 /*
103  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
104  */
105 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
106 static const struct ieee80211_rateset ieee80211_rateset_11a =
107 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
108 static const struct ieee80211_rateset ieee80211_rateset_half =
109 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
110 static const struct ieee80211_rateset ieee80211_rateset_quarter =
111 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
112 static const struct ieee80211_rateset ieee80211_rateset_11b =
113 	{ 4, { B(2), B(4), B(11), B(22) } };
114 /* NB: OFDM rates are handled specially based on mode */
115 static const struct ieee80211_rateset ieee80211_rateset_11g =
116 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
117 #undef B
118 
119 /*
120  * Fill in 802.11 available channel set, mark
121  * all available channels as active, and pick
122  * a default channel if not already specified.
123  */
124 void
125 ieee80211_chan_init(struct ieee80211com *ic)
126 {
127 #define	DEFAULTRATES(m, def) do { \
128 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
129 		ic->ic_sup_rates[m] = def; \
130 } while (0)
131 	struct ieee80211_channel *c;
132 	int i;
133 
134 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
135 		("invalid number of channels specified: %u", ic->ic_nchans));
136 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
137 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
138 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
139 	for (i = 0; i < ic->ic_nchans; i++) {
140 		c = &ic->ic_channels[i];
141 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
142 		/*
143 		 * Help drivers that work only with frequencies by filling
144 		 * in IEEE channel #'s if not already calculated.  Note this
145 		 * mimics similar work done in ieee80211_setregdomain when
146 		 * changing regulatory state.
147 		 */
148 		if (c->ic_ieee == 0)
149 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
150 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
151 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
152 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
153 			    c->ic_flags);
154 		/* default max tx power to max regulatory */
155 		if (c->ic_maxpower == 0)
156 			c->ic_maxpower = 2*c->ic_maxregpower;
157 		setbit(ic->ic_chan_avail, c->ic_ieee);
158 		/*
159 		 * Identify mode capabilities.
160 		 */
161 		if (IEEE80211_IS_CHAN_A(c))
162 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
163 		if (IEEE80211_IS_CHAN_B(c))
164 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
165 		if (IEEE80211_IS_CHAN_ANYG(c))
166 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
167 		if (IEEE80211_IS_CHAN_FHSS(c))
168 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
169 		if (IEEE80211_IS_CHAN_108A(c))
170 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
171 		if (IEEE80211_IS_CHAN_108G(c))
172 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
173 		if (IEEE80211_IS_CHAN_ST(c))
174 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
175 		if (IEEE80211_IS_CHAN_HALF(c))
176 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
177 		if (IEEE80211_IS_CHAN_QUARTER(c))
178 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
179 		if (IEEE80211_IS_CHAN_HTA(c))
180 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
181 		if (IEEE80211_IS_CHAN_HTG(c))
182 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
183 	}
184 	/* initialize candidate channels to all available */
185 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
186 		sizeof(ic->ic_chan_avail));
187 
188 	/* sort channel table to allow lookup optimizations */
189 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
190 
191 	/* invalidate any previous state */
192 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
193 	ic->ic_prevchan = NULL;
194 	ic->ic_csa_newchan = NULL;
195 	/* arbitrarily pick the first channel */
196 	ic->ic_curchan = &ic->ic_channels[0];
197 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
198 
199 	/* fillin well-known rate sets if driver has not specified */
200 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
201 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
202 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
203 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
204 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
205 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
207 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
208 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
209 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
210 
211 	/*
212 	 * Setup required information to fill the mcsset field, if driver did
213 	 * not. Assume a 2T2R setup for historic reasons.
214 	 */
215 	if (ic->ic_rxstream == 0)
216 		ic->ic_rxstream = 2;
217 	if (ic->ic_txstream == 0)
218 		ic->ic_txstream = 2;
219 
220 	/*
221 	 * Set auto mode to reset active channel state and any desired channel.
222 	 */
223 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
224 #undef DEFAULTRATES
225 }
226 
227 static void
228 null_update_mcast(struct ieee80211com *ic)
229 {
230 
231 	ic_printf(ic, "need multicast update callback\n");
232 }
233 
234 static void
235 null_update_promisc(struct ieee80211com *ic)
236 {
237 
238 	ic_printf(ic, "need promiscuous mode update callback\n");
239 }
240 
241 static void
242 null_update_chw(struct ieee80211com *ic)
243 {
244 
245 	ic_printf(ic, "%s: need callback\n", __func__);
246 }
247 
248 int
249 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
250 {
251 	va_list ap;
252 	int retval;
253 
254 	retval = printf("%s: ", ic->ic_name);
255 	va_start(ap, fmt);
256 	retval += vprintf(fmt, ap);
257 	va_end(ap);
258 	return (retval);
259 }
260 
261 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
262 static struct mtx ic_list_mtx;
263 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
264 
265 static int
266 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
267 {
268 	struct ieee80211com *ic;
269 	struct sbuf sb;
270 	char *sp;
271 	int error;
272 
273 	error = sysctl_wire_old_buffer(req, 0);
274 	if (error)
275 		return (error);
276 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
277 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
278 	sp = "";
279 	mtx_lock(&ic_list_mtx);
280 	LIST_FOREACH(ic, &ic_head, ic_next) {
281 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
282 		sp = " ";
283 	}
284 	mtx_unlock(&ic_list_mtx);
285 	error = sbuf_finish(&sb);
286 	sbuf_delete(&sb);
287 	return (error);
288 }
289 
290 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
291     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
292     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
293 
294 /*
295  * Attach/setup the common net80211 state.  Called by
296  * the driver on attach to prior to creating any vap's.
297  */
298 void
299 ieee80211_ifattach(struct ieee80211com *ic)
300 {
301 
302 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
303 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
304 	TAILQ_INIT(&ic->ic_vaps);
305 
306 	/* Create a taskqueue for all state changes */
307 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
308 	    taskqueue_thread_enqueue, &ic->ic_tq);
309 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
310 	    ic->ic_name);
311 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
312 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
313 	/*
314 	 * Fill in 802.11 available channel set, mark all
315 	 * available channels as active, and pick a default
316 	 * channel if not already specified.
317 	 */
318 	ieee80211_chan_init(ic);
319 
320 	ic->ic_update_mcast = null_update_mcast;
321 	ic->ic_update_promisc = null_update_promisc;
322 	ic->ic_update_chw = null_update_chw;
323 
324 	ic->ic_hash_key = arc4random();
325 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
326 	ic->ic_lintval = ic->ic_bintval;
327 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
328 
329 	ieee80211_crypto_attach(ic);
330 	ieee80211_node_attach(ic);
331 	ieee80211_power_attach(ic);
332 	ieee80211_proto_attach(ic);
333 #ifdef IEEE80211_SUPPORT_SUPERG
334 	ieee80211_superg_attach(ic);
335 #endif
336 	ieee80211_ht_attach(ic);
337 	ieee80211_scan_attach(ic);
338 	ieee80211_regdomain_attach(ic);
339 	ieee80211_dfs_attach(ic);
340 
341 	ieee80211_sysctl_attach(ic);
342 
343 	mtx_lock(&ic_list_mtx);
344 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
345 	mtx_unlock(&ic_list_mtx);
346 }
347 
348 /*
349  * Detach net80211 state on device detach.  Tear down
350  * all vap's and reclaim all common state prior to the
351  * device state going away.  Note we may call back into
352  * driver; it must be prepared for this.
353  */
354 void
355 ieee80211_ifdetach(struct ieee80211com *ic)
356 {
357 	struct ieee80211vap *vap;
358 
359 	mtx_lock(&ic_list_mtx);
360 	LIST_REMOVE(ic, ic_next);
361 	mtx_unlock(&ic_list_mtx);
362 
363 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
364 
365 	/*
366 	 * The VAP is responsible for setting and clearing
367 	 * the VIMAGE context.
368 	 */
369 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
370 		ieee80211_vap_destroy(vap);
371 	ieee80211_waitfor_parent(ic);
372 
373 	ieee80211_sysctl_detach(ic);
374 	ieee80211_dfs_detach(ic);
375 	ieee80211_regdomain_detach(ic);
376 	ieee80211_scan_detach(ic);
377 #ifdef IEEE80211_SUPPORT_SUPERG
378 	ieee80211_superg_detach(ic);
379 #endif
380 	ieee80211_ht_detach(ic);
381 	/* NB: must be called before ieee80211_node_detach */
382 	ieee80211_proto_detach(ic);
383 	ieee80211_crypto_detach(ic);
384 	ieee80211_power_detach(ic);
385 	ieee80211_node_detach(ic);
386 
387 	counter_u64_free(ic->ic_ierrors);
388 	counter_u64_free(ic->ic_oerrors);
389 
390 	taskqueue_free(ic->ic_tq);
391 	IEEE80211_TX_LOCK_DESTROY(ic);
392 	IEEE80211_LOCK_DESTROY(ic);
393 }
394 
395 struct ieee80211com *
396 ieee80211_find_com(const char *name)
397 {
398 	struct ieee80211com *ic;
399 
400 	mtx_lock(&ic_list_mtx);
401 	LIST_FOREACH(ic, &ic_head, ic_next)
402 		if (strcmp(ic->ic_name, name) == 0)
403 			break;
404 	mtx_unlock(&ic_list_mtx);
405 
406 	return (ic);
407 }
408 
409 void
410 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
411 {
412 	struct ieee80211com *ic;
413 
414 	mtx_lock(&ic_list_mtx);
415 	LIST_FOREACH(ic, &ic_head, ic_next)
416 		(*f)(arg, ic);
417 	mtx_unlock(&ic_list_mtx);
418 }
419 
420 /*
421  * Default reset method for use with the ioctl support.  This
422  * method is invoked after any state change in the 802.11
423  * layer that should be propagated to the hardware but not
424  * require re-initialization of the 802.11 state machine (e.g
425  * rescanning for an ap).  We always return ENETRESET which
426  * should cause the driver to re-initialize the device. Drivers
427  * can override this method to implement more optimized support.
428  */
429 static int
430 default_reset(struct ieee80211vap *vap, u_long cmd)
431 {
432 	return ENETRESET;
433 }
434 
435 /*
436  * Add underlying device errors to vap errors.
437  */
438 static uint64_t
439 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
440 {
441 	struct ieee80211vap *vap = ifp->if_softc;
442 	struct ieee80211com *ic = vap->iv_ic;
443 	uint64_t rv;
444 
445 	rv = if_get_counter_default(ifp, cnt);
446 	switch (cnt) {
447 	case IFCOUNTER_OERRORS:
448 		rv += counter_u64_fetch(ic->ic_oerrors);
449 		break;
450 	case IFCOUNTER_IERRORS:
451 		rv += counter_u64_fetch(ic->ic_ierrors);
452 		break;
453 	default:
454 		break;
455 	}
456 
457 	return (rv);
458 }
459 
460 /*
461  * Prepare a vap for use.  Drivers use this call to
462  * setup net80211 state in new vap's prior attaching
463  * them with ieee80211_vap_attach (below).
464  */
465 int
466 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
467     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
468     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
469 {
470 	struct ifnet *ifp;
471 
472 	ifp = if_alloc(IFT_ETHER);
473 	if (ifp == NULL) {
474 		ic_printf(ic, "%s: unable to allocate ifnet\n",
475 		    __func__);
476 		return ENOMEM;
477 	}
478 	if_initname(ifp, name, unit);
479 	ifp->if_softc = vap;			/* back pointer */
480 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
481 	ifp->if_transmit = ieee80211_vap_transmit;
482 	ifp->if_qflush = ieee80211_vap_qflush;
483 	ifp->if_ioctl = ieee80211_ioctl;
484 	ifp->if_init = ieee80211_init;
485 	ifp->if_get_counter = ieee80211_get_counter;
486 
487 	vap->iv_ifp = ifp;
488 	vap->iv_ic = ic;
489 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
490 	vap->iv_flags_ext = ic->ic_flags_ext;
491 	vap->iv_flags_ven = ic->ic_flags_ven;
492 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
493 	vap->iv_htcaps = ic->ic_htcaps;
494 	vap->iv_htextcaps = ic->ic_htextcaps;
495 	vap->iv_opmode = opmode;
496 	vap->iv_caps |= ieee80211_opcap[opmode];
497 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
498 	switch (opmode) {
499 	case IEEE80211_M_WDS:
500 		/*
501 		 * WDS links must specify the bssid of the far end.
502 		 * For legacy operation this is a static relationship.
503 		 * For non-legacy operation the station must associate
504 		 * and be authorized to pass traffic.  Plumbing the
505 		 * vap to the proper node happens when the vap
506 		 * transitions to RUN state.
507 		 */
508 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
509 		vap->iv_flags |= IEEE80211_F_DESBSSID;
510 		if (flags & IEEE80211_CLONE_WDSLEGACY)
511 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
512 		break;
513 #ifdef IEEE80211_SUPPORT_TDMA
514 	case IEEE80211_M_AHDEMO:
515 		if (flags & IEEE80211_CLONE_TDMA) {
516 			/* NB: checked before clone operation allowed */
517 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
518 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
519 			/*
520 			 * Propagate TDMA capability to mark vap; this
521 			 * cannot be removed and is used to distinguish
522 			 * regular ahdemo operation from ahdemo+tdma.
523 			 */
524 			vap->iv_caps |= IEEE80211_C_TDMA;
525 		}
526 		break;
527 #endif
528 	default:
529 		break;
530 	}
531 	/* auto-enable s/w beacon miss support */
532 	if (flags & IEEE80211_CLONE_NOBEACONS)
533 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
534 	/* auto-generated or user supplied MAC address */
535 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
536 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
537 	/*
538 	 * Enable various functionality by default if we're
539 	 * capable; the driver can override us if it knows better.
540 	 */
541 	if (vap->iv_caps & IEEE80211_C_WME)
542 		vap->iv_flags |= IEEE80211_F_WME;
543 	if (vap->iv_caps & IEEE80211_C_BURST)
544 		vap->iv_flags |= IEEE80211_F_BURST;
545 	/* NB: bg scanning only makes sense for station mode right now */
546 	if (vap->iv_opmode == IEEE80211_M_STA &&
547 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
548 		vap->iv_flags |= IEEE80211_F_BGSCAN;
549 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
550 	/* NB: DFS support only makes sense for ap mode right now */
551 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
552 	    (vap->iv_caps & IEEE80211_C_DFS))
553 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
554 
555 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
556 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
557 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
558 	/*
559 	 * Install a default reset method for the ioctl support;
560 	 * the driver can override this.
561 	 */
562 	vap->iv_reset = default_reset;
563 
564 	ieee80211_sysctl_vattach(vap);
565 	ieee80211_crypto_vattach(vap);
566 	ieee80211_node_vattach(vap);
567 	ieee80211_power_vattach(vap);
568 	ieee80211_proto_vattach(vap);
569 #ifdef IEEE80211_SUPPORT_SUPERG
570 	ieee80211_superg_vattach(vap);
571 #endif
572 	ieee80211_ht_vattach(vap);
573 	ieee80211_scan_vattach(vap);
574 	ieee80211_regdomain_vattach(vap);
575 	ieee80211_radiotap_vattach(vap);
576 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
577 
578 	return 0;
579 }
580 
581 /*
582  * Activate a vap.  State should have been prepared with a
583  * call to ieee80211_vap_setup and by the driver.  On return
584  * from this call the vap is ready for use.
585  */
586 int
587 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
588     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
589 {
590 	struct ifnet *ifp = vap->iv_ifp;
591 	struct ieee80211com *ic = vap->iv_ic;
592 	struct ifmediareq imr;
593 	int maxrate;
594 
595 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
596 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
597 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
598 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
599 
600 	/*
601 	 * Do late attach work that cannot happen until after
602 	 * the driver has had a chance to override defaults.
603 	 */
604 	ieee80211_node_latevattach(vap);
605 	ieee80211_power_latevattach(vap);
606 
607 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
608 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
609 	ieee80211_media_status(ifp, &imr);
610 	/* NB: strip explicit mode; we're actually in autoselect */
611 	ifmedia_set(&vap->iv_media,
612 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
613 	if (maxrate)
614 		ifp->if_baudrate = IF_Mbps(maxrate);
615 
616 	ether_ifattach(ifp, macaddr);
617 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
618 	/* hook output method setup by ether_ifattach */
619 	vap->iv_output = ifp->if_output;
620 	ifp->if_output = ieee80211_output;
621 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
622 
623 	IEEE80211_LOCK(ic);
624 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
625 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
626 #ifdef IEEE80211_SUPPORT_SUPERG
627 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
628 #endif
629 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
630 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
631 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
632 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
633 	IEEE80211_UNLOCK(ic);
634 
635 	return 1;
636 }
637 
638 /*
639  * Tear down vap state and reclaim the ifnet.
640  * The driver is assumed to have prepared for
641  * this; e.g. by turning off interrupts for the
642  * underlying device.
643  */
644 void
645 ieee80211_vap_detach(struct ieee80211vap *vap)
646 {
647 	struct ieee80211com *ic = vap->iv_ic;
648 	struct ifnet *ifp = vap->iv_ifp;
649 
650 	CURVNET_SET(ifp->if_vnet);
651 
652 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
653 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
654 
655 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
656 	ether_ifdetach(ifp);
657 
658 	ieee80211_stop(vap);
659 
660 	/*
661 	 * Flush any deferred vap tasks.
662 	 */
663 	ieee80211_draintask(ic, &vap->iv_nstate_task);
664 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
665 
666 	/* XXX band-aid until ifnet handles this for us */
667 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
668 
669 	IEEE80211_LOCK(ic);
670 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
671 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
672 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
673 #ifdef IEEE80211_SUPPORT_SUPERG
674 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
675 #endif
676 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
677 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
678 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
679 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
680 	/* NB: this handles the bpfdetach done below */
681 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
682 	if (vap->iv_ifflags & IFF_PROMISC)
683 		ieee80211_promisc(vap, false);
684 	if (vap->iv_ifflags & IFF_ALLMULTI)
685 		ieee80211_allmulti(vap, false);
686 	IEEE80211_UNLOCK(ic);
687 
688 	ifmedia_removeall(&vap->iv_media);
689 
690 	ieee80211_radiotap_vdetach(vap);
691 	ieee80211_regdomain_vdetach(vap);
692 	ieee80211_scan_vdetach(vap);
693 #ifdef IEEE80211_SUPPORT_SUPERG
694 	ieee80211_superg_vdetach(vap);
695 #endif
696 	ieee80211_ht_vdetach(vap);
697 	/* NB: must be before ieee80211_node_vdetach */
698 	ieee80211_proto_vdetach(vap);
699 	ieee80211_crypto_vdetach(vap);
700 	ieee80211_power_vdetach(vap);
701 	ieee80211_node_vdetach(vap);
702 	ieee80211_sysctl_vdetach(vap);
703 
704 	if_free(ifp);
705 
706 	CURVNET_RESTORE();
707 }
708 
709 /*
710  * Count number of vaps in promisc, and issue promisc on
711  * parent respectively.
712  */
713 void
714 ieee80211_promisc(struct ieee80211vap *vap, bool on)
715 {
716 	struct ieee80211com *ic = vap->iv_ic;
717 
718 	IEEE80211_LOCK_ASSERT(ic);
719 
720 	if (on) {
721 		if (++ic->ic_promisc == 1)
722 			ieee80211_runtask(ic, &ic->ic_promisc_task);
723 	} else {
724 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
725 		    __func__, ic));
726 		if (--ic->ic_promisc == 0)
727 			ieee80211_runtask(ic, &ic->ic_promisc_task);
728 	}
729 }
730 
731 /*
732  * Count number of vaps in allmulti, and issue allmulti on
733  * parent respectively.
734  */
735 void
736 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
737 {
738 	struct ieee80211com *ic = vap->iv_ic;
739 
740 	IEEE80211_LOCK_ASSERT(ic);
741 
742 	if (on) {
743 		if (++ic->ic_allmulti == 1)
744 			ieee80211_runtask(ic, &ic->ic_mcast_task);
745 	} else {
746 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
747 		    __func__, ic));
748 		if (--ic->ic_allmulti == 0)
749 			ieee80211_runtask(ic, &ic->ic_mcast_task);
750 	}
751 }
752 
753 /*
754  * Synchronize flag bit state in the com structure
755  * according to the state of all vap's.  This is used,
756  * for example, to handle state changes via ioctls.
757  */
758 static void
759 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
760 {
761 	struct ieee80211vap *vap;
762 	int bit;
763 
764 	IEEE80211_LOCK_ASSERT(ic);
765 
766 	bit = 0;
767 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
768 		if (vap->iv_flags & flag) {
769 			bit = 1;
770 			break;
771 		}
772 	if (bit)
773 		ic->ic_flags |= flag;
774 	else
775 		ic->ic_flags &= ~flag;
776 }
777 
778 void
779 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
780 {
781 	struct ieee80211com *ic = vap->iv_ic;
782 
783 	IEEE80211_LOCK(ic);
784 	if (flag < 0) {
785 		flag = -flag;
786 		vap->iv_flags &= ~flag;
787 	} else
788 		vap->iv_flags |= flag;
789 	ieee80211_syncflag_locked(ic, flag);
790 	IEEE80211_UNLOCK(ic);
791 }
792 
793 /*
794  * Synchronize flags_ht bit state in the com structure
795  * according to the state of all vap's.  This is used,
796  * for example, to handle state changes via ioctls.
797  */
798 static void
799 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
800 {
801 	struct ieee80211vap *vap;
802 	int bit;
803 
804 	IEEE80211_LOCK_ASSERT(ic);
805 
806 	bit = 0;
807 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
808 		if (vap->iv_flags_ht & flag) {
809 			bit = 1;
810 			break;
811 		}
812 	if (bit)
813 		ic->ic_flags_ht |= flag;
814 	else
815 		ic->ic_flags_ht &= ~flag;
816 }
817 
818 void
819 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
820 {
821 	struct ieee80211com *ic = vap->iv_ic;
822 
823 	IEEE80211_LOCK(ic);
824 	if (flag < 0) {
825 		flag = -flag;
826 		vap->iv_flags_ht &= ~flag;
827 	} else
828 		vap->iv_flags_ht |= flag;
829 	ieee80211_syncflag_ht_locked(ic, flag);
830 	IEEE80211_UNLOCK(ic);
831 }
832 
833 /*
834  * Synchronize flags_ext bit state in the com structure
835  * according to the state of all vap's.  This is used,
836  * for example, to handle state changes via ioctls.
837  */
838 static void
839 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
840 {
841 	struct ieee80211vap *vap;
842 	int bit;
843 
844 	IEEE80211_LOCK_ASSERT(ic);
845 
846 	bit = 0;
847 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
848 		if (vap->iv_flags_ext & flag) {
849 			bit = 1;
850 			break;
851 		}
852 	if (bit)
853 		ic->ic_flags_ext |= flag;
854 	else
855 		ic->ic_flags_ext &= ~flag;
856 }
857 
858 void
859 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
860 {
861 	struct ieee80211com *ic = vap->iv_ic;
862 
863 	IEEE80211_LOCK(ic);
864 	if (flag < 0) {
865 		flag = -flag;
866 		vap->iv_flags_ext &= ~flag;
867 	} else
868 		vap->iv_flags_ext |= flag;
869 	ieee80211_syncflag_ext_locked(ic, flag);
870 	IEEE80211_UNLOCK(ic);
871 }
872 
873 static __inline int
874 mapgsm(u_int freq, u_int flags)
875 {
876 	freq *= 10;
877 	if (flags & IEEE80211_CHAN_QUARTER)
878 		freq += 5;
879 	else if (flags & IEEE80211_CHAN_HALF)
880 		freq += 10;
881 	else
882 		freq += 20;
883 	/* NB: there is no 907/20 wide but leave room */
884 	return (freq - 906*10) / 5;
885 }
886 
887 static __inline int
888 mappsb(u_int freq, u_int flags)
889 {
890 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
891 }
892 
893 /*
894  * Convert MHz frequency to IEEE channel number.
895  */
896 int
897 ieee80211_mhz2ieee(u_int freq, u_int flags)
898 {
899 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
900 	if (flags & IEEE80211_CHAN_GSM)
901 		return mapgsm(freq, flags);
902 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
903 		if (freq == 2484)
904 			return 14;
905 		if (freq < 2484)
906 			return ((int) freq - 2407) / 5;
907 		else
908 			return 15 + ((freq - 2512) / 20);
909 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
910 		if (freq <= 5000) {
911 			/* XXX check regdomain? */
912 			if (IS_FREQ_IN_PSB(freq))
913 				return mappsb(freq, flags);
914 			return (freq - 4000) / 5;
915 		} else
916 			return (freq - 5000) / 5;
917 	} else {				/* either, guess */
918 		if (freq == 2484)
919 			return 14;
920 		if (freq < 2484) {
921 			if (907 <= freq && freq <= 922)
922 				return mapgsm(freq, flags);
923 			return ((int) freq - 2407) / 5;
924 		}
925 		if (freq < 5000) {
926 			if (IS_FREQ_IN_PSB(freq))
927 				return mappsb(freq, flags);
928 			else if (freq > 4900)
929 				return (freq - 4000) / 5;
930 			else
931 				return 15 + ((freq - 2512) / 20);
932 		}
933 		return (freq - 5000) / 5;
934 	}
935 #undef IS_FREQ_IN_PSB
936 }
937 
938 /*
939  * Convert channel to IEEE channel number.
940  */
941 int
942 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
943 {
944 	if (c == NULL) {
945 		ic_printf(ic, "invalid channel (NULL)\n");
946 		return 0;		/* XXX */
947 	}
948 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
949 }
950 
951 /*
952  * Convert IEEE channel number to MHz frequency.
953  */
954 u_int
955 ieee80211_ieee2mhz(u_int chan, u_int flags)
956 {
957 	if (flags & IEEE80211_CHAN_GSM)
958 		return 907 + 5 * (chan / 10);
959 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
960 		if (chan == 14)
961 			return 2484;
962 		if (chan < 14)
963 			return 2407 + chan*5;
964 		else
965 			return 2512 + ((chan-15)*20);
966 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
967 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
968 			chan -= 37;
969 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
970 		}
971 		return 5000 + (chan*5);
972 	} else {				/* either, guess */
973 		/* XXX can't distinguish PSB+GSM channels */
974 		if (chan == 14)
975 			return 2484;
976 		if (chan < 14)			/* 0-13 */
977 			return 2407 + chan*5;
978 		if (chan < 27)			/* 15-26 */
979 			return 2512 + ((chan-15)*20);
980 		return 5000 + (chan*5);
981 	}
982 }
983 
984 static __inline void
985 set_extchan(struct ieee80211_channel *c)
986 {
987 
988 	/*
989 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
990 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
991 	 */
992 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
993 		c->ic_extieee = c->ic_ieee + 4;
994 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
995 		c->ic_extieee = c->ic_ieee - 4;
996 	else
997 		c->ic_extieee = 0;
998 }
999 
1000 static int
1001 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1002     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1003 {
1004 	struct ieee80211_channel *c;
1005 
1006 	if (*nchans >= maxchans)
1007 		return (ENOBUFS);
1008 
1009 	c = &chans[(*nchans)++];
1010 	c->ic_ieee = ieee;
1011 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1012 	c->ic_maxregpower = maxregpower;
1013 	c->ic_maxpower = 2 * maxregpower;
1014 	c->ic_flags = flags;
1015 	set_extchan(c);
1016 
1017 	return (0);
1018 }
1019 
1020 static int
1021 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1022     uint32_t flags)
1023 {
1024 	struct ieee80211_channel *c;
1025 
1026 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1027 
1028 	if (*nchans >= maxchans)
1029 		return (ENOBUFS);
1030 
1031 	c = &chans[(*nchans)++];
1032 	c[0] = c[-1];
1033 	c->ic_flags = flags;
1034 	set_extchan(c);
1035 
1036 	return (0);
1037 }
1038 
1039 static void
1040 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1041 {
1042 	int nmodes;
1043 
1044 	nmodes = 0;
1045 	if (isset(bands, IEEE80211_MODE_11B))
1046 		flags[nmodes++] = IEEE80211_CHAN_B;
1047 	if (isset(bands, IEEE80211_MODE_11G))
1048 		flags[nmodes++] = IEEE80211_CHAN_G;
1049 	if (isset(bands, IEEE80211_MODE_11NG))
1050 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1051 	if (ht40) {
1052 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1053 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1054 	}
1055 	flags[nmodes] = 0;
1056 }
1057 
1058 static void
1059 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1060 {
1061 	int nmodes;
1062 
1063 	nmodes = 0;
1064 	if (isset(bands, IEEE80211_MODE_11A))
1065 		flags[nmodes++] = IEEE80211_CHAN_A;
1066 	if (isset(bands, IEEE80211_MODE_11NA))
1067 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1068 	if (ht40) {
1069 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1070 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1071 	}
1072 	flags[nmodes] = 0;
1073 }
1074 
1075 static void
1076 getflags(const uint8_t bands[], uint32_t flags[], int ht40)
1077 {
1078 
1079 	flags[0] = 0;
1080 	if (isset(bands, IEEE80211_MODE_11A) ||
1081 	    isset(bands, IEEE80211_MODE_11NA)) {
1082 		if (isset(bands, IEEE80211_MODE_11B) ||
1083 		    isset(bands, IEEE80211_MODE_11G) ||
1084 		    isset(bands, IEEE80211_MODE_11NG))
1085 			return;
1086 
1087 		getflags_5ghz(bands, flags, ht40);
1088 	} else
1089 		getflags_2ghz(bands, flags, ht40);
1090 }
1091 
1092 /*
1093  * Add one 20 MHz channel into specified channel list.
1094  */
1095 int
1096 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1097     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1098     uint32_t chan_flags, const uint8_t bands[])
1099 {
1100 	uint32_t flags[IEEE80211_MODE_MAX];
1101 	int i, error;
1102 
1103 	getflags(bands, flags, 0);
1104 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1105 
1106 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1107 	    flags[0] | chan_flags);
1108 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1109 		error = copychan_prev(chans, maxchans, nchans,
1110 		    flags[i] | chan_flags);
1111 	}
1112 
1113 	return (error);
1114 }
1115 
1116 static struct ieee80211_channel *
1117 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1118     uint32_t flags)
1119 {
1120 	struct ieee80211_channel *c;
1121 	int i;
1122 
1123 	flags &= IEEE80211_CHAN_ALLTURBO;
1124 	/* brute force search */
1125 	for (i = 0; i < nchans; i++) {
1126 		c = &chans[i];
1127 		if (c->ic_freq == freq &&
1128 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1129 			return c;
1130 	}
1131 	return NULL;
1132 }
1133 
1134 /*
1135  * Add 40 MHz channel pair into specified channel list.
1136  */
1137 int
1138 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1139     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1140 {
1141 	struct ieee80211_channel *cent, *extc;
1142 	uint16_t freq;
1143 	int error;
1144 
1145 	freq = ieee80211_ieee2mhz(ieee, flags);
1146 
1147 	/*
1148 	 * Each entry defines an HT40 channel pair; find the
1149 	 * center channel, then the extension channel above.
1150 	 */
1151 	flags |= IEEE80211_CHAN_HT20;
1152 	cent = findchannel(chans, *nchans, freq, flags);
1153 	if (cent == NULL)
1154 		return (EINVAL);
1155 
1156 	extc = findchannel(chans, *nchans, freq + 20, flags);
1157 	if (extc == NULL)
1158 		return (ENOENT);
1159 
1160 	flags &= ~IEEE80211_CHAN_HT;
1161 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1162 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1163 	if (error != 0)
1164 		return (error);
1165 
1166 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1167 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1168 
1169 	return (error);
1170 }
1171 
1172 /*
1173  * Fetch the center frequency for the primary channel.
1174  */
1175 uint32_t
1176 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1177 {
1178 
1179 	return (c->ic_freq);
1180 }
1181 
1182 /*
1183  * Fetch the center frequency for the primary BAND channel.
1184  *
1185  * For 5, 10, 20MHz channels it'll be the normally configured channel
1186  * frequency.
1187  *
1188  * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the
1189  * wide channel, not the centre of the primary channel (that's ic_freq).
1190  *
1191  * For 80+80MHz channels this will be the centre of the primary
1192  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1193  */
1194 
1195 uint32_t
1196 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1197 {
1198 
1199 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1200 		return (c->ic_freq + 10);
1201 	}
1202 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1203 		return (c->ic_freq - 10);
1204 	}
1205 
1206 	return (c->ic_freq);
1207 }
1208 
1209 /*
1210  * For now, no 80+80 support; this is zero.
1211  */
1212 uint32_t
1213 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1214 {
1215 
1216 	return (0);
1217 }
1218 
1219 /*
1220  * Adds channels into specified channel list (ieee[] array must be sorted).
1221  * Channels are already sorted.
1222  */
1223 static int
1224 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1225     const uint8_t ieee[], int nieee, uint32_t flags[])
1226 {
1227 	uint16_t freq;
1228 	int i, j, error;
1229 
1230 	for (i = 0; i < nieee; i++) {
1231 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1232 		for (j = 0; flags[j] != 0; j++) {
1233 			if (flags[j] & IEEE80211_CHAN_HT40D)
1234 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1235 				    freq - 20 !=
1236 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1237 					continue;
1238 			if (flags[j] & IEEE80211_CHAN_HT40U)
1239 				if (i == nieee - 1 ||
1240 				    ieee[i] + 4 > ieee[nieee - 1] ||
1241 				    freq + 20 !=
1242 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1243 					continue;
1244 
1245 			if (j == 0) {
1246 				error = addchan(chans, maxchans, nchans,
1247 				    ieee[i], freq, 0, flags[j]);
1248 			} else {
1249 				error = copychan_prev(chans, maxchans, nchans,
1250 				    flags[j]);
1251 			}
1252 			if (error != 0)
1253 				return (error);
1254 		}
1255 	}
1256 
1257 	return (0);
1258 }
1259 
1260 int
1261 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1262     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1263     int ht40)
1264 {
1265 	uint32_t flags[IEEE80211_MODE_MAX];
1266 
1267 	getflags_2ghz(bands, flags, ht40);
1268 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1269 
1270 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1271 }
1272 
1273 int
1274 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1275     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1276     int ht40)
1277 {
1278 	uint32_t flags[IEEE80211_MODE_MAX];
1279 
1280 	getflags_5ghz(bands, flags, ht40);
1281 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1282 
1283 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1284 }
1285 
1286 /*
1287  * Locate a channel given a frequency+flags.  We cache
1288  * the previous lookup to optimize switching between two
1289  * channels--as happens with dynamic turbo.
1290  */
1291 struct ieee80211_channel *
1292 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1293 {
1294 	struct ieee80211_channel *c;
1295 
1296 	flags &= IEEE80211_CHAN_ALLTURBO;
1297 	c = ic->ic_prevchan;
1298 	if (c != NULL && c->ic_freq == freq &&
1299 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1300 		return c;
1301 	/* brute force search */
1302 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1303 }
1304 
1305 /*
1306  * Locate a channel given a channel number+flags.  We cache
1307  * the previous lookup to optimize switching between two
1308  * channels--as happens with dynamic turbo.
1309  */
1310 struct ieee80211_channel *
1311 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1312 {
1313 	struct ieee80211_channel *c;
1314 	int i;
1315 
1316 	flags &= IEEE80211_CHAN_ALLTURBO;
1317 	c = ic->ic_prevchan;
1318 	if (c != NULL && c->ic_ieee == ieee &&
1319 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1320 		return c;
1321 	/* brute force search */
1322 	for (i = 0; i < ic->ic_nchans; i++) {
1323 		c = &ic->ic_channels[i];
1324 		if (c->ic_ieee == ieee &&
1325 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1326 			return c;
1327 	}
1328 	return NULL;
1329 }
1330 
1331 /*
1332  * Lookup a channel suitable for the given rx status.
1333  *
1334  * This is used to find a channel for a frame (eg beacon, probe
1335  * response) based purely on the received PHY information.
1336  *
1337  * For now it tries to do it based on R_FREQ / R_IEEE.
1338  * This is enough for 11bg and 11a (and thus 11ng/11na)
1339  * but it will not be enough for GSM, PSB channels and the
1340  * like.  It also doesn't know about legacy-turbog and
1341  * legacy-turbo modes, which some offload NICs actually
1342  * support in weird ways.
1343  *
1344  * Takes the ic and rxstatus; returns the channel or NULL
1345  * if not found.
1346  *
1347  * XXX TODO: Add support for that when the need arises.
1348  */
1349 struct ieee80211_channel *
1350 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1351     const struct ieee80211_rx_stats *rxs)
1352 {
1353 	struct ieee80211com *ic = vap->iv_ic;
1354 	uint32_t flags;
1355 	struct ieee80211_channel *c;
1356 
1357 	if (rxs == NULL)
1358 		return (NULL);
1359 
1360 	/*
1361 	 * Strictly speaking we only use freq for now,
1362 	 * however later on we may wish to just store
1363 	 * the ieee for verification.
1364 	 */
1365 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1366 		return (NULL);
1367 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1368 		return (NULL);
1369 
1370 	/*
1371 	 * If the rx status contains a valid ieee/freq, then
1372 	 * ensure we populate the correct channel information
1373 	 * in rxchan before passing it up to the scan infrastructure.
1374 	 * Offload NICs will pass up beacons from all channels
1375 	 * during background scans.
1376 	 */
1377 
1378 	/* Determine a band */
1379 	/* XXX should be done by the driver? */
1380 	if (rxs->c_freq < 3000) {
1381 		flags = IEEE80211_CHAN_G;
1382 	} else {
1383 		flags = IEEE80211_CHAN_A;
1384 	}
1385 
1386 	/* Channel lookup */
1387 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1388 
1389 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1390 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1391 	    __func__,
1392 	    (int) rxs->c_freq,
1393 	    (int) rxs->c_ieee,
1394 	    flags,
1395 	    c);
1396 
1397 	return (c);
1398 }
1399 
1400 static void
1401 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1402 {
1403 #define	ADD(_ic, _s, _o) \
1404 	ifmedia_add(media, \
1405 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1406 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1407 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1408 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1409 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1410 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1411 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1412 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1413 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1414 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1415 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1416 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1417 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1418 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1419 	};
1420 	u_int mopt;
1421 
1422 	mopt = mopts[mode];
1423 	if (addsta)
1424 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1425 	if (caps & IEEE80211_C_IBSS)
1426 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1427 	if (caps & IEEE80211_C_HOSTAP)
1428 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1429 	if (caps & IEEE80211_C_AHDEMO)
1430 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1431 	if (caps & IEEE80211_C_MONITOR)
1432 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1433 	if (caps & IEEE80211_C_WDS)
1434 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1435 	if (caps & IEEE80211_C_MBSS)
1436 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1437 #undef ADD
1438 }
1439 
1440 /*
1441  * Setup the media data structures according to the channel and
1442  * rate tables.
1443  */
1444 static int
1445 ieee80211_media_setup(struct ieee80211com *ic,
1446 	struct ifmedia *media, int caps, int addsta,
1447 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1448 {
1449 	int i, j, rate, maxrate, mword, r;
1450 	enum ieee80211_phymode mode;
1451 	const struct ieee80211_rateset *rs;
1452 	struct ieee80211_rateset allrates;
1453 
1454 	/*
1455 	 * Fill in media characteristics.
1456 	 */
1457 	ifmedia_init(media, 0, media_change, media_stat);
1458 	maxrate = 0;
1459 	/*
1460 	 * Add media for legacy operating modes.
1461 	 */
1462 	memset(&allrates, 0, sizeof(allrates));
1463 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1464 		if (isclr(ic->ic_modecaps, mode))
1465 			continue;
1466 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1467 		if (mode == IEEE80211_MODE_AUTO)
1468 			continue;
1469 		rs = &ic->ic_sup_rates[mode];
1470 		for (i = 0; i < rs->rs_nrates; i++) {
1471 			rate = rs->rs_rates[i];
1472 			mword = ieee80211_rate2media(ic, rate, mode);
1473 			if (mword == 0)
1474 				continue;
1475 			addmedia(media, caps, addsta, mode, mword);
1476 			/*
1477 			 * Add legacy rate to the collection of all rates.
1478 			 */
1479 			r = rate & IEEE80211_RATE_VAL;
1480 			for (j = 0; j < allrates.rs_nrates; j++)
1481 				if (allrates.rs_rates[j] == r)
1482 					break;
1483 			if (j == allrates.rs_nrates) {
1484 				/* unique, add to the set */
1485 				allrates.rs_rates[j] = r;
1486 				allrates.rs_nrates++;
1487 			}
1488 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1489 			if (rate > maxrate)
1490 				maxrate = rate;
1491 		}
1492 	}
1493 	for (i = 0; i < allrates.rs_nrates; i++) {
1494 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1495 				IEEE80211_MODE_AUTO);
1496 		if (mword == 0)
1497 			continue;
1498 		/* NB: remove media options from mword */
1499 		addmedia(media, caps, addsta,
1500 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1501 	}
1502 	/*
1503 	 * Add HT/11n media.  Note that we do not have enough
1504 	 * bits in the media subtype to express the MCS so we
1505 	 * use a "placeholder" media subtype and any fixed MCS
1506 	 * must be specified with a different mechanism.
1507 	 */
1508 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1509 		if (isclr(ic->ic_modecaps, mode))
1510 			continue;
1511 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1512 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1513 	}
1514 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1515 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1516 		addmedia(media, caps, addsta,
1517 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1518 		i = ic->ic_txstream * 8 - 1;
1519 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1520 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1521 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1522 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1523 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1524 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1525 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1526 		else
1527 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1528 		if (rate > maxrate)
1529 			maxrate = rate;
1530 	}
1531 	return maxrate;
1532 }
1533 
1534 /* XXX inline or eliminate? */
1535 const struct ieee80211_rateset *
1536 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1537 {
1538 	/* XXX does this work for 11ng basic rates? */
1539 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1540 }
1541 
1542 void
1543 ieee80211_announce(struct ieee80211com *ic)
1544 {
1545 	int i, rate, mword;
1546 	enum ieee80211_phymode mode;
1547 	const struct ieee80211_rateset *rs;
1548 
1549 	/* NB: skip AUTO since it has no rates */
1550 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1551 		if (isclr(ic->ic_modecaps, mode))
1552 			continue;
1553 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1554 		rs = &ic->ic_sup_rates[mode];
1555 		for (i = 0; i < rs->rs_nrates; i++) {
1556 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1557 			if (mword == 0)
1558 				continue;
1559 			rate = ieee80211_media2rate(mword);
1560 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1561 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1562 		}
1563 		printf("\n");
1564 	}
1565 	ieee80211_ht_announce(ic);
1566 }
1567 
1568 void
1569 ieee80211_announce_channels(struct ieee80211com *ic)
1570 {
1571 	const struct ieee80211_channel *c;
1572 	char type;
1573 	int i, cw;
1574 
1575 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1576 	for (i = 0; i < ic->ic_nchans; i++) {
1577 		c = &ic->ic_channels[i];
1578 		if (IEEE80211_IS_CHAN_ST(c))
1579 			type = 'S';
1580 		else if (IEEE80211_IS_CHAN_108A(c))
1581 			type = 'T';
1582 		else if (IEEE80211_IS_CHAN_108G(c))
1583 			type = 'G';
1584 		else if (IEEE80211_IS_CHAN_HT(c))
1585 			type = 'n';
1586 		else if (IEEE80211_IS_CHAN_A(c))
1587 			type = 'a';
1588 		else if (IEEE80211_IS_CHAN_ANYG(c))
1589 			type = 'g';
1590 		else if (IEEE80211_IS_CHAN_B(c))
1591 			type = 'b';
1592 		else
1593 			type = 'f';
1594 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1595 			cw = 40;
1596 		else if (IEEE80211_IS_CHAN_HALF(c))
1597 			cw = 10;
1598 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1599 			cw = 5;
1600 		else
1601 			cw = 20;
1602 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1603 			, c->ic_ieee, c->ic_freq, type
1604 			, cw
1605 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1606 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1607 			, c->ic_maxregpower
1608 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1609 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1610 		);
1611 	}
1612 }
1613 
1614 static int
1615 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1616 {
1617 	switch (IFM_MODE(ime->ifm_media)) {
1618 	case IFM_IEEE80211_11A:
1619 		*mode = IEEE80211_MODE_11A;
1620 		break;
1621 	case IFM_IEEE80211_11B:
1622 		*mode = IEEE80211_MODE_11B;
1623 		break;
1624 	case IFM_IEEE80211_11G:
1625 		*mode = IEEE80211_MODE_11G;
1626 		break;
1627 	case IFM_IEEE80211_FH:
1628 		*mode = IEEE80211_MODE_FH;
1629 		break;
1630 	case IFM_IEEE80211_11NA:
1631 		*mode = IEEE80211_MODE_11NA;
1632 		break;
1633 	case IFM_IEEE80211_11NG:
1634 		*mode = IEEE80211_MODE_11NG;
1635 		break;
1636 	case IFM_AUTO:
1637 		*mode = IEEE80211_MODE_AUTO;
1638 		break;
1639 	default:
1640 		return 0;
1641 	}
1642 	/*
1643 	 * Turbo mode is an ``option''.
1644 	 * XXX does not apply to AUTO
1645 	 */
1646 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1647 		if (*mode == IEEE80211_MODE_11A) {
1648 			if (flags & IEEE80211_F_TURBOP)
1649 				*mode = IEEE80211_MODE_TURBO_A;
1650 			else
1651 				*mode = IEEE80211_MODE_STURBO_A;
1652 		} else if (*mode == IEEE80211_MODE_11G)
1653 			*mode = IEEE80211_MODE_TURBO_G;
1654 		else
1655 			return 0;
1656 	}
1657 	/* XXX HT40 +/- */
1658 	return 1;
1659 }
1660 
1661 /*
1662  * Handle a media change request on the vap interface.
1663  */
1664 int
1665 ieee80211_media_change(struct ifnet *ifp)
1666 {
1667 	struct ieee80211vap *vap = ifp->if_softc;
1668 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1669 	uint16_t newmode;
1670 
1671 	if (!media2mode(ime, vap->iv_flags, &newmode))
1672 		return EINVAL;
1673 	if (vap->iv_des_mode != newmode) {
1674 		vap->iv_des_mode = newmode;
1675 		/* XXX kick state machine if up+running */
1676 	}
1677 	return 0;
1678 }
1679 
1680 /*
1681  * Common code to calculate the media status word
1682  * from the operating mode and channel state.
1683  */
1684 static int
1685 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1686 {
1687 	int status;
1688 
1689 	status = IFM_IEEE80211;
1690 	switch (opmode) {
1691 	case IEEE80211_M_STA:
1692 		break;
1693 	case IEEE80211_M_IBSS:
1694 		status |= IFM_IEEE80211_ADHOC;
1695 		break;
1696 	case IEEE80211_M_HOSTAP:
1697 		status |= IFM_IEEE80211_HOSTAP;
1698 		break;
1699 	case IEEE80211_M_MONITOR:
1700 		status |= IFM_IEEE80211_MONITOR;
1701 		break;
1702 	case IEEE80211_M_AHDEMO:
1703 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1704 		break;
1705 	case IEEE80211_M_WDS:
1706 		status |= IFM_IEEE80211_WDS;
1707 		break;
1708 	case IEEE80211_M_MBSS:
1709 		status |= IFM_IEEE80211_MBSS;
1710 		break;
1711 	}
1712 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1713 		status |= IFM_IEEE80211_11NA;
1714 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1715 		status |= IFM_IEEE80211_11NG;
1716 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1717 		status |= IFM_IEEE80211_11A;
1718 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1719 		status |= IFM_IEEE80211_11B;
1720 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1721 		status |= IFM_IEEE80211_11G;
1722 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1723 		status |= IFM_IEEE80211_FH;
1724 	}
1725 	/* XXX else complain? */
1726 
1727 	if (IEEE80211_IS_CHAN_TURBO(chan))
1728 		status |= IFM_IEEE80211_TURBO;
1729 #if 0
1730 	if (IEEE80211_IS_CHAN_HT20(chan))
1731 		status |= IFM_IEEE80211_HT20;
1732 	if (IEEE80211_IS_CHAN_HT40(chan))
1733 		status |= IFM_IEEE80211_HT40;
1734 #endif
1735 	return status;
1736 }
1737 
1738 void
1739 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1740 {
1741 	struct ieee80211vap *vap = ifp->if_softc;
1742 	struct ieee80211com *ic = vap->iv_ic;
1743 	enum ieee80211_phymode mode;
1744 
1745 	imr->ifm_status = IFM_AVALID;
1746 	/*
1747 	 * NB: use the current channel's mode to lock down a xmit
1748 	 * rate only when running; otherwise we may have a mismatch
1749 	 * in which case the rate will not be convertible.
1750 	 */
1751 	if (vap->iv_state == IEEE80211_S_RUN ||
1752 	    vap->iv_state == IEEE80211_S_SLEEP) {
1753 		imr->ifm_status |= IFM_ACTIVE;
1754 		mode = ieee80211_chan2mode(ic->ic_curchan);
1755 	} else
1756 		mode = IEEE80211_MODE_AUTO;
1757 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1758 	/*
1759 	 * Calculate a current rate if possible.
1760 	 */
1761 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1762 		/*
1763 		 * A fixed rate is set, report that.
1764 		 */
1765 		imr->ifm_active |= ieee80211_rate2media(ic,
1766 			vap->iv_txparms[mode].ucastrate, mode);
1767 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1768 		/*
1769 		 * In station mode report the current transmit rate.
1770 		 */
1771 		imr->ifm_active |= ieee80211_rate2media(ic,
1772 			vap->iv_bss->ni_txrate, mode);
1773 	} else
1774 		imr->ifm_active |= IFM_AUTO;
1775 	if (imr->ifm_status & IFM_ACTIVE)
1776 		imr->ifm_current = imr->ifm_active;
1777 }
1778 
1779 /*
1780  * Set the current phy mode and recalculate the active channel
1781  * set based on the available channels for this mode.  Also
1782  * select a new default/current channel if the current one is
1783  * inappropriate for this mode.
1784  */
1785 int
1786 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1787 {
1788 	/*
1789 	 * Adjust basic rates in 11b/11g supported rate set.
1790 	 * Note that if operating on a hal/quarter rate channel
1791 	 * this is a noop as those rates sets are different
1792 	 * and used instead.
1793 	 */
1794 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1795 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1796 
1797 	ic->ic_curmode = mode;
1798 	ieee80211_reset_erp(ic);	/* reset ERP state */
1799 
1800 	return 0;
1801 }
1802 
1803 /*
1804  * Return the phy mode for with the specified channel.
1805  */
1806 enum ieee80211_phymode
1807 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1808 {
1809 
1810 	if (IEEE80211_IS_CHAN_HTA(chan))
1811 		return IEEE80211_MODE_11NA;
1812 	else if (IEEE80211_IS_CHAN_HTG(chan))
1813 		return IEEE80211_MODE_11NG;
1814 	else if (IEEE80211_IS_CHAN_108G(chan))
1815 		return IEEE80211_MODE_TURBO_G;
1816 	else if (IEEE80211_IS_CHAN_ST(chan))
1817 		return IEEE80211_MODE_STURBO_A;
1818 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1819 		return IEEE80211_MODE_TURBO_A;
1820 	else if (IEEE80211_IS_CHAN_HALF(chan))
1821 		return IEEE80211_MODE_HALF;
1822 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1823 		return IEEE80211_MODE_QUARTER;
1824 	else if (IEEE80211_IS_CHAN_A(chan))
1825 		return IEEE80211_MODE_11A;
1826 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1827 		return IEEE80211_MODE_11G;
1828 	else if (IEEE80211_IS_CHAN_B(chan))
1829 		return IEEE80211_MODE_11B;
1830 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1831 		return IEEE80211_MODE_FH;
1832 
1833 	/* NB: should not get here */
1834 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1835 		__func__, chan->ic_freq, chan->ic_flags);
1836 	return IEEE80211_MODE_11B;
1837 }
1838 
1839 struct ratemedia {
1840 	u_int	match;	/* rate + mode */
1841 	u_int	media;	/* if_media rate */
1842 };
1843 
1844 static int
1845 findmedia(const struct ratemedia rates[], int n, u_int match)
1846 {
1847 	int i;
1848 
1849 	for (i = 0; i < n; i++)
1850 		if (rates[i].match == match)
1851 			return rates[i].media;
1852 	return IFM_AUTO;
1853 }
1854 
1855 /*
1856  * Convert IEEE80211 rate value to ifmedia subtype.
1857  * Rate is either a legacy rate in units of 0.5Mbps
1858  * or an MCS index.
1859  */
1860 int
1861 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1862 {
1863 	static const struct ratemedia rates[] = {
1864 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1865 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1866 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1867 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1868 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1869 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1870 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1871 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1872 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1873 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1874 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1875 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1876 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1877 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1878 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1879 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1880 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1881 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1882 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1883 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1884 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1885 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1886 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1887 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1888 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1889 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1890 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1891 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1892 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1893 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1894 		/* NB: OFDM72 doesn't really exist so we don't handle it */
1895 	};
1896 	static const struct ratemedia htrates[] = {
1897 		{   0, IFM_IEEE80211_MCS },
1898 		{   1, IFM_IEEE80211_MCS },
1899 		{   2, IFM_IEEE80211_MCS },
1900 		{   3, IFM_IEEE80211_MCS },
1901 		{   4, IFM_IEEE80211_MCS },
1902 		{   5, IFM_IEEE80211_MCS },
1903 		{   6, IFM_IEEE80211_MCS },
1904 		{   7, IFM_IEEE80211_MCS },
1905 		{   8, IFM_IEEE80211_MCS },
1906 		{   9, IFM_IEEE80211_MCS },
1907 		{  10, IFM_IEEE80211_MCS },
1908 		{  11, IFM_IEEE80211_MCS },
1909 		{  12, IFM_IEEE80211_MCS },
1910 		{  13, IFM_IEEE80211_MCS },
1911 		{  14, IFM_IEEE80211_MCS },
1912 		{  15, IFM_IEEE80211_MCS },
1913 		{  16, IFM_IEEE80211_MCS },
1914 		{  17, IFM_IEEE80211_MCS },
1915 		{  18, IFM_IEEE80211_MCS },
1916 		{  19, IFM_IEEE80211_MCS },
1917 		{  20, IFM_IEEE80211_MCS },
1918 		{  21, IFM_IEEE80211_MCS },
1919 		{  22, IFM_IEEE80211_MCS },
1920 		{  23, IFM_IEEE80211_MCS },
1921 		{  24, IFM_IEEE80211_MCS },
1922 		{  25, IFM_IEEE80211_MCS },
1923 		{  26, IFM_IEEE80211_MCS },
1924 		{  27, IFM_IEEE80211_MCS },
1925 		{  28, IFM_IEEE80211_MCS },
1926 		{  29, IFM_IEEE80211_MCS },
1927 		{  30, IFM_IEEE80211_MCS },
1928 		{  31, IFM_IEEE80211_MCS },
1929 		{  32, IFM_IEEE80211_MCS },
1930 		{  33, IFM_IEEE80211_MCS },
1931 		{  34, IFM_IEEE80211_MCS },
1932 		{  35, IFM_IEEE80211_MCS },
1933 		{  36, IFM_IEEE80211_MCS },
1934 		{  37, IFM_IEEE80211_MCS },
1935 		{  38, IFM_IEEE80211_MCS },
1936 		{  39, IFM_IEEE80211_MCS },
1937 		{  40, IFM_IEEE80211_MCS },
1938 		{  41, IFM_IEEE80211_MCS },
1939 		{  42, IFM_IEEE80211_MCS },
1940 		{  43, IFM_IEEE80211_MCS },
1941 		{  44, IFM_IEEE80211_MCS },
1942 		{  45, IFM_IEEE80211_MCS },
1943 		{  46, IFM_IEEE80211_MCS },
1944 		{  47, IFM_IEEE80211_MCS },
1945 		{  48, IFM_IEEE80211_MCS },
1946 		{  49, IFM_IEEE80211_MCS },
1947 		{  50, IFM_IEEE80211_MCS },
1948 		{  51, IFM_IEEE80211_MCS },
1949 		{  52, IFM_IEEE80211_MCS },
1950 		{  53, IFM_IEEE80211_MCS },
1951 		{  54, IFM_IEEE80211_MCS },
1952 		{  55, IFM_IEEE80211_MCS },
1953 		{  56, IFM_IEEE80211_MCS },
1954 		{  57, IFM_IEEE80211_MCS },
1955 		{  58, IFM_IEEE80211_MCS },
1956 		{  59, IFM_IEEE80211_MCS },
1957 		{  60, IFM_IEEE80211_MCS },
1958 		{  61, IFM_IEEE80211_MCS },
1959 		{  62, IFM_IEEE80211_MCS },
1960 		{  63, IFM_IEEE80211_MCS },
1961 		{  64, IFM_IEEE80211_MCS },
1962 		{  65, IFM_IEEE80211_MCS },
1963 		{  66, IFM_IEEE80211_MCS },
1964 		{  67, IFM_IEEE80211_MCS },
1965 		{  68, IFM_IEEE80211_MCS },
1966 		{  69, IFM_IEEE80211_MCS },
1967 		{  70, IFM_IEEE80211_MCS },
1968 		{  71, IFM_IEEE80211_MCS },
1969 		{  72, IFM_IEEE80211_MCS },
1970 		{  73, IFM_IEEE80211_MCS },
1971 		{  74, IFM_IEEE80211_MCS },
1972 		{  75, IFM_IEEE80211_MCS },
1973 		{  76, IFM_IEEE80211_MCS },
1974 	};
1975 	int m;
1976 
1977 	/*
1978 	 * Check 11n rates first for match as an MCS.
1979 	 */
1980 	if (mode == IEEE80211_MODE_11NA) {
1981 		if (rate & IEEE80211_RATE_MCS) {
1982 			rate &= ~IEEE80211_RATE_MCS;
1983 			m = findmedia(htrates, nitems(htrates), rate);
1984 			if (m != IFM_AUTO)
1985 				return m | IFM_IEEE80211_11NA;
1986 		}
1987 	} else if (mode == IEEE80211_MODE_11NG) {
1988 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1989 		if (rate & IEEE80211_RATE_MCS) {
1990 			rate &= ~IEEE80211_RATE_MCS;
1991 			m = findmedia(htrates, nitems(htrates), rate);
1992 			if (m != IFM_AUTO)
1993 				return m | IFM_IEEE80211_11NG;
1994 		}
1995 	}
1996 	rate &= IEEE80211_RATE_VAL;
1997 	switch (mode) {
1998 	case IEEE80211_MODE_11A:
1999 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2000 	case IEEE80211_MODE_QUARTER:
2001 	case IEEE80211_MODE_11NA:
2002 	case IEEE80211_MODE_TURBO_A:
2003 	case IEEE80211_MODE_STURBO_A:
2004 		return findmedia(rates, nitems(rates),
2005 		    rate | IFM_IEEE80211_11A);
2006 	case IEEE80211_MODE_11B:
2007 		return findmedia(rates, nitems(rates),
2008 		    rate | IFM_IEEE80211_11B);
2009 	case IEEE80211_MODE_FH:
2010 		return findmedia(rates, nitems(rates),
2011 		    rate | IFM_IEEE80211_FH);
2012 	case IEEE80211_MODE_AUTO:
2013 		/* NB: ic may be NULL for some drivers */
2014 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2015 			return findmedia(rates, nitems(rates),
2016 			    rate | IFM_IEEE80211_FH);
2017 		/* NB: hack, 11g matches both 11b+11a rates */
2018 		/* fall thru... */
2019 	case IEEE80211_MODE_11G:
2020 	case IEEE80211_MODE_11NG:
2021 	case IEEE80211_MODE_TURBO_G:
2022 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2023 	}
2024 	return IFM_AUTO;
2025 }
2026 
2027 int
2028 ieee80211_media2rate(int mword)
2029 {
2030 	static const int ieeerates[] = {
2031 		-1,		/* IFM_AUTO */
2032 		0,		/* IFM_MANUAL */
2033 		0,		/* IFM_NONE */
2034 		2,		/* IFM_IEEE80211_FH1 */
2035 		4,		/* IFM_IEEE80211_FH2 */
2036 		2,		/* IFM_IEEE80211_DS1 */
2037 		4,		/* IFM_IEEE80211_DS2 */
2038 		11,		/* IFM_IEEE80211_DS5 */
2039 		22,		/* IFM_IEEE80211_DS11 */
2040 		44,		/* IFM_IEEE80211_DS22 */
2041 		12,		/* IFM_IEEE80211_OFDM6 */
2042 		18,		/* IFM_IEEE80211_OFDM9 */
2043 		24,		/* IFM_IEEE80211_OFDM12 */
2044 		36,		/* IFM_IEEE80211_OFDM18 */
2045 		48,		/* IFM_IEEE80211_OFDM24 */
2046 		72,		/* IFM_IEEE80211_OFDM36 */
2047 		96,		/* IFM_IEEE80211_OFDM48 */
2048 		108,		/* IFM_IEEE80211_OFDM54 */
2049 		144,		/* IFM_IEEE80211_OFDM72 */
2050 		0,		/* IFM_IEEE80211_DS354k */
2051 		0,		/* IFM_IEEE80211_DS512k */
2052 		6,		/* IFM_IEEE80211_OFDM3 */
2053 		9,		/* IFM_IEEE80211_OFDM4 */
2054 		54,		/* IFM_IEEE80211_OFDM27 */
2055 		-1,		/* IFM_IEEE80211_MCS */
2056 	};
2057 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2058 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2059 }
2060 
2061 /*
2062  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2063  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2064  */
2065 #define	mix(a, b, c)							\
2066 do {									\
2067 	a -= b; a -= c; a ^= (c >> 13);					\
2068 	b -= c; b -= a; b ^= (a << 8);					\
2069 	c -= a; c -= b; c ^= (b >> 13);					\
2070 	a -= b; a -= c; a ^= (c >> 12);					\
2071 	b -= c; b -= a; b ^= (a << 16);					\
2072 	c -= a; c -= b; c ^= (b >> 5);					\
2073 	a -= b; a -= c; a ^= (c >> 3);					\
2074 	b -= c; b -= a; b ^= (a << 10);					\
2075 	c -= a; c -= b; c ^= (b >> 15);					\
2076 } while (/*CONSTCOND*/0)
2077 
2078 uint32_t
2079 ieee80211_mac_hash(const struct ieee80211com *ic,
2080 	const uint8_t addr[IEEE80211_ADDR_LEN])
2081 {
2082 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2083 
2084 	b += addr[5] << 8;
2085 	b += addr[4];
2086 	a += addr[3] << 24;
2087 	a += addr[2] << 16;
2088 	a += addr[1] << 8;
2089 	a += addr[0];
2090 
2091 	mix(a, b, c);
2092 
2093 	return c;
2094 }
2095 #undef mix
2096 
2097 char
2098 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2099 {
2100 	if (IEEE80211_IS_CHAN_ST(c))
2101 		return 'S';
2102 	if (IEEE80211_IS_CHAN_108A(c))
2103 		return 'T';
2104 	if (IEEE80211_IS_CHAN_108G(c))
2105 		return 'G';
2106 	if (IEEE80211_IS_CHAN_HT(c))
2107 		return 'n';
2108 	if (IEEE80211_IS_CHAN_A(c))
2109 		return 'a';
2110 	if (IEEE80211_IS_CHAN_ANYG(c))
2111 		return 'g';
2112 	if (IEEE80211_IS_CHAN_B(c))
2113 		return 'b';
2114 	return 'f';
2115 }
2116