1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/socket.h> 40 #include <sys/sbuf.h> 41 42 #include <machine/stdarg.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 #include <net/if_private.h> 49 #include <net/if_types.h> 50 #include <net/ethernet.h> 51 52 #include <net80211/ieee80211_var.h> 53 #include <net80211/ieee80211_regdomain.h> 54 #ifdef IEEE80211_SUPPORT_SUPERG 55 #include <net80211/ieee80211_superg.h> 56 #endif 57 #include <net80211/ieee80211_ratectl.h> 58 #include <net80211/ieee80211_vht.h> 59 60 #include <net/bpf.h> 61 62 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 63 [IEEE80211_MODE_AUTO] = "auto", 64 [IEEE80211_MODE_11A] = "11a", 65 [IEEE80211_MODE_11B] = "11b", 66 [IEEE80211_MODE_11G] = "11g", 67 [IEEE80211_MODE_FH] = "FH", 68 [IEEE80211_MODE_TURBO_A] = "turboA", 69 [IEEE80211_MODE_TURBO_G] = "turboG", 70 [IEEE80211_MODE_STURBO_A] = "sturboA", 71 [IEEE80211_MODE_HALF] = "half", 72 [IEEE80211_MODE_QUARTER] = "quarter", 73 [IEEE80211_MODE_11NA] = "11na", 74 [IEEE80211_MODE_11NG] = "11ng", 75 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 76 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 77 }; 78 /* map ieee80211_opmode to the corresponding capability bit */ 79 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 80 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 81 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 82 [IEEE80211_M_STA] = IEEE80211_C_STA, 83 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 84 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 85 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 86 #ifdef IEEE80211_SUPPORT_MESH 87 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 88 #endif 89 }; 90 91 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 92 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 93 94 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 95 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 96 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 98 static int ieee80211_media_setup(struct ieee80211com *ic, 99 struct ifmedia *media, int caps, int addsta, 100 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 101 static int media_status(enum ieee80211_opmode, 102 const struct ieee80211_channel *); 103 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 104 105 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 106 107 /* 108 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 109 */ 110 #define B(r) ((r) | IEEE80211_RATE_BASIC) 111 static const struct ieee80211_rateset ieee80211_rateset_11a = 112 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 113 static const struct ieee80211_rateset ieee80211_rateset_half = 114 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 115 static const struct ieee80211_rateset ieee80211_rateset_quarter = 116 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 117 static const struct ieee80211_rateset ieee80211_rateset_11b = 118 { 4, { B(2), B(4), B(11), B(22) } }; 119 /* NB: OFDM rates are handled specially based on mode */ 120 static const struct ieee80211_rateset ieee80211_rateset_11g = 121 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 122 #undef B 123 124 static int set_vht_extchan(struct ieee80211_channel *c); 125 126 /* 127 * Fill in 802.11 available channel set, mark 128 * all available channels as active, and pick 129 * a default channel if not already specified. 130 */ 131 void 132 ieee80211_chan_init(struct ieee80211com *ic) 133 { 134 #define DEFAULTRATES(m, def) do { \ 135 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 136 ic->ic_sup_rates[m] = def; \ 137 } while (0) 138 struct ieee80211_channel *c; 139 int i; 140 141 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 142 ("invalid number of channels specified: %u", ic->ic_nchans)); 143 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 144 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 145 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 146 for (i = 0; i < ic->ic_nchans; i++) { 147 c = &ic->ic_channels[i]; 148 KASSERT(c->ic_flags != 0, ("channel with no flags")); 149 /* 150 * Help drivers that work only with frequencies by filling 151 * in IEEE channel #'s if not already calculated. Note this 152 * mimics similar work done in ieee80211_setregdomain when 153 * changing regulatory state. 154 */ 155 if (c->ic_ieee == 0) 156 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 157 158 /* 159 * Setup the HT40/VHT40 upper/lower bits. 160 * The VHT80/... math is done elsewhere. 161 */ 162 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 163 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 164 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 165 c->ic_flags); 166 167 /* Update VHT math */ 168 /* 169 * XXX VHT again, note that this assumes VHT80/... channels 170 * are legit already. 171 */ 172 set_vht_extchan(c); 173 174 /* default max tx power to max regulatory */ 175 if (c->ic_maxpower == 0) 176 c->ic_maxpower = 2*c->ic_maxregpower; 177 setbit(ic->ic_chan_avail, c->ic_ieee); 178 /* 179 * Identify mode capabilities. 180 */ 181 if (IEEE80211_IS_CHAN_A(c)) 182 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 183 if (IEEE80211_IS_CHAN_B(c)) 184 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 185 if (IEEE80211_IS_CHAN_ANYG(c)) 186 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 187 if (IEEE80211_IS_CHAN_FHSS(c)) 188 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 189 if (IEEE80211_IS_CHAN_108A(c)) 190 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 191 if (IEEE80211_IS_CHAN_108G(c)) 192 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 193 if (IEEE80211_IS_CHAN_ST(c)) 194 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 195 if (IEEE80211_IS_CHAN_HALF(c)) 196 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 197 if (IEEE80211_IS_CHAN_QUARTER(c)) 198 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 199 if (IEEE80211_IS_CHAN_HTA(c)) 200 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 201 if (IEEE80211_IS_CHAN_HTG(c)) 202 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 203 if (IEEE80211_IS_CHAN_VHTA(c)) 204 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 205 if (IEEE80211_IS_CHAN_VHTG(c)) 206 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 207 } 208 /* initialize candidate channels to all available */ 209 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 210 sizeof(ic->ic_chan_avail)); 211 212 /* sort channel table to allow lookup optimizations */ 213 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 214 215 /* invalidate any previous state */ 216 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 217 ic->ic_prevchan = NULL; 218 ic->ic_csa_newchan = NULL; 219 /* arbitrarily pick the first channel */ 220 ic->ic_curchan = &ic->ic_channels[0]; 221 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 222 223 /* fillin well-known rate sets if driver has not specified */ 224 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 225 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 226 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 227 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 228 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 229 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 230 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 231 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 232 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 233 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 234 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 235 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 236 237 /* 238 * Setup required information to fill the mcsset field, if driver did 239 * not. Assume a 2T2R setup for historic reasons. 240 */ 241 if (ic->ic_rxstream == 0) 242 ic->ic_rxstream = 2; 243 if (ic->ic_txstream == 0) 244 ic->ic_txstream = 2; 245 246 ieee80211_init_suphtrates(ic); 247 248 /* 249 * Set auto mode to reset active channel state and any desired channel. 250 */ 251 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 252 #undef DEFAULTRATES 253 } 254 255 static void 256 null_update_mcast(struct ieee80211com *ic) 257 { 258 259 ic_printf(ic, "need multicast update callback\n"); 260 } 261 262 static void 263 null_update_promisc(struct ieee80211com *ic) 264 { 265 266 ic_printf(ic, "need promiscuous mode update callback\n"); 267 } 268 269 static void 270 null_update_chw(struct ieee80211com *ic) 271 { 272 273 ic_printf(ic, "%s: need callback\n", __func__); 274 } 275 276 int 277 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 278 { 279 va_list ap; 280 int retval; 281 282 retval = printf("%s: ", ic->ic_name); 283 va_start(ap, fmt); 284 retval += vprintf(fmt, ap); 285 va_end(ap); 286 return (retval); 287 } 288 289 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 290 static struct mtx ic_list_mtx; 291 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 292 293 static int 294 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 295 { 296 struct ieee80211com *ic; 297 struct sbuf sb; 298 char *sp; 299 int error; 300 301 error = sysctl_wire_old_buffer(req, 0); 302 if (error) 303 return (error); 304 sbuf_new_for_sysctl(&sb, NULL, 8, req); 305 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 306 sp = ""; 307 mtx_lock(&ic_list_mtx); 308 LIST_FOREACH(ic, &ic_head, ic_next) { 309 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 310 sp = " "; 311 } 312 mtx_unlock(&ic_list_mtx); 313 error = sbuf_finish(&sb); 314 sbuf_delete(&sb); 315 return (error); 316 } 317 318 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 320 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 321 322 /* 323 * Attach/setup the common net80211 state. Called by 324 * the driver on attach to prior to creating any vap's. 325 */ 326 void 327 ieee80211_ifattach(struct ieee80211com *ic) 328 { 329 330 IEEE80211_LOCK_INIT(ic, ic->ic_name); 331 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 332 TAILQ_INIT(&ic->ic_vaps); 333 334 /* Create a taskqueue for all state changes */ 335 ic->ic_tq = taskqueue_create("ic_taskq", 336 IEEE80211_M_WAITOK | IEEE80211_M_ZERO, 337 taskqueue_thread_enqueue, &ic->ic_tq); 338 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 339 ic->ic_name); 340 ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK); 341 ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK); 342 /* 343 * Fill in 802.11 available channel set, mark all 344 * available channels as active, and pick a default 345 * channel if not already specified. 346 */ 347 ieee80211_chan_init(ic); 348 349 ic->ic_update_mcast = null_update_mcast; 350 ic->ic_update_promisc = null_update_promisc; 351 ic->ic_update_chw = null_update_chw; 352 353 ic->ic_hash_key = arc4random(); 354 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 355 ic->ic_lintval = ic->ic_bintval; 356 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 357 358 ieee80211_crypto_attach(ic); 359 ieee80211_node_attach(ic); 360 ieee80211_power_attach(ic); 361 ieee80211_proto_attach(ic); 362 #ifdef IEEE80211_SUPPORT_SUPERG 363 ieee80211_superg_attach(ic); 364 #endif 365 ieee80211_ht_attach(ic); 366 ieee80211_vht_attach(ic); 367 ieee80211_scan_attach(ic); 368 ieee80211_regdomain_attach(ic); 369 ieee80211_dfs_attach(ic); 370 371 ieee80211_sysctl_attach(ic); 372 373 mtx_lock(&ic_list_mtx); 374 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 375 mtx_unlock(&ic_list_mtx); 376 } 377 378 /* 379 * Detach net80211 state on device detach. Tear down 380 * all vap's and reclaim all common state prior to the 381 * device state going away. Note we may call back into 382 * driver; it must be prepared for this. 383 */ 384 void 385 ieee80211_ifdetach(struct ieee80211com *ic) 386 { 387 struct ieee80211vap *vap; 388 389 /* 390 * We use this as an indicator that ifattach never had a chance to be 391 * called, e.g. early driver attach failed and ifdetach was called 392 * during subsequent detach. Never fear, for we have nothing to do 393 * here. 394 */ 395 if (ic->ic_tq == NULL) 396 return; 397 398 mtx_lock(&ic_list_mtx); 399 LIST_REMOVE(ic, ic_next); 400 mtx_unlock(&ic_list_mtx); 401 402 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 403 404 /* 405 * The VAP is responsible for setting and clearing 406 * the VIMAGE context. 407 */ 408 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { 409 ieee80211_com_vdetach(vap); 410 ieee80211_vap_destroy(vap); 411 } 412 ieee80211_waitfor_parent(ic); 413 414 ieee80211_sysctl_detach(ic); 415 ieee80211_dfs_detach(ic); 416 ieee80211_regdomain_detach(ic); 417 ieee80211_scan_detach(ic); 418 #ifdef IEEE80211_SUPPORT_SUPERG 419 ieee80211_superg_detach(ic); 420 #endif 421 ieee80211_vht_detach(ic); 422 ieee80211_ht_detach(ic); 423 /* NB: must be called before ieee80211_node_detach */ 424 ieee80211_proto_detach(ic); 425 ieee80211_crypto_detach(ic); 426 ieee80211_power_detach(ic); 427 ieee80211_node_detach(ic); 428 429 counter_u64_free(ic->ic_ierrors); 430 counter_u64_free(ic->ic_oerrors); 431 432 taskqueue_free(ic->ic_tq); 433 IEEE80211_TX_LOCK_DESTROY(ic); 434 IEEE80211_LOCK_DESTROY(ic); 435 } 436 437 /* 438 * Called by drivers during attach to set the supported 439 * cipher set for software encryption. 440 */ 441 void 442 ieee80211_set_software_ciphers(struct ieee80211com *ic, 443 uint32_t cipher_suite) 444 { 445 ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite); 446 } 447 448 /* 449 * Called by drivers during attach to set the supported 450 * cipher set for hardware encryption. 451 */ 452 void 453 ieee80211_set_hardware_ciphers(struct ieee80211com *ic, 454 uint32_t cipher_suite) 455 { 456 ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite); 457 } 458 459 /* 460 * Called by drivers during attach to set the supported 461 * key management suites by the driver/hardware. 462 */ 463 void 464 ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic, 465 uint32_t keymgmt_set) 466 { 467 ieee80211_crypto_set_supported_driver_keymgmt(ic, 468 keymgmt_set); 469 } 470 471 struct ieee80211com * 472 ieee80211_find_com(const char *name) 473 { 474 struct ieee80211com *ic; 475 476 mtx_lock(&ic_list_mtx); 477 LIST_FOREACH(ic, &ic_head, ic_next) 478 if (strcmp(ic->ic_name, name) == 0) 479 break; 480 mtx_unlock(&ic_list_mtx); 481 482 return (ic); 483 } 484 485 void 486 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 487 { 488 struct ieee80211com *ic; 489 490 mtx_lock(&ic_list_mtx); 491 LIST_FOREACH(ic, &ic_head, ic_next) 492 (*f)(arg, ic); 493 mtx_unlock(&ic_list_mtx); 494 } 495 496 /* 497 * Default reset method for use with the ioctl support. This 498 * method is invoked after any state change in the 802.11 499 * layer that should be propagated to the hardware but not 500 * require re-initialization of the 802.11 state machine (e.g 501 * rescanning for an ap). We always return ENETRESET which 502 * should cause the driver to re-initialize the device. Drivers 503 * can override this method to implement more optimized support. 504 */ 505 static int 506 default_reset(struct ieee80211vap *vap, u_long cmd) 507 { 508 return ENETRESET; 509 } 510 511 /* 512 * Default for updating the VAP default TX key index. 513 * 514 * Drivers that support TX offload as well as hardware encryption offload 515 * may need to be informed of key index changes separate from the key 516 * update. 517 */ 518 static void 519 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 520 { 521 522 /* XXX assert validity */ 523 /* XXX assert we're in a key update block */ 524 vap->iv_def_txkey = kid; 525 } 526 527 /* 528 * Add underlying device errors to vap errors. 529 */ 530 static uint64_t 531 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 532 { 533 struct ieee80211vap *vap = ifp->if_softc; 534 struct ieee80211com *ic = vap->iv_ic; 535 uint64_t rv; 536 537 rv = if_get_counter_default(ifp, cnt); 538 switch (cnt) { 539 case IFCOUNTER_OERRORS: 540 rv += counter_u64_fetch(ic->ic_oerrors); 541 break; 542 case IFCOUNTER_IERRORS: 543 rv += counter_u64_fetch(ic->ic_ierrors); 544 break; 545 default: 546 break; 547 } 548 549 return (rv); 550 } 551 552 /* 553 * Prepare a vap for use. Drivers use this call to 554 * setup net80211 state in new vap's prior attaching 555 * them with ieee80211_vap_attach (below). 556 */ 557 int 558 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 559 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 560 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 561 { 562 struct ifnet *ifp; 563 564 ifp = if_alloc(IFT_ETHER); 565 if_initname(ifp, name, unit); 566 ifp->if_softc = vap; /* back pointer */ 567 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 568 ifp->if_transmit = ieee80211_vap_transmit; 569 ifp->if_qflush = ieee80211_vap_qflush; 570 ifp->if_ioctl = ieee80211_ioctl; 571 ifp->if_init = ieee80211_init; 572 ifp->if_get_counter = ieee80211_get_counter; 573 574 vap->iv_ifp = ifp; 575 vap->iv_ic = ic; 576 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 577 vap->iv_flags_ext = ic->ic_flags_ext; 578 vap->iv_flags_ven = ic->ic_flags_ven; 579 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 580 581 /* 11n capabilities - XXX methodize */ 582 vap->iv_htcaps = ic->ic_htcaps; 583 vap->iv_htextcaps = ic->ic_htextcaps; 584 585 /* 11ac capabilities - XXX methodize */ 586 vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info; 587 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 588 589 vap->iv_opmode = opmode; 590 vap->iv_caps |= ieee80211_opcap[opmode]; 591 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 592 switch (opmode) { 593 case IEEE80211_M_WDS: 594 /* 595 * WDS links must specify the bssid of the far end. 596 * For legacy operation this is a static relationship. 597 * For non-legacy operation the station must associate 598 * and be authorized to pass traffic. Plumbing the 599 * vap to the proper node happens when the vap 600 * transitions to RUN state. 601 */ 602 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 603 vap->iv_flags |= IEEE80211_F_DESBSSID; 604 if (flags & IEEE80211_CLONE_WDSLEGACY) 605 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 606 break; 607 #ifdef IEEE80211_SUPPORT_TDMA 608 case IEEE80211_M_AHDEMO: 609 if (flags & IEEE80211_CLONE_TDMA) { 610 /* NB: checked before clone operation allowed */ 611 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 612 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 613 /* 614 * Propagate TDMA capability to mark vap; this 615 * cannot be removed and is used to distinguish 616 * regular ahdemo operation from ahdemo+tdma. 617 */ 618 vap->iv_caps |= IEEE80211_C_TDMA; 619 } 620 break; 621 #endif 622 default: 623 break; 624 } 625 /* auto-enable s/w beacon miss support */ 626 if (flags & IEEE80211_CLONE_NOBEACONS) 627 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 628 /* auto-generated or user supplied MAC address */ 629 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 630 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 631 /* 632 * Enable various functionality by default if we're 633 * capable; the driver can override us if it knows better. 634 */ 635 if (vap->iv_caps & IEEE80211_C_WME) 636 vap->iv_flags |= IEEE80211_F_WME; 637 if (vap->iv_caps & IEEE80211_C_BURST) 638 vap->iv_flags |= IEEE80211_F_BURST; 639 /* NB: bg scanning only makes sense for station mode right now */ 640 if (vap->iv_opmode == IEEE80211_M_STA && 641 (vap->iv_caps & IEEE80211_C_BGSCAN)) 642 vap->iv_flags |= IEEE80211_F_BGSCAN; 643 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 644 /* NB: DFS support only makes sense for ap mode right now */ 645 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 646 (vap->iv_caps & IEEE80211_C_DFS)) 647 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 648 /* NB: only flip on U-APSD for hostap/sta for now */ 649 if ((vap->iv_opmode == IEEE80211_M_STA) 650 || (vap->iv_opmode == IEEE80211_M_HOSTAP)) { 651 if (vap->iv_caps & IEEE80211_C_UAPSD) 652 vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; 653 } 654 655 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 656 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 657 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 658 /* 659 * Install a default reset method for the ioctl support; 660 * the driver can override this. 661 */ 662 vap->iv_reset = default_reset; 663 664 /* 665 * Install a default crypto key update method, the driver 666 * can override this. 667 */ 668 vap->iv_update_deftxkey = default_update_deftxkey; 669 670 ieee80211_sysctl_vattach(vap); 671 ieee80211_crypto_vattach(vap); 672 ieee80211_node_vattach(vap); 673 ieee80211_power_vattach(vap); 674 ieee80211_proto_vattach(vap); 675 #ifdef IEEE80211_SUPPORT_SUPERG 676 ieee80211_superg_vattach(vap); 677 #endif 678 ieee80211_ht_vattach(vap); 679 ieee80211_vht_vattach(vap); 680 ieee80211_scan_vattach(vap); 681 ieee80211_regdomain_vattach(vap); 682 ieee80211_radiotap_vattach(vap); 683 ieee80211_vap_reset_erp(vap); 684 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 685 686 return 0; 687 } 688 689 /* 690 * Activate a vap. State should have been prepared with a 691 * call to ieee80211_vap_setup and by the driver. On return 692 * from this call the vap is ready for use. 693 */ 694 int 695 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 696 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 697 { 698 struct ifnet *ifp = vap->iv_ifp; 699 struct ieee80211com *ic = vap->iv_ic; 700 struct ifmediareq imr; 701 int maxrate; 702 703 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 704 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 705 __func__, ieee80211_opmode_name[vap->iv_opmode], 706 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 707 708 /* 709 * Do late attach work that cannot happen until after 710 * the driver has had a chance to override defaults. 711 */ 712 ieee80211_node_latevattach(vap); 713 ieee80211_power_latevattach(vap); 714 715 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 716 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 717 ieee80211_media_status(ifp, &imr); 718 /* NB: strip explicit mode; we're actually in autoselect */ 719 ifmedia_set(&vap->iv_media, 720 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 721 if (maxrate) 722 ifp->if_baudrate = IF_Mbps(maxrate); 723 724 ether_ifattach(ifp, macaddr); 725 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 726 /* hook output method setup by ether_ifattach */ 727 vap->iv_output = ifp->if_output; 728 ifp->if_output = ieee80211_output; 729 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 730 731 IEEE80211_LOCK(ic); 732 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 733 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 734 #ifdef IEEE80211_SUPPORT_SUPERG 735 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 736 #endif 737 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 738 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 739 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 740 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 741 742 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 743 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 744 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 745 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 746 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 747 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX); 748 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX); 749 IEEE80211_UNLOCK(ic); 750 751 return 1; 752 } 753 754 /* 755 * Tear down vap state and reclaim the ifnet. 756 * The driver is assumed to have prepared for 757 * this; e.g. by turning off interrupts for the 758 * underlying device. 759 */ 760 void 761 ieee80211_vap_detach(struct ieee80211vap *vap) 762 { 763 struct ieee80211com *ic = vap->iv_ic; 764 struct ifnet *ifp = vap->iv_ifp; 765 int i; 766 767 CURVNET_SET(ifp->if_vnet); 768 769 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 770 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 771 772 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 773 ether_ifdetach(ifp); 774 775 ieee80211_stop(vap); 776 777 /* 778 * Flush any deferred vap tasks. 779 */ 780 for (i = 0; i < NET80211_IV_NSTATE_NUM; i++) 781 ieee80211_draintask(ic, &vap->iv_nstate_task[i]); 782 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 783 ieee80211_draintask(ic, &vap->iv_wme_task); 784 ieee80211_draintask(ic, &ic->ic_parent_task); 785 786 /* XXX band-aid until ifnet handles this for us */ 787 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 788 789 IEEE80211_LOCK(ic); 790 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 791 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 792 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 793 #ifdef IEEE80211_SUPPORT_SUPERG 794 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 795 #endif 796 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 797 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 798 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 799 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 800 801 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 802 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 803 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 804 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 805 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 806 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX); 807 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX); 808 809 /* NB: this handles the bpfdetach done below */ 810 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 811 if (vap->iv_ifflags & IFF_PROMISC) 812 ieee80211_promisc(vap, false); 813 if (vap->iv_ifflags & IFF_ALLMULTI) 814 ieee80211_allmulti(vap, false); 815 IEEE80211_UNLOCK(ic); 816 817 ifmedia_removeall(&vap->iv_media); 818 819 ieee80211_radiotap_vdetach(vap); 820 ieee80211_regdomain_vdetach(vap); 821 ieee80211_scan_vdetach(vap); 822 #ifdef IEEE80211_SUPPORT_SUPERG 823 ieee80211_superg_vdetach(vap); 824 #endif 825 ieee80211_vht_vdetach(vap); 826 ieee80211_ht_vdetach(vap); 827 /* NB: must be before ieee80211_node_vdetach */ 828 ieee80211_proto_vdetach(vap); 829 ieee80211_crypto_vdetach(vap); 830 ieee80211_power_vdetach(vap); 831 ieee80211_node_vdetach(vap); 832 ieee80211_sysctl_vdetach(vap); 833 834 if_free(ifp); 835 836 CURVNET_RESTORE(); 837 } 838 839 /* 840 * Count number of vaps in promisc, and issue promisc on 841 * parent respectively. 842 */ 843 void 844 ieee80211_promisc(struct ieee80211vap *vap, bool on) 845 { 846 struct ieee80211com *ic = vap->iv_ic; 847 848 IEEE80211_LOCK_ASSERT(ic); 849 850 if (on) { 851 if (++ic->ic_promisc == 1) 852 ieee80211_runtask(ic, &ic->ic_promisc_task); 853 } else { 854 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 855 __func__, ic)); 856 if (--ic->ic_promisc == 0) 857 ieee80211_runtask(ic, &ic->ic_promisc_task); 858 } 859 } 860 861 /* 862 * Count number of vaps in allmulti, and issue allmulti on 863 * parent respectively. 864 */ 865 void 866 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 867 { 868 struct ieee80211com *ic = vap->iv_ic; 869 870 IEEE80211_LOCK_ASSERT(ic); 871 872 if (on) { 873 if (++ic->ic_allmulti == 1) 874 ieee80211_runtask(ic, &ic->ic_mcast_task); 875 } else { 876 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 877 __func__, ic)); 878 if (--ic->ic_allmulti == 0) 879 ieee80211_runtask(ic, &ic->ic_mcast_task); 880 } 881 } 882 883 /* 884 * Synchronize flag bit state in the com structure 885 * according to the state of all vap's. This is used, 886 * for example, to handle state changes via ioctls. 887 */ 888 static void 889 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 890 { 891 struct ieee80211vap *vap; 892 int bit; 893 894 IEEE80211_LOCK_ASSERT(ic); 895 896 bit = 0; 897 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 898 if (vap->iv_flags & flag) { 899 bit = 1; 900 break; 901 } 902 if (bit) 903 ic->ic_flags |= flag; 904 else 905 ic->ic_flags &= ~flag; 906 } 907 908 void 909 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 910 { 911 struct ieee80211com *ic = vap->iv_ic; 912 913 IEEE80211_LOCK(ic); 914 if (flag < 0) { 915 flag = -flag; 916 vap->iv_flags &= ~flag; 917 } else 918 vap->iv_flags |= flag; 919 ieee80211_syncflag_locked(ic, flag); 920 IEEE80211_UNLOCK(ic); 921 } 922 923 /* 924 * Synchronize flags_ht bit state in the com structure 925 * according to the state of all vap's. This is used, 926 * for example, to handle state changes via ioctls. 927 */ 928 static void 929 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 930 { 931 struct ieee80211vap *vap; 932 int bit; 933 934 IEEE80211_LOCK_ASSERT(ic); 935 936 bit = 0; 937 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 938 if (vap->iv_flags_ht & flag) { 939 bit = 1; 940 break; 941 } 942 if (bit) 943 ic->ic_flags_ht |= flag; 944 else 945 ic->ic_flags_ht &= ~flag; 946 } 947 948 void 949 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 950 { 951 struct ieee80211com *ic = vap->iv_ic; 952 953 IEEE80211_LOCK(ic); 954 if (flag < 0) { 955 flag = -flag; 956 vap->iv_flags_ht &= ~flag; 957 } else 958 vap->iv_flags_ht |= flag; 959 ieee80211_syncflag_ht_locked(ic, flag); 960 IEEE80211_UNLOCK(ic); 961 } 962 963 /* 964 * Synchronize flags_vht bit state in the com structure 965 * according to the state of all vap's. This is used, 966 * for example, to handle state changes via ioctls. 967 */ 968 static void 969 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 970 { 971 struct ieee80211vap *vap; 972 int bit; 973 974 IEEE80211_LOCK_ASSERT(ic); 975 976 bit = 0; 977 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 978 if (vap->iv_vht_flags & flag) { 979 bit = 1; 980 break; 981 } 982 if (bit) 983 ic->ic_vht_flags |= flag; 984 else 985 ic->ic_vht_flags &= ~flag; 986 } 987 988 void 989 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 990 { 991 struct ieee80211com *ic = vap->iv_ic; 992 993 IEEE80211_LOCK(ic); 994 if (flag < 0) { 995 flag = -flag; 996 vap->iv_vht_flags &= ~flag; 997 } else 998 vap->iv_vht_flags |= flag; 999 ieee80211_syncflag_vht_locked(ic, flag); 1000 IEEE80211_UNLOCK(ic); 1001 } 1002 1003 /* 1004 * Synchronize flags_ext bit state in the com structure 1005 * according to the state of all vap's. This is used, 1006 * for example, to handle state changes via ioctls. 1007 */ 1008 static void 1009 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 1010 { 1011 struct ieee80211vap *vap; 1012 int bit; 1013 1014 IEEE80211_LOCK_ASSERT(ic); 1015 1016 bit = 0; 1017 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1018 if (vap->iv_flags_ext & flag) { 1019 bit = 1; 1020 break; 1021 } 1022 if (bit) 1023 ic->ic_flags_ext |= flag; 1024 else 1025 ic->ic_flags_ext &= ~flag; 1026 } 1027 1028 void 1029 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 1030 { 1031 struct ieee80211com *ic = vap->iv_ic; 1032 1033 IEEE80211_LOCK(ic); 1034 if (flag < 0) { 1035 flag = -flag; 1036 vap->iv_flags_ext &= ~flag; 1037 } else 1038 vap->iv_flags_ext |= flag; 1039 ieee80211_syncflag_ext_locked(ic, flag); 1040 IEEE80211_UNLOCK(ic); 1041 } 1042 1043 static __inline int 1044 mapgsm(u_int freq, u_int flags) 1045 { 1046 freq *= 10; 1047 if (flags & IEEE80211_CHAN_QUARTER) 1048 freq += 5; 1049 else if (flags & IEEE80211_CHAN_HALF) 1050 freq += 10; 1051 else 1052 freq += 20; 1053 /* NB: there is no 907/20 wide but leave room */ 1054 return (freq - 906*10) / 5; 1055 } 1056 1057 static __inline int 1058 mappsb(u_int freq, u_int flags) 1059 { 1060 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1061 } 1062 1063 /* 1064 * Convert MHz frequency to IEEE channel number. 1065 */ 1066 int 1067 ieee80211_mhz2ieee(u_int freq, u_int flags) 1068 { 1069 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1070 if (flags & IEEE80211_CHAN_GSM) 1071 return mapgsm(freq, flags); 1072 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1073 if (freq == 2484) 1074 return 14; 1075 if (freq < 2484) 1076 return ((int) freq - 2407) / 5; 1077 else 1078 return 15 + ((freq - 2512) / 20); 1079 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1080 if (freq <= 5000) { 1081 /* XXX check regdomain? */ 1082 if (IS_FREQ_IN_PSB(freq)) 1083 return mappsb(freq, flags); 1084 return (freq - 4000) / 5; 1085 } else 1086 return (freq - 5000) / 5; 1087 } else { /* either, guess */ 1088 if (freq == 2484) 1089 return 14; 1090 if (freq < 2484) { 1091 if (907 <= freq && freq <= 922) 1092 return mapgsm(freq, flags); 1093 return ((int) freq - 2407) / 5; 1094 } 1095 if (freq < 5000) { 1096 if (IS_FREQ_IN_PSB(freq)) 1097 return mappsb(freq, flags); 1098 else if (freq > 4900) 1099 return (freq - 4000) / 5; 1100 else 1101 return 15 + ((freq - 2512) / 20); 1102 } 1103 return (freq - 5000) / 5; 1104 } 1105 #undef IS_FREQ_IN_PSB 1106 } 1107 1108 /* 1109 * Convert channel to IEEE channel number. 1110 */ 1111 int 1112 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1113 { 1114 if (c == NULL) { 1115 ic_printf(ic, "invalid channel (NULL)\n"); 1116 return 0; /* XXX */ 1117 } 1118 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1119 } 1120 1121 /* 1122 * Convert IEEE channel number to MHz frequency. 1123 */ 1124 u_int 1125 ieee80211_ieee2mhz(u_int chan, u_int flags) 1126 { 1127 if (flags & IEEE80211_CHAN_GSM) 1128 return 907 + 5 * (chan / 10); 1129 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1130 if (chan == 14) 1131 return 2484; 1132 if (chan < 14) 1133 return 2407 + chan*5; 1134 else 1135 return 2512 + ((chan-15)*20); 1136 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1137 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1138 chan -= 37; 1139 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1140 } 1141 return 5000 + (chan*5); 1142 } else { /* either, guess */ 1143 /* XXX can't distinguish PSB+GSM channels */ 1144 if (chan == 14) 1145 return 2484; 1146 if (chan < 14) /* 0-13 */ 1147 return 2407 + chan*5; 1148 if (chan < 27) /* 15-26 */ 1149 return 2512 + ((chan-15)*20); 1150 return 5000 + (chan*5); 1151 } 1152 } 1153 1154 static __inline void 1155 set_extchan(struct ieee80211_channel *c) 1156 { 1157 1158 /* 1159 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1160 * "the secondary channel number shall be 'N + [1,-1] * 4' 1161 */ 1162 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1163 c->ic_extieee = c->ic_ieee + 4; 1164 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1165 c->ic_extieee = c->ic_ieee - 4; 1166 else 1167 c->ic_extieee = 0; 1168 } 1169 1170 /* 1171 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1172 * 1173 * This for now uses a hard-coded list of 80MHz wide channels. 1174 * 1175 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1176 * wide channel we've already decided upon. 1177 * 1178 * For VHT80 and VHT160, there are only a small number of fixed 1179 * 80/160MHz wide channels, so we just use those. 1180 * 1181 * This is all likely very very wrong - both the regulatory code 1182 * and this code needs to ensure that all four channels are 1183 * available and valid before the VHT80 (and eight for VHT160) channel 1184 * is created. 1185 */ 1186 1187 struct vht_chan_range { 1188 uint16_t freq_start; 1189 uint16_t freq_end; 1190 }; 1191 1192 struct vht_chan_range vht80_chan_ranges[] = { 1193 { 5170, 5250 }, 1194 { 5250, 5330 }, 1195 { 5490, 5570 }, 1196 { 5570, 5650 }, 1197 { 5650, 5730 }, 1198 { 5735, 5815 }, 1199 { 5815, 5895 }, 1200 { 0, 0 } 1201 }; 1202 1203 struct vht_chan_range vht160_chan_ranges[] = { 1204 { 5170, 5330 }, 1205 { 5490, 5650 }, 1206 { 5735, 5895 }, 1207 { 0, 0 } 1208 }; 1209 1210 static int 1211 set_vht_extchan(struct ieee80211_channel *c) 1212 { 1213 int i; 1214 1215 if (! IEEE80211_IS_CHAN_VHT(c)) 1216 return (0); 1217 1218 if (IEEE80211_IS_CHAN_VHT80P80(c)) { 1219 printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n", 1220 __func__, c->ic_ieee, c->ic_flags); 1221 } 1222 1223 if (IEEE80211_IS_CHAN_VHT160(c)) { 1224 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1225 if (c->ic_freq >= vht160_chan_ranges[i].freq_start && 1226 c->ic_freq < vht160_chan_ranges[i].freq_end) { 1227 int midpoint; 1228 1229 midpoint = vht160_chan_ranges[i].freq_start + 80; 1230 c->ic_vht_ch_freq1 = 1231 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1232 c->ic_vht_ch_freq2 = 0; 1233 #if 0 1234 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1235 __func__, c->ic_ieee, c->ic_freq, midpoint, 1236 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1237 #endif 1238 return (1); 1239 } 1240 } 1241 return (0); 1242 } 1243 1244 if (IEEE80211_IS_CHAN_VHT80(c)) { 1245 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1246 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1247 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1248 int midpoint; 1249 1250 midpoint = vht80_chan_ranges[i].freq_start + 40; 1251 c->ic_vht_ch_freq1 = 1252 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1253 c->ic_vht_ch_freq2 = 0; 1254 #if 0 1255 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1256 __func__, c->ic_ieee, c->ic_freq, midpoint, 1257 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1258 #endif 1259 return (1); 1260 } 1261 } 1262 return (0); 1263 } 1264 1265 if (IEEE80211_IS_CHAN_VHT40(c)) { 1266 if (IEEE80211_IS_CHAN_HT40U(c)) 1267 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1268 else if (IEEE80211_IS_CHAN_HT40D(c)) 1269 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1270 else 1271 return (0); 1272 return (1); 1273 } 1274 1275 if (IEEE80211_IS_CHAN_VHT20(c)) { 1276 c->ic_vht_ch_freq1 = c->ic_ieee; 1277 return (1); 1278 } 1279 1280 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1281 __func__, c->ic_ieee, c->ic_flags); 1282 1283 return (0); 1284 } 1285 1286 /* 1287 * Return whether the current channel could possibly be a part of 1288 * a VHT80/VHT160 channel. 1289 * 1290 * This doesn't check that the whole range is in the allowed list 1291 * according to regulatory. 1292 */ 1293 static bool 1294 is_vht160_valid_freq(uint16_t freq) 1295 { 1296 int i; 1297 1298 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1299 if (freq >= vht160_chan_ranges[i].freq_start && 1300 freq < vht160_chan_ranges[i].freq_end) 1301 return (true); 1302 } 1303 return (false); 1304 } 1305 1306 static int 1307 is_vht80_valid_freq(uint16_t freq) 1308 { 1309 int i; 1310 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1311 if (freq >= vht80_chan_ranges[i].freq_start && 1312 freq < vht80_chan_ranges[i].freq_end) 1313 return (1); 1314 } 1315 return (0); 1316 } 1317 1318 static int 1319 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1320 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1321 { 1322 struct ieee80211_channel *c; 1323 1324 if (*nchans >= maxchans) 1325 return (ENOBUFS); 1326 1327 #if 0 1328 printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n", 1329 __func__, *nchans, maxchans, ieee, freq, flags); 1330 #endif 1331 1332 c = &chans[(*nchans)++]; 1333 c->ic_ieee = ieee; 1334 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1335 c->ic_maxregpower = maxregpower; 1336 c->ic_maxpower = 2 * maxregpower; 1337 c->ic_flags = flags; 1338 c->ic_vht_ch_freq1 = 0; 1339 c->ic_vht_ch_freq2 = 0; 1340 set_extchan(c); 1341 set_vht_extchan(c); 1342 1343 return (0); 1344 } 1345 1346 static int 1347 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1348 uint32_t flags) 1349 { 1350 struct ieee80211_channel *c; 1351 1352 KASSERT(*nchans > 0, ("channel list is empty\n")); 1353 1354 if (*nchans >= maxchans) 1355 return (ENOBUFS); 1356 1357 #if 0 1358 printf("%s: %d of %d: flags=0x%08x\n", 1359 __func__, *nchans, maxchans, flags); 1360 #endif 1361 1362 c = &chans[(*nchans)++]; 1363 c[0] = c[-1]; 1364 c->ic_flags = flags; 1365 c->ic_vht_ch_freq1 = 0; 1366 c->ic_vht_ch_freq2 = 0; 1367 set_extchan(c); 1368 set_vht_extchan(c); 1369 1370 return (0); 1371 } 1372 1373 /* 1374 * XXX VHT-2GHz 1375 */ 1376 static void 1377 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1378 { 1379 int nmodes; 1380 1381 nmodes = 0; 1382 if (isset(bands, IEEE80211_MODE_11B)) 1383 flags[nmodes++] = IEEE80211_CHAN_B; 1384 if (isset(bands, IEEE80211_MODE_11G)) 1385 flags[nmodes++] = IEEE80211_CHAN_G; 1386 if (isset(bands, IEEE80211_MODE_11NG)) 1387 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1388 if (cbw_flags & NET80211_CBW_FLAG_HT40) { 1389 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1390 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1391 } 1392 flags[nmodes] = 0; 1393 } 1394 1395 static void 1396 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1397 { 1398 int nmodes; 1399 1400 /* 1401 * The addchan_list() function seems to expect the flags array to 1402 * be in channel width order, so the VHT bits are interspersed 1403 * as appropriate to maintain said order. 1404 * 1405 * It also assumes HT40U is before HT40D. 1406 */ 1407 nmodes = 0; 1408 1409 /* 20MHz */ 1410 if (isset(bands, IEEE80211_MODE_11A)) 1411 flags[nmodes++] = IEEE80211_CHAN_A; 1412 if (isset(bands, IEEE80211_MODE_11NA)) 1413 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1414 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1415 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1416 IEEE80211_CHAN_VHT20; 1417 } 1418 1419 /* 40MHz */ 1420 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1421 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1422 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1423 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1424 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1425 IEEE80211_CHAN_VHT40U; 1426 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1427 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1428 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1429 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1430 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1431 IEEE80211_CHAN_VHT40D; 1432 1433 /* 80MHz */ 1434 if ((cbw_flags & NET80211_CBW_FLAG_VHT80) && 1435 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1436 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1437 IEEE80211_CHAN_VHT80; 1438 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1439 IEEE80211_CHAN_VHT80; 1440 } 1441 1442 /* VHT160 */ 1443 if ((cbw_flags & NET80211_CBW_FLAG_VHT160) && 1444 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1445 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1446 IEEE80211_CHAN_VHT160; 1447 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1448 IEEE80211_CHAN_VHT160; 1449 } 1450 1451 /* VHT80+80 */ 1452 if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) && 1453 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1454 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1455 IEEE80211_CHAN_VHT80P80; 1456 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1457 IEEE80211_CHAN_VHT80P80; 1458 } 1459 1460 flags[nmodes] = 0; 1461 } 1462 1463 static void 1464 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1465 { 1466 1467 flags[0] = 0; 1468 if (isset(bands, IEEE80211_MODE_11A) || 1469 isset(bands, IEEE80211_MODE_11NA) || 1470 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1471 if (isset(bands, IEEE80211_MODE_11B) || 1472 isset(bands, IEEE80211_MODE_11G) || 1473 isset(bands, IEEE80211_MODE_11NG) || 1474 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1475 return; 1476 1477 getflags_5ghz(bands, flags, cbw_flags); 1478 } else 1479 getflags_2ghz(bands, flags, cbw_flags); 1480 } 1481 1482 /* 1483 * Add one 20 MHz channel into specified channel list. 1484 * You MUST NOT mix bands when calling this. It will not add 5ghz 1485 * channels if you have any B/G/N band bit set. 1486 * The _cbw() variant does also support HT40/VHT80/160/80+80. 1487 */ 1488 int 1489 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans, 1490 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1491 uint32_t chan_flags, const uint8_t bands[], int cbw_flags) 1492 { 1493 uint32_t flags[IEEE80211_MODE_MAX]; 1494 int i, error; 1495 1496 getflags(bands, flags, cbw_flags); 1497 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1498 1499 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1500 flags[0] | chan_flags); 1501 for (i = 1; flags[i] != 0 && error == 0; i++) { 1502 error = copychan_prev(chans, maxchans, nchans, 1503 flags[i] | chan_flags); 1504 } 1505 1506 return (error); 1507 } 1508 1509 int 1510 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1511 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1512 uint32_t chan_flags, const uint8_t bands[]) 1513 { 1514 1515 return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq, 1516 maxregpower, chan_flags, bands, 0)); 1517 } 1518 1519 static struct ieee80211_channel * 1520 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1521 uint32_t flags) 1522 { 1523 struct ieee80211_channel *c; 1524 int i; 1525 1526 flags &= IEEE80211_CHAN_ALLTURBO; 1527 /* brute force search */ 1528 for (i = 0; i < nchans; i++) { 1529 c = &chans[i]; 1530 if (c->ic_freq == freq && 1531 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1532 return c; 1533 } 1534 return NULL; 1535 } 1536 1537 /* 1538 * Add 40 MHz channel pair into specified channel list. 1539 */ 1540 /* XXX VHT */ 1541 int 1542 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1543 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1544 { 1545 struct ieee80211_channel *cent, *extc; 1546 uint16_t freq; 1547 int error; 1548 1549 freq = ieee80211_ieee2mhz(ieee, flags); 1550 1551 /* 1552 * Each entry defines an HT40 channel pair; find the 1553 * center channel, then the extension channel above. 1554 */ 1555 flags |= IEEE80211_CHAN_HT20; 1556 cent = findchannel(chans, *nchans, freq, flags); 1557 if (cent == NULL) 1558 return (EINVAL); 1559 1560 extc = findchannel(chans, *nchans, freq + 20, flags); 1561 if (extc == NULL) 1562 return (ENOENT); 1563 1564 flags &= ~IEEE80211_CHAN_HT; 1565 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1566 maxregpower, flags | IEEE80211_CHAN_HT40U); 1567 if (error != 0) 1568 return (error); 1569 1570 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1571 maxregpower, flags | IEEE80211_CHAN_HT40D); 1572 1573 return (error); 1574 } 1575 1576 /* 1577 * Fetch the center frequency for the primary channel. 1578 */ 1579 uint32_t 1580 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1581 { 1582 1583 return (c->ic_freq); 1584 } 1585 1586 /* 1587 * Fetch the center frequency for the primary BAND channel. 1588 * 1589 * For 5, 10, 20MHz channels it'll be the normally configured channel 1590 * frequency. 1591 * 1592 * For 40MHz, 80MHz, 160MHz channels it will be the centre of the 1593 * wide channel, not the centre of the primary channel (that's ic_freq). 1594 * 1595 * For 80+80MHz channels this will be the centre of the primary 1596 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1597 */ 1598 uint32_t 1599 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1600 { 1601 1602 /* 1603 * VHT - use the pre-calculated centre frequency 1604 * of the given channel. 1605 */ 1606 if (IEEE80211_IS_CHAN_VHT(c)) 1607 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1608 1609 if (IEEE80211_IS_CHAN_HT40U(c)) { 1610 return (c->ic_freq + 10); 1611 } 1612 if (IEEE80211_IS_CHAN_HT40D(c)) { 1613 return (c->ic_freq - 10); 1614 } 1615 1616 return (c->ic_freq); 1617 } 1618 1619 /* 1620 * For now, no 80+80 support; it will likely always return 0. 1621 */ 1622 uint32_t 1623 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1624 { 1625 1626 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1627 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1628 1629 return (0); 1630 } 1631 1632 /* 1633 * Adds channels into specified channel list (ieee[] array must be sorted). 1634 * Channels are already sorted. 1635 */ 1636 static int 1637 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1638 const uint8_t ieee[], int nieee, uint32_t flags[]) 1639 { 1640 uint16_t freq; 1641 int i, j, error; 1642 int is_vht; 1643 1644 for (i = 0; i < nieee; i++) { 1645 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1646 for (j = 0; flags[j] != 0; j++) { 1647 /* 1648 * Notes: 1649 * + HT40 and VHT40 channels occur together, so 1650 * we need to be careful that we actually allow that. 1651 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1652 * make sure it's not skipped because of the overlap 1653 * check used for (V)HT40. 1654 */ 1655 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1656 1657 /* XXX TODO FIXME VHT80P80. */ 1658 1659 /* Test for VHT160 analogue to the VHT80 below. */ 1660 if (is_vht && flags[j] & IEEE80211_CHAN_VHT160) 1661 if (! is_vht160_valid_freq(freq)) 1662 continue; 1663 1664 /* 1665 * Test for VHT80. 1666 * XXX This is all very broken right now. 1667 * What we /should/ do is: 1668 * 1669 * + check that the frequency is in the list of 1670 * allowed VHT80 ranges; and 1671 * + the other 3 channels in the list are actually 1672 * also available. 1673 */ 1674 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1675 if (! is_vht80_valid_freq(freq)) 1676 continue; 1677 1678 /* 1679 * Test for (V)HT40. 1680 * 1681 * This is also a fall through from VHT80; as we only 1682 * allow a VHT80 channel if the VHT40 combination is 1683 * also valid. If the VHT40 form is not valid then 1684 * we certainly can't do VHT80.. 1685 */ 1686 if (flags[j] & IEEE80211_CHAN_HT40D) 1687 /* 1688 * Can't have a "lower" channel if we are the 1689 * first channel. 1690 * 1691 * Can't have a "lower" channel if it's below/ 1692 * within 20MHz of the first channel. 1693 * 1694 * Can't have a "lower" channel if the channel 1695 * below it is not 20MHz away. 1696 */ 1697 if (i == 0 || ieee[i] < ieee[0] + 4 || 1698 freq - 20 != 1699 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1700 continue; 1701 if (flags[j] & IEEE80211_CHAN_HT40U) 1702 /* 1703 * Can't have an "upper" channel if we are 1704 * the last channel. 1705 * 1706 * Can't have an "upper" channel be above the 1707 * last channel in the list. 1708 * 1709 * Can't have an "upper" channel if the next 1710 * channel according to the math isn't 20MHz 1711 * away. (Likely for channel 13/14.) 1712 */ 1713 if (i == nieee - 1 || 1714 ieee[i] + 4 > ieee[nieee - 1] || 1715 freq + 20 != 1716 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1717 continue; 1718 1719 if (j == 0) { 1720 error = addchan(chans, maxchans, nchans, 1721 ieee[i], freq, 0, flags[j]); 1722 } else { 1723 error = copychan_prev(chans, maxchans, nchans, 1724 flags[j]); 1725 } 1726 if (error != 0) 1727 return (error); 1728 } 1729 } 1730 1731 return (0); 1732 } 1733 1734 int 1735 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1736 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1737 int cbw_flags) 1738 { 1739 uint32_t flags[IEEE80211_MODE_MAX]; 1740 1741 /* XXX no VHT for now */ 1742 getflags_2ghz(bands, flags, cbw_flags); 1743 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1744 1745 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1746 } 1747 1748 int 1749 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], 1750 int maxchans, int *nchans, const uint8_t bands[], int cbw_flags) 1751 { 1752 const uint8_t default_chan_list[] = 1753 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 1754 1755 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 1756 default_chan_list, nitems(default_chan_list), bands, cbw_flags)); 1757 } 1758 1759 int 1760 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1761 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1762 int cbw_flags) 1763 { 1764 /* 1765 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all 1766 * uses of IEEE80211_MODE_MAX and add a new #define name for array size. 1767 */ 1768 uint32_t flags[2 * IEEE80211_MODE_MAX]; 1769 1770 getflags_5ghz(bands, flags, cbw_flags); 1771 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1772 1773 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1774 } 1775 1776 /* 1777 * Locate a channel given a frequency+flags. We cache 1778 * the previous lookup to optimize switching between two 1779 * channels--as happens with dynamic turbo. 1780 */ 1781 struct ieee80211_channel * 1782 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1783 { 1784 struct ieee80211_channel *c; 1785 1786 flags &= IEEE80211_CHAN_ALLTURBO; 1787 c = ic->ic_prevchan; 1788 if (c != NULL && c->ic_freq == freq && 1789 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1790 return c; 1791 /* brute force search */ 1792 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1793 } 1794 1795 /* 1796 * Locate a channel given a channel number+flags. We cache 1797 * the previous lookup to optimize switching between two 1798 * channels--as happens with dynamic turbo. 1799 */ 1800 struct ieee80211_channel * 1801 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1802 { 1803 struct ieee80211_channel *c; 1804 int i; 1805 1806 flags &= IEEE80211_CHAN_ALLTURBO; 1807 c = ic->ic_prevchan; 1808 if (c != NULL && c->ic_ieee == ieee && 1809 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1810 return c; 1811 /* brute force search */ 1812 for (i = 0; i < ic->ic_nchans; i++) { 1813 c = &ic->ic_channels[i]; 1814 if (c->ic_ieee == ieee && 1815 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1816 return c; 1817 } 1818 return NULL; 1819 } 1820 1821 /* 1822 * Lookup a channel suitable for the given rx status. 1823 * 1824 * This is used to find a channel for a frame (eg beacon, probe 1825 * response) based purely on the received PHY information. 1826 * 1827 * For now it tries to do it based on R_FREQ / R_IEEE. 1828 * This is enough for 11bg and 11a (and thus 11ng/11na) 1829 * but it will not be enough for GSM, PSB channels and the 1830 * like. It also doesn't know about legacy-turbog and 1831 * legacy-turbo modes, which some offload NICs actually 1832 * support in weird ways. 1833 * 1834 * Takes the ic and rxstatus; returns the channel or NULL 1835 * if not found. 1836 * 1837 * XXX TODO: Add support for that when the need arises. 1838 */ 1839 struct ieee80211_channel * 1840 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1841 const struct ieee80211_rx_stats *rxs) 1842 { 1843 struct ieee80211com *ic = vap->iv_ic; 1844 uint32_t flags; 1845 struct ieee80211_channel *c; 1846 1847 if (rxs == NULL) 1848 return (NULL); 1849 1850 /* 1851 * Strictly speaking we only use freq for now, 1852 * however later on we may wish to just store 1853 * the ieee for verification. 1854 */ 1855 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1856 return (NULL); 1857 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1858 return (NULL); 1859 if ((rxs->r_flags & IEEE80211_R_BAND) == 0) 1860 return (NULL); 1861 1862 /* 1863 * If the rx status contains a valid ieee/freq, then 1864 * ensure we populate the correct channel information 1865 * in rxchan before passing it up to the scan infrastructure. 1866 * Offload NICs will pass up beacons from all channels 1867 * during background scans. 1868 */ 1869 1870 /* Determine a band */ 1871 switch (rxs->c_band) { 1872 case IEEE80211_CHAN_2GHZ: 1873 flags = IEEE80211_CHAN_G; 1874 break; 1875 case IEEE80211_CHAN_5GHZ: 1876 flags = IEEE80211_CHAN_A; 1877 break; 1878 default: 1879 if (rxs->c_freq < 3000) { 1880 flags = IEEE80211_CHAN_G; 1881 } else { 1882 flags = IEEE80211_CHAN_A; 1883 } 1884 break; 1885 } 1886 1887 /* Channel lookup */ 1888 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1889 1890 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1891 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1892 __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c); 1893 1894 return (c); 1895 } 1896 1897 static void 1898 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1899 { 1900 #define ADD(_ic, _s, _o) \ 1901 ifmedia_add(media, \ 1902 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1903 static const u_int mopts[IEEE80211_MODE_MAX] = { 1904 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1905 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1906 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1907 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1908 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1909 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1910 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1911 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1912 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1913 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1914 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1915 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1916 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1917 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1918 }; 1919 u_int mopt; 1920 1921 mopt = mopts[mode]; 1922 if (addsta) 1923 ADD(ic, mword, mopt); /* STA mode has no cap */ 1924 if (caps & IEEE80211_C_IBSS) 1925 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1926 if (caps & IEEE80211_C_HOSTAP) 1927 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1928 if (caps & IEEE80211_C_AHDEMO) 1929 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1930 if (caps & IEEE80211_C_MONITOR) 1931 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1932 if (caps & IEEE80211_C_WDS) 1933 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1934 if (caps & IEEE80211_C_MBSS) 1935 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1936 #undef ADD 1937 } 1938 1939 /* 1940 * Setup the media data structures according to the channel and 1941 * rate tables. 1942 */ 1943 static int 1944 ieee80211_media_setup(struct ieee80211com *ic, 1945 struct ifmedia *media, int caps, int addsta, 1946 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1947 { 1948 int i, j, rate, maxrate, mword, r; 1949 enum ieee80211_phymode mode; 1950 const struct ieee80211_rateset *rs; 1951 struct ieee80211_rateset allrates; 1952 struct ieee80211_node_txrate tn; 1953 1954 /* 1955 * Fill in media characteristics. 1956 */ 1957 ifmedia_init(media, 0, media_change, media_stat); 1958 maxrate = 0; 1959 /* 1960 * Add media for legacy operating modes. 1961 */ 1962 memset(&allrates, 0, sizeof(allrates)); 1963 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1964 if (isclr(ic->ic_modecaps, mode)) 1965 continue; 1966 addmedia(media, caps, addsta, mode, IFM_AUTO); 1967 if (mode == IEEE80211_MODE_AUTO) 1968 continue; 1969 rs = &ic->ic_sup_rates[mode]; 1970 for (i = 0; i < rs->rs_nrates; i++) { 1971 rate = rs->rs_rates[i]; 1972 tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rate); 1973 mword = ieee80211_rate2media(ic, &tn, mode); 1974 if (mword == 0) 1975 continue; 1976 addmedia(media, caps, addsta, mode, mword); 1977 /* 1978 * Add legacy rate to the collection of all rates. 1979 */ 1980 r = rate & IEEE80211_RATE_VAL; 1981 for (j = 0; j < allrates.rs_nrates; j++) 1982 if (allrates.rs_rates[j] == r) 1983 break; 1984 if (j == allrates.rs_nrates) { 1985 /* unique, add to the set */ 1986 allrates.rs_rates[j] = r; 1987 allrates.rs_nrates++; 1988 } 1989 rate = (rate & IEEE80211_RATE_VAL) / 2; 1990 if (rate > maxrate) 1991 maxrate = rate; 1992 } 1993 } 1994 for (i = 0; i < allrates.rs_nrates; i++) { 1995 tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(allrates.rs_rates[i]); 1996 mword = ieee80211_rate2media(ic, &tn, IEEE80211_MODE_AUTO); 1997 if (mword == 0) 1998 continue; 1999 /* NB: remove media options from mword */ 2000 addmedia(media, caps, addsta, 2001 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 2002 } 2003 /* 2004 * Add HT/11n media. Note that we do not have enough 2005 * bits in the media subtype to express the MCS so we 2006 * use a "placeholder" media subtype and any fixed MCS 2007 * must be specified with a different mechanism. 2008 */ 2009 for (; mode <= IEEE80211_MODE_11NG; mode++) { 2010 if (isclr(ic->ic_modecaps, mode)) 2011 continue; 2012 addmedia(media, caps, addsta, mode, IFM_AUTO); 2013 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 2014 } 2015 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 2016 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 2017 addmedia(media, caps, addsta, 2018 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 2019 i = ic->ic_txstream * 8 - 1; 2020 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2021 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 2022 rate = ieee80211_htrates[i].ht40_rate_400ns; 2023 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 2024 rate = ieee80211_htrates[i].ht40_rate_800ns; 2025 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 2026 rate = ieee80211_htrates[i].ht20_rate_400ns; 2027 else 2028 rate = ieee80211_htrates[i].ht20_rate_800ns; 2029 if (rate > maxrate) 2030 maxrate = rate; 2031 } 2032 2033 /* 2034 * Add VHT media. 2035 * XXX-BZ skip "VHT_2GHZ" for now. 2036 */ 2037 for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ; 2038 mode++) { 2039 if (isclr(ic->ic_modecaps, mode)) 2040 continue; 2041 addmedia(media, caps, addsta, mode, IFM_AUTO); 2042 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 2043 } 2044 if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) { 2045 addmedia(media, caps, addsta, 2046 IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT); 2047 2048 /* XXX TODO: VHT maxrate */ 2049 } 2050 2051 return maxrate; 2052 } 2053 2054 /* XXX inline or eliminate? */ 2055 const struct ieee80211_rateset * 2056 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 2057 { 2058 /* XXX does this work for 11ng basic rates? */ 2059 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 2060 } 2061 2062 /* XXX inline or eliminate? */ 2063 const struct ieee80211_htrateset * 2064 ieee80211_get_suphtrates(struct ieee80211com *ic, 2065 const struct ieee80211_channel *c) 2066 { 2067 return &ic->ic_sup_htrates; 2068 } 2069 2070 void 2071 ieee80211_announce(struct ieee80211com *ic) 2072 { 2073 int i, rate, mword; 2074 enum ieee80211_phymode mode; 2075 const struct ieee80211_rateset *rs; 2076 struct ieee80211_node_txrate tn; 2077 2078 /* NB: skip AUTO since it has no rates */ 2079 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 2080 if (isclr(ic->ic_modecaps, mode)) 2081 continue; 2082 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 2083 rs = &ic->ic_sup_rates[mode]; 2084 for (i = 0; i < rs->rs_nrates; i++) { 2085 tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rs->rs_rates[i]); 2086 mword = ieee80211_rate2media(ic, &tn, mode); 2087 if (mword == 0) 2088 continue; 2089 rate = ieee80211_media2rate(mword); 2090 printf("%s%d%sMbps", (i != 0 ? " " : ""), 2091 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 2092 } 2093 printf("\n"); 2094 } 2095 ieee80211_ht_announce(ic); 2096 ieee80211_vht_announce(ic); 2097 } 2098 2099 void 2100 ieee80211_announce_channels(struct ieee80211com *ic) 2101 { 2102 const struct ieee80211_channel *c; 2103 char type; 2104 int i, cw; 2105 2106 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 2107 for (i = 0; i < ic->ic_nchans; i++) { 2108 c = &ic->ic_channels[i]; 2109 if (IEEE80211_IS_CHAN_ST(c)) 2110 type = 'S'; 2111 else if (IEEE80211_IS_CHAN_108A(c)) 2112 type = 'T'; 2113 else if (IEEE80211_IS_CHAN_108G(c)) 2114 type = 'G'; 2115 else if (IEEE80211_IS_CHAN_HT(c)) 2116 type = 'n'; 2117 else if (IEEE80211_IS_CHAN_A(c)) 2118 type = 'a'; 2119 else if (IEEE80211_IS_CHAN_ANYG(c)) 2120 type = 'g'; 2121 else if (IEEE80211_IS_CHAN_B(c)) 2122 type = 'b'; 2123 else 2124 type = 'f'; 2125 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 2126 cw = 40; 2127 else if (IEEE80211_IS_CHAN_HALF(c)) 2128 cw = 10; 2129 else if (IEEE80211_IS_CHAN_QUARTER(c)) 2130 cw = 5; 2131 else 2132 cw = 20; 2133 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 2134 , c->ic_ieee, c->ic_freq, type 2135 , cw 2136 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 2137 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 2138 , c->ic_maxregpower 2139 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 2140 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 2141 ); 2142 } 2143 } 2144 2145 static int 2146 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 2147 { 2148 switch (IFM_MODE(ime->ifm_media)) { 2149 case IFM_IEEE80211_11A: 2150 *mode = IEEE80211_MODE_11A; 2151 break; 2152 case IFM_IEEE80211_11B: 2153 *mode = IEEE80211_MODE_11B; 2154 break; 2155 case IFM_IEEE80211_11G: 2156 *mode = IEEE80211_MODE_11G; 2157 break; 2158 case IFM_IEEE80211_FH: 2159 *mode = IEEE80211_MODE_FH; 2160 break; 2161 case IFM_IEEE80211_11NA: 2162 *mode = IEEE80211_MODE_11NA; 2163 break; 2164 case IFM_IEEE80211_11NG: 2165 *mode = IEEE80211_MODE_11NG; 2166 break; 2167 case IFM_IEEE80211_VHT2G: 2168 *mode = IEEE80211_MODE_VHT_2GHZ; 2169 break; 2170 case IFM_IEEE80211_VHT5G: 2171 *mode = IEEE80211_MODE_VHT_5GHZ; 2172 break; 2173 case IFM_AUTO: 2174 *mode = IEEE80211_MODE_AUTO; 2175 break; 2176 default: 2177 return 0; 2178 } 2179 /* 2180 * Turbo mode is an ``option''. 2181 * XXX does not apply to AUTO 2182 */ 2183 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2184 if (*mode == IEEE80211_MODE_11A) { 2185 if (flags & IEEE80211_F_TURBOP) 2186 *mode = IEEE80211_MODE_TURBO_A; 2187 else 2188 *mode = IEEE80211_MODE_STURBO_A; 2189 } else if (*mode == IEEE80211_MODE_11G) 2190 *mode = IEEE80211_MODE_TURBO_G; 2191 else 2192 return 0; 2193 } 2194 /* XXX HT40 +/- */ 2195 return 1; 2196 } 2197 2198 /* 2199 * Handle a media change request on the vap interface. 2200 */ 2201 int 2202 ieee80211_media_change(struct ifnet *ifp) 2203 { 2204 struct ieee80211vap *vap = ifp->if_softc; 2205 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2206 uint16_t newmode; 2207 2208 if (!media2mode(ime, vap->iv_flags, &newmode)) 2209 return EINVAL; 2210 if (vap->iv_des_mode != newmode) { 2211 vap->iv_des_mode = newmode; 2212 /* XXX kick state machine if up+running */ 2213 } 2214 return 0; 2215 } 2216 2217 /* 2218 * Common code to calculate the media status word 2219 * from the operating mode and channel state. 2220 */ 2221 static int 2222 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2223 { 2224 int status; 2225 2226 status = IFM_IEEE80211; 2227 switch (opmode) { 2228 case IEEE80211_M_STA: 2229 break; 2230 case IEEE80211_M_IBSS: 2231 status |= IFM_IEEE80211_ADHOC; 2232 break; 2233 case IEEE80211_M_HOSTAP: 2234 status |= IFM_IEEE80211_HOSTAP; 2235 break; 2236 case IEEE80211_M_MONITOR: 2237 status |= IFM_IEEE80211_MONITOR; 2238 break; 2239 case IEEE80211_M_AHDEMO: 2240 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2241 break; 2242 case IEEE80211_M_WDS: 2243 status |= IFM_IEEE80211_WDS; 2244 break; 2245 case IEEE80211_M_MBSS: 2246 status |= IFM_IEEE80211_MBSS; 2247 break; 2248 } 2249 if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) { 2250 status |= IFM_IEEE80211_VHT5G; 2251 } else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) { 2252 status |= IFM_IEEE80211_VHT2G; 2253 } else if (IEEE80211_IS_CHAN_HTA(chan)) { 2254 status |= IFM_IEEE80211_11NA; 2255 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2256 status |= IFM_IEEE80211_11NG; 2257 } else if (IEEE80211_IS_CHAN_A(chan)) { 2258 status |= IFM_IEEE80211_11A; 2259 } else if (IEEE80211_IS_CHAN_B(chan)) { 2260 status |= IFM_IEEE80211_11B; 2261 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2262 status |= IFM_IEEE80211_11G; 2263 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2264 status |= IFM_IEEE80211_FH; 2265 } 2266 /* XXX else complain? */ 2267 2268 if (IEEE80211_IS_CHAN_TURBO(chan)) 2269 status |= IFM_IEEE80211_TURBO; 2270 #if 0 2271 if (IEEE80211_IS_CHAN_HT20(chan)) 2272 status |= IFM_IEEE80211_HT20; 2273 if (IEEE80211_IS_CHAN_HT40(chan)) 2274 status |= IFM_IEEE80211_HT40; 2275 #endif 2276 return status; 2277 } 2278 2279 void 2280 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2281 { 2282 struct ieee80211vap *vap = ifp->if_softc; 2283 struct ieee80211com *ic = vap->iv_ic; 2284 enum ieee80211_phymode mode; 2285 struct ieee80211_node_txrate tn; 2286 2287 imr->ifm_status = IFM_AVALID; 2288 /* 2289 * NB: use the current channel's mode to lock down a xmit 2290 * rate only when running; otherwise we may have a mismatch 2291 * in which case the rate will not be convertible. 2292 */ 2293 if (vap->iv_state == IEEE80211_S_RUN || 2294 vap->iv_state == IEEE80211_S_SLEEP) { 2295 imr->ifm_status |= IFM_ACTIVE; 2296 mode = ieee80211_chan2mode(ic->ic_curchan); 2297 } else 2298 mode = IEEE80211_MODE_AUTO; 2299 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2300 /* 2301 * Calculate a current rate if possible. 2302 */ 2303 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2304 /* 2305 * A fixed rate is set, report that. 2306 */ 2307 tn = IEEE80211_NODE_TXRATE_INIT_LEGACY( 2308 vap->iv_txparms[mode].ucastrate); 2309 imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode); 2310 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2311 /* 2312 * In station mode report the current transmit rate. 2313 */ 2314 ieee80211_node_get_txrate(vap->iv_bss, &tn); 2315 imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode); 2316 } else 2317 imr->ifm_active |= IFM_AUTO; 2318 if (imr->ifm_status & IFM_ACTIVE) 2319 imr->ifm_current = imr->ifm_active; 2320 } 2321 2322 /* 2323 * Set the current phy mode and recalculate the active channel 2324 * set based on the available channels for this mode. Also 2325 * select a new default/current channel if the current one is 2326 * inappropriate for this mode. 2327 */ 2328 int 2329 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2330 { 2331 /* 2332 * Adjust basic rates in 11b/11g supported rate set. 2333 * Note that if operating on a hal/quarter rate channel 2334 * this is a noop as those rates sets are different 2335 * and used instead. 2336 */ 2337 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2338 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2339 2340 ic->ic_curmode = mode; 2341 ieee80211_reset_erp(ic); /* reset global ERP state */ 2342 2343 return 0; 2344 } 2345 2346 /* 2347 * Return the phy mode for with the specified channel. 2348 */ 2349 enum ieee80211_phymode 2350 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2351 { 2352 2353 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2354 return IEEE80211_MODE_VHT_2GHZ; 2355 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2356 return IEEE80211_MODE_VHT_5GHZ; 2357 else if (IEEE80211_IS_CHAN_HTA(chan)) 2358 return IEEE80211_MODE_11NA; 2359 else if (IEEE80211_IS_CHAN_HTG(chan)) 2360 return IEEE80211_MODE_11NG; 2361 else if (IEEE80211_IS_CHAN_108G(chan)) 2362 return IEEE80211_MODE_TURBO_G; 2363 else if (IEEE80211_IS_CHAN_ST(chan)) 2364 return IEEE80211_MODE_STURBO_A; 2365 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2366 return IEEE80211_MODE_TURBO_A; 2367 else if (IEEE80211_IS_CHAN_HALF(chan)) 2368 return IEEE80211_MODE_HALF; 2369 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2370 return IEEE80211_MODE_QUARTER; 2371 else if (IEEE80211_IS_CHAN_A(chan)) 2372 return IEEE80211_MODE_11A; 2373 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2374 return IEEE80211_MODE_11G; 2375 else if (IEEE80211_IS_CHAN_B(chan)) 2376 return IEEE80211_MODE_11B; 2377 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2378 return IEEE80211_MODE_FH; 2379 2380 /* NB: should not get here */ 2381 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2382 __func__, chan->ic_freq, chan->ic_flags); 2383 return IEEE80211_MODE_11B; 2384 } 2385 2386 struct ratemedia { 2387 u_int match; /* rate + mode */ 2388 u_int media; /* if_media rate */ 2389 }; 2390 2391 static int 2392 findmedia(const struct ratemedia rates[], int n, u_int match) 2393 { 2394 int i; 2395 2396 for (i = 0; i < n; i++) 2397 if (rates[i].match == match) 2398 return rates[i].media; 2399 return IFM_AUTO; 2400 } 2401 2402 /* 2403 * Convert IEEE80211 rate value to ifmedia subtype. 2404 * Rate is either a legacy rate in units of 0.5Mbps 2405 * or an MCS index. 2406 */ 2407 int 2408 ieee80211_rate2media(struct ieee80211com *ic, 2409 const struct ieee80211_node_txrate *tr, enum ieee80211_phymode mode) 2410 { 2411 static const struct ratemedia rates[] = { 2412 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2413 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2414 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2415 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2416 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2417 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2418 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2419 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2420 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2421 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2422 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2423 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2424 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2425 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2426 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2427 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2428 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2429 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2430 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2431 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2432 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2433 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2434 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2435 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2436 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2437 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2438 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2439 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2440 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2441 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2442 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2443 }; 2444 static const struct ratemedia htrates[] = { 2445 { 0, IFM_IEEE80211_MCS }, 2446 { 1, IFM_IEEE80211_MCS }, 2447 { 2, IFM_IEEE80211_MCS }, 2448 { 3, IFM_IEEE80211_MCS }, 2449 { 4, IFM_IEEE80211_MCS }, 2450 { 5, IFM_IEEE80211_MCS }, 2451 { 6, IFM_IEEE80211_MCS }, 2452 { 7, IFM_IEEE80211_MCS }, 2453 { 8, IFM_IEEE80211_MCS }, 2454 { 9, IFM_IEEE80211_MCS }, 2455 { 10, IFM_IEEE80211_MCS }, 2456 { 11, IFM_IEEE80211_MCS }, 2457 { 12, IFM_IEEE80211_MCS }, 2458 { 13, IFM_IEEE80211_MCS }, 2459 { 14, IFM_IEEE80211_MCS }, 2460 { 15, IFM_IEEE80211_MCS }, 2461 { 16, IFM_IEEE80211_MCS }, 2462 { 17, IFM_IEEE80211_MCS }, 2463 { 18, IFM_IEEE80211_MCS }, 2464 { 19, IFM_IEEE80211_MCS }, 2465 { 20, IFM_IEEE80211_MCS }, 2466 { 21, IFM_IEEE80211_MCS }, 2467 { 22, IFM_IEEE80211_MCS }, 2468 { 23, IFM_IEEE80211_MCS }, 2469 { 24, IFM_IEEE80211_MCS }, 2470 { 25, IFM_IEEE80211_MCS }, 2471 { 26, IFM_IEEE80211_MCS }, 2472 { 27, IFM_IEEE80211_MCS }, 2473 { 28, IFM_IEEE80211_MCS }, 2474 { 29, IFM_IEEE80211_MCS }, 2475 { 30, IFM_IEEE80211_MCS }, 2476 { 31, IFM_IEEE80211_MCS }, 2477 { 32, IFM_IEEE80211_MCS }, 2478 { 33, IFM_IEEE80211_MCS }, 2479 { 34, IFM_IEEE80211_MCS }, 2480 { 35, IFM_IEEE80211_MCS }, 2481 { 36, IFM_IEEE80211_MCS }, 2482 { 37, IFM_IEEE80211_MCS }, 2483 { 38, IFM_IEEE80211_MCS }, 2484 { 39, IFM_IEEE80211_MCS }, 2485 { 40, IFM_IEEE80211_MCS }, 2486 { 41, IFM_IEEE80211_MCS }, 2487 { 42, IFM_IEEE80211_MCS }, 2488 { 43, IFM_IEEE80211_MCS }, 2489 { 44, IFM_IEEE80211_MCS }, 2490 { 45, IFM_IEEE80211_MCS }, 2491 { 46, IFM_IEEE80211_MCS }, 2492 { 47, IFM_IEEE80211_MCS }, 2493 { 48, IFM_IEEE80211_MCS }, 2494 { 49, IFM_IEEE80211_MCS }, 2495 { 50, IFM_IEEE80211_MCS }, 2496 { 51, IFM_IEEE80211_MCS }, 2497 { 52, IFM_IEEE80211_MCS }, 2498 { 53, IFM_IEEE80211_MCS }, 2499 { 54, IFM_IEEE80211_MCS }, 2500 { 55, IFM_IEEE80211_MCS }, 2501 { 56, IFM_IEEE80211_MCS }, 2502 { 57, IFM_IEEE80211_MCS }, 2503 { 58, IFM_IEEE80211_MCS }, 2504 { 59, IFM_IEEE80211_MCS }, 2505 { 60, IFM_IEEE80211_MCS }, 2506 { 61, IFM_IEEE80211_MCS }, 2507 { 62, IFM_IEEE80211_MCS }, 2508 { 63, IFM_IEEE80211_MCS }, 2509 { 64, IFM_IEEE80211_MCS }, 2510 { 65, IFM_IEEE80211_MCS }, 2511 { 66, IFM_IEEE80211_MCS }, 2512 { 67, IFM_IEEE80211_MCS }, 2513 { 68, IFM_IEEE80211_MCS }, 2514 { 69, IFM_IEEE80211_MCS }, 2515 { 70, IFM_IEEE80211_MCS }, 2516 { 71, IFM_IEEE80211_MCS }, 2517 { 72, IFM_IEEE80211_MCS }, 2518 { 73, IFM_IEEE80211_MCS }, 2519 { 74, IFM_IEEE80211_MCS }, 2520 { 75, IFM_IEEE80211_MCS }, 2521 { 76, IFM_IEEE80211_MCS }, 2522 }; 2523 static const struct ratemedia vhtrates[] = { 2524 { 0, IFM_IEEE80211_VHT }, 2525 { 1, IFM_IEEE80211_VHT }, 2526 { 2, IFM_IEEE80211_VHT }, 2527 { 3, IFM_IEEE80211_VHT }, 2528 { 4, IFM_IEEE80211_VHT }, 2529 { 5, IFM_IEEE80211_VHT }, 2530 { 6, IFM_IEEE80211_VHT }, 2531 { 7, IFM_IEEE80211_VHT }, 2532 { 8, IFM_IEEE80211_VHT }, /* Optional. */ 2533 { 9, IFM_IEEE80211_VHT }, /* Optional. */ 2534 #if 0 2535 /* Some QCA and BRCM seem to support this; offspec. */ 2536 { 10, IFM_IEEE80211_VHT }, 2537 { 11, IFM_IEEE80211_VHT }, 2538 #endif 2539 }; 2540 int m, rate; 2541 2542 /* 2543 * Check 11ac/11n rates first for match as an MCS. 2544 */ 2545 if (mode == IEEE80211_MODE_VHT_5GHZ) { 2546 if (tr->type == IEEE80211_NODE_TXRATE_VHT) { 2547 m = findmedia(vhtrates, nitems(vhtrates), tr->mcs); 2548 if (m != IFM_AUTO) 2549 return (m | IFM_IEEE80211_VHT); 2550 } 2551 } else if (mode == IEEE80211_MODE_11NA) { 2552 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2553 if (tr->type == IEEE80211_NODE_TXRATE_HT) { 2554 m = findmedia(htrates, nitems(htrates), 2555 tr->dot11rate & ~IEEE80211_RATE_MCS); 2556 if (m != IFM_AUTO) 2557 return m | IFM_IEEE80211_11NA; 2558 } 2559 } else if (mode == IEEE80211_MODE_11NG) { 2560 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2561 if (tr->type == IEEE80211_NODE_TXRATE_HT) { 2562 m = findmedia(htrates, nitems(htrates), 2563 tr->dot11rate & ~IEEE80211_RATE_MCS); 2564 if (m != IFM_AUTO) 2565 return m | IFM_IEEE80211_11NG; 2566 } 2567 } 2568 2569 /* 2570 * At this point it needs to be a dot11rate (legacy/HT) for the 2571 * rest of the logic to work. 2572 */ 2573 if ((tr->type != IEEE80211_NODE_TXRATE_LEGACY) && 2574 (tr->type != IEEE80211_NODE_TXRATE_HT)) 2575 return (IFM_AUTO); 2576 rate = tr->dot11rate & IEEE80211_RATE_VAL; 2577 2578 switch (mode) { 2579 case IEEE80211_MODE_11A: 2580 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2581 case IEEE80211_MODE_QUARTER: 2582 case IEEE80211_MODE_11NA: 2583 case IEEE80211_MODE_TURBO_A: 2584 case IEEE80211_MODE_STURBO_A: 2585 return findmedia(rates, nitems(rates), 2586 rate | IFM_IEEE80211_11A); 2587 case IEEE80211_MODE_11B: 2588 return findmedia(rates, nitems(rates), 2589 rate | IFM_IEEE80211_11B); 2590 case IEEE80211_MODE_FH: 2591 return findmedia(rates, nitems(rates), 2592 rate | IFM_IEEE80211_FH); 2593 case IEEE80211_MODE_AUTO: 2594 /* NB: ic may be NULL for some drivers */ 2595 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2596 return findmedia(rates, nitems(rates), 2597 rate | IFM_IEEE80211_FH); 2598 /* NB: hack, 11g matches both 11b+11a rates */ 2599 /* fall thru... */ 2600 case IEEE80211_MODE_11G: 2601 case IEEE80211_MODE_11NG: 2602 case IEEE80211_MODE_TURBO_G: 2603 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2604 case IEEE80211_MODE_VHT_2GHZ: 2605 case IEEE80211_MODE_VHT_5GHZ: 2606 /* XXX TODO: need to figure out mapping for VHT rates */ 2607 return IFM_AUTO; 2608 } 2609 return IFM_AUTO; 2610 } 2611 2612 int 2613 ieee80211_media2rate(int mword) 2614 { 2615 static const int ieeerates[] = { 2616 -1, /* IFM_AUTO */ 2617 0, /* IFM_MANUAL */ 2618 0, /* IFM_NONE */ 2619 2, /* IFM_IEEE80211_FH1 */ 2620 4, /* IFM_IEEE80211_FH2 */ 2621 2, /* IFM_IEEE80211_DS1 */ 2622 4, /* IFM_IEEE80211_DS2 */ 2623 11, /* IFM_IEEE80211_DS5 */ 2624 22, /* IFM_IEEE80211_DS11 */ 2625 44, /* IFM_IEEE80211_DS22 */ 2626 12, /* IFM_IEEE80211_OFDM6 */ 2627 18, /* IFM_IEEE80211_OFDM9 */ 2628 24, /* IFM_IEEE80211_OFDM12 */ 2629 36, /* IFM_IEEE80211_OFDM18 */ 2630 48, /* IFM_IEEE80211_OFDM24 */ 2631 72, /* IFM_IEEE80211_OFDM36 */ 2632 96, /* IFM_IEEE80211_OFDM48 */ 2633 108, /* IFM_IEEE80211_OFDM54 */ 2634 144, /* IFM_IEEE80211_OFDM72 */ 2635 0, /* IFM_IEEE80211_DS354k */ 2636 0, /* IFM_IEEE80211_DS512k */ 2637 6, /* IFM_IEEE80211_OFDM3 */ 2638 9, /* IFM_IEEE80211_OFDM4 */ 2639 54, /* IFM_IEEE80211_OFDM27 */ 2640 -1, /* IFM_IEEE80211_MCS */ 2641 -1, /* IFM_IEEE80211_VHT */ 2642 }; 2643 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2644 ieeerates[IFM_SUBTYPE(mword)] : 0; 2645 } 2646 2647 /* 2648 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2649 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2650 */ 2651 #define mix(a, b, c) \ 2652 do { \ 2653 a -= b; a -= c; a ^= (c >> 13); \ 2654 b -= c; b -= a; b ^= (a << 8); \ 2655 c -= a; c -= b; c ^= (b >> 13); \ 2656 a -= b; a -= c; a ^= (c >> 12); \ 2657 b -= c; b -= a; b ^= (a << 16); \ 2658 c -= a; c -= b; c ^= (b >> 5); \ 2659 a -= b; a -= c; a ^= (c >> 3); \ 2660 b -= c; b -= a; b ^= (a << 10); \ 2661 c -= a; c -= b; c ^= (b >> 15); \ 2662 } while (/*CONSTCOND*/0) 2663 2664 uint32_t 2665 ieee80211_mac_hash(const struct ieee80211com *ic, 2666 const uint8_t addr[IEEE80211_ADDR_LEN]) 2667 { 2668 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2669 2670 b += addr[5] << 8; 2671 b += addr[4]; 2672 a += addr[3] << 24; 2673 a += addr[2] << 16; 2674 a += addr[1] << 8; 2675 a += addr[0]; 2676 2677 mix(a, b, c); 2678 2679 return c; 2680 } 2681 #undef mix 2682 2683 char 2684 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2685 { 2686 if (IEEE80211_IS_CHAN_ST(c)) 2687 return 'S'; 2688 if (IEEE80211_IS_CHAN_108A(c)) 2689 return 'T'; 2690 if (IEEE80211_IS_CHAN_108G(c)) 2691 return 'G'; 2692 if (IEEE80211_IS_CHAN_VHT(c)) 2693 return 'v'; 2694 if (IEEE80211_IS_CHAN_HT(c)) 2695 return 'n'; 2696 if (IEEE80211_IS_CHAN_A(c)) 2697 return 'a'; 2698 if (IEEE80211_IS_CHAN_ANYG(c)) 2699 return 'g'; 2700 if (IEEE80211_IS_CHAN_B(c)) 2701 return 'b'; 2702 return 'f'; 2703 } 2704 2705 /* 2706 * Determine whether the given key in the given VAP is a global key. 2707 * (key index 0..3, shared between all stations on a VAP.) 2708 * 2709 * This is either a WEP key or a GROUP key. 2710 * 2711 * Note this will NOT return true if it is a IGTK key. 2712 */ 2713 bool 2714 ieee80211_is_key_global(const struct ieee80211vap *vap, 2715 const struct ieee80211_key *key) 2716 { 2717 return (&vap->iv_nw_keys[0] <= key && 2718 key < &vap->iv_nw_keys[IEEE80211_WEP_NKID]); 2719 } 2720 2721 /* 2722 * Determine whether the given key in the given VAP is a unicast key. 2723 */ 2724 bool 2725 ieee80211_is_key_unicast(const struct ieee80211vap *vap, 2726 const struct ieee80211_key *key) 2727 { 2728 /* 2729 * This is a short-cut for now; eventually we will need 2730 * to support multiple unicast keys, IGTK, etc) so we 2731 * will absolutely need to fix the key flags. 2732 */ 2733 return (!ieee80211_is_key_global(vap, key)); 2734 } 2735