xref: /freebsd/sys/net80211/ieee80211.c (revision 7a0a89d2cb29ee2c383600fa59e42d714a6dcbcb)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ethernet.h>
46 
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_regdomain.h>
49 
50 #include <net/bpf.h>
51 
52 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
53 	[IEEE80211_MODE_AUTO]	  = "auto",
54 	[IEEE80211_MODE_11A]	  = "11a",
55 	[IEEE80211_MODE_11B]	  = "11b",
56 	[IEEE80211_MODE_11G]	  = "11g",
57 	[IEEE80211_MODE_FH]	  = "FH",
58 	[IEEE80211_MODE_TURBO_A]  = "turboA",
59 	[IEEE80211_MODE_TURBO_G]  = "turboG",
60 	[IEEE80211_MODE_STURBO_A] = "sturboA",
61 	[IEEE80211_MODE_11NA]	  = "11na",
62 	[IEEE80211_MODE_11NG]	  = "11ng",
63 };
64 /* map ieee80211_opmode to the corresponding capability bit */
65 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
66 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
67 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
68 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
69 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
70 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
71 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
72 };
73 
74 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
75 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
76 
77 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
78 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
79 static	int ieee80211_media_setup(struct ieee80211com *ic,
80 		struct ifmedia *media, int caps, int addsta,
81 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
82 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
83 static	int ieee80211com_media_change(struct ifnet *);
84 static	int media_status(enum ieee80211_opmode,
85 		const struct ieee80211_channel *);
86 
87 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
88 
89 /*
90  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
91  */
92 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
93 static const struct ieee80211_rateset ieee80211_rateset_11a =
94 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
95 static const struct ieee80211_rateset ieee80211_rateset_half =
96 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
97 static const struct ieee80211_rateset ieee80211_rateset_quarter =
98 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
99 static const struct ieee80211_rateset ieee80211_rateset_11b =
100 	{ 4, { B(2), B(4), B(11), B(22) } };
101 /* NB: OFDM rates are handled specially based on mode */
102 static const struct ieee80211_rateset ieee80211_rateset_11g =
103 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
104 #undef B
105 
106 /*
107  * Fill in 802.11 available channel set, mark
108  * all available channels as active, and pick
109  * a default channel if not already specified.
110  */
111 static void
112 ieee80211_chan_init(struct ieee80211com *ic)
113 {
114 #define	DEFAULTRATES(m, def) do { \
115 	if (isset(ic->ic_modecaps, m) && ic->ic_sup_rates[m].rs_nrates == 0) \
116 		ic->ic_sup_rates[m] = def; \
117 } while (0)
118 	struct ieee80211_channel *c;
119 	int i;
120 
121 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
122 		("invalid number of channels specified: %u", ic->ic_nchans));
123 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
124 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
125 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
126 	for (i = 0; i < ic->ic_nchans; i++) {
127 		c = &ic->ic_channels[i];
128 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
129 		setbit(ic->ic_chan_avail, c->ic_ieee);
130 		/*
131 		 * Identify mode capabilities.
132 		 */
133 		if (IEEE80211_IS_CHAN_A(c))
134 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
135 		if (IEEE80211_IS_CHAN_B(c))
136 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
137 		if (IEEE80211_IS_CHAN_ANYG(c))
138 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
139 		if (IEEE80211_IS_CHAN_FHSS(c))
140 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
141 		if (IEEE80211_IS_CHAN_108A(c))
142 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
143 		if (IEEE80211_IS_CHAN_108G(c))
144 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
145 		if (IEEE80211_IS_CHAN_ST(c))
146 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
147 		if (IEEE80211_IS_CHAN_HTA(c))
148 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
149 		if (IEEE80211_IS_CHAN_HTG(c))
150 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
151 	}
152 	/* initialize candidate channels to all available */
153 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
154 		sizeof(ic->ic_chan_avail));
155 
156 	/* sort channel table to allow lookup optimizations */
157 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
158 
159 	/* invalidate any previous state */
160 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
161 	ic->ic_prevchan = NULL;
162 	ic->ic_csa_newchan = NULL;
163 	/* arbitrarily pick the first channel */
164 	ic->ic_curchan = &ic->ic_channels[0];
165 
166 	/* fillin well-known rate sets if driver has not specified */
167 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
168 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
169 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
170 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
171 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
172 
173 	/*
174 	 * Set auto mode to reset active channel state and any desired channel.
175 	 */
176 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
177 #undef DEFAULTRATES
178 }
179 
180 static void
181 null_update_mcast(struct ifnet *ifp)
182 {
183 	if_printf(ifp, "need multicast update callback\n");
184 }
185 
186 static void
187 null_update_promisc(struct ifnet *ifp)
188 {
189 	if_printf(ifp, "need promiscuous mode update callback\n");
190 }
191 
192 static int
193 null_output(struct ifnet *ifp, struct mbuf *m,
194 	struct sockaddr *dst, struct rtentry *rt0)
195 {
196 	if_printf(ifp, "discard raw packet\n");
197 	m_freem(m);
198 	return EIO;
199 }
200 
201 static void
202 null_input(struct ifnet *ifp, struct mbuf *m)
203 {
204 	if_printf(ifp, "if_input should not be called\n");
205 	m_freem(m);
206 }
207 
208 /*
209  * Attach/setup the common net80211 state.  Called by
210  * the driver on attach to prior to creating any vap's.
211  */
212 void
213 ieee80211_ifattach(struct ieee80211com *ic)
214 {
215 	struct ifnet *ifp = ic->ic_ifp;
216 	struct sockaddr_dl *sdl;
217 	struct ifaddr *ifa;
218 
219 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
220 
221 	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
222 	TAILQ_INIT(&ic->ic_vaps);
223 	/*
224 	 * Fill in 802.11 available channel set, mark all
225 	 * available channels as active, and pick a default
226 	 * channel if not already specified.
227 	 */
228 	ieee80211_media_init(ic);
229 
230 	ic->ic_update_mcast = null_update_mcast;
231 	ic->ic_update_promisc = null_update_promisc;
232 
233 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
234 	ic->ic_lintval = ic->ic_bintval;
235 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
236 
237 	ieee80211_crypto_attach(ic);
238 	ieee80211_node_attach(ic);
239 	ieee80211_power_attach(ic);
240 	ieee80211_proto_attach(ic);
241 	ieee80211_ht_attach(ic);
242 	ieee80211_scan_attach(ic);
243 	ieee80211_regdomain_attach(ic);
244 
245 	ieee80211_sysctl_attach(ic);
246 
247 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
248 	ifp->if_hdrlen = 0;
249 	if_attach(ifp);
250 	ifp->if_mtu = IEEE80211_MTU_MAX;
251 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
252 	ifp->if_output = null_output;
253 	ifp->if_input = null_input;	/* just in case */
254 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
255 
256 	ifa = ifaddr_byindex(ifp->if_index);
257 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
258 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
259 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
260 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
261 	IEEE80211_ADDR_COPY(LLADDR(sdl), ic->ic_myaddr);
262 }
263 
264 /*
265  * Detach net80211 state on device detach.  Tear down
266  * all vap's and reclaim all common state prior to the
267  * device state going away.  Note we may call back into
268  * driver; it must be prepared for this.
269  */
270 void
271 ieee80211_ifdetach(struct ieee80211com *ic)
272 {
273 	struct ifnet *ifp = ic->ic_ifp;
274 	struct ieee80211vap *vap;
275 
276 	/* XXX ieee80211_stop_all? */
277 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
278 		ieee80211_vap_destroy(vap);
279 
280 	ieee80211_sysctl_detach(ic);
281 	ieee80211_regdomain_detach(ic);
282 	ieee80211_scan_detach(ic);
283 	ieee80211_ht_detach(ic);
284 	/* NB: must be called before ieee80211_node_detach */
285 	ieee80211_proto_detach(ic);
286 	ieee80211_crypto_detach(ic);
287 	ieee80211_power_detach(ic);
288 	ieee80211_node_detach(ic);
289 	ifmedia_removeall(&ic->ic_media);
290 
291 	IEEE80211_LOCK_DESTROY(ic);
292 	if_detach(ifp);
293 }
294 
295 /*
296  * Default reset method for use with the ioctl support.  This
297  * method is invoked after any state change in the 802.11
298  * layer that should be propagated to the hardware but not
299  * require re-initialization of the 802.11 state machine (e.g
300  * rescanning for an ap).  We always return ENETRESET which
301  * should cause the driver to re-initialize the device. Drivers
302  * can override this method to implement more optimized support.
303  */
304 static int
305 default_reset(struct ieee80211vap *vap, u_long cmd)
306 {
307 	return ENETRESET;
308 }
309 
310 /*
311  * Prepare a vap for use.  Drivers use this call to
312  * setup net80211 state in new vap's prior attaching
313  * them with ieee80211_vap_attach (below).
314  */
315 int
316 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
317 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
318 	const uint8_t bssid[IEEE80211_ADDR_LEN],
319 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
320 {
321 	struct ifnet *ifp;
322 
323 	ifp = if_alloc(IFT_ETHER);
324 	if (ifp == NULL) {
325 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
326 		    __func__);
327 		return ENOMEM;
328 	}
329 	if_initname(ifp, name, unit);
330 	ifp->if_softc = vap;			/* back pointer */
331 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
332 	ifp->if_start = ieee80211_start;
333 	ifp->if_ioctl = ieee80211_ioctl;
334 	ifp->if_watchdog = NULL;		/* NB: no watchdog routine */
335 	ifp->if_init = ieee80211_init;
336 	/* NB: input+output filled in by ether_ifattach */
337 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
338 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
339 	IFQ_SET_READY(&ifp->if_snd);
340 
341 	vap->iv_ifp = ifp;
342 	vap->iv_ic = ic;
343 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
344 	vap->iv_flags_ext = ic->ic_flags_ext;
345 	vap->iv_flags_ven = ic->ic_flags_ven;
346 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
347 	vap->iv_htcaps = ic->ic_htcaps;
348 	vap->iv_opmode = opmode;
349 	vap->iv_caps |= ieee80211_opcap[opmode];
350 	switch (opmode) {
351 	case IEEE80211_M_WDS:
352 		/*
353 		 * WDS links must specify the bssid of the far end.
354 		 * For legacy operation this is a static relationship.
355 		 * For non-legacy operation the station must associate
356 		 * and be authorized to pass traffic.  Plumbing the
357 		 * vap to the proper node happens when the vap
358 		 * transitions to RUN state.
359 		 */
360 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
361 		vap->iv_flags |= IEEE80211_F_DESBSSID;
362 		if (flags & IEEE80211_CLONE_WDSLEGACY)
363 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
364 		break;
365 	}
366 	/* auto-enable s/w beacon miss support */
367 	if (flags & IEEE80211_CLONE_NOBEACONS)
368 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
369 	/*
370 	 * Enable various functionality by default if we're
371 	 * capable; the driver can override us if it knows better.
372 	 */
373 	if (vap->iv_caps & IEEE80211_C_WME)
374 		vap->iv_flags |= IEEE80211_F_WME;
375 	if (vap->iv_caps & IEEE80211_C_BURST)
376 		vap->iv_flags |= IEEE80211_F_BURST;
377 	if (vap->iv_caps & IEEE80211_C_FF)
378 		vap->iv_flags |= IEEE80211_F_FF;
379 	if (vap->iv_caps & IEEE80211_C_TURBOP)
380 		vap->iv_flags |= IEEE80211_F_TURBOP;
381 	/* NB: bg scanning only makes sense for station mode right now */
382 	if (vap->iv_opmode == IEEE80211_M_STA &&
383 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
384 		vap->iv_flags |= IEEE80211_F_BGSCAN;
385 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
386 	/* NB: DFS support only makes sense for ap mode right now */
387 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
388 	    (vap->iv_caps & IEEE80211_C_DFS))
389 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
390 
391 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
392 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
393 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
394 	/*
395 	 * Install a default reset method for the ioctl support;
396 	 * the driver can override this.
397 	 */
398 	vap->iv_reset = default_reset;
399 
400 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
401 
402 	ieee80211_sysctl_vattach(vap);
403 	ieee80211_crypto_vattach(vap);
404 	ieee80211_node_vattach(vap);
405 	ieee80211_power_vattach(vap);
406 	ieee80211_proto_vattach(vap);
407 	ieee80211_ht_vattach(vap);
408 	ieee80211_scan_vattach(vap);
409 	ieee80211_regdomain_vattach(vap);
410 
411 	return 0;
412 }
413 
414 /*
415  * Activate a vap.  State should have been prepared with a
416  * call to ieee80211_vap_setup and by the driver.  On return
417  * from this call the vap is ready for use.
418  */
419 int
420 ieee80211_vap_attach(struct ieee80211vap *vap,
421 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
422 {
423 	struct ifnet *ifp = vap->iv_ifp;
424 	struct ieee80211com *ic = vap->iv_ic;
425 	struct ifmediareq imr;
426 	int maxrate;
427 
428 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
429 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
430 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
431 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
432 
433 	/*
434 	 * Do late attach work that cannot happen until after
435 	 * the driver has had a chance to override defaults.
436 	 */
437 	ieee80211_node_latevattach(vap);
438 	ieee80211_power_latevattach(vap);
439 
440 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
441 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
442 	ieee80211_media_status(ifp, &imr);
443 	/* NB: strip explicit mode; we're actually in autoselect */
444 	ifmedia_set(&vap->iv_media, imr.ifm_active &~ IFM_MMASK);
445 	if (maxrate)
446 		ifp->if_baudrate = IF_Mbps(maxrate);
447 
448 	ether_ifattach(ifp, vap->iv_myaddr);
449 	/* hook output method setup by ether_ifattach */
450 	vap->iv_output = ifp->if_output;
451 	ifp->if_output = ieee80211_output;
452 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
453 	bpfattach2(ifp, DLT_IEEE802_11, ifp->if_hdrlen, &vap->iv_rawbpf);
454 
455 	IEEE80211_LOCK(ic);
456 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
457 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
458 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
459 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
460 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
461 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_HT);
462 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_USEHT40);
463 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
464 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
465 	IEEE80211_UNLOCK(ic);
466 
467 	return 1;
468 }
469 
470 /*
471  * Tear down vap state and reclaim the ifnet.
472  * The driver is assumed to have prepared for
473  * this; e.g. by turning off interrupts for the
474  * underlying device.
475  */
476 void
477 ieee80211_vap_detach(struct ieee80211vap *vap)
478 {
479 	struct ieee80211com *ic = vap->iv_ic;
480 	struct ifnet *ifp = vap->iv_ifp;
481 
482 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
483 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
484 	    ic->ic_ifp->if_xname);
485 
486 	IEEE80211_LOCK(ic);
487 	/* block traffic from above */
488 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
489 	/*
490 	 * Evil hack.  Clear the backpointer from the ifnet to the
491 	 * vap so any requests from above will return an error or
492 	 * be ignored.  In particular this short-circuits requests
493 	 * by the bridge to turn off promiscuous mode as a result
494 	 * of calling ether_ifdetach.
495 	 */
496 	ifp->if_softc = NULL;
497 	/*
498 	 * Stop the vap before detaching the ifnet.  Ideally we'd
499 	 * do this in the other order so the ifnet is inaccessible
500 	 * while we cleanup internal state but that is hard.
501 	 */
502 	ieee80211_stop_locked(vap);
503 
504 	/* XXX accumulate iv_stats in ic_stats? */
505 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
506 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
507 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
508 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
509 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
510 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_HT);
511 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_USEHT40);
512 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
513 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
514 	IEEE80211_UNLOCK(ic);
515 
516 	/* XXX can't hold com lock */
517 	/* NB: bpfattach is called by ether_ifdetach and claims all taps */
518 	ether_ifdetach(ifp);
519 
520 	ifmedia_removeall(&vap->iv_media);
521 
522 	ieee80211_regdomain_vdetach(vap);
523 	ieee80211_scan_vdetach(vap);
524 	ieee80211_ht_vdetach(vap);
525 	/* NB: must be before ieee80211_node_vdetach */
526 	ieee80211_proto_vdetach(vap);
527 	ieee80211_crypto_vdetach(vap);
528 	ieee80211_power_vdetach(vap);
529 	ieee80211_node_vdetach(vap);
530 	ieee80211_sysctl_vdetach(vap);
531 
532 	if_free(ifp);
533 }
534 
535 /*
536  * Synchronize flag bit state in the parent ifnet structure
537  * according to the state of all vap ifnet's.  This is used,
538  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
539  */
540 void
541 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
542 {
543 	struct ifnet *ifp = ic->ic_ifp;
544 	struct ieee80211vap *vap;
545 	int bit, oflags;
546 
547 	IEEE80211_LOCK_ASSERT(ic);
548 
549 	bit = 0;
550 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
551 		if (vap->iv_ifp->if_flags & flag) {
552 			/*
553 			 * XXX the bridge sets PROMISC but we don't want to
554 			 * enable it on the device, discard here so all the
555 			 * drivers don't need to special-case it
556 			 */
557 			if (flag == IFF_PROMISC &&
558 			    vap->iv_opmode == IEEE80211_M_HOSTAP)
559 				continue;
560 			bit = 1;
561 			break;
562 		}
563 	oflags = ifp->if_flags;
564 	if (bit)
565 		ifp->if_flags |= flag;
566 	else
567 		ifp->if_flags &= ~flag;
568 	if ((ifp->if_flags ^ oflags) & flag) {
569 		/* XXX should we return 1/0 and let caller do this? */
570 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
571 			if (flag == IFF_PROMISC)
572 				ic->ic_update_promisc(ifp);
573 			else if (flag == IFF_ALLMULTI)
574 				ic->ic_update_mcast(ifp);
575 		}
576 	}
577 }
578 
579 /*
580  * Synchronize flag bit state in the com structure
581  * according to the state of all vap's.  This is used,
582  * for example, to handle state changes via ioctls.
583  */
584 static void
585 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
586 {
587 	struct ieee80211vap *vap;
588 	int bit;
589 
590 	IEEE80211_LOCK_ASSERT(ic);
591 
592 	bit = 0;
593 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
594 		if (vap->iv_flags & flag) {
595 			bit = 1;
596 			break;
597 		}
598 	if (bit)
599 		ic->ic_flags |= flag;
600 	else
601 		ic->ic_flags &= ~flag;
602 }
603 
604 void
605 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
606 {
607 	struct ieee80211com *ic = vap->iv_ic;
608 
609 	IEEE80211_LOCK(ic);
610 	if (flag < 0) {
611 		flag = -flag;
612 		vap->iv_flags &= ~flag;
613 	} else
614 		vap->iv_flags |= flag;
615 	ieee80211_syncflag_locked(ic, flag);
616 	IEEE80211_UNLOCK(ic);
617 }
618 
619 /*
620  * Synchronize flag bit state in the com structure
621  * according to the state of all vap's.  This is used,
622  * for example, to handle state changes via ioctls.
623  */
624 static void
625 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
626 {
627 	struct ieee80211vap *vap;
628 	int bit;
629 
630 	IEEE80211_LOCK_ASSERT(ic);
631 
632 	bit = 0;
633 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
634 		if (vap->iv_flags_ext & flag) {
635 			bit = 1;
636 			break;
637 		}
638 	if (bit)
639 		ic->ic_flags_ext |= flag;
640 	else
641 		ic->ic_flags_ext &= ~flag;
642 }
643 
644 void
645 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
646 {
647 	struct ieee80211com *ic = vap->iv_ic;
648 
649 	IEEE80211_LOCK(ic);
650 	if (flag < 0) {
651 		flag = -flag;
652 		vap->iv_flags_ext &= ~flag;
653 	} else
654 		vap->iv_flags_ext |= flag;
655 	ieee80211_syncflag_ext_locked(ic, flag);
656 	IEEE80211_UNLOCK(ic);
657 }
658 
659 static __inline int
660 mapgsm(u_int freq, u_int flags)
661 {
662 	freq *= 10;
663 	if (flags & IEEE80211_CHAN_QUARTER)
664 		freq += 5;
665 	else if (flags & IEEE80211_CHAN_HALF)
666 		freq += 10;
667 	else
668 		freq += 20;
669 	/* NB: there is no 907/20 wide but leave room */
670 	return (freq - 906*10) / 5;
671 }
672 
673 static __inline int
674 mappsb(u_int freq, u_int flags)
675 {
676 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
677 }
678 
679 /*
680  * Convert MHz frequency to IEEE channel number.
681  */
682 int
683 ieee80211_mhz2ieee(u_int freq, u_int flags)
684 {
685 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
686 	if (flags & IEEE80211_CHAN_GSM)
687 		return mapgsm(freq, flags);
688 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
689 		if (freq == 2484)
690 			return 14;
691 		if (freq < 2484)
692 			return ((int) freq - 2407) / 5;
693 		else
694 			return 15 + ((freq - 2512) / 20);
695 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
696 		if (freq <= 5000) {
697 			/* XXX check regdomain? */
698 			if (IS_FREQ_IN_PSB(freq))
699 				return mappsb(freq, flags);
700 			return (freq - 4000) / 5;
701 		} else
702 			return (freq - 5000) / 5;
703 	} else {				/* either, guess */
704 		if (freq == 2484)
705 			return 14;
706 		if (freq < 2484) {
707 			if (907 <= freq && freq <= 922)
708 				return mapgsm(freq, flags);
709 			return ((int) freq - 2407) / 5;
710 		}
711 		if (freq < 5000) {
712 			if (IS_FREQ_IN_PSB(freq))
713 				return mappsb(freq, flags);
714 			else if (freq > 4900)
715 				return (freq - 4000) / 5;
716 			else
717 				return 15 + ((freq - 2512) / 20);
718 		}
719 		return (freq - 5000) / 5;
720 	}
721 #undef IS_FREQ_IN_PSB
722 }
723 
724 /*
725  * Convert channel to IEEE channel number.
726  */
727 int
728 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
729 {
730 	if (c == NULL) {
731 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
732 		return 0;		/* XXX */
733 	}
734 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
735 }
736 
737 /*
738  * Convert IEEE channel number to MHz frequency.
739  */
740 u_int
741 ieee80211_ieee2mhz(u_int chan, u_int flags)
742 {
743 	if (flags & IEEE80211_CHAN_GSM)
744 		return 907 + 5 * (chan / 10);
745 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
746 		if (chan == 14)
747 			return 2484;
748 		if (chan < 14)
749 			return 2407 + chan*5;
750 		else
751 			return 2512 + ((chan-15)*20);
752 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
753 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
754 			chan -= 37;
755 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
756 		}
757 		return 5000 + (chan*5);
758 	} else {				/* either, guess */
759 		/* XXX can't distinguish PSB+GSM channels */
760 		if (chan == 14)
761 			return 2484;
762 		if (chan < 14)			/* 0-13 */
763 			return 2407 + chan*5;
764 		if (chan < 27)			/* 15-26 */
765 			return 2512 + ((chan-15)*20);
766 		return 5000 + (chan*5);
767 	}
768 }
769 
770 /*
771  * Locate a channel given a frequency+flags.  We cache
772  * the previous lookup to optimize switching between two
773  * channels--as happens with dynamic turbo.
774  */
775 struct ieee80211_channel *
776 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
777 {
778 	struct ieee80211_channel *c;
779 	int i;
780 
781 	flags &= IEEE80211_CHAN_ALLTURBO;
782 	c = ic->ic_prevchan;
783 	if (c != NULL && c->ic_freq == freq &&
784 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
785 		return c;
786 	/* brute force search */
787 	for (i = 0; i < ic->ic_nchans; i++) {
788 		c = &ic->ic_channels[i];
789 		if (c->ic_freq == freq &&
790 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
791 			return c;
792 	}
793 	return NULL;
794 }
795 
796 /*
797  * Locate a channel given a channel number+flags.  We cache
798  * the previous lookup to optimize switching between two
799  * channels--as happens with dynamic turbo.
800  */
801 struct ieee80211_channel *
802 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
803 {
804 	struct ieee80211_channel *c;
805 	int i;
806 
807 	flags &= IEEE80211_CHAN_ALLTURBO;
808 	c = ic->ic_prevchan;
809 	if (c != NULL && c->ic_ieee == ieee &&
810 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
811 		return c;
812 	/* brute force search */
813 	for (i = 0; i < ic->ic_nchans; i++) {
814 		c = &ic->ic_channels[i];
815 		if (c->ic_ieee == ieee &&
816 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
817 			return c;
818 	}
819 	return NULL;
820 }
821 
822 static void
823 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
824 {
825 #define	ADD(_ic, _s, _o) \
826 	ifmedia_add(media, \
827 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
828 	static const u_int mopts[IEEE80211_MODE_MAX] = {
829 		IFM_AUTO,
830 		IFM_IEEE80211_11A,
831 		IFM_IEEE80211_11B,
832 		IFM_IEEE80211_11G,
833 		IFM_IEEE80211_FH,
834 		IFM_IEEE80211_11A | IFM_IEEE80211_TURBO,
835 		IFM_IEEE80211_11G | IFM_IEEE80211_TURBO,
836 		IFM_IEEE80211_11A | IFM_IEEE80211_TURBO,
837 		IFM_IEEE80211_11NA,
838 		IFM_IEEE80211_11NG,
839 	};
840 	u_int mopt;
841 
842 	mopt = mopts[mode];
843 	if (addsta)
844 		ADD(ic, mword, mopt);	/* STA mode has no cap */
845 	if (caps & IEEE80211_C_IBSS)
846 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
847 	if (caps & IEEE80211_C_HOSTAP)
848 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
849 	if (caps & IEEE80211_C_AHDEMO)
850 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
851 	if (caps & IEEE80211_C_MONITOR)
852 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
853 	if (caps & IEEE80211_C_WDS)
854 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
855 #undef ADD
856 }
857 
858 /*
859  * Setup the media data structures according to the channel and
860  * rate tables.
861  */
862 static int
863 ieee80211_media_setup(struct ieee80211com *ic,
864 	struct ifmedia *media, int caps, int addsta,
865 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
866 {
867 	int i, j, mode, rate, maxrate, mword, r;
868 	const struct ieee80211_rateset *rs;
869 	struct ieee80211_rateset allrates;
870 
871 	/*
872 	 * Fill in media characteristics.
873 	 */
874 	ifmedia_init(media, 0, media_change, media_stat);
875 	maxrate = 0;
876 	/*
877 	 * Add media for legacy operating modes.
878 	 */
879 	memset(&allrates, 0, sizeof(allrates));
880 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
881 		if (isclr(ic->ic_modecaps, mode))
882 			continue;
883 		addmedia(media, caps, addsta, mode, IFM_AUTO);
884 		if (mode == IEEE80211_MODE_AUTO)
885 			continue;
886 		rs = &ic->ic_sup_rates[mode];
887 		for (i = 0; i < rs->rs_nrates; i++) {
888 			rate = rs->rs_rates[i];
889 			mword = ieee80211_rate2media(ic, rate, mode);
890 			if (mword == 0)
891 				continue;
892 			addmedia(media, caps, addsta, mode, mword);
893 			/*
894 			 * Add legacy rate to the collection of all rates.
895 			 */
896 			r = rate & IEEE80211_RATE_VAL;
897 			for (j = 0; j < allrates.rs_nrates; j++)
898 				if (allrates.rs_rates[j] == r)
899 					break;
900 			if (j == allrates.rs_nrates) {
901 				/* unique, add to the set */
902 				allrates.rs_rates[j] = r;
903 				allrates.rs_nrates++;
904 			}
905 			rate = (rate & IEEE80211_RATE_VAL) / 2;
906 			if (rate > maxrate)
907 				maxrate = rate;
908 		}
909 	}
910 	for (i = 0; i < allrates.rs_nrates; i++) {
911 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
912 				IEEE80211_MODE_AUTO);
913 		if (mword == 0)
914 			continue;
915 		/* NB: remove media options from mword */
916 		addmedia(media, caps, addsta,
917 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
918 	}
919 	/*
920 	 * Add HT/11n media.  Note that we do not have enough
921 	 * bits in the media subtype to express the MCS so we
922 	 * use a "placeholder" media subtype and any fixed MCS
923 	 * must be specified with a different mechanism.
924 	 */
925 	for (; mode < IEEE80211_MODE_MAX; mode++) {
926 		if (isclr(ic->ic_modecaps, mode))
927 			continue;
928 		addmedia(media, caps, addsta, mode, IFM_AUTO);
929 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
930 	}
931 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
932 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
933 		addmedia(media, caps, addsta,
934 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
935 		/* XXX could walk htrates */
936 		/* XXX known array size */
937 		if (ieee80211_htrates[15].ht40_rate_400ns > maxrate)
938 			maxrate = ieee80211_htrates[15].ht40_rate_400ns;
939 	}
940 	return maxrate;
941 }
942 
943 void
944 ieee80211_media_init(struct ieee80211com *ic)
945 {
946 	struct ifnet *ifp = ic->ic_ifp;
947 	int maxrate;
948 
949 	/* NB: this works because the structure is initialized to zero */
950 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
951 		/*
952 		 * We are re-initializing the channel list; clear
953 		 * the existing media state as the media routines
954 		 * don't suppress duplicates.
955 		 */
956 		ifmedia_removeall(&ic->ic_media);
957 	}
958 	ieee80211_chan_init(ic);
959 
960 	/*
961 	 * Recalculate media settings in case new channel list changes
962 	 * the set of available modes.
963 	 */
964 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
965 		ieee80211com_media_change, ieee80211com_media_status);
966 	/* NB: strip explicit mode; we're actually in autoselect */
967 	ifmedia_set(&ic->ic_media,
968 		media_status(ic->ic_opmode, ic->ic_curchan) &~ IFM_MMASK);
969 	if (maxrate)
970 		ifp->if_baudrate = IF_Mbps(maxrate);
971 
972 	/* XXX need to propagate new media settings to vap's */
973 }
974 
975 const struct ieee80211_rateset *
976 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
977 {
978 	if (IEEE80211_IS_CHAN_HALF(c))
979 		return &ieee80211_rateset_half;
980 	if (IEEE80211_IS_CHAN_QUARTER(c))
981 		return &ieee80211_rateset_quarter;
982 	if (IEEE80211_IS_CHAN_HTA(c))
983 		return &ic->ic_sup_rates[IEEE80211_MODE_11A];
984 	if (IEEE80211_IS_CHAN_HTG(c)) {
985 		/* XXX does this work for basic rates? */
986 		return &ic->ic_sup_rates[IEEE80211_MODE_11G];
987 	}
988 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
989 }
990 
991 void
992 ieee80211_announce(struct ieee80211com *ic)
993 {
994 	struct ifnet *ifp = ic->ic_ifp;
995 	int i, mode, rate, mword;
996 	const struct ieee80211_rateset *rs;
997 
998 	/* NB: skip AUTO since it has no rates */
999 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1000 		if (isclr(ic->ic_modecaps, mode))
1001 			continue;
1002 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1003 		rs = &ic->ic_sup_rates[mode];
1004 		for (i = 0; i < rs->rs_nrates; i++) {
1005 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1006 			if (mword == 0)
1007 				continue;
1008 			rate = ieee80211_media2rate(mword);
1009 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1010 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1011 		}
1012 		printf("\n");
1013 	}
1014 	ieee80211_ht_announce(ic);
1015 }
1016 
1017 void
1018 ieee80211_announce_channels(struct ieee80211com *ic)
1019 {
1020 	const struct ieee80211_channel *c;
1021 	char type;
1022 	int i, cw;
1023 
1024 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1025 	for (i = 0; i < ic->ic_nchans; i++) {
1026 		c = &ic->ic_channels[i];
1027 		if (IEEE80211_IS_CHAN_ST(c))
1028 			type = 'S';
1029 		else if (IEEE80211_IS_CHAN_108A(c))
1030 			type = 'T';
1031 		else if (IEEE80211_IS_CHAN_108G(c))
1032 			type = 'G';
1033 		else if (IEEE80211_IS_CHAN_HT(c))
1034 			type = 'n';
1035 		else if (IEEE80211_IS_CHAN_A(c))
1036 			type = 'a';
1037 		else if (IEEE80211_IS_CHAN_ANYG(c))
1038 			type = 'g';
1039 		else if (IEEE80211_IS_CHAN_B(c))
1040 			type = 'b';
1041 		else
1042 			type = 'f';
1043 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1044 			cw = 40;
1045 		else if (IEEE80211_IS_CHAN_HALF(c))
1046 			cw = 10;
1047 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1048 			cw = 5;
1049 		else
1050 			cw = 20;
1051 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1052 			, c->ic_ieee, c->ic_freq, type
1053 			, cw
1054 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1055 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1056 			, c->ic_maxregpower
1057 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1058 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1059 		);
1060 	}
1061 }
1062 
1063 static int
1064 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1065 {
1066 	switch (IFM_MODE(ime->ifm_media)) {
1067 	case IFM_IEEE80211_11A:
1068 		*mode = IEEE80211_MODE_11A;
1069 		break;
1070 	case IFM_IEEE80211_11B:
1071 		*mode = IEEE80211_MODE_11B;
1072 		break;
1073 	case IFM_IEEE80211_11G:
1074 		*mode = IEEE80211_MODE_11G;
1075 		break;
1076 	case IFM_IEEE80211_FH:
1077 		*mode = IEEE80211_MODE_FH;
1078 		break;
1079 	case IFM_IEEE80211_11NA:
1080 		*mode = IEEE80211_MODE_11NA;
1081 		break;
1082 	case IFM_IEEE80211_11NG:
1083 		*mode = IEEE80211_MODE_11NG;
1084 		break;
1085 	case IFM_AUTO:
1086 		*mode = IEEE80211_MODE_AUTO;
1087 		break;
1088 	default:
1089 		return 0;
1090 	}
1091 	/*
1092 	 * Turbo mode is an ``option''.
1093 	 * XXX does not apply to AUTO
1094 	 */
1095 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1096 		if (*mode == IEEE80211_MODE_11A) {
1097 			if (flags & IEEE80211_F_TURBOP)
1098 				*mode = IEEE80211_MODE_TURBO_A;
1099 			else
1100 				*mode = IEEE80211_MODE_STURBO_A;
1101 		} else if (*mode == IEEE80211_MODE_11G)
1102 			*mode = IEEE80211_MODE_TURBO_G;
1103 		else
1104 			return 0;
1105 	}
1106 	/* XXX HT40 +/- */
1107 	return 1;
1108 }
1109 
1110 /*
1111  * Handle a media change request on the underlying interface.
1112  */
1113 int
1114 ieee80211com_media_change(struct ifnet *ifp)
1115 {
1116 	return EINVAL;
1117 }
1118 
1119 /*
1120  * Handle a media change request on the vap interface.
1121  */
1122 int
1123 ieee80211_media_change(struct ifnet *ifp)
1124 {
1125 	struct ieee80211vap *vap = ifp->if_softc;
1126 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1127 	uint16_t newmode;
1128 
1129 	if (!media2mode(ime, vap->iv_flags, &newmode))
1130 		return EINVAL;
1131 	if (vap->iv_des_mode != newmode) {
1132 		vap->iv_des_mode = newmode;
1133 		return ENETRESET;
1134 	}
1135 	return 0;
1136 }
1137 
1138 /*
1139  * Common code to calculate the media status word
1140  * from the operating mode and channel state.
1141  */
1142 static int
1143 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1144 {
1145 	int status;
1146 
1147 	status = IFM_IEEE80211;
1148 	switch (opmode) {
1149 	case IEEE80211_M_STA:
1150 		break;
1151 	case IEEE80211_M_IBSS:
1152 		status |= IFM_IEEE80211_ADHOC;
1153 		break;
1154 	case IEEE80211_M_HOSTAP:
1155 		status |= IFM_IEEE80211_HOSTAP;
1156 		break;
1157 	case IEEE80211_M_MONITOR:
1158 		status |= IFM_IEEE80211_MONITOR;
1159 		break;
1160 	case IEEE80211_M_AHDEMO:
1161 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1162 		break;
1163 	case IEEE80211_M_WDS:
1164 		status |= IFM_IEEE80211_WDS;
1165 		break;
1166 	}
1167 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1168 		status |= IFM_IEEE80211_11NA;
1169 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1170 		status |= IFM_IEEE80211_11NG;
1171 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1172 		status |= IFM_IEEE80211_11A;
1173 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1174 		status |= IFM_IEEE80211_11B;
1175 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1176 		status |= IFM_IEEE80211_11G;
1177 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1178 		status |= IFM_IEEE80211_FH;
1179 	}
1180 	/* XXX else complain? */
1181 
1182 	if (IEEE80211_IS_CHAN_TURBO(chan))
1183 		status |= IFM_IEEE80211_TURBO;
1184 #if 0
1185 	if (IEEE80211_IS_CHAN_HT20(chan))
1186 		status |= IFM_IEEE80211_HT20;
1187 	if (IEEE80211_IS_CHAN_HT40(chan))
1188 		status |= IFM_IEEE80211_HT40;
1189 #endif
1190 	return status;
1191 }
1192 
1193 static void
1194 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1195 {
1196 	struct ieee80211com *ic = ifp->if_l2com;
1197 	struct ieee80211vap *vap;
1198 
1199 	imr->ifm_status = IFM_AVALID;
1200 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1201 		if (vap->iv_ifp->if_flags & IFF_UP) {
1202 			imr->ifm_status |= IFM_ACTIVE;
1203 			break;
1204 		}
1205 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1206 	if (imr->ifm_status & IFM_ACTIVE)
1207 		imr->ifm_current = imr->ifm_active;
1208 }
1209 
1210 void
1211 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1212 {
1213 	struct ieee80211vap *vap = ifp->if_softc;
1214 	struct ieee80211com *ic = vap->iv_ic;
1215 	enum ieee80211_phymode mode;
1216 
1217 	imr->ifm_status = IFM_AVALID;
1218 	/*
1219 	 * NB: use the current channel's mode to lock down a xmit
1220 	 * rate only when running; otherwise we may have a mismatch
1221 	 * in which case the rate will not be convertible.
1222 	 */
1223 	if (vap->iv_state == IEEE80211_S_RUN) {
1224 		imr->ifm_status |= IFM_ACTIVE;
1225 		mode = ieee80211_chan2mode(ic->ic_curchan);
1226 	} else
1227 		mode = IEEE80211_MODE_AUTO;
1228 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1229 	/*
1230 	 * Calculate a current rate if possible.
1231 	 */
1232 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1233 		/*
1234 		 * A fixed rate is set, report that.
1235 		 */
1236 		imr->ifm_active |= ieee80211_rate2media(ic,
1237 			vap->iv_txparms[mode].ucastrate, mode);
1238 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1239 		/*
1240 		 * In station mode report the current transmit rate.
1241 		 */
1242 		imr->ifm_active |= ieee80211_rate2media(ic,
1243 			vap->iv_bss->ni_txrate, mode);
1244 	} else
1245 		imr->ifm_active |= IFM_AUTO;
1246 	if (imr->ifm_status & IFM_ACTIVE)
1247 		imr->ifm_current = imr->ifm_active;
1248 }
1249 
1250 /*
1251  * Set the current phy mode and recalculate the active channel
1252  * set based on the available channels for this mode.  Also
1253  * select a new default/current channel if the current one is
1254  * inappropriate for this mode.
1255  */
1256 int
1257 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1258 {
1259 	/*
1260 	 * Adjust basic rates in 11b/11g supported rate set.
1261 	 * Note that if operating on a hal/quarter rate channel
1262 	 * this is a noop as those rates sets are different
1263 	 * and used instead.
1264 	 */
1265 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1266 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1267 
1268 	ic->ic_curmode = mode;
1269 	ieee80211_reset_erp(ic);	/* reset ERP state */
1270 
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Return the phy mode for with the specified channel.
1276  */
1277 enum ieee80211_phymode
1278 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1279 {
1280 
1281 	if (IEEE80211_IS_CHAN_HTA(chan))
1282 		return IEEE80211_MODE_11NA;
1283 	else if (IEEE80211_IS_CHAN_HTG(chan))
1284 		return IEEE80211_MODE_11NG;
1285 	else if (IEEE80211_IS_CHAN_108G(chan))
1286 		return IEEE80211_MODE_TURBO_G;
1287 	else if (IEEE80211_IS_CHAN_ST(chan))
1288 		return IEEE80211_MODE_STURBO_A;
1289 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1290 		return IEEE80211_MODE_TURBO_A;
1291 	else if (IEEE80211_IS_CHAN_A(chan))
1292 		return IEEE80211_MODE_11A;
1293 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1294 		return IEEE80211_MODE_11G;
1295 	else if (IEEE80211_IS_CHAN_B(chan))
1296 		return IEEE80211_MODE_11B;
1297 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1298 		return IEEE80211_MODE_FH;
1299 
1300 	/* NB: should not get here */
1301 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1302 		__func__, chan->ic_freq, chan->ic_flags);
1303 	return IEEE80211_MODE_11B;
1304 }
1305 
1306 struct ratemedia {
1307 	u_int	match;	/* rate + mode */
1308 	u_int	media;	/* if_media rate */
1309 };
1310 
1311 static int
1312 findmedia(const struct ratemedia rates[], int n, u_int match)
1313 {
1314 	int i;
1315 
1316 	for (i = 0; i < n; i++)
1317 		if (rates[i].match == match)
1318 			return rates[i].media;
1319 	return IFM_AUTO;
1320 }
1321 
1322 /*
1323  * Convert IEEE80211 rate value to ifmedia subtype.
1324  * Rate is either a legacy rate in units of 0.5Mbps
1325  * or an MCS index.
1326  */
1327 int
1328 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1329 {
1330 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1331 	static const struct ratemedia rates[] = {
1332 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1333 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1334 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1335 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1336 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1337 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1338 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1339 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1340 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1341 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1342 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1343 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1344 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1345 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1346 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1347 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1348 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1349 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1350 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1351 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1352 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1353 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1354 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1355 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1356 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1357 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1358 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1359 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1360 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1361 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1362 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1363 	};
1364 	static const struct ratemedia htrates[] = {
1365 		{   0, IFM_IEEE80211_MCS },
1366 		{   1, IFM_IEEE80211_MCS },
1367 		{   2, IFM_IEEE80211_MCS },
1368 		{   3, IFM_IEEE80211_MCS },
1369 		{   4, IFM_IEEE80211_MCS },
1370 		{   5, IFM_IEEE80211_MCS },
1371 		{   6, IFM_IEEE80211_MCS },
1372 		{   7, IFM_IEEE80211_MCS },
1373 		{   8, IFM_IEEE80211_MCS },
1374 		{   9, IFM_IEEE80211_MCS },
1375 		{  10, IFM_IEEE80211_MCS },
1376 		{  11, IFM_IEEE80211_MCS },
1377 		{  12, IFM_IEEE80211_MCS },
1378 		{  13, IFM_IEEE80211_MCS },
1379 		{  14, IFM_IEEE80211_MCS },
1380 		{  15, IFM_IEEE80211_MCS },
1381 	};
1382 	int m;
1383 
1384 	/*
1385 	 * Check 11n rates first for match as an MCS.
1386 	 */
1387 	if (mode == IEEE80211_MODE_11NA) {
1388 		if (rate & IEEE80211_RATE_MCS) {
1389 			rate &= ~IEEE80211_RATE_MCS;
1390 			m = findmedia(htrates, N(htrates), rate);
1391 			if (m != IFM_AUTO)
1392 				return m | IFM_IEEE80211_11NA;
1393 		}
1394 	} else if (mode == IEEE80211_MODE_11NG) {
1395 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1396 		if (rate & IEEE80211_RATE_MCS) {
1397 			rate &= ~IEEE80211_RATE_MCS;
1398 			m = findmedia(htrates, N(htrates), rate);
1399 			if (m != IFM_AUTO)
1400 				return m | IFM_IEEE80211_11NG;
1401 		}
1402 	}
1403 	rate &= IEEE80211_RATE_VAL;
1404 	switch (mode) {
1405 	case IEEE80211_MODE_11A:
1406 	case IEEE80211_MODE_11NA:
1407 	case IEEE80211_MODE_TURBO_A:
1408 	case IEEE80211_MODE_STURBO_A:
1409 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A);
1410 	case IEEE80211_MODE_11B:
1411 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B);
1412 	case IEEE80211_MODE_FH:
1413 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH);
1414 	case IEEE80211_MODE_AUTO:
1415 		/* NB: ic may be NULL for some drivers */
1416 		if (ic && ic->ic_phytype == IEEE80211_T_FH)
1417 			return findmedia(rates, N(rates),
1418 			    rate | IFM_IEEE80211_FH);
1419 		/* NB: hack, 11g matches both 11b+11a rates */
1420 		/* fall thru... */
1421 	case IEEE80211_MODE_11G:
1422 	case IEEE80211_MODE_11NG:
1423 	case IEEE80211_MODE_TURBO_G:
1424 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G);
1425 	}
1426 	return IFM_AUTO;
1427 #undef N
1428 }
1429 
1430 int
1431 ieee80211_media2rate(int mword)
1432 {
1433 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1434 	static const int ieeerates[] = {
1435 		-1,		/* IFM_AUTO */
1436 		0,		/* IFM_MANUAL */
1437 		0,		/* IFM_NONE */
1438 		2,		/* IFM_IEEE80211_FH1 */
1439 		4,		/* IFM_IEEE80211_FH2 */
1440 		2,		/* IFM_IEEE80211_DS1 */
1441 		4,		/* IFM_IEEE80211_DS2 */
1442 		11,		/* IFM_IEEE80211_DS5 */
1443 		22,		/* IFM_IEEE80211_DS11 */
1444 		44,		/* IFM_IEEE80211_DS22 */
1445 		12,		/* IFM_IEEE80211_OFDM6 */
1446 		18,		/* IFM_IEEE80211_OFDM9 */
1447 		24,		/* IFM_IEEE80211_OFDM12 */
1448 		36,		/* IFM_IEEE80211_OFDM18 */
1449 		48,		/* IFM_IEEE80211_OFDM24 */
1450 		72,		/* IFM_IEEE80211_OFDM36 */
1451 		96,		/* IFM_IEEE80211_OFDM48 */
1452 		108,		/* IFM_IEEE80211_OFDM54 */
1453 		144,		/* IFM_IEEE80211_OFDM72 */
1454 		0,		/* IFM_IEEE80211_DS354k */
1455 		0,		/* IFM_IEEE80211_DS512k */
1456 		6,		/* IFM_IEEE80211_OFDM3 */
1457 		9,		/* IFM_IEEE80211_OFDM4 */
1458 		54,		/* IFM_IEEE80211_OFDM27 */
1459 		-1,		/* IFM_IEEE80211_MCS */
1460 	};
1461 	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1462 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1463 #undef N
1464 }
1465