1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ethernet.h> 46 47 #include <net80211/ieee80211_var.h> 48 #include <net80211/ieee80211_regdomain.h> 49 #ifdef IEEE80211_SUPPORT_SUPERG 50 #include <net80211/ieee80211_superg.h> 51 #endif 52 #include <net80211/ieee80211_ratectl.h> 53 54 #include <net/bpf.h> 55 56 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 57 [IEEE80211_MODE_AUTO] = "auto", 58 [IEEE80211_MODE_11A] = "11a", 59 [IEEE80211_MODE_11B] = "11b", 60 [IEEE80211_MODE_11G] = "11g", 61 [IEEE80211_MODE_FH] = "FH", 62 [IEEE80211_MODE_TURBO_A] = "turboA", 63 [IEEE80211_MODE_TURBO_G] = "turboG", 64 [IEEE80211_MODE_STURBO_A] = "sturboA", 65 [IEEE80211_MODE_HALF] = "half", 66 [IEEE80211_MODE_QUARTER] = "quarter", 67 [IEEE80211_MODE_11NA] = "11na", 68 [IEEE80211_MODE_11NG] = "11ng", 69 }; 70 /* map ieee80211_opmode to the corresponding capability bit */ 71 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 72 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 73 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 74 [IEEE80211_M_STA] = IEEE80211_C_STA, 75 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 76 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 77 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 78 #ifdef IEEE80211_SUPPORT_MESH 79 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 80 #endif 81 }; 82 83 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 84 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 85 86 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 87 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 88 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 89 static int ieee80211_media_setup(struct ieee80211com *ic, 90 struct ifmedia *media, int caps, int addsta, 91 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 92 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 93 static int ieee80211com_media_change(struct ifnet *); 94 static int media_status(enum ieee80211_opmode, 95 const struct ieee80211_channel *); 96 97 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 98 99 /* 100 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 101 */ 102 #define B(r) ((r) | IEEE80211_RATE_BASIC) 103 static const struct ieee80211_rateset ieee80211_rateset_11a = 104 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 105 static const struct ieee80211_rateset ieee80211_rateset_half = 106 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 107 static const struct ieee80211_rateset ieee80211_rateset_quarter = 108 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 109 static const struct ieee80211_rateset ieee80211_rateset_11b = 110 { 4, { B(2), B(4), B(11), B(22) } }; 111 /* NB: OFDM rates are handled specially based on mode */ 112 static const struct ieee80211_rateset ieee80211_rateset_11g = 113 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 114 #undef B 115 116 /* 117 * Fill in 802.11 available channel set, mark 118 * all available channels as active, and pick 119 * a default channel if not already specified. 120 */ 121 static void 122 ieee80211_chan_init(struct ieee80211com *ic) 123 { 124 #define DEFAULTRATES(m, def) do { \ 125 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 126 ic->ic_sup_rates[m] = def; \ 127 } while (0) 128 struct ieee80211_channel *c; 129 int i; 130 131 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 132 ("invalid number of channels specified: %u", ic->ic_nchans)); 133 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 134 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 135 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 136 for (i = 0; i < ic->ic_nchans; i++) { 137 c = &ic->ic_channels[i]; 138 KASSERT(c->ic_flags != 0, ("channel with no flags")); 139 /* 140 * Help drivers that work only with frequencies by filling 141 * in IEEE channel #'s if not already calculated. Note this 142 * mimics similar work done in ieee80211_setregdomain when 143 * changing regulatory state. 144 */ 145 if (c->ic_ieee == 0) 146 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 147 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 148 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 149 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 150 c->ic_flags); 151 /* default max tx power to max regulatory */ 152 if (c->ic_maxpower == 0) 153 c->ic_maxpower = 2*c->ic_maxregpower; 154 setbit(ic->ic_chan_avail, c->ic_ieee); 155 /* 156 * Identify mode capabilities. 157 */ 158 if (IEEE80211_IS_CHAN_A(c)) 159 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 160 if (IEEE80211_IS_CHAN_B(c)) 161 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 162 if (IEEE80211_IS_CHAN_ANYG(c)) 163 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 164 if (IEEE80211_IS_CHAN_FHSS(c)) 165 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 166 if (IEEE80211_IS_CHAN_108A(c)) 167 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 168 if (IEEE80211_IS_CHAN_108G(c)) 169 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 170 if (IEEE80211_IS_CHAN_ST(c)) 171 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 172 if (IEEE80211_IS_CHAN_HALF(c)) 173 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 174 if (IEEE80211_IS_CHAN_QUARTER(c)) 175 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 176 if (IEEE80211_IS_CHAN_HTA(c)) 177 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 178 if (IEEE80211_IS_CHAN_HTG(c)) 179 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 180 } 181 /* initialize candidate channels to all available */ 182 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 183 sizeof(ic->ic_chan_avail)); 184 185 /* sort channel table to allow lookup optimizations */ 186 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 187 188 /* invalidate any previous state */ 189 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 190 ic->ic_prevchan = NULL; 191 ic->ic_csa_newchan = NULL; 192 /* arbitrarily pick the first channel */ 193 ic->ic_curchan = &ic->ic_channels[0]; 194 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 195 196 /* fillin well-known rate sets if driver has not specified */ 197 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 198 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 199 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 200 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 201 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 202 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 203 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 204 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 205 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 206 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 207 208 /* 209 * Setup required information to fill the mcsset field, if driver did 210 * not. Assume a 2T2R setup for historic reasons. 211 */ 212 if (ic->ic_rxstream == 0) 213 ic->ic_rxstream = 2; 214 if (ic->ic_txstream == 0) 215 ic->ic_txstream = 2; 216 217 /* 218 * Set auto mode to reset active channel state and any desired channel. 219 */ 220 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 221 #undef DEFAULTRATES 222 } 223 224 static void 225 null_update_mcast(struct ifnet *ifp) 226 { 227 if_printf(ifp, "need multicast update callback\n"); 228 } 229 230 static void 231 null_update_promisc(struct ifnet *ifp) 232 { 233 if_printf(ifp, "need promiscuous mode update callback\n"); 234 } 235 236 static int 237 null_transmit(struct ifnet *ifp, struct mbuf *m) 238 { 239 m_freem(m); 240 ifp->if_oerrors++; 241 return EACCES; /* XXX EIO/EPERM? */ 242 } 243 244 static int 245 null_output(struct ifnet *ifp, struct mbuf *m, 246 struct sockaddr *dst, struct route *ro) 247 { 248 if_printf(ifp, "discard raw packet\n"); 249 return null_transmit(ifp, m); 250 } 251 252 static void 253 null_input(struct ifnet *ifp, struct mbuf *m) 254 { 255 if_printf(ifp, "if_input should not be called\n"); 256 m_freem(m); 257 } 258 259 static void 260 null_update_chw(struct ieee80211com *ic) 261 { 262 263 if_printf(ic->ic_ifp, "%s: need callback\n", __func__); 264 } 265 266 /* 267 * Attach/setup the common net80211 state. Called by 268 * the driver on attach to prior to creating any vap's. 269 */ 270 void 271 ieee80211_ifattach(struct ieee80211com *ic, 272 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 273 { 274 struct ifnet *ifp = ic->ic_ifp; 275 struct sockaddr_dl *sdl; 276 struct ifaddr *ifa; 277 278 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 279 280 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 281 TAILQ_INIT(&ic->ic_vaps); 282 283 /* Create a taskqueue for all state changes */ 284 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 285 taskqueue_thread_enqueue, &ic->ic_tq); 286 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 287 ifp->if_xname); 288 /* 289 * Fill in 802.11 available channel set, mark all 290 * available channels as active, and pick a default 291 * channel if not already specified. 292 */ 293 ieee80211_media_init(ic); 294 295 ic->ic_update_mcast = null_update_mcast; 296 ic->ic_update_promisc = null_update_promisc; 297 ic->ic_update_chw = null_update_chw; 298 299 ic->ic_hash_key = arc4random(); 300 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 301 ic->ic_lintval = ic->ic_bintval; 302 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 303 304 ieee80211_crypto_attach(ic); 305 ieee80211_node_attach(ic); 306 ieee80211_power_attach(ic); 307 ieee80211_proto_attach(ic); 308 #ifdef IEEE80211_SUPPORT_SUPERG 309 ieee80211_superg_attach(ic); 310 #endif 311 ieee80211_ht_attach(ic); 312 ieee80211_scan_attach(ic); 313 ieee80211_regdomain_attach(ic); 314 ieee80211_dfs_attach(ic); 315 316 ieee80211_sysctl_attach(ic); 317 318 ifp->if_addrlen = IEEE80211_ADDR_LEN; 319 ifp->if_hdrlen = 0; 320 if_attach(ifp); 321 ifp->if_mtu = IEEE80211_MTU_MAX; 322 ifp->if_broadcastaddr = ieee80211broadcastaddr; 323 ifp->if_output = null_output; 324 ifp->if_input = null_input; /* just in case */ 325 ifp->if_resolvemulti = NULL; /* NB: callers check */ 326 327 ifa = ifaddr_byindex(ifp->if_index); 328 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 329 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 330 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 331 sdl->sdl_alen = IEEE80211_ADDR_LEN; 332 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 333 ifa_free(ifa); 334 } 335 336 /* 337 * Detach net80211 state on device detach. Tear down 338 * all vap's and reclaim all common state prior to the 339 * device state going away. Note we may call back into 340 * driver; it must be prepared for this. 341 */ 342 void 343 ieee80211_ifdetach(struct ieee80211com *ic) 344 { 345 struct ifnet *ifp = ic->ic_ifp; 346 struct ieee80211vap *vap; 347 348 if_detach(ifp); 349 350 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 351 ieee80211_vap_destroy(vap); 352 ieee80211_waitfor_parent(ic); 353 354 ieee80211_sysctl_detach(ic); 355 ieee80211_dfs_detach(ic); 356 ieee80211_regdomain_detach(ic); 357 ieee80211_scan_detach(ic); 358 #ifdef IEEE80211_SUPPORT_SUPERG 359 ieee80211_superg_detach(ic); 360 #endif 361 ieee80211_ht_detach(ic); 362 /* NB: must be called before ieee80211_node_detach */ 363 ieee80211_proto_detach(ic); 364 ieee80211_crypto_detach(ic); 365 ieee80211_power_detach(ic); 366 ieee80211_node_detach(ic); 367 368 ifmedia_removeall(&ic->ic_media); 369 taskqueue_free(ic->ic_tq); 370 IEEE80211_LOCK_DESTROY(ic); 371 } 372 373 /* 374 * Default reset method for use with the ioctl support. This 375 * method is invoked after any state change in the 802.11 376 * layer that should be propagated to the hardware but not 377 * require re-initialization of the 802.11 state machine (e.g 378 * rescanning for an ap). We always return ENETRESET which 379 * should cause the driver to re-initialize the device. Drivers 380 * can override this method to implement more optimized support. 381 */ 382 static int 383 default_reset(struct ieee80211vap *vap, u_long cmd) 384 { 385 return ENETRESET; 386 } 387 388 /* 389 * Prepare a vap for use. Drivers use this call to 390 * setup net80211 state in new vap's prior attaching 391 * them with ieee80211_vap_attach (below). 392 */ 393 int 394 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 395 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 396 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 397 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 398 { 399 struct ifnet *ifp; 400 401 ifp = if_alloc(IFT_ETHER); 402 if (ifp == NULL) { 403 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 404 __func__); 405 return ENOMEM; 406 } 407 if_initname(ifp, name, unit); 408 ifp->if_softc = vap; /* back pointer */ 409 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 410 ifp->if_start = ieee80211_start; 411 ifp->if_ioctl = ieee80211_ioctl; 412 ifp->if_init = ieee80211_init; 413 /* NB: input+output filled in by ether_ifattach */ 414 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 415 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 416 IFQ_SET_READY(&ifp->if_snd); 417 418 vap->iv_ifp = ifp; 419 vap->iv_ic = ic; 420 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 421 vap->iv_flags_ext = ic->ic_flags_ext; 422 vap->iv_flags_ven = ic->ic_flags_ven; 423 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 424 vap->iv_htcaps = ic->ic_htcaps; 425 vap->iv_htextcaps = ic->ic_htextcaps; 426 vap->iv_opmode = opmode; 427 vap->iv_caps |= ieee80211_opcap[opmode]; 428 switch (opmode) { 429 case IEEE80211_M_WDS: 430 /* 431 * WDS links must specify the bssid of the far end. 432 * For legacy operation this is a static relationship. 433 * For non-legacy operation the station must associate 434 * and be authorized to pass traffic. Plumbing the 435 * vap to the proper node happens when the vap 436 * transitions to RUN state. 437 */ 438 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 439 vap->iv_flags |= IEEE80211_F_DESBSSID; 440 if (flags & IEEE80211_CLONE_WDSLEGACY) 441 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 442 break; 443 #ifdef IEEE80211_SUPPORT_TDMA 444 case IEEE80211_M_AHDEMO: 445 if (flags & IEEE80211_CLONE_TDMA) { 446 /* NB: checked before clone operation allowed */ 447 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 448 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 449 /* 450 * Propagate TDMA capability to mark vap; this 451 * cannot be removed and is used to distinguish 452 * regular ahdemo operation from ahdemo+tdma. 453 */ 454 vap->iv_caps |= IEEE80211_C_TDMA; 455 } 456 break; 457 #endif 458 default: 459 break; 460 } 461 /* auto-enable s/w beacon miss support */ 462 if (flags & IEEE80211_CLONE_NOBEACONS) 463 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 464 /* auto-generated or user supplied MAC address */ 465 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 466 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 467 /* 468 * Enable various functionality by default if we're 469 * capable; the driver can override us if it knows better. 470 */ 471 if (vap->iv_caps & IEEE80211_C_WME) 472 vap->iv_flags |= IEEE80211_F_WME; 473 if (vap->iv_caps & IEEE80211_C_BURST) 474 vap->iv_flags |= IEEE80211_F_BURST; 475 /* NB: bg scanning only makes sense for station mode right now */ 476 if (vap->iv_opmode == IEEE80211_M_STA && 477 (vap->iv_caps & IEEE80211_C_BGSCAN)) 478 vap->iv_flags |= IEEE80211_F_BGSCAN; 479 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 480 /* NB: DFS support only makes sense for ap mode right now */ 481 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 482 (vap->iv_caps & IEEE80211_C_DFS)) 483 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 484 485 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 486 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 487 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 488 /* 489 * Install a default reset method for the ioctl support; 490 * the driver can override this. 491 */ 492 vap->iv_reset = default_reset; 493 494 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 495 496 ieee80211_sysctl_vattach(vap); 497 ieee80211_crypto_vattach(vap); 498 ieee80211_node_vattach(vap); 499 ieee80211_power_vattach(vap); 500 ieee80211_proto_vattach(vap); 501 #ifdef IEEE80211_SUPPORT_SUPERG 502 ieee80211_superg_vattach(vap); 503 #endif 504 ieee80211_ht_vattach(vap); 505 ieee80211_scan_vattach(vap); 506 ieee80211_regdomain_vattach(vap); 507 ieee80211_radiotap_vattach(vap); 508 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 509 510 return 0; 511 } 512 513 /* 514 * Activate a vap. State should have been prepared with a 515 * call to ieee80211_vap_setup and by the driver. On return 516 * from this call the vap is ready for use. 517 */ 518 int 519 ieee80211_vap_attach(struct ieee80211vap *vap, 520 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 521 { 522 struct ifnet *ifp = vap->iv_ifp; 523 struct ieee80211com *ic = vap->iv_ic; 524 struct ifmediareq imr; 525 int maxrate; 526 527 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 528 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 529 __func__, ieee80211_opmode_name[vap->iv_opmode], 530 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 531 532 /* 533 * Do late attach work that cannot happen until after 534 * the driver has had a chance to override defaults. 535 */ 536 ieee80211_node_latevattach(vap); 537 ieee80211_power_latevattach(vap); 538 539 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 540 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 541 ieee80211_media_status(ifp, &imr); 542 /* NB: strip explicit mode; we're actually in autoselect */ 543 ifmedia_set(&vap->iv_media, 544 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 545 if (maxrate) 546 ifp->if_baudrate = IF_Mbps(maxrate); 547 548 ether_ifattach(ifp, vap->iv_myaddr); 549 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 550 /* NB: disallow transmit */ 551 ifp->if_transmit = null_transmit; 552 ifp->if_output = null_output; 553 } else { 554 /* hook output method setup by ether_ifattach */ 555 vap->iv_output = ifp->if_output; 556 ifp->if_output = ieee80211_output; 557 } 558 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 559 560 IEEE80211_LOCK(ic); 561 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 562 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 563 #ifdef IEEE80211_SUPPORT_SUPERG 564 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 565 #endif 566 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 567 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 568 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 569 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 570 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 571 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 572 IEEE80211_UNLOCK(ic); 573 574 return 1; 575 } 576 577 /* 578 * Tear down vap state and reclaim the ifnet. 579 * The driver is assumed to have prepared for 580 * this; e.g. by turning off interrupts for the 581 * underlying device. 582 */ 583 void 584 ieee80211_vap_detach(struct ieee80211vap *vap) 585 { 586 struct ieee80211com *ic = vap->iv_ic; 587 struct ifnet *ifp = vap->iv_ifp; 588 589 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 590 __func__, ieee80211_opmode_name[vap->iv_opmode], 591 ic->ic_ifp->if_xname); 592 593 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 594 ether_ifdetach(ifp); 595 596 ieee80211_stop(vap); 597 598 /* 599 * Flush any deferred vap tasks. 600 */ 601 ieee80211_draintask(ic, &vap->iv_nstate_task); 602 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 603 604 /* XXX band-aid until ifnet handles this for us */ 605 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 606 607 IEEE80211_LOCK(ic); 608 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 609 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 610 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 611 #ifdef IEEE80211_SUPPORT_SUPERG 612 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 613 #endif 614 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 615 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 616 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 617 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 618 /* NB: this handles the bpfdetach done below */ 619 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 620 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 621 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 622 IEEE80211_UNLOCK(ic); 623 624 ifmedia_removeall(&vap->iv_media); 625 626 ieee80211_radiotap_vdetach(vap); 627 ieee80211_regdomain_vdetach(vap); 628 ieee80211_scan_vdetach(vap); 629 #ifdef IEEE80211_SUPPORT_SUPERG 630 ieee80211_superg_vdetach(vap); 631 #endif 632 ieee80211_ht_vdetach(vap); 633 /* NB: must be before ieee80211_node_vdetach */ 634 ieee80211_proto_vdetach(vap); 635 ieee80211_crypto_vdetach(vap); 636 ieee80211_power_vdetach(vap); 637 ieee80211_node_vdetach(vap); 638 ieee80211_sysctl_vdetach(vap); 639 640 if_free(ifp); 641 } 642 643 /* 644 * Synchronize flag bit state in the parent ifnet structure 645 * according to the state of all vap ifnet's. This is used, 646 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 647 */ 648 void 649 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 650 { 651 struct ifnet *ifp = ic->ic_ifp; 652 struct ieee80211vap *vap; 653 int bit, oflags; 654 655 IEEE80211_LOCK_ASSERT(ic); 656 657 bit = 0; 658 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 659 if (vap->iv_ifp->if_flags & flag) { 660 /* 661 * XXX the bridge sets PROMISC but we don't want to 662 * enable it on the device, discard here so all the 663 * drivers don't need to special-case it 664 */ 665 if (flag == IFF_PROMISC && 666 !(vap->iv_opmode == IEEE80211_M_MONITOR || 667 (vap->iv_opmode == IEEE80211_M_AHDEMO && 668 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 669 continue; 670 bit = 1; 671 break; 672 } 673 oflags = ifp->if_flags; 674 if (bit) 675 ifp->if_flags |= flag; 676 else 677 ifp->if_flags &= ~flag; 678 if ((ifp->if_flags ^ oflags) & flag) { 679 /* XXX should we return 1/0 and let caller do this? */ 680 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 681 if (flag == IFF_PROMISC) 682 ieee80211_runtask(ic, &ic->ic_promisc_task); 683 else if (flag == IFF_ALLMULTI) 684 ieee80211_runtask(ic, &ic->ic_mcast_task); 685 } 686 } 687 } 688 689 /* 690 * Synchronize flag bit state in the com structure 691 * according to the state of all vap's. This is used, 692 * for example, to handle state changes via ioctls. 693 */ 694 static void 695 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 696 { 697 struct ieee80211vap *vap; 698 int bit; 699 700 IEEE80211_LOCK_ASSERT(ic); 701 702 bit = 0; 703 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 704 if (vap->iv_flags & flag) { 705 bit = 1; 706 break; 707 } 708 if (bit) 709 ic->ic_flags |= flag; 710 else 711 ic->ic_flags &= ~flag; 712 } 713 714 void 715 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 716 { 717 struct ieee80211com *ic = vap->iv_ic; 718 719 IEEE80211_LOCK(ic); 720 if (flag < 0) { 721 flag = -flag; 722 vap->iv_flags &= ~flag; 723 } else 724 vap->iv_flags |= flag; 725 ieee80211_syncflag_locked(ic, flag); 726 IEEE80211_UNLOCK(ic); 727 } 728 729 /* 730 * Synchronize flags_ht bit state in the com structure 731 * according to the state of all vap's. This is used, 732 * for example, to handle state changes via ioctls. 733 */ 734 static void 735 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 736 { 737 struct ieee80211vap *vap; 738 int bit; 739 740 IEEE80211_LOCK_ASSERT(ic); 741 742 bit = 0; 743 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 744 if (vap->iv_flags_ht & flag) { 745 bit = 1; 746 break; 747 } 748 if (bit) 749 ic->ic_flags_ht |= flag; 750 else 751 ic->ic_flags_ht &= ~flag; 752 } 753 754 void 755 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 756 { 757 struct ieee80211com *ic = vap->iv_ic; 758 759 IEEE80211_LOCK(ic); 760 if (flag < 0) { 761 flag = -flag; 762 vap->iv_flags_ht &= ~flag; 763 } else 764 vap->iv_flags_ht |= flag; 765 ieee80211_syncflag_ht_locked(ic, flag); 766 IEEE80211_UNLOCK(ic); 767 } 768 769 /* 770 * Synchronize flags_ext bit state in the com structure 771 * according to the state of all vap's. This is used, 772 * for example, to handle state changes via ioctls. 773 */ 774 static void 775 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 776 { 777 struct ieee80211vap *vap; 778 int bit; 779 780 IEEE80211_LOCK_ASSERT(ic); 781 782 bit = 0; 783 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 784 if (vap->iv_flags_ext & flag) { 785 bit = 1; 786 break; 787 } 788 if (bit) 789 ic->ic_flags_ext |= flag; 790 else 791 ic->ic_flags_ext &= ~flag; 792 } 793 794 void 795 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 796 { 797 struct ieee80211com *ic = vap->iv_ic; 798 799 IEEE80211_LOCK(ic); 800 if (flag < 0) { 801 flag = -flag; 802 vap->iv_flags_ext &= ~flag; 803 } else 804 vap->iv_flags_ext |= flag; 805 ieee80211_syncflag_ext_locked(ic, flag); 806 IEEE80211_UNLOCK(ic); 807 } 808 809 static __inline int 810 mapgsm(u_int freq, u_int flags) 811 { 812 freq *= 10; 813 if (flags & IEEE80211_CHAN_QUARTER) 814 freq += 5; 815 else if (flags & IEEE80211_CHAN_HALF) 816 freq += 10; 817 else 818 freq += 20; 819 /* NB: there is no 907/20 wide but leave room */ 820 return (freq - 906*10) / 5; 821 } 822 823 static __inline int 824 mappsb(u_int freq, u_int flags) 825 { 826 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 827 } 828 829 /* 830 * Convert MHz frequency to IEEE channel number. 831 */ 832 int 833 ieee80211_mhz2ieee(u_int freq, u_int flags) 834 { 835 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 836 if (flags & IEEE80211_CHAN_GSM) 837 return mapgsm(freq, flags); 838 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 839 if (freq == 2484) 840 return 14; 841 if (freq < 2484) 842 return ((int) freq - 2407) / 5; 843 else 844 return 15 + ((freq - 2512) / 20); 845 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 846 if (freq <= 5000) { 847 /* XXX check regdomain? */ 848 if (IS_FREQ_IN_PSB(freq)) 849 return mappsb(freq, flags); 850 return (freq - 4000) / 5; 851 } else 852 return (freq - 5000) / 5; 853 } else { /* either, guess */ 854 if (freq == 2484) 855 return 14; 856 if (freq < 2484) { 857 if (907 <= freq && freq <= 922) 858 return mapgsm(freq, flags); 859 return ((int) freq - 2407) / 5; 860 } 861 if (freq < 5000) { 862 if (IS_FREQ_IN_PSB(freq)) 863 return mappsb(freq, flags); 864 else if (freq > 4900) 865 return (freq - 4000) / 5; 866 else 867 return 15 + ((freq - 2512) / 20); 868 } 869 return (freq - 5000) / 5; 870 } 871 #undef IS_FREQ_IN_PSB 872 } 873 874 /* 875 * Convert channel to IEEE channel number. 876 */ 877 int 878 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 879 { 880 if (c == NULL) { 881 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 882 return 0; /* XXX */ 883 } 884 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 885 } 886 887 /* 888 * Convert IEEE channel number to MHz frequency. 889 */ 890 u_int 891 ieee80211_ieee2mhz(u_int chan, u_int flags) 892 { 893 if (flags & IEEE80211_CHAN_GSM) 894 return 907 + 5 * (chan / 10); 895 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 896 if (chan == 14) 897 return 2484; 898 if (chan < 14) 899 return 2407 + chan*5; 900 else 901 return 2512 + ((chan-15)*20); 902 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 903 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 904 chan -= 37; 905 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 906 } 907 return 5000 + (chan*5); 908 } else { /* either, guess */ 909 /* XXX can't distinguish PSB+GSM channels */ 910 if (chan == 14) 911 return 2484; 912 if (chan < 14) /* 0-13 */ 913 return 2407 + chan*5; 914 if (chan < 27) /* 15-26 */ 915 return 2512 + ((chan-15)*20); 916 return 5000 + (chan*5); 917 } 918 } 919 920 /* 921 * Locate a channel given a frequency+flags. We cache 922 * the previous lookup to optimize switching between two 923 * channels--as happens with dynamic turbo. 924 */ 925 struct ieee80211_channel * 926 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 927 { 928 struct ieee80211_channel *c; 929 int i; 930 931 flags &= IEEE80211_CHAN_ALLTURBO; 932 c = ic->ic_prevchan; 933 if (c != NULL && c->ic_freq == freq && 934 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 935 return c; 936 /* brute force search */ 937 for (i = 0; i < ic->ic_nchans; i++) { 938 c = &ic->ic_channels[i]; 939 if (c->ic_freq == freq && 940 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 941 return c; 942 } 943 return NULL; 944 } 945 946 /* 947 * Locate a channel given a channel number+flags. We cache 948 * the previous lookup to optimize switching between two 949 * channels--as happens with dynamic turbo. 950 */ 951 struct ieee80211_channel * 952 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 953 { 954 struct ieee80211_channel *c; 955 int i; 956 957 flags &= IEEE80211_CHAN_ALLTURBO; 958 c = ic->ic_prevchan; 959 if (c != NULL && c->ic_ieee == ieee && 960 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 961 return c; 962 /* brute force search */ 963 for (i = 0; i < ic->ic_nchans; i++) { 964 c = &ic->ic_channels[i]; 965 if (c->ic_ieee == ieee && 966 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 967 return c; 968 } 969 return NULL; 970 } 971 972 static void 973 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 974 { 975 #define ADD(_ic, _s, _o) \ 976 ifmedia_add(media, \ 977 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 978 static const u_int mopts[IEEE80211_MODE_MAX] = { 979 [IEEE80211_MODE_AUTO] = IFM_AUTO, 980 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 981 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 982 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 983 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 984 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 985 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 986 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 987 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 988 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 989 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 990 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 991 }; 992 u_int mopt; 993 994 mopt = mopts[mode]; 995 if (addsta) 996 ADD(ic, mword, mopt); /* STA mode has no cap */ 997 if (caps & IEEE80211_C_IBSS) 998 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 999 if (caps & IEEE80211_C_HOSTAP) 1000 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1001 if (caps & IEEE80211_C_AHDEMO) 1002 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1003 if (caps & IEEE80211_C_MONITOR) 1004 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1005 if (caps & IEEE80211_C_WDS) 1006 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1007 if (caps & IEEE80211_C_MBSS) 1008 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1009 #undef ADD 1010 } 1011 1012 /* 1013 * Setup the media data structures according to the channel and 1014 * rate tables. 1015 */ 1016 static int 1017 ieee80211_media_setup(struct ieee80211com *ic, 1018 struct ifmedia *media, int caps, int addsta, 1019 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1020 { 1021 int i, j, rate, maxrate, mword, r; 1022 enum ieee80211_phymode mode; 1023 const struct ieee80211_rateset *rs; 1024 struct ieee80211_rateset allrates; 1025 1026 /* 1027 * Fill in media characteristics. 1028 */ 1029 ifmedia_init(media, 0, media_change, media_stat); 1030 maxrate = 0; 1031 /* 1032 * Add media for legacy operating modes. 1033 */ 1034 memset(&allrates, 0, sizeof(allrates)); 1035 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1036 if (isclr(ic->ic_modecaps, mode)) 1037 continue; 1038 addmedia(media, caps, addsta, mode, IFM_AUTO); 1039 if (mode == IEEE80211_MODE_AUTO) 1040 continue; 1041 rs = &ic->ic_sup_rates[mode]; 1042 for (i = 0; i < rs->rs_nrates; i++) { 1043 rate = rs->rs_rates[i]; 1044 mword = ieee80211_rate2media(ic, rate, mode); 1045 if (mword == 0) 1046 continue; 1047 addmedia(media, caps, addsta, mode, mword); 1048 /* 1049 * Add legacy rate to the collection of all rates. 1050 */ 1051 r = rate & IEEE80211_RATE_VAL; 1052 for (j = 0; j < allrates.rs_nrates; j++) 1053 if (allrates.rs_rates[j] == r) 1054 break; 1055 if (j == allrates.rs_nrates) { 1056 /* unique, add to the set */ 1057 allrates.rs_rates[j] = r; 1058 allrates.rs_nrates++; 1059 } 1060 rate = (rate & IEEE80211_RATE_VAL) / 2; 1061 if (rate > maxrate) 1062 maxrate = rate; 1063 } 1064 } 1065 for (i = 0; i < allrates.rs_nrates; i++) { 1066 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1067 IEEE80211_MODE_AUTO); 1068 if (mword == 0) 1069 continue; 1070 /* NB: remove media options from mword */ 1071 addmedia(media, caps, addsta, 1072 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1073 } 1074 /* 1075 * Add HT/11n media. Note that we do not have enough 1076 * bits in the media subtype to express the MCS so we 1077 * use a "placeholder" media subtype and any fixed MCS 1078 * must be specified with a different mechanism. 1079 */ 1080 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1081 if (isclr(ic->ic_modecaps, mode)) 1082 continue; 1083 addmedia(media, caps, addsta, mode, IFM_AUTO); 1084 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1085 } 1086 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1087 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1088 addmedia(media, caps, addsta, 1089 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1090 i = ic->ic_txstream * 8 - 1; 1091 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1092 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1093 rate = ieee80211_htrates[i].ht40_rate_400ns; 1094 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1095 rate = ieee80211_htrates[i].ht40_rate_800ns; 1096 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1097 rate = ieee80211_htrates[i].ht20_rate_400ns; 1098 else 1099 rate = ieee80211_htrates[i].ht20_rate_800ns; 1100 if (rate > maxrate) 1101 maxrate = rate; 1102 } 1103 return maxrate; 1104 } 1105 1106 void 1107 ieee80211_media_init(struct ieee80211com *ic) 1108 { 1109 struct ifnet *ifp = ic->ic_ifp; 1110 int maxrate; 1111 1112 /* NB: this works because the structure is initialized to zero */ 1113 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1114 /* 1115 * We are re-initializing the channel list; clear 1116 * the existing media state as the media routines 1117 * don't suppress duplicates. 1118 */ 1119 ifmedia_removeall(&ic->ic_media); 1120 } 1121 ieee80211_chan_init(ic); 1122 1123 /* 1124 * Recalculate media settings in case new channel list changes 1125 * the set of available modes. 1126 */ 1127 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1128 ieee80211com_media_change, ieee80211com_media_status); 1129 /* NB: strip explicit mode; we're actually in autoselect */ 1130 ifmedia_set(&ic->ic_media, 1131 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1132 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1133 if (maxrate) 1134 ifp->if_baudrate = IF_Mbps(maxrate); 1135 1136 /* XXX need to propagate new media settings to vap's */ 1137 } 1138 1139 /* XXX inline or eliminate? */ 1140 const struct ieee80211_rateset * 1141 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1142 { 1143 /* XXX does this work for 11ng basic rates? */ 1144 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1145 } 1146 1147 void 1148 ieee80211_announce(struct ieee80211com *ic) 1149 { 1150 struct ifnet *ifp = ic->ic_ifp; 1151 int i, rate, mword; 1152 enum ieee80211_phymode mode; 1153 const struct ieee80211_rateset *rs; 1154 1155 /* NB: skip AUTO since it has no rates */ 1156 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1157 if (isclr(ic->ic_modecaps, mode)) 1158 continue; 1159 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1160 rs = &ic->ic_sup_rates[mode]; 1161 for (i = 0; i < rs->rs_nrates; i++) { 1162 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1163 if (mword == 0) 1164 continue; 1165 rate = ieee80211_media2rate(mword); 1166 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1167 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1168 } 1169 printf("\n"); 1170 } 1171 ieee80211_ht_announce(ic); 1172 } 1173 1174 void 1175 ieee80211_announce_channels(struct ieee80211com *ic) 1176 { 1177 const struct ieee80211_channel *c; 1178 char type; 1179 int i, cw; 1180 1181 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1182 for (i = 0; i < ic->ic_nchans; i++) { 1183 c = &ic->ic_channels[i]; 1184 if (IEEE80211_IS_CHAN_ST(c)) 1185 type = 'S'; 1186 else if (IEEE80211_IS_CHAN_108A(c)) 1187 type = 'T'; 1188 else if (IEEE80211_IS_CHAN_108G(c)) 1189 type = 'G'; 1190 else if (IEEE80211_IS_CHAN_HT(c)) 1191 type = 'n'; 1192 else if (IEEE80211_IS_CHAN_A(c)) 1193 type = 'a'; 1194 else if (IEEE80211_IS_CHAN_ANYG(c)) 1195 type = 'g'; 1196 else if (IEEE80211_IS_CHAN_B(c)) 1197 type = 'b'; 1198 else 1199 type = 'f'; 1200 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1201 cw = 40; 1202 else if (IEEE80211_IS_CHAN_HALF(c)) 1203 cw = 10; 1204 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1205 cw = 5; 1206 else 1207 cw = 20; 1208 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1209 , c->ic_ieee, c->ic_freq, type 1210 , cw 1211 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1212 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1213 , c->ic_maxregpower 1214 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1215 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1216 ); 1217 } 1218 } 1219 1220 static int 1221 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1222 { 1223 switch (IFM_MODE(ime->ifm_media)) { 1224 case IFM_IEEE80211_11A: 1225 *mode = IEEE80211_MODE_11A; 1226 break; 1227 case IFM_IEEE80211_11B: 1228 *mode = IEEE80211_MODE_11B; 1229 break; 1230 case IFM_IEEE80211_11G: 1231 *mode = IEEE80211_MODE_11G; 1232 break; 1233 case IFM_IEEE80211_FH: 1234 *mode = IEEE80211_MODE_FH; 1235 break; 1236 case IFM_IEEE80211_11NA: 1237 *mode = IEEE80211_MODE_11NA; 1238 break; 1239 case IFM_IEEE80211_11NG: 1240 *mode = IEEE80211_MODE_11NG; 1241 break; 1242 case IFM_AUTO: 1243 *mode = IEEE80211_MODE_AUTO; 1244 break; 1245 default: 1246 return 0; 1247 } 1248 /* 1249 * Turbo mode is an ``option''. 1250 * XXX does not apply to AUTO 1251 */ 1252 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1253 if (*mode == IEEE80211_MODE_11A) { 1254 if (flags & IEEE80211_F_TURBOP) 1255 *mode = IEEE80211_MODE_TURBO_A; 1256 else 1257 *mode = IEEE80211_MODE_STURBO_A; 1258 } else if (*mode == IEEE80211_MODE_11G) 1259 *mode = IEEE80211_MODE_TURBO_G; 1260 else 1261 return 0; 1262 } 1263 /* XXX HT40 +/- */ 1264 return 1; 1265 } 1266 1267 /* 1268 * Handle a media change request on the underlying interface. 1269 */ 1270 int 1271 ieee80211com_media_change(struct ifnet *ifp) 1272 { 1273 return EINVAL; 1274 } 1275 1276 /* 1277 * Handle a media change request on the vap interface. 1278 */ 1279 int 1280 ieee80211_media_change(struct ifnet *ifp) 1281 { 1282 struct ieee80211vap *vap = ifp->if_softc; 1283 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1284 uint16_t newmode; 1285 1286 if (!media2mode(ime, vap->iv_flags, &newmode)) 1287 return EINVAL; 1288 if (vap->iv_des_mode != newmode) { 1289 vap->iv_des_mode = newmode; 1290 /* XXX kick state machine if up+running */ 1291 } 1292 return 0; 1293 } 1294 1295 /* 1296 * Common code to calculate the media status word 1297 * from the operating mode and channel state. 1298 */ 1299 static int 1300 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1301 { 1302 int status; 1303 1304 status = IFM_IEEE80211; 1305 switch (opmode) { 1306 case IEEE80211_M_STA: 1307 break; 1308 case IEEE80211_M_IBSS: 1309 status |= IFM_IEEE80211_ADHOC; 1310 break; 1311 case IEEE80211_M_HOSTAP: 1312 status |= IFM_IEEE80211_HOSTAP; 1313 break; 1314 case IEEE80211_M_MONITOR: 1315 status |= IFM_IEEE80211_MONITOR; 1316 break; 1317 case IEEE80211_M_AHDEMO: 1318 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1319 break; 1320 case IEEE80211_M_WDS: 1321 status |= IFM_IEEE80211_WDS; 1322 break; 1323 case IEEE80211_M_MBSS: 1324 status |= IFM_IEEE80211_MBSS; 1325 break; 1326 } 1327 if (IEEE80211_IS_CHAN_HTA(chan)) { 1328 status |= IFM_IEEE80211_11NA; 1329 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1330 status |= IFM_IEEE80211_11NG; 1331 } else if (IEEE80211_IS_CHAN_A(chan)) { 1332 status |= IFM_IEEE80211_11A; 1333 } else if (IEEE80211_IS_CHAN_B(chan)) { 1334 status |= IFM_IEEE80211_11B; 1335 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1336 status |= IFM_IEEE80211_11G; 1337 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1338 status |= IFM_IEEE80211_FH; 1339 } 1340 /* XXX else complain? */ 1341 1342 if (IEEE80211_IS_CHAN_TURBO(chan)) 1343 status |= IFM_IEEE80211_TURBO; 1344 #if 0 1345 if (IEEE80211_IS_CHAN_HT20(chan)) 1346 status |= IFM_IEEE80211_HT20; 1347 if (IEEE80211_IS_CHAN_HT40(chan)) 1348 status |= IFM_IEEE80211_HT40; 1349 #endif 1350 return status; 1351 } 1352 1353 static void 1354 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1355 { 1356 struct ieee80211com *ic = ifp->if_l2com; 1357 struct ieee80211vap *vap; 1358 1359 imr->ifm_status = IFM_AVALID; 1360 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1361 if (vap->iv_ifp->if_flags & IFF_UP) { 1362 imr->ifm_status |= IFM_ACTIVE; 1363 break; 1364 } 1365 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1366 if (imr->ifm_status & IFM_ACTIVE) 1367 imr->ifm_current = imr->ifm_active; 1368 } 1369 1370 void 1371 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1372 { 1373 struct ieee80211vap *vap = ifp->if_softc; 1374 struct ieee80211com *ic = vap->iv_ic; 1375 enum ieee80211_phymode mode; 1376 1377 imr->ifm_status = IFM_AVALID; 1378 /* 1379 * NB: use the current channel's mode to lock down a xmit 1380 * rate only when running; otherwise we may have a mismatch 1381 * in which case the rate will not be convertible. 1382 */ 1383 if (vap->iv_state == IEEE80211_S_RUN) { 1384 imr->ifm_status |= IFM_ACTIVE; 1385 mode = ieee80211_chan2mode(ic->ic_curchan); 1386 } else 1387 mode = IEEE80211_MODE_AUTO; 1388 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1389 /* 1390 * Calculate a current rate if possible. 1391 */ 1392 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1393 /* 1394 * A fixed rate is set, report that. 1395 */ 1396 imr->ifm_active |= ieee80211_rate2media(ic, 1397 vap->iv_txparms[mode].ucastrate, mode); 1398 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1399 /* 1400 * In station mode report the current transmit rate. 1401 */ 1402 imr->ifm_active |= ieee80211_rate2media(ic, 1403 vap->iv_bss->ni_txrate, mode); 1404 } else 1405 imr->ifm_active |= IFM_AUTO; 1406 if (imr->ifm_status & IFM_ACTIVE) 1407 imr->ifm_current = imr->ifm_active; 1408 } 1409 1410 /* 1411 * Set the current phy mode and recalculate the active channel 1412 * set based on the available channels for this mode. Also 1413 * select a new default/current channel if the current one is 1414 * inappropriate for this mode. 1415 */ 1416 int 1417 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1418 { 1419 /* 1420 * Adjust basic rates in 11b/11g supported rate set. 1421 * Note that if operating on a hal/quarter rate channel 1422 * this is a noop as those rates sets are different 1423 * and used instead. 1424 */ 1425 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1426 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1427 1428 ic->ic_curmode = mode; 1429 ieee80211_reset_erp(ic); /* reset ERP state */ 1430 1431 return 0; 1432 } 1433 1434 /* 1435 * Return the phy mode for with the specified channel. 1436 */ 1437 enum ieee80211_phymode 1438 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1439 { 1440 1441 if (IEEE80211_IS_CHAN_HTA(chan)) 1442 return IEEE80211_MODE_11NA; 1443 else if (IEEE80211_IS_CHAN_HTG(chan)) 1444 return IEEE80211_MODE_11NG; 1445 else if (IEEE80211_IS_CHAN_108G(chan)) 1446 return IEEE80211_MODE_TURBO_G; 1447 else if (IEEE80211_IS_CHAN_ST(chan)) 1448 return IEEE80211_MODE_STURBO_A; 1449 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1450 return IEEE80211_MODE_TURBO_A; 1451 else if (IEEE80211_IS_CHAN_HALF(chan)) 1452 return IEEE80211_MODE_HALF; 1453 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1454 return IEEE80211_MODE_QUARTER; 1455 else if (IEEE80211_IS_CHAN_A(chan)) 1456 return IEEE80211_MODE_11A; 1457 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1458 return IEEE80211_MODE_11G; 1459 else if (IEEE80211_IS_CHAN_B(chan)) 1460 return IEEE80211_MODE_11B; 1461 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1462 return IEEE80211_MODE_FH; 1463 1464 /* NB: should not get here */ 1465 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1466 __func__, chan->ic_freq, chan->ic_flags); 1467 return IEEE80211_MODE_11B; 1468 } 1469 1470 struct ratemedia { 1471 u_int match; /* rate + mode */ 1472 u_int media; /* if_media rate */ 1473 }; 1474 1475 static int 1476 findmedia(const struct ratemedia rates[], int n, u_int match) 1477 { 1478 int i; 1479 1480 for (i = 0; i < n; i++) 1481 if (rates[i].match == match) 1482 return rates[i].media; 1483 return IFM_AUTO; 1484 } 1485 1486 /* 1487 * Convert IEEE80211 rate value to ifmedia subtype. 1488 * Rate is either a legacy rate in units of 0.5Mbps 1489 * or an MCS index. 1490 */ 1491 int 1492 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1493 { 1494 #define N(a) (sizeof(a) / sizeof(a[0])) 1495 static const struct ratemedia rates[] = { 1496 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1497 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1498 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1499 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1500 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1501 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1502 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1503 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1504 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1505 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1506 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1507 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1508 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1509 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1510 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1511 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1512 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1513 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1514 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1515 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1516 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1517 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1518 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1519 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1520 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1521 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1522 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1523 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1524 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1525 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1526 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1527 }; 1528 static const struct ratemedia htrates[] = { 1529 { 0, IFM_IEEE80211_MCS }, 1530 { 1, IFM_IEEE80211_MCS }, 1531 { 2, IFM_IEEE80211_MCS }, 1532 { 3, IFM_IEEE80211_MCS }, 1533 { 4, IFM_IEEE80211_MCS }, 1534 { 5, IFM_IEEE80211_MCS }, 1535 { 6, IFM_IEEE80211_MCS }, 1536 { 7, IFM_IEEE80211_MCS }, 1537 { 8, IFM_IEEE80211_MCS }, 1538 { 9, IFM_IEEE80211_MCS }, 1539 { 10, IFM_IEEE80211_MCS }, 1540 { 11, IFM_IEEE80211_MCS }, 1541 { 12, IFM_IEEE80211_MCS }, 1542 { 13, IFM_IEEE80211_MCS }, 1543 { 14, IFM_IEEE80211_MCS }, 1544 { 15, IFM_IEEE80211_MCS }, 1545 { 16, IFM_IEEE80211_MCS }, 1546 { 17, IFM_IEEE80211_MCS }, 1547 { 18, IFM_IEEE80211_MCS }, 1548 { 19, IFM_IEEE80211_MCS }, 1549 { 20, IFM_IEEE80211_MCS }, 1550 { 21, IFM_IEEE80211_MCS }, 1551 { 22, IFM_IEEE80211_MCS }, 1552 { 23, IFM_IEEE80211_MCS }, 1553 { 24, IFM_IEEE80211_MCS }, 1554 { 25, IFM_IEEE80211_MCS }, 1555 { 26, IFM_IEEE80211_MCS }, 1556 { 27, IFM_IEEE80211_MCS }, 1557 { 28, IFM_IEEE80211_MCS }, 1558 { 29, IFM_IEEE80211_MCS }, 1559 { 30, IFM_IEEE80211_MCS }, 1560 { 31, IFM_IEEE80211_MCS }, 1561 { 32, IFM_IEEE80211_MCS }, 1562 { 33, IFM_IEEE80211_MCS }, 1563 { 34, IFM_IEEE80211_MCS }, 1564 { 35, IFM_IEEE80211_MCS }, 1565 { 36, IFM_IEEE80211_MCS }, 1566 { 37, IFM_IEEE80211_MCS }, 1567 { 38, IFM_IEEE80211_MCS }, 1568 { 39, IFM_IEEE80211_MCS }, 1569 { 40, IFM_IEEE80211_MCS }, 1570 { 41, IFM_IEEE80211_MCS }, 1571 { 42, IFM_IEEE80211_MCS }, 1572 { 43, IFM_IEEE80211_MCS }, 1573 { 44, IFM_IEEE80211_MCS }, 1574 { 45, IFM_IEEE80211_MCS }, 1575 { 46, IFM_IEEE80211_MCS }, 1576 { 47, IFM_IEEE80211_MCS }, 1577 { 48, IFM_IEEE80211_MCS }, 1578 { 49, IFM_IEEE80211_MCS }, 1579 { 50, IFM_IEEE80211_MCS }, 1580 { 51, IFM_IEEE80211_MCS }, 1581 { 52, IFM_IEEE80211_MCS }, 1582 { 53, IFM_IEEE80211_MCS }, 1583 { 54, IFM_IEEE80211_MCS }, 1584 { 55, IFM_IEEE80211_MCS }, 1585 { 56, IFM_IEEE80211_MCS }, 1586 { 57, IFM_IEEE80211_MCS }, 1587 { 58, IFM_IEEE80211_MCS }, 1588 { 59, IFM_IEEE80211_MCS }, 1589 { 60, IFM_IEEE80211_MCS }, 1590 { 61, IFM_IEEE80211_MCS }, 1591 { 62, IFM_IEEE80211_MCS }, 1592 { 63, IFM_IEEE80211_MCS }, 1593 { 64, IFM_IEEE80211_MCS }, 1594 { 65, IFM_IEEE80211_MCS }, 1595 { 66, IFM_IEEE80211_MCS }, 1596 { 67, IFM_IEEE80211_MCS }, 1597 { 68, IFM_IEEE80211_MCS }, 1598 { 69, IFM_IEEE80211_MCS }, 1599 { 70, IFM_IEEE80211_MCS }, 1600 { 71, IFM_IEEE80211_MCS }, 1601 { 72, IFM_IEEE80211_MCS }, 1602 { 73, IFM_IEEE80211_MCS }, 1603 { 74, IFM_IEEE80211_MCS }, 1604 { 75, IFM_IEEE80211_MCS }, 1605 { 76, IFM_IEEE80211_MCS }, 1606 }; 1607 int m; 1608 1609 /* 1610 * Check 11n rates first for match as an MCS. 1611 */ 1612 if (mode == IEEE80211_MODE_11NA) { 1613 if (rate & IEEE80211_RATE_MCS) { 1614 rate &= ~IEEE80211_RATE_MCS; 1615 m = findmedia(htrates, N(htrates), rate); 1616 if (m != IFM_AUTO) 1617 return m | IFM_IEEE80211_11NA; 1618 } 1619 } else if (mode == IEEE80211_MODE_11NG) { 1620 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1621 if (rate & IEEE80211_RATE_MCS) { 1622 rate &= ~IEEE80211_RATE_MCS; 1623 m = findmedia(htrates, N(htrates), rate); 1624 if (m != IFM_AUTO) 1625 return m | IFM_IEEE80211_11NG; 1626 } 1627 } 1628 rate &= IEEE80211_RATE_VAL; 1629 switch (mode) { 1630 case IEEE80211_MODE_11A: 1631 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1632 case IEEE80211_MODE_QUARTER: 1633 case IEEE80211_MODE_11NA: 1634 case IEEE80211_MODE_TURBO_A: 1635 case IEEE80211_MODE_STURBO_A: 1636 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1637 case IEEE80211_MODE_11B: 1638 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1639 case IEEE80211_MODE_FH: 1640 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1641 case IEEE80211_MODE_AUTO: 1642 /* NB: ic may be NULL for some drivers */ 1643 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1644 return findmedia(rates, N(rates), 1645 rate | IFM_IEEE80211_FH); 1646 /* NB: hack, 11g matches both 11b+11a rates */ 1647 /* fall thru... */ 1648 case IEEE80211_MODE_11G: 1649 case IEEE80211_MODE_11NG: 1650 case IEEE80211_MODE_TURBO_G: 1651 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1652 } 1653 return IFM_AUTO; 1654 #undef N 1655 } 1656 1657 int 1658 ieee80211_media2rate(int mword) 1659 { 1660 #define N(a) (sizeof(a) / sizeof(a[0])) 1661 static const int ieeerates[] = { 1662 -1, /* IFM_AUTO */ 1663 0, /* IFM_MANUAL */ 1664 0, /* IFM_NONE */ 1665 2, /* IFM_IEEE80211_FH1 */ 1666 4, /* IFM_IEEE80211_FH2 */ 1667 2, /* IFM_IEEE80211_DS1 */ 1668 4, /* IFM_IEEE80211_DS2 */ 1669 11, /* IFM_IEEE80211_DS5 */ 1670 22, /* IFM_IEEE80211_DS11 */ 1671 44, /* IFM_IEEE80211_DS22 */ 1672 12, /* IFM_IEEE80211_OFDM6 */ 1673 18, /* IFM_IEEE80211_OFDM9 */ 1674 24, /* IFM_IEEE80211_OFDM12 */ 1675 36, /* IFM_IEEE80211_OFDM18 */ 1676 48, /* IFM_IEEE80211_OFDM24 */ 1677 72, /* IFM_IEEE80211_OFDM36 */ 1678 96, /* IFM_IEEE80211_OFDM48 */ 1679 108, /* IFM_IEEE80211_OFDM54 */ 1680 144, /* IFM_IEEE80211_OFDM72 */ 1681 0, /* IFM_IEEE80211_DS354k */ 1682 0, /* IFM_IEEE80211_DS512k */ 1683 6, /* IFM_IEEE80211_OFDM3 */ 1684 9, /* IFM_IEEE80211_OFDM4 */ 1685 54, /* IFM_IEEE80211_OFDM27 */ 1686 -1, /* IFM_IEEE80211_MCS */ 1687 }; 1688 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1689 ieeerates[IFM_SUBTYPE(mword)] : 0; 1690 #undef N 1691 } 1692 1693 /* 1694 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1695 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1696 */ 1697 #define mix(a, b, c) \ 1698 do { \ 1699 a -= b; a -= c; a ^= (c >> 13); \ 1700 b -= c; b -= a; b ^= (a << 8); \ 1701 c -= a; c -= b; c ^= (b >> 13); \ 1702 a -= b; a -= c; a ^= (c >> 12); \ 1703 b -= c; b -= a; b ^= (a << 16); \ 1704 c -= a; c -= b; c ^= (b >> 5); \ 1705 a -= b; a -= c; a ^= (c >> 3); \ 1706 b -= c; b -= a; b ^= (a << 10); \ 1707 c -= a; c -= b; c ^= (b >> 15); \ 1708 } while (/*CONSTCOND*/0) 1709 1710 uint32_t 1711 ieee80211_mac_hash(const struct ieee80211com *ic, 1712 const uint8_t addr[IEEE80211_ADDR_LEN]) 1713 { 1714 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1715 1716 b += addr[5] << 8; 1717 b += addr[4]; 1718 a += addr[3] << 24; 1719 a += addr[2] << 16; 1720 a += addr[1] << 8; 1721 a += addr[0]; 1722 1723 mix(a, b, c); 1724 1725 return c; 1726 } 1727 #undef mix 1728