1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 40 #include <machine/stdarg.h> 41 42 #include <net/if.h> 43 #include <net/if_var.h> 44 #include <net/if_dl.h> 45 #include <net/if_media.h> 46 #include <net/if_types.h> 47 #include <net/ethernet.h> 48 49 #include <net80211/ieee80211_var.h> 50 #include <net80211/ieee80211_regdomain.h> 51 #ifdef IEEE80211_SUPPORT_SUPERG 52 #include <net80211/ieee80211_superg.h> 53 #endif 54 #include <net80211/ieee80211_ratectl.h> 55 56 #include <net/bpf.h> 57 58 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 59 [IEEE80211_MODE_AUTO] = "auto", 60 [IEEE80211_MODE_11A] = "11a", 61 [IEEE80211_MODE_11B] = "11b", 62 [IEEE80211_MODE_11G] = "11g", 63 [IEEE80211_MODE_FH] = "FH", 64 [IEEE80211_MODE_TURBO_A] = "turboA", 65 [IEEE80211_MODE_TURBO_G] = "turboG", 66 [IEEE80211_MODE_STURBO_A] = "sturboA", 67 [IEEE80211_MODE_HALF] = "half", 68 [IEEE80211_MODE_QUARTER] = "quarter", 69 [IEEE80211_MODE_11NA] = "11na", 70 [IEEE80211_MODE_11NG] = "11ng", 71 }; 72 /* map ieee80211_opmode to the corresponding capability bit */ 73 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 74 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 75 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 76 [IEEE80211_M_STA] = IEEE80211_C_STA, 77 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 78 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 79 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 80 #ifdef IEEE80211_SUPPORT_MESH 81 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 82 #endif 83 }; 84 85 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 86 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 87 88 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 89 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 90 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 91 static int ieee80211_media_setup(struct ieee80211com *ic, 92 struct ifmedia *media, int caps, int addsta, 93 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 94 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 95 static int ieee80211com_media_change(struct ifnet *); 96 static int media_status(enum ieee80211_opmode, 97 const struct ieee80211_channel *); 98 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 99 100 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 101 102 /* 103 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 104 */ 105 #define B(r) ((r) | IEEE80211_RATE_BASIC) 106 static const struct ieee80211_rateset ieee80211_rateset_11a = 107 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 108 static const struct ieee80211_rateset ieee80211_rateset_half = 109 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 110 static const struct ieee80211_rateset ieee80211_rateset_quarter = 111 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 112 static const struct ieee80211_rateset ieee80211_rateset_11b = 113 { 4, { B(2), B(4), B(11), B(22) } }; 114 /* NB: OFDM rates are handled specially based on mode */ 115 static const struct ieee80211_rateset ieee80211_rateset_11g = 116 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 117 #undef B 118 119 /* 120 * Fill in 802.11 available channel set, mark 121 * all available channels as active, and pick 122 * a default channel if not already specified. 123 */ 124 static void 125 ieee80211_chan_init(struct ieee80211com *ic) 126 { 127 #define DEFAULTRATES(m, def) do { \ 128 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 129 ic->ic_sup_rates[m] = def; \ 130 } while (0) 131 struct ieee80211_channel *c; 132 int i; 133 134 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 135 ("invalid number of channels specified: %u", ic->ic_nchans)); 136 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 137 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 138 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 139 for (i = 0; i < ic->ic_nchans; i++) { 140 c = &ic->ic_channels[i]; 141 KASSERT(c->ic_flags != 0, ("channel with no flags")); 142 /* 143 * Help drivers that work only with frequencies by filling 144 * in IEEE channel #'s if not already calculated. Note this 145 * mimics similar work done in ieee80211_setregdomain when 146 * changing regulatory state. 147 */ 148 if (c->ic_ieee == 0) 149 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 150 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 151 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 152 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 153 c->ic_flags); 154 /* default max tx power to max regulatory */ 155 if (c->ic_maxpower == 0) 156 c->ic_maxpower = 2*c->ic_maxregpower; 157 setbit(ic->ic_chan_avail, c->ic_ieee); 158 /* 159 * Identify mode capabilities. 160 */ 161 if (IEEE80211_IS_CHAN_A(c)) 162 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 163 if (IEEE80211_IS_CHAN_B(c)) 164 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 165 if (IEEE80211_IS_CHAN_ANYG(c)) 166 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 167 if (IEEE80211_IS_CHAN_FHSS(c)) 168 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 169 if (IEEE80211_IS_CHAN_108A(c)) 170 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 171 if (IEEE80211_IS_CHAN_108G(c)) 172 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 173 if (IEEE80211_IS_CHAN_ST(c)) 174 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 175 if (IEEE80211_IS_CHAN_HALF(c)) 176 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 177 if (IEEE80211_IS_CHAN_QUARTER(c)) 178 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 179 if (IEEE80211_IS_CHAN_HTA(c)) 180 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 181 if (IEEE80211_IS_CHAN_HTG(c)) 182 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 183 } 184 /* initialize candidate channels to all available */ 185 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 186 sizeof(ic->ic_chan_avail)); 187 188 /* sort channel table to allow lookup optimizations */ 189 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 190 191 /* invalidate any previous state */ 192 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 193 ic->ic_prevchan = NULL; 194 ic->ic_csa_newchan = NULL; 195 /* arbitrarily pick the first channel */ 196 ic->ic_curchan = &ic->ic_channels[0]; 197 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 198 199 /* fillin well-known rate sets if driver has not specified */ 200 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 201 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 202 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 203 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 204 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 205 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 206 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 207 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 208 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 209 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 210 211 /* 212 * Setup required information to fill the mcsset field, if driver did 213 * not. Assume a 2T2R setup for historic reasons. 214 */ 215 if (ic->ic_rxstream == 0) 216 ic->ic_rxstream = 2; 217 if (ic->ic_txstream == 0) 218 ic->ic_txstream = 2; 219 220 /* 221 * Set auto mode to reset active channel state and any desired channel. 222 */ 223 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 224 #undef DEFAULTRATES 225 } 226 227 static void 228 null_update_mcast(struct ieee80211com *ic) 229 { 230 231 ic_printf(ic, "need multicast update callback\n"); 232 } 233 234 static void 235 null_update_promisc(struct ieee80211com *ic) 236 { 237 238 ic_printf(ic, "need promiscuous mode update callback\n"); 239 } 240 241 static int 242 null_transmit(struct ifnet *ifp, struct mbuf *m) 243 { 244 m_freem(m); 245 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 246 return EACCES; /* XXX EIO/EPERM? */ 247 } 248 249 static int 250 null_output(struct ifnet *ifp, struct mbuf *m, 251 const struct sockaddr *dst, struct route *ro) 252 { 253 if_printf(ifp, "discard raw packet\n"); 254 return null_transmit(ifp, m); 255 } 256 257 static void 258 null_input(struct ifnet *ifp, struct mbuf *m) 259 { 260 if_printf(ifp, "if_input should not be called\n"); 261 m_freem(m); 262 } 263 264 static void 265 null_update_chw(struct ieee80211com *ic) 266 { 267 268 ic_printf(ic, "%s: need callback\n", __func__); 269 } 270 271 int 272 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 273 { 274 va_list ap; 275 int retval; 276 277 retval = printf("%s: ", ic->ic_name); 278 va_start(ap, fmt); 279 retval += vprintf(fmt, ap); 280 va_end(ap); 281 return (retval); 282 } 283 284 /* 285 * Attach/setup the common net80211 state. Called by 286 * the driver on attach to prior to creating any vap's. 287 */ 288 void 289 ieee80211_ifattach(struct ieee80211com *ic, 290 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 291 { 292 struct ifnet *ifp = ic->ic_ifp; 293 struct sockaddr_dl *sdl; 294 struct ifaddr *ifa; 295 296 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 297 298 IEEE80211_LOCK_INIT(ic, ic->ic_name); 299 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 300 TAILQ_INIT(&ic->ic_vaps); 301 302 /* Create a taskqueue for all state changes */ 303 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 304 taskqueue_thread_enqueue, &ic->ic_tq); 305 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 306 ic->ic_name); 307 ic->ic_ierrors = counter_u64_alloc(M_WAITOK); 308 ic->ic_oerrors = counter_u64_alloc(M_WAITOK); 309 /* 310 * Fill in 802.11 available channel set, mark all 311 * available channels as active, and pick a default 312 * channel if not already specified. 313 */ 314 ieee80211_media_init(ic); 315 316 ic->ic_update_mcast = null_update_mcast; 317 ic->ic_update_promisc = null_update_promisc; 318 ic->ic_update_chw = null_update_chw; 319 320 ic->ic_hash_key = arc4random(); 321 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 322 ic->ic_lintval = ic->ic_bintval; 323 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 324 325 ieee80211_crypto_attach(ic); 326 ieee80211_node_attach(ic); 327 ieee80211_power_attach(ic); 328 ieee80211_proto_attach(ic); 329 #ifdef IEEE80211_SUPPORT_SUPERG 330 ieee80211_superg_attach(ic); 331 #endif 332 ieee80211_ht_attach(ic); 333 ieee80211_scan_attach(ic); 334 ieee80211_regdomain_attach(ic); 335 ieee80211_dfs_attach(ic); 336 337 ieee80211_sysctl_attach(ic); 338 339 ifp->if_addrlen = IEEE80211_ADDR_LEN; 340 ifp->if_hdrlen = 0; 341 342 CURVNET_SET(vnet0); 343 344 if_attach(ifp); 345 346 ifp->if_mtu = IEEE80211_MTU_MAX; 347 ifp->if_broadcastaddr = ieee80211broadcastaddr; 348 ifp->if_output = null_output; 349 ifp->if_input = null_input; /* just in case */ 350 ifp->if_resolvemulti = NULL; /* NB: callers check */ 351 352 ifa = ifaddr_byindex(ifp->if_index); 353 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 354 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 355 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 356 sdl->sdl_alen = IEEE80211_ADDR_LEN; 357 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 358 ifa_free(ifa); 359 360 CURVNET_RESTORE(); 361 } 362 363 /* 364 * Detach net80211 state on device detach. Tear down 365 * all vap's and reclaim all common state prior to the 366 * device state going away. Note we may call back into 367 * driver; it must be prepared for this. 368 */ 369 void 370 ieee80211_ifdetach(struct ieee80211com *ic) 371 { 372 struct ifnet *ifp = ic->ic_ifp; 373 struct ieee80211vap *vap; 374 375 /* 376 * This detaches the main interface, but not the vaps. 377 * Each VAP may be in a separate VIMAGE. 378 */ 379 CURVNET_SET(ifp->if_vnet); 380 if_detach(ifp); 381 CURVNET_RESTORE(); 382 383 /* 384 * The VAP is responsible for setting and clearing 385 * the VIMAGE context. 386 */ 387 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 388 ieee80211_vap_destroy(vap); 389 ieee80211_waitfor_parent(ic); 390 391 ieee80211_sysctl_detach(ic); 392 ieee80211_dfs_detach(ic); 393 ieee80211_regdomain_detach(ic); 394 ieee80211_scan_detach(ic); 395 #ifdef IEEE80211_SUPPORT_SUPERG 396 ieee80211_superg_detach(ic); 397 #endif 398 ieee80211_ht_detach(ic); 399 /* NB: must be called before ieee80211_node_detach */ 400 ieee80211_proto_detach(ic); 401 ieee80211_crypto_detach(ic); 402 ieee80211_power_detach(ic); 403 ieee80211_node_detach(ic); 404 405 /* XXX VNET needed? */ 406 ifmedia_removeall(&ic->ic_media); 407 counter_u64_free(ic->ic_ierrors); 408 counter_u64_free(ic->ic_oerrors); 409 410 taskqueue_free(ic->ic_tq); 411 IEEE80211_TX_LOCK_DESTROY(ic); 412 IEEE80211_LOCK_DESTROY(ic); 413 } 414 415 /* 416 * Default reset method for use with the ioctl support. This 417 * method is invoked after any state change in the 802.11 418 * layer that should be propagated to the hardware but not 419 * require re-initialization of the 802.11 state machine (e.g 420 * rescanning for an ap). We always return ENETRESET which 421 * should cause the driver to re-initialize the device. Drivers 422 * can override this method to implement more optimized support. 423 */ 424 static int 425 default_reset(struct ieee80211vap *vap, u_long cmd) 426 { 427 return ENETRESET; 428 } 429 430 /* 431 * Add underlying device errors to vap errors. 432 */ 433 static uint64_t 434 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 435 { 436 struct ieee80211vap *vap = ifp->if_softc; 437 struct ieee80211com *ic = vap->iv_ic; 438 uint64_t rv; 439 440 rv = if_get_counter_default(ifp, cnt); 441 switch (cnt) { 442 case IFCOUNTER_OERRORS: 443 rv += counter_u64_fetch(ic->ic_oerrors); 444 break; 445 case IFCOUNTER_IERRORS: 446 rv += counter_u64_fetch(ic->ic_ierrors); 447 break; 448 default: 449 break; 450 } 451 452 return (rv); 453 } 454 455 /* 456 * Prepare a vap for use. Drivers use this call to 457 * setup net80211 state in new vap's prior attaching 458 * them with ieee80211_vap_attach (below). 459 */ 460 int 461 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 462 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 463 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 464 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 465 { 466 struct ifnet *ifp; 467 468 ifp = if_alloc(IFT_ETHER); 469 if (ifp == NULL) { 470 ic_printf(ic, "%s: unable to allocate ifnet\n", 471 __func__); 472 return ENOMEM; 473 } 474 if_initname(ifp, name, unit); 475 ifp->if_softc = vap; /* back pointer */ 476 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 477 ifp->if_transmit = ieee80211_vap_transmit; 478 ifp->if_qflush = ieee80211_vap_qflush; 479 ifp->if_ioctl = ieee80211_ioctl; 480 ifp->if_init = ieee80211_init; 481 ifp->if_get_counter = ieee80211_get_counter; 482 483 vap->iv_ifp = ifp; 484 vap->iv_ic = ic; 485 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 486 vap->iv_flags_ext = ic->ic_flags_ext; 487 vap->iv_flags_ven = ic->ic_flags_ven; 488 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 489 vap->iv_htcaps = ic->ic_htcaps; 490 vap->iv_htextcaps = ic->ic_htextcaps; 491 vap->iv_opmode = opmode; 492 vap->iv_caps |= ieee80211_opcap[opmode]; 493 switch (opmode) { 494 case IEEE80211_M_WDS: 495 /* 496 * WDS links must specify the bssid of the far end. 497 * For legacy operation this is a static relationship. 498 * For non-legacy operation the station must associate 499 * and be authorized to pass traffic. Plumbing the 500 * vap to the proper node happens when the vap 501 * transitions to RUN state. 502 */ 503 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 504 vap->iv_flags |= IEEE80211_F_DESBSSID; 505 if (flags & IEEE80211_CLONE_WDSLEGACY) 506 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 507 break; 508 #ifdef IEEE80211_SUPPORT_TDMA 509 case IEEE80211_M_AHDEMO: 510 if (flags & IEEE80211_CLONE_TDMA) { 511 /* NB: checked before clone operation allowed */ 512 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 513 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 514 /* 515 * Propagate TDMA capability to mark vap; this 516 * cannot be removed and is used to distinguish 517 * regular ahdemo operation from ahdemo+tdma. 518 */ 519 vap->iv_caps |= IEEE80211_C_TDMA; 520 } 521 break; 522 #endif 523 default: 524 break; 525 } 526 /* auto-enable s/w beacon miss support */ 527 if (flags & IEEE80211_CLONE_NOBEACONS) 528 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 529 /* auto-generated or user supplied MAC address */ 530 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 531 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 532 /* 533 * Enable various functionality by default if we're 534 * capable; the driver can override us if it knows better. 535 */ 536 if (vap->iv_caps & IEEE80211_C_WME) 537 vap->iv_flags |= IEEE80211_F_WME; 538 if (vap->iv_caps & IEEE80211_C_BURST) 539 vap->iv_flags |= IEEE80211_F_BURST; 540 /* NB: bg scanning only makes sense for station mode right now */ 541 if (vap->iv_opmode == IEEE80211_M_STA && 542 (vap->iv_caps & IEEE80211_C_BGSCAN)) 543 vap->iv_flags |= IEEE80211_F_BGSCAN; 544 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 545 /* NB: DFS support only makes sense for ap mode right now */ 546 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 547 (vap->iv_caps & IEEE80211_C_DFS)) 548 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 549 550 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 551 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 552 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 553 /* 554 * Install a default reset method for the ioctl support; 555 * the driver can override this. 556 */ 557 vap->iv_reset = default_reset; 558 559 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 560 561 ieee80211_sysctl_vattach(vap); 562 ieee80211_crypto_vattach(vap); 563 ieee80211_node_vattach(vap); 564 ieee80211_power_vattach(vap); 565 ieee80211_proto_vattach(vap); 566 #ifdef IEEE80211_SUPPORT_SUPERG 567 ieee80211_superg_vattach(vap); 568 #endif 569 ieee80211_ht_vattach(vap); 570 ieee80211_scan_vattach(vap); 571 ieee80211_regdomain_vattach(vap); 572 ieee80211_radiotap_vattach(vap); 573 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 574 575 return 0; 576 } 577 578 /* 579 * Activate a vap. State should have been prepared with a 580 * call to ieee80211_vap_setup and by the driver. On return 581 * from this call the vap is ready for use. 582 */ 583 int 584 ieee80211_vap_attach(struct ieee80211vap *vap, 585 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 586 { 587 struct ifnet *ifp = vap->iv_ifp; 588 struct ieee80211com *ic = vap->iv_ic; 589 struct ifmediareq imr; 590 int maxrate; 591 592 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 593 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 594 __func__, ieee80211_opmode_name[vap->iv_opmode], 595 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 596 597 /* 598 * Do late attach work that cannot happen until after 599 * the driver has had a chance to override defaults. 600 */ 601 ieee80211_node_latevattach(vap); 602 ieee80211_power_latevattach(vap); 603 604 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 605 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 606 ieee80211_media_status(ifp, &imr); 607 /* NB: strip explicit mode; we're actually in autoselect */ 608 ifmedia_set(&vap->iv_media, 609 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 610 if (maxrate) 611 ifp->if_baudrate = IF_Mbps(maxrate); 612 613 ether_ifattach(ifp, vap->iv_myaddr); 614 /* hook output method setup by ether_ifattach */ 615 vap->iv_output = ifp->if_output; 616 ifp->if_output = ieee80211_output; 617 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 618 619 IEEE80211_LOCK(ic); 620 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 621 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 622 #ifdef IEEE80211_SUPPORT_SUPERG 623 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 624 #endif 625 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 626 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 627 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 628 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 629 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 630 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 631 IEEE80211_UNLOCK(ic); 632 633 return 1; 634 } 635 636 /* 637 * Tear down vap state and reclaim the ifnet. 638 * The driver is assumed to have prepared for 639 * this; e.g. by turning off interrupts for the 640 * underlying device. 641 */ 642 void 643 ieee80211_vap_detach(struct ieee80211vap *vap) 644 { 645 struct ieee80211com *ic = vap->iv_ic; 646 struct ifnet *ifp = vap->iv_ifp; 647 648 CURVNET_SET(ifp->if_vnet); 649 650 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 651 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 652 653 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 654 ether_ifdetach(ifp); 655 656 ieee80211_stop(vap); 657 658 /* 659 * Flush any deferred vap tasks. 660 */ 661 ieee80211_draintask(ic, &vap->iv_nstate_task); 662 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 663 664 /* XXX band-aid until ifnet handles this for us */ 665 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 666 667 IEEE80211_LOCK(ic); 668 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 669 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 670 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 671 #ifdef IEEE80211_SUPPORT_SUPERG 672 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 673 #endif 674 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 675 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 676 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 677 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 678 /* NB: this handles the bpfdetach done below */ 679 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 680 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 681 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 682 IEEE80211_UNLOCK(ic); 683 684 ifmedia_removeall(&vap->iv_media); 685 686 ieee80211_radiotap_vdetach(vap); 687 ieee80211_regdomain_vdetach(vap); 688 ieee80211_scan_vdetach(vap); 689 #ifdef IEEE80211_SUPPORT_SUPERG 690 ieee80211_superg_vdetach(vap); 691 #endif 692 ieee80211_ht_vdetach(vap); 693 /* NB: must be before ieee80211_node_vdetach */ 694 ieee80211_proto_vdetach(vap); 695 ieee80211_crypto_vdetach(vap); 696 ieee80211_power_vdetach(vap); 697 ieee80211_node_vdetach(vap); 698 ieee80211_sysctl_vdetach(vap); 699 700 if_free(ifp); 701 702 CURVNET_RESTORE(); 703 } 704 705 /* 706 * Synchronize flag bit state in the parent ifnet structure 707 * according to the state of all vap ifnet's. This is used, 708 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 709 */ 710 void 711 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 712 { 713 struct ifnet *ifp = ic->ic_ifp; 714 struct ieee80211vap *vap; 715 int bit, oflags; 716 717 IEEE80211_LOCK_ASSERT(ic); 718 719 bit = 0; 720 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 721 if (vap->iv_ifp->if_flags & flag) { 722 /* 723 * XXX the bridge sets PROMISC but we don't want to 724 * enable it on the device, discard here so all the 725 * drivers don't need to special-case it 726 */ 727 if (flag == IFF_PROMISC && 728 !(vap->iv_opmode == IEEE80211_M_MONITOR || 729 (vap->iv_opmode == IEEE80211_M_AHDEMO && 730 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 731 continue; 732 bit = 1; 733 break; 734 } 735 oflags = ifp->if_flags; 736 if (bit) 737 ifp->if_flags |= flag; 738 else 739 ifp->if_flags &= ~flag; 740 if ((ifp->if_flags ^ oflags) & flag) { 741 /* XXX should we return 1/0 and let caller do this? */ 742 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 743 if (flag == IFF_PROMISC) 744 ieee80211_runtask(ic, &ic->ic_promisc_task); 745 else if (flag == IFF_ALLMULTI) 746 ieee80211_runtask(ic, &ic->ic_mcast_task); 747 } 748 } 749 } 750 751 /* 752 * Synchronize flag bit state in the com structure 753 * according to the state of all vap's. This is used, 754 * for example, to handle state changes via ioctls. 755 */ 756 static void 757 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 758 { 759 struct ieee80211vap *vap; 760 int bit; 761 762 IEEE80211_LOCK_ASSERT(ic); 763 764 bit = 0; 765 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 766 if (vap->iv_flags & flag) { 767 bit = 1; 768 break; 769 } 770 if (bit) 771 ic->ic_flags |= flag; 772 else 773 ic->ic_flags &= ~flag; 774 } 775 776 void 777 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 778 { 779 struct ieee80211com *ic = vap->iv_ic; 780 781 IEEE80211_LOCK(ic); 782 if (flag < 0) { 783 flag = -flag; 784 vap->iv_flags &= ~flag; 785 } else 786 vap->iv_flags |= flag; 787 ieee80211_syncflag_locked(ic, flag); 788 IEEE80211_UNLOCK(ic); 789 } 790 791 /* 792 * Synchronize flags_ht bit state in the com structure 793 * according to the state of all vap's. This is used, 794 * for example, to handle state changes via ioctls. 795 */ 796 static void 797 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 798 { 799 struct ieee80211vap *vap; 800 int bit; 801 802 IEEE80211_LOCK_ASSERT(ic); 803 804 bit = 0; 805 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 806 if (vap->iv_flags_ht & flag) { 807 bit = 1; 808 break; 809 } 810 if (bit) 811 ic->ic_flags_ht |= flag; 812 else 813 ic->ic_flags_ht &= ~flag; 814 } 815 816 void 817 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 818 { 819 struct ieee80211com *ic = vap->iv_ic; 820 821 IEEE80211_LOCK(ic); 822 if (flag < 0) { 823 flag = -flag; 824 vap->iv_flags_ht &= ~flag; 825 } else 826 vap->iv_flags_ht |= flag; 827 ieee80211_syncflag_ht_locked(ic, flag); 828 IEEE80211_UNLOCK(ic); 829 } 830 831 /* 832 * Synchronize flags_ext bit state in the com structure 833 * according to the state of all vap's. This is used, 834 * for example, to handle state changes via ioctls. 835 */ 836 static void 837 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 838 { 839 struct ieee80211vap *vap; 840 int bit; 841 842 IEEE80211_LOCK_ASSERT(ic); 843 844 bit = 0; 845 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 846 if (vap->iv_flags_ext & flag) { 847 bit = 1; 848 break; 849 } 850 if (bit) 851 ic->ic_flags_ext |= flag; 852 else 853 ic->ic_flags_ext &= ~flag; 854 } 855 856 void 857 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 858 { 859 struct ieee80211com *ic = vap->iv_ic; 860 861 IEEE80211_LOCK(ic); 862 if (flag < 0) { 863 flag = -flag; 864 vap->iv_flags_ext &= ~flag; 865 } else 866 vap->iv_flags_ext |= flag; 867 ieee80211_syncflag_ext_locked(ic, flag); 868 IEEE80211_UNLOCK(ic); 869 } 870 871 static __inline int 872 mapgsm(u_int freq, u_int flags) 873 { 874 freq *= 10; 875 if (flags & IEEE80211_CHAN_QUARTER) 876 freq += 5; 877 else if (flags & IEEE80211_CHAN_HALF) 878 freq += 10; 879 else 880 freq += 20; 881 /* NB: there is no 907/20 wide but leave room */ 882 return (freq - 906*10) / 5; 883 } 884 885 static __inline int 886 mappsb(u_int freq, u_int flags) 887 { 888 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 889 } 890 891 /* 892 * Convert MHz frequency to IEEE channel number. 893 */ 894 int 895 ieee80211_mhz2ieee(u_int freq, u_int flags) 896 { 897 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 898 if (flags & IEEE80211_CHAN_GSM) 899 return mapgsm(freq, flags); 900 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 901 if (freq == 2484) 902 return 14; 903 if (freq < 2484) 904 return ((int) freq - 2407) / 5; 905 else 906 return 15 + ((freq - 2512) / 20); 907 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 908 if (freq <= 5000) { 909 /* XXX check regdomain? */ 910 if (IS_FREQ_IN_PSB(freq)) 911 return mappsb(freq, flags); 912 return (freq - 4000) / 5; 913 } else 914 return (freq - 5000) / 5; 915 } else { /* either, guess */ 916 if (freq == 2484) 917 return 14; 918 if (freq < 2484) { 919 if (907 <= freq && freq <= 922) 920 return mapgsm(freq, flags); 921 return ((int) freq - 2407) / 5; 922 } 923 if (freq < 5000) { 924 if (IS_FREQ_IN_PSB(freq)) 925 return mappsb(freq, flags); 926 else if (freq > 4900) 927 return (freq - 4000) / 5; 928 else 929 return 15 + ((freq - 2512) / 20); 930 } 931 return (freq - 5000) / 5; 932 } 933 #undef IS_FREQ_IN_PSB 934 } 935 936 /* 937 * Convert channel to IEEE channel number. 938 */ 939 int 940 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 941 { 942 if (c == NULL) { 943 ic_printf(ic, "invalid channel (NULL)\n"); 944 return 0; /* XXX */ 945 } 946 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 947 } 948 949 /* 950 * Convert IEEE channel number to MHz frequency. 951 */ 952 u_int 953 ieee80211_ieee2mhz(u_int chan, u_int flags) 954 { 955 if (flags & IEEE80211_CHAN_GSM) 956 return 907 + 5 * (chan / 10); 957 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 958 if (chan == 14) 959 return 2484; 960 if (chan < 14) 961 return 2407 + chan*5; 962 else 963 return 2512 + ((chan-15)*20); 964 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 965 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 966 chan -= 37; 967 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 968 } 969 return 5000 + (chan*5); 970 } else { /* either, guess */ 971 /* XXX can't distinguish PSB+GSM channels */ 972 if (chan == 14) 973 return 2484; 974 if (chan < 14) /* 0-13 */ 975 return 2407 + chan*5; 976 if (chan < 27) /* 15-26 */ 977 return 2512 + ((chan-15)*20); 978 return 5000 + (chan*5); 979 } 980 } 981 982 /* 983 * Locate a channel given a frequency+flags. We cache 984 * the previous lookup to optimize switching between two 985 * channels--as happens with dynamic turbo. 986 */ 987 struct ieee80211_channel * 988 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 989 { 990 struct ieee80211_channel *c; 991 int i; 992 993 flags &= IEEE80211_CHAN_ALLTURBO; 994 c = ic->ic_prevchan; 995 if (c != NULL && c->ic_freq == freq && 996 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 997 return c; 998 /* brute force search */ 999 for (i = 0; i < ic->ic_nchans; i++) { 1000 c = &ic->ic_channels[i]; 1001 if (c->ic_freq == freq && 1002 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1003 return c; 1004 } 1005 return NULL; 1006 } 1007 1008 /* 1009 * Locate a channel given a channel number+flags. We cache 1010 * the previous lookup to optimize switching between two 1011 * channels--as happens with dynamic turbo. 1012 */ 1013 struct ieee80211_channel * 1014 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1015 { 1016 struct ieee80211_channel *c; 1017 int i; 1018 1019 flags &= IEEE80211_CHAN_ALLTURBO; 1020 c = ic->ic_prevchan; 1021 if (c != NULL && c->ic_ieee == ieee && 1022 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1023 return c; 1024 /* brute force search */ 1025 for (i = 0; i < ic->ic_nchans; i++) { 1026 c = &ic->ic_channels[i]; 1027 if (c->ic_ieee == ieee && 1028 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1029 return c; 1030 } 1031 return NULL; 1032 } 1033 1034 /* 1035 * Lookup a channel suitable for the given rx status. 1036 * 1037 * This is used to find a channel for a frame (eg beacon, probe 1038 * response) based purely on the received PHY information. 1039 * 1040 * For now it tries to do it based on R_FREQ / R_IEEE. 1041 * This is enough for 11bg and 11a (and thus 11ng/11na) 1042 * but it will not be enough for GSM, PSB channels and the 1043 * like. It also doesn't know about legacy-turbog and 1044 * legacy-turbo modes, which some offload NICs actually 1045 * support in weird ways. 1046 * 1047 * Takes the ic and rxstatus; returns the channel or NULL 1048 * if not found. 1049 * 1050 * XXX TODO: Add support for that when the need arises. 1051 */ 1052 struct ieee80211_channel * 1053 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1054 const struct ieee80211_rx_stats *rxs) 1055 { 1056 struct ieee80211com *ic = vap->iv_ic; 1057 uint32_t flags; 1058 struct ieee80211_channel *c; 1059 1060 if (rxs == NULL) 1061 return (NULL); 1062 1063 /* 1064 * Strictly speaking we only use freq for now, 1065 * however later on we may wish to just store 1066 * the ieee for verification. 1067 */ 1068 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1069 return (NULL); 1070 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1071 return (NULL); 1072 1073 /* 1074 * If the rx status contains a valid ieee/freq, then 1075 * ensure we populate the correct channel information 1076 * in rxchan before passing it up to the scan infrastructure. 1077 * Offload NICs will pass up beacons from all channels 1078 * during background scans. 1079 */ 1080 1081 /* Determine a band */ 1082 /* XXX should be done by the driver? */ 1083 if (rxs->c_freq < 3000) { 1084 flags = IEEE80211_CHAN_G; 1085 } else { 1086 flags = IEEE80211_CHAN_A; 1087 } 1088 1089 /* Channel lookup */ 1090 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1091 1092 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1093 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1094 __func__, 1095 (int) rxs->c_freq, 1096 (int) rxs->c_ieee, 1097 flags, 1098 c); 1099 1100 return (c); 1101 } 1102 1103 static void 1104 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1105 { 1106 #define ADD(_ic, _s, _o) \ 1107 ifmedia_add(media, \ 1108 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1109 static const u_int mopts[IEEE80211_MODE_MAX] = { 1110 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1111 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1112 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1113 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1114 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1115 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1116 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1117 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1118 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1119 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1120 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1121 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1122 }; 1123 u_int mopt; 1124 1125 mopt = mopts[mode]; 1126 if (addsta) 1127 ADD(ic, mword, mopt); /* STA mode has no cap */ 1128 if (caps & IEEE80211_C_IBSS) 1129 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1130 if (caps & IEEE80211_C_HOSTAP) 1131 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1132 if (caps & IEEE80211_C_AHDEMO) 1133 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1134 if (caps & IEEE80211_C_MONITOR) 1135 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1136 if (caps & IEEE80211_C_WDS) 1137 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1138 if (caps & IEEE80211_C_MBSS) 1139 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1140 #undef ADD 1141 } 1142 1143 /* 1144 * Setup the media data structures according to the channel and 1145 * rate tables. 1146 */ 1147 static int 1148 ieee80211_media_setup(struct ieee80211com *ic, 1149 struct ifmedia *media, int caps, int addsta, 1150 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1151 { 1152 int i, j, rate, maxrate, mword, r; 1153 enum ieee80211_phymode mode; 1154 const struct ieee80211_rateset *rs; 1155 struct ieee80211_rateset allrates; 1156 1157 /* 1158 * Fill in media characteristics. 1159 */ 1160 ifmedia_init(media, 0, media_change, media_stat); 1161 maxrate = 0; 1162 /* 1163 * Add media for legacy operating modes. 1164 */ 1165 memset(&allrates, 0, sizeof(allrates)); 1166 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1167 if (isclr(ic->ic_modecaps, mode)) 1168 continue; 1169 addmedia(media, caps, addsta, mode, IFM_AUTO); 1170 if (mode == IEEE80211_MODE_AUTO) 1171 continue; 1172 rs = &ic->ic_sup_rates[mode]; 1173 for (i = 0; i < rs->rs_nrates; i++) { 1174 rate = rs->rs_rates[i]; 1175 mword = ieee80211_rate2media(ic, rate, mode); 1176 if (mword == 0) 1177 continue; 1178 addmedia(media, caps, addsta, mode, mword); 1179 /* 1180 * Add legacy rate to the collection of all rates. 1181 */ 1182 r = rate & IEEE80211_RATE_VAL; 1183 for (j = 0; j < allrates.rs_nrates; j++) 1184 if (allrates.rs_rates[j] == r) 1185 break; 1186 if (j == allrates.rs_nrates) { 1187 /* unique, add to the set */ 1188 allrates.rs_rates[j] = r; 1189 allrates.rs_nrates++; 1190 } 1191 rate = (rate & IEEE80211_RATE_VAL) / 2; 1192 if (rate > maxrate) 1193 maxrate = rate; 1194 } 1195 } 1196 for (i = 0; i < allrates.rs_nrates; i++) { 1197 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1198 IEEE80211_MODE_AUTO); 1199 if (mword == 0) 1200 continue; 1201 /* NB: remove media options from mword */ 1202 addmedia(media, caps, addsta, 1203 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1204 } 1205 /* 1206 * Add HT/11n media. Note that we do not have enough 1207 * bits in the media subtype to express the MCS so we 1208 * use a "placeholder" media subtype and any fixed MCS 1209 * must be specified with a different mechanism. 1210 */ 1211 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1212 if (isclr(ic->ic_modecaps, mode)) 1213 continue; 1214 addmedia(media, caps, addsta, mode, IFM_AUTO); 1215 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1216 } 1217 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1218 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1219 addmedia(media, caps, addsta, 1220 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1221 i = ic->ic_txstream * 8 - 1; 1222 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1223 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1224 rate = ieee80211_htrates[i].ht40_rate_400ns; 1225 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1226 rate = ieee80211_htrates[i].ht40_rate_800ns; 1227 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1228 rate = ieee80211_htrates[i].ht20_rate_400ns; 1229 else 1230 rate = ieee80211_htrates[i].ht20_rate_800ns; 1231 if (rate > maxrate) 1232 maxrate = rate; 1233 } 1234 return maxrate; 1235 } 1236 1237 void 1238 ieee80211_media_init(struct ieee80211com *ic) 1239 { 1240 struct ifnet *ifp = ic->ic_ifp; 1241 int maxrate; 1242 1243 /* NB: this works because the structure is initialized to zero */ 1244 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1245 /* 1246 * We are re-initializing the channel list; clear 1247 * the existing media state as the media routines 1248 * don't suppress duplicates. 1249 */ 1250 ifmedia_removeall(&ic->ic_media); 1251 } 1252 ieee80211_chan_init(ic); 1253 1254 /* 1255 * Recalculate media settings in case new channel list changes 1256 * the set of available modes. 1257 */ 1258 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1259 ieee80211com_media_change, ieee80211com_media_status); 1260 /* NB: strip explicit mode; we're actually in autoselect */ 1261 ifmedia_set(&ic->ic_media, 1262 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1263 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1264 if (maxrate) 1265 ifp->if_baudrate = IF_Mbps(maxrate); 1266 1267 /* XXX need to propagate new media settings to vap's */ 1268 } 1269 1270 /* XXX inline or eliminate? */ 1271 const struct ieee80211_rateset * 1272 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1273 { 1274 /* XXX does this work for 11ng basic rates? */ 1275 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1276 } 1277 1278 void 1279 ieee80211_announce(struct ieee80211com *ic) 1280 { 1281 int i, rate, mword; 1282 enum ieee80211_phymode mode; 1283 const struct ieee80211_rateset *rs; 1284 1285 /* NB: skip AUTO since it has no rates */ 1286 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1287 if (isclr(ic->ic_modecaps, mode)) 1288 continue; 1289 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 1290 rs = &ic->ic_sup_rates[mode]; 1291 for (i = 0; i < rs->rs_nrates; i++) { 1292 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1293 if (mword == 0) 1294 continue; 1295 rate = ieee80211_media2rate(mword); 1296 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1297 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1298 } 1299 printf("\n"); 1300 } 1301 ieee80211_ht_announce(ic); 1302 } 1303 1304 void 1305 ieee80211_announce_channels(struct ieee80211com *ic) 1306 { 1307 const struct ieee80211_channel *c; 1308 char type; 1309 int i, cw; 1310 1311 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1312 for (i = 0; i < ic->ic_nchans; i++) { 1313 c = &ic->ic_channels[i]; 1314 if (IEEE80211_IS_CHAN_ST(c)) 1315 type = 'S'; 1316 else if (IEEE80211_IS_CHAN_108A(c)) 1317 type = 'T'; 1318 else if (IEEE80211_IS_CHAN_108G(c)) 1319 type = 'G'; 1320 else if (IEEE80211_IS_CHAN_HT(c)) 1321 type = 'n'; 1322 else if (IEEE80211_IS_CHAN_A(c)) 1323 type = 'a'; 1324 else if (IEEE80211_IS_CHAN_ANYG(c)) 1325 type = 'g'; 1326 else if (IEEE80211_IS_CHAN_B(c)) 1327 type = 'b'; 1328 else 1329 type = 'f'; 1330 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1331 cw = 40; 1332 else if (IEEE80211_IS_CHAN_HALF(c)) 1333 cw = 10; 1334 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1335 cw = 5; 1336 else 1337 cw = 20; 1338 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1339 , c->ic_ieee, c->ic_freq, type 1340 , cw 1341 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1342 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1343 , c->ic_maxregpower 1344 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1345 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1346 ); 1347 } 1348 } 1349 1350 static int 1351 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1352 { 1353 switch (IFM_MODE(ime->ifm_media)) { 1354 case IFM_IEEE80211_11A: 1355 *mode = IEEE80211_MODE_11A; 1356 break; 1357 case IFM_IEEE80211_11B: 1358 *mode = IEEE80211_MODE_11B; 1359 break; 1360 case IFM_IEEE80211_11G: 1361 *mode = IEEE80211_MODE_11G; 1362 break; 1363 case IFM_IEEE80211_FH: 1364 *mode = IEEE80211_MODE_FH; 1365 break; 1366 case IFM_IEEE80211_11NA: 1367 *mode = IEEE80211_MODE_11NA; 1368 break; 1369 case IFM_IEEE80211_11NG: 1370 *mode = IEEE80211_MODE_11NG; 1371 break; 1372 case IFM_AUTO: 1373 *mode = IEEE80211_MODE_AUTO; 1374 break; 1375 default: 1376 return 0; 1377 } 1378 /* 1379 * Turbo mode is an ``option''. 1380 * XXX does not apply to AUTO 1381 */ 1382 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1383 if (*mode == IEEE80211_MODE_11A) { 1384 if (flags & IEEE80211_F_TURBOP) 1385 *mode = IEEE80211_MODE_TURBO_A; 1386 else 1387 *mode = IEEE80211_MODE_STURBO_A; 1388 } else if (*mode == IEEE80211_MODE_11G) 1389 *mode = IEEE80211_MODE_TURBO_G; 1390 else 1391 return 0; 1392 } 1393 /* XXX HT40 +/- */ 1394 return 1; 1395 } 1396 1397 /* 1398 * Handle a media change request on the underlying interface. 1399 */ 1400 int 1401 ieee80211com_media_change(struct ifnet *ifp) 1402 { 1403 return EINVAL; 1404 } 1405 1406 /* 1407 * Handle a media change request on the vap interface. 1408 */ 1409 int 1410 ieee80211_media_change(struct ifnet *ifp) 1411 { 1412 struct ieee80211vap *vap = ifp->if_softc; 1413 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1414 uint16_t newmode; 1415 1416 if (!media2mode(ime, vap->iv_flags, &newmode)) 1417 return EINVAL; 1418 if (vap->iv_des_mode != newmode) { 1419 vap->iv_des_mode = newmode; 1420 /* XXX kick state machine if up+running */ 1421 } 1422 return 0; 1423 } 1424 1425 /* 1426 * Common code to calculate the media status word 1427 * from the operating mode and channel state. 1428 */ 1429 static int 1430 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1431 { 1432 int status; 1433 1434 status = IFM_IEEE80211; 1435 switch (opmode) { 1436 case IEEE80211_M_STA: 1437 break; 1438 case IEEE80211_M_IBSS: 1439 status |= IFM_IEEE80211_ADHOC; 1440 break; 1441 case IEEE80211_M_HOSTAP: 1442 status |= IFM_IEEE80211_HOSTAP; 1443 break; 1444 case IEEE80211_M_MONITOR: 1445 status |= IFM_IEEE80211_MONITOR; 1446 break; 1447 case IEEE80211_M_AHDEMO: 1448 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1449 break; 1450 case IEEE80211_M_WDS: 1451 status |= IFM_IEEE80211_WDS; 1452 break; 1453 case IEEE80211_M_MBSS: 1454 status |= IFM_IEEE80211_MBSS; 1455 break; 1456 } 1457 if (IEEE80211_IS_CHAN_HTA(chan)) { 1458 status |= IFM_IEEE80211_11NA; 1459 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1460 status |= IFM_IEEE80211_11NG; 1461 } else if (IEEE80211_IS_CHAN_A(chan)) { 1462 status |= IFM_IEEE80211_11A; 1463 } else if (IEEE80211_IS_CHAN_B(chan)) { 1464 status |= IFM_IEEE80211_11B; 1465 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1466 status |= IFM_IEEE80211_11G; 1467 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1468 status |= IFM_IEEE80211_FH; 1469 } 1470 /* XXX else complain? */ 1471 1472 if (IEEE80211_IS_CHAN_TURBO(chan)) 1473 status |= IFM_IEEE80211_TURBO; 1474 #if 0 1475 if (IEEE80211_IS_CHAN_HT20(chan)) 1476 status |= IFM_IEEE80211_HT20; 1477 if (IEEE80211_IS_CHAN_HT40(chan)) 1478 status |= IFM_IEEE80211_HT40; 1479 #endif 1480 return status; 1481 } 1482 1483 static void 1484 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1485 { 1486 struct ieee80211com *ic = ifp->if_l2com; 1487 struct ieee80211vap *vap; 1488 1489 imr->ifm_status = IFM_AVALID; 1490 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1491 if (vap->iv_ifp->if_flags & IFF_UP) { 1492 imr->ifm_status |= IFM_ACTIVE; 1493 break; 1494 } 1495 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1496 if (imr->ifm_status & IFM_ACTIVE) 1497 imr->ifm_current = imr->ifm_active; 1498 } 1499 1500 void 1501 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1502 { 1503 struct ieee80211vap *vap = ifp->if_softc; 1504 struct ieee80211com *ic = vap->iv_ic; 1505 enum ieee80211_phymode mode; 1506 1507 imr->ifm_status = IFM_AVALID; 1508 /* 1509 * NB: use the current channel's mode to lock down a xmit 1510 * rate only when running; otherwise we may have a mismatch 1511 * in which case the rate will not be convertible. 1512 */ 1513 if (vap->iv_state == IEEE80211_S_RUN || 1514 vap->iv_state == IEEE80211_S_SLEEP) { 1515 imr->ifm_status |= IFM_ACTIVE; 1516 mode = ieee80211_chan2mode(ic->ic_curchan); 1517 } else 1518 mode = IEEE80211_MODE_AUTO; 1519 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1520 /* 1521 * Calculate a current rate if possible. 1522 */ 1523 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1524 /* 1525 * A fixed rate is set, report that. 1526 */ 1527 imr->ifm_active |= ieee80211_rate2media(ic, 1528 vap->iv_txparms[mode].ucastrate, mode); 1529 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1530 /* 1531 * In station mode report the current transmit rate. 1532 */ 1533 imr->ifm_active |= ieee80211_rate2media(ic, 1534 vap->iv_bss->ni_txrate, mode); 1535 } else 1536 imr->ifm_active |= IFM_AUTO; 1537 if (imr->ifm_status & IFM_ACTIVE) 1538 imr->ifm_current = imr->ifm_active; 1539 } 1540 1541 /* 1542 * Set the current phy mode and recalculate the active channel 1543 * set based on the available channels for this mode. Also 1544 * select a new default/current channel if the current one is 1545 * inappropriate for this mode. 1546 */ 1547 int 1548 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1549 { 1550 /* 1551 * Adjust basic rates in 11b/11g supported rate set. 1552 * Note that if operating on a hal/quarter rate channel 1553 * this is a noop as those rates sets are different 1554 * and used instead. 1555 */ 1556 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1557 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1558 1559 ic->ic_curmode = mode; 1560 ieee80211_reset_erp(ic); /* reset ERP state */ 1561 1562 return 0; 1563 } 1564 1565 /* 1566 * Return the phy mode for with the specified channel. 1567 */ 1568 enum ieee80211_phymode 1569 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1570 { 1571 1572 if (IEEE80211_IS_CHAN_HTA(chan)) 1573 return IEEE80211_MODE_11NA; 1574 else if (IEEE80211_IS_CHAN_HTG(chan)) 1575 return IEEE80211_MODE_11NG; 1576 else if (IEEE80211_IS_CHAN_108G(chan)) 1577 return IEEE80211_MODE_TURBO_G; 1578 else if (IEEE80211_IS_CHAN_ST(chan)) 1579 return IEEE80211_MODE_STURBO_A; 1580 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1581 return IEEE80211_MODE_TURBO_A; 1582 else if (IEEE80211_IS_CHAN_HALF(chan)) 1583 return IEEE80211_MODE_HALF; 1584 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1585 return IEEE80211_MODE_QUARTER; 1586 else if (IEEE80211_IS_CHAN_A(chan)) 1587 return IEEE80211_MODE_11A; 1588 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1589 return IEEE80211_MODE_11G; 1590 else if (IEEE80211_IS_CHAN_B(chan)) 1591 return IEEE80211_MODE_11B; 1592 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1593 return IEEE80211_MODE_FH; 1594 1595 /* NB: should not get here */ 1596 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1597 __func__, chan->ic_freq, chan->ic_flags); 1598 return IEEE80211_MODE_11B; 1599 } 1600 1601 struct ratemedia { 1602 u_int match; /* rate + mode */ 1603 u_int media; /* if_media rate */ 1604 }; 1605 1606 static int 1607 findmedia(const struct ratemedia rates[], int n, u_int match) 1608 { 1609 int i; 1610 1611 for (i = 0; i < n; i++) 1612 if (rates[i].match == match) 1613 return rates[i].media; 1614 return IFM_AUTO; 1615 } 1616 1617 /* 1618 * Convert IEEE80211 rate value to ifmedia subtype. 1619 * Rate is either a legacy rate in units of 0.5Mbps 1620 * or an MCS index. 1621 */ 1622 int 1623 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1624 { 1625 static const struct ratemedia rates[] = { 1626 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1627 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1628 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1629 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1630 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1631 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1632 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1633 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1634 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1635 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1636 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1637 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1638 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1639 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1640 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1641 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1642 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1643 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1644 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1645 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1646 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1647 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1648 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1649 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1650 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1651 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1652 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1653 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1654 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1655 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1656 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1657 }; 1658 static const struct ratemedia htrates[] = { 1659 { 0, IFM_IEEE80211_MCS }, 1660 { 1, IFM_IEEE80211_MCS }, 1661 { 2, IFM_IEEE80211_MCS }, 1662 { 3, IFM_IEEE80211_MCS }, 1663 { 4, IFM_IEEE80211_MCS }, 1664 { 5, IFM_IEEE80211_MCS }, 1665 { 6, IFM_IEEE80211_MCS }, 1666 { 7, IFM_IEEE80211_MCS }, 1667 { 8, IFM_IEEE80211_MCS }, 1668 { 9, IFM_IEEE80211_MCS }, 1669 { 10, IFM_IEEE80211_MCS }, 1670 { 11, IFM_IEEE80211_MCS }, 1671 { 12, IFM_IEEE80211_MCS }, 1672 { 13, IFM_IEEE80211_MCS }, 1673 { 14, IFM_IEEE80211_MCS }, 1674 { 15, IFM_IEEE80211_MCS }, 1675 { 16, IFM_IEEE80211_MCS }, 1676 { 17, IFM_IEEE80211_MCS }, 1677 { 18, IFM_IEEE80211_MCS }, 1678 { 19, IFM_IEEE80211_MCS }, 1679 { 20, IFM_IEEE80211_MCS }, 1680 { 21, IFM_IEEE80211_MCS }, 1681 { 22, IFM_IEEE80211_MCS }, 1682 { 23, IFM_IEEE80211_MCS }, 1683 { 24, IFM_IEEE80211_MCS }, 1684 { 25, IFM_IEEE80211_MCS }, 1685 { 26, IFM_IEEE80211_MCS }, 1686 { 27, IFM_IEEE80211_MCS }, 1687 { 28, IFM_IEEE80211_MCS }, 1688 { 29, IFM_IEEE80211_MCS }, 1689 { 30, IFM_IEEE80211_MCS }, 1690 { 31, IFM_IEEE80211_MCS }, 1691 { 32, IFM_IEEE80211_MCS }, 1692 { 33, IFM_IEEE80211_MCS }, 1693 { 34, IFM_IEEE80211_MCS }, 1694 { 35, IFM_IEEE80211_MCS }, 1695 { 36, IFM_IEEE80211_MCS }, 1696 { 37, IFM_IEEE80211_MCS }, 1697 { 38, IFM_IEEE80211_MCS }, 1698 { 39, IFM_IEEE80211_MCS }, 1699 { 40, IFM_IEEE80211_MCS }, 1700 { 41, IFM_IEEE80211_MCS }, 1701 { 42, IFM_IEEE80211_MCS }, 1702 { 43, IFM_IEEE80211_MCS }, 1703 { 44, IFM_IEEE80211_MCS }, 1704 { 45, IFM_IEEE80211_MCS }, 1705 { 46, IFM_IEEE80211_MCS }, 1706 { 47, IFM_IEEE80211_MCS }, 1707 { 48, IFM_IEEE80211_MCS }, 1708 { 49, IFM_IEEE80211_MCS }, 1709 { 50, IFM_IEEE80211_MCS }, 1710 { 51, IFM_IEEE80211_MCS }, 1711 { 52, IFM_IEEE80211_MCS }, 1712 { 53, IFM_IEEE80211_MCS }, 1713 { 54, IFM_IEEE80211_MCS }, 1714 { 55, IFM_IEEE80211_MCS }, 1715 { 56, IFM_IEEE80211_MCS }, 1716 { 57, IFM_IEEE80211_MCS }, 1717 { 58, IFM_IEEE80211_MCS }, 1718 { 59, IFM_IEEE80211_MCS }, 1719 { 60, IFM_IEEE80211_MCS }, 1720 { 61, IFM_IEEE80211_MCS }, 1721 { 62, IFM_IEEE80211_MCS }, 1722 { 63, IFM_IEEE80211_MCS }, 1723 { 64, IFM_IEEE80211_MCS }, 1724 { 65, IFM_IEEE80211_MCS }, 1725 { 66, IFM_IEEE80211_MCS }, 1726 { 67, IFM_IEEE80211_MCS }, 1727 { 68, IFM_IEEE80211_MCS }, 1728 { 69, IFM_IEEE80211_MCS }, 1729 { 70, IFM_IEEE80211_MCS }, 1730 { 71, IFM_IEEE80211_MCS }, 1731 { 72, IFM_IEEE80211_MCS }, 1732 { 73, IFM_IEEE80211_MCS }, 1733 { 74, IFM_IEEE80211_MCS }, 1734 { 75, IFM_IEEE80211_MCS }, 1735 { 76, IFM_IEEE80211_MCS }, 1736 }; 1737 int m; 1738 1739 /* 1740 * Check 11n rates first for match as an MCS. 1741 */ 1742 if (mode == IEEE80211_MODE_11NA) { 1743 if (rate & IEEE80211_RATE_MCS) { 1744 rate &= ~IEEE80211_RATE_MCS; 1745 m = findmedia(htrates, nitems(htrates), rate); 1746 if (m != IFM_AUTO) 1747 return m | IFM_IEEE80211_11NA; 1748 } 1749 } else if (mode == IEEE80211_MODE_11NG) { 1750 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1751 if (rate & IEEE80211_RATE_MCS) { 1752 rate &= ~IEEE80211_RATE_MCS; 1753 m = findmedia(htrates, nitems(htrates), rate); 1754 if (m != IFM_AUTO) 1755 return m | IFM_IEEE80211_11NG; 1756 } 1757 } 1758 rate &= IEEE80211_RATE_VAL; 1759 switch (mode) { 1760 case IEEE80211_MODE_11A: 1761 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1762 case IEEE80211_MODE_QUARTER: 1763 case IEEE80211_MODE_11NA: 1764 case IEEE80211_MODE_TURBO_A: 1765 case IEEE80211_MODE_STURBO_A: 1766 return findmedia(rates, nitems(rates), 1767 rate | IFM_IEEE80211_11A); 1768 case IEEE80211_MODE_11B: 1769 return findmedia(rates, nitems(rates), 1770 rate | IFM_IEEE80211_11B); 1771 case IEEE80211_MODE_FH: 1772 return findmedia(rates, nitems(rates), 1773 rate | IFM_IEEE80211_FH); 1774 case IEEE80211_MODE_AUTO: 1775 /* NB: ic may be NULL for some drivers */ 1776 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1777 return findmedia(rates, nitems(rates), 1778 rate | IFM_IEEE80211_FH); 1779 /* NB: hack, 11g matches both 11b+11a rates */ 1780 /* fall thru... */ 1781 case IEEE80211_MODE_11G: 1782 case IEEE80211_MODE_11NG: 1783 case IEEE80211_MODE_TURBO_G: 1784 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 1785 } 1786 return IFM_AUTO; 1787 } 1788 1789 int 1790 ieee80211_media2rate(int mword) 1791 { 1792 static const int ieeerates[] = { 1793 -1, /* IFM_AUTO */ 1794 0, /* IFM_MANUAL */ 1795 0, /* IFM_NONE */ 1796 2, /* IFM_IEEE80211_FH1 */ 1797 4, /* IFM_IEEE80211_FH2 */ 1798 2, /* IFM_IEEE80211_DS1 */ 1799 4, /* IFM_IEEE80211_DS2 */ 1800 11, /* IFM_IEEE80211_DS5 */ 1801 22, /* IFM_IEEE80211_DS11 */ 1802 44, /* IFM_IEEE80211_DS22 */ 1803 12, /* IFM_IEEE80211_OFDM6 */ 1804 18, /* IFM_IEEE80211_OFDM9 */ 1805 24, /* IFM_IEEE80211_OFDM12 */ 1806 36, /* IFM_IEEE80211_OFDM18 */ 1807 48, /* IFM_IEEE80211_OFDM24 */ 1808 72, /* IFM_IEEE80211_OFDM36 */ 1809 96, /* IFM_IEEE80211_OFDM48 */ 1810 108, /* IFM_IEEE80211_OFDM54 */ 1811 144, /* IFM_IEEE80211_OFDM72 */ 1812 0, /* IFM_IEEE80211_DS354k */ 1813 0, /* IFM_IEEE80211_DS512k */ 1814 6, /* IFM_IEEE80211_OFDM3 */ 1815 9, /* IFM_IEEE80211_OFDM4 */ 1816 54, /* IFM_IEEE80211_OFDM27 */ 1817 -1, /* IFM_IEEE80211_MCS */ 1818 }; 1819 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 1820 ieeerates[IFM_SUBTYPE(mword)] : 0; 1821 } 1822 1823 /* 1824 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1825 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1826 */ 1827 #define mix(a, b, c) \ 1828 do { \ 1829 a -= b; a -= c; a ^= (c >> 13); \ 1830 b -= c; b -= a; b ^= (a << 8); \ 1831 c -= a; c -= b; c ^= (b >> 13); \ 1832 a -= b; a -= c; a ^= (c >> 12); \ 1833 b -= c; b -= a; b ^= (a << 16); \ 1834 c -= a; c -= b; c ^= (b >> 5); \ 1835 a -= b; a -= c; a ^= (c >> 3); \ 1836 b -= c; b -= a; b ^= (a << 10); \ 1837 c -= a; c -= b; c ^= (b >> 15); \ 1838 } while (/*CONSTCOND*/0) 1839 1840 uint32_t 1841 ieee80211_mac_hash(const struct ieee80211com *ic, 1842 const uint8_t addr[IEEE80211_ADDR_LEN]) 1843 { 1844 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1845 1846 b += addr[5] << 8; 1847 b += addr[4]; 1848 a += addr[3] << 24; 1849 a += addr[2] << 16; 1850 a += addr[1] << 8; 1851 a += addr[0]; 1852 1853 mix(a, b, c); 1854 1855 return c; 1856 } 1857 #undef mix 1858 1859 char 1860 ieee80211_channel_type_char(const struct ieee80211_channel *c) 1861 { 1862 if (IEEE80211_IS_CHAN_ST(c)) 1863 return 'S'; 1864 if (IEEE80211_IS_CHAN_108A(c)) 1865 return 'T'; 1866 if (IEEE80211_IS_CHAN_108G(c)) 1867 return 'G'; 1868 if (IEEE80211_IS_CHAN_HT(c)) 1869 return 'n'; 1870 if (IEEE80211_IS_CHAN_A(c)) 1871 return 'a'; 1872 if (IEEE80211_IS_CHAN_ANYG(c)) 1873 return 'g'; 1874 if (IEEE80211_IS_CHAN_B(c)) 1875 return 'b'; 1876 return 'f'; 1877 } 1878