xref: /freebsd/sys/net80211/ieee80211.c (revision 6460ee789ae275bce31f1029cbf6990f530bebcf)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 
40 #include <machine/stdarg.h>
41 
42 #include <net/if.h>
43 #include <net/if_var.h>
44 #include <net/if_dl.h>
45 #include <net/if_media.h>
46 #include <net/if_types.h>
47 #include <net/ethernet.h>
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_regdomain.h>
51 #ifdef IEEE80211_SUPPORT_SUPERG
52 #include <net80211/ieee80211_superg.h>
53 #endif
54 #include <net80211/ieee80211_ratectl.h>
55 
56 #include <net/bpf.h>
57 
58 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
59 	[IEEE80211_MODE_AUTO]	  = "auto",
60 	[IEEE80211_MODE_11A]	  = "11a",
61 	[IEEE80211_MODE_11B]	  = "11b",
62 	[IEEE80211_MODE_11G]	  = "11g",
63 	[IEEE80211_MODE_FH]	  = "FH",
64 	[IEEE80211_MODE_TURBO_A]  = "turboA",
65 	[IEEE80211_MODE_TURBO_G]  = "turboG",
66 	[IEEE80211_MODE_STURBO_A] = "sturboA",
67 	[IEEE80211_MODE_HALF]	  = "half",
68 	[IEEE80211_MODE_QUARTER]  = "quarter",
69 	[IEEE80211_MODE_11NA]	  = "11na",
70 	[IEEE80211_MODE_11NG]	  = "11ng",
71 };
72 /* map ieee80211_opmode to the corresponding capability bit */
73 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
74 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
75 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
76 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
77 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
78 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
79 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
80 #ifdef IEEE80211_SUPPORT_MESH
81 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
82 #endif
83 };
84 
85 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
86 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
87 
88 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
89 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
90 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
91 static	int ieee80211_media_setup(struct ieee80211com *ic,
92 		struct ifmedia *media, int caps, int addsta,
93 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
94 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
95 static	int ieee80211com_media_change(struct ifnet *);
96 static	int media_status(enum ieee80211_opmode,
97 		const struct ieee80211_channel *);
98 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
99 
100 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
101 
102 /*
103  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
104  */
105 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
106 static const struct ieee80211_rateset ieee80211_rateset_11a =
107 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
108 static const struct ieee80211_rateset ieee80211_rateset_half =
109 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
110 static const struct ieee80211_rateset ieee80211_rateset_quarter =
111 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
112 static const struct ieee80211_rateset ieee80211_rateset_11b =
113 	{ 4, { B(2), B(4), B(11), B(22) } };
114 /* NB: OFDM rates are handled specially based on mode */
115 static const struct ieee80211_rateset ieee80211_rateset_11g =
116 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
117 #undef B
118 
119 /*
120  * Fill in 802.11 available channel set, mark
121  * all available channels as active, and pick
122  * a default channel if not already specified.
123  */
124 static void
125 ieee80211_chan_init(struct ieee80211com *ic)
126 {
127 #define	DEFAULTRATES(m, def) do { \
128 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
129 		ic->ic_sup_rates[m] = def; \
130 } while (0)
131 	struct ieee80211_channel *c;
132 	int i;
133 
134 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
135 		("invalid number of channels specified: %u", ic->ic_nchans));
136 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
137 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
138 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
139 	for (i = 0; i < ic->ic_nchans; i++) {
140 		c = &ic->ic_channels[i];
141 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
142 		/*
143 		 * Help drivers that work only with frequencies by filling
144 		 * in IEEE channel #'s if not already calculated.  Note this
145 		 * mimics similar work done in ieee80211_setregdomain when
146 		 * changing regulatory state.
147 		 */
148 		if (c->ic_ieee == 0)
149 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
150 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
151 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
152 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
153 			    c->ic_flags);
154 		/* default max tx power to max regulatory */
155 		if (c->ic_maxpower == 0)
156 			c->ic_maxpower = 2*c->ic_maxregpower;
157 		setbit(ic->ic_chan_avail, c->ic_ieee);
158 		/*
159 		 * Identify mode capabilities.
160 		 */
161 		if (IEEE80211_IS_CHAN_A(c))
162 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
163 		if (IEEE80211_IS_CHAN_B(c))
164 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
165 		if (IEEE80211_IS_CHAN_ANYG(c))
166 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
167 		if (IEEE80211_IS_CHAN_FHSS(c))
168 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
169 		if (IEEE80211_IS_CHAN_108A(c))
170 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
171 		if (IEEE80211_IS_CHAN_108G(c))
172 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
173 		if (IEEE80211_IS_CHAN_ST(c))
174 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
175 		if (IEEE80211_IS_CHAN_HALF(c))
176 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
177 		if (IEEE80211_IS_CHAN_QUARTER(c))
178 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
179 		if (IEEE80211_IS_CHAN_HTA(c))
180 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
181 		if (IEEE80211_IS_CHAN_HTG(c))
182 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
183 	}
184 	/* initialize candidate channels to all available */
185 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
186 		sizeof(ic->ic_chan_avail));
187 
188 	/* sort channel table to allow lookup optimizations */
189 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
190 
191 	/* invalidate any previous state */
192 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
193 	ic->ic_prevchan = NULL;
194 	ic->ic_csa_newchan = NULL;
195 	/* arbitrarily pick the first channel */
196 	ic->ic_curchan = &ic->ic_channels[0];
197 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
198 
199 	/* fillin well-known rate sets if driver has not specified */
200 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
201 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
202 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
203 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
204 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
205 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
207 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
208 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
209 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
210 
211 	/*
212 	 * Setup required information to fill the mcsset field, if driver did
213 	 * not. Assume a 2T2R setup for historic reasons.
214 	 */
215 	if (ic->ic_rxstream == 0)
216 		ic->ic_rxstream = 2;
217 	if (ic->ic_txstream == 0)
218 		ic->ic_txstream = 2;
219 
220 	/*
221 	 * Set auto mode to reset active channel state and any desired channel.
222 	 */
223 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
224 #undef DEFAULTRATES
225 }
226 
227 static void
228 null_update_mcast(struct ieee80211com *ic)
229 {
230 
231 	ic_printf(ic, "need multicast update callback\n");
232 }
233 
234 static void
235 null_update_promisc(struct ieee80211com *ic)
236 {
237 
238 	ic_printf(ic, "need promiscuous mode update callback\n");
239 }
240 
241 static int
242 null_transmit(struct ifnet *ifp, struct mbuf *m)
243 {
244 	m_freem(m);
245 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
246 	return EACCES;		/* XXX EIO/EPERM? */
247 }
248 
249 static int
250 null_output(struct ifnet *ifp, struct mbuf *m,
251 	const struct sockaddr *dst, struct route *ro)
252 {
253 	if_printf(ifp, "discard raw packet\n");
254 	return null_transmit(ifp, m);
255 }
256 
257 static void
258 null_input(struct ifnet *ifp, struct mbuf *m)
259 {
260 	if_printf(ifp, "if_input should not be called\n");
261 	m_freem(m);
262 }
263 
264 static void
265 null_update_chw(struct ieee80211com *ic)
266 {
267 
268 	ic_printf(ic, "%s: need callback\n", __func__);
269 }
270 
271 int
272 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
273 {
274 	va_list ap;
275 	int retval;
276 
277 	retval = printf("%s: ", ic->ic_name);
278 	va_start(ap, fmt);
279 	retval += vprintf(fmt, ap);
280 	va_end(ap);
281 	return (retval);
282 }
283 
284 /*
285  * Attach/setup the common net80211 state.  Called by
286  * the driver on attach to prior to creating any vap's.
287  */
288 void
289 ieee80211_ifattach(struct ieee80211com *ic,
290 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
291 {
292 	struct ifnet *ifp = ic->ic_ifp;
293 	struct sockaddr_dl *sdl;
294 	struct ifaddr *ifa;
295 
296 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
297 
298 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
299 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
300 	TAILQ_INIT(&ic->ic_vaps);
301 
302 	/* Create a taskqueue for all state changes */
303 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
304 	    taskqueue_thread_enqueue, &ic->ic_tq);
305 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
306 	    ic->ic_name);
307 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
308 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
309 	/*
310 	 * Fill in 802.11 available channel set, mark all
311 	 * available channels as active, and pick a default
312 	 * channel if not already specified.
313 	 */
314 	ieee80211_media_init(ic);
315 
316 	ic->ic_update_mcast = null_update_mcast;
317 	ic->ic_update_promisc = null_update_promisc;
318 	ic->ic_update_chw = null_update_chw;
319 
320 	ic->ic_hash_key = arc4random();
321 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
322 	ic->ic_lintval = ic->ic_bintval;
323 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
324 
325 	ieee80211_crypto_attach(ic);
326 	ieee80211_node_attach(ic);
327 	ieee80211_power_attach(ic);
328 	ieee80211_proto_attach(ic);
329 #ifdef IEEE80211_SUPPORT_SUPERG
330 	ieee80211_superg_attach(ic);
331 #endif
332 	ieee80211_ht_attach(ic);
333 	ieee80211_scan_attach(ic);
334 	ieee80211_regdomain_attach(ic);
335 	ieee80211_dfs_attach(ic);
336 
337 	ieee80211_sysctl_attach(ic);
338 
339 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
340 	ifp->if_hdrlen = 0;
341 
342 	CURVNET_SET(vnet0);
343 
344 	if_attach(ifp);
345 
346 	ifp->if_mtu = IEEE80211_MTU_MAX;
347 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
348 	ifp->if_output = null_output;
349 	ifp->if_input = null_input;	/* just in case */
350 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
351 
352 	ifa = ifaddr_byindex(ifp->if_index);
353 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
354 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
355 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
356 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
357 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
358 	ifa_free(ifa);
359 
360 	CURVNET_RESTORE();
361 }
362 
363 /*
364  * Detach net80211 state on device detach.  Tear down
365  * all vap's and reclaim all common state prior to the
366  * device state going away.  Note we may call back into
367  * driver; it must be prepared for this.
368  */
369 void
370 ieee80211_ifdetach(struct ieee80211com *ic)
371 {
372 	struct ifnet *ifp = ic->ic_ifp;
373 	struct ieee80211vap *vap;
374 
375 	/*
376 	 * This detaches the main interface, but not the vaps.
377 	 * Each VAP may be in a separate VIMAGE.
378 	 */
379 	CURVNET_SET(ifp->if_vnet);
380 	if_detach(ifp);
381 	CURVNET_RESTORE();
382 
383 	/*
384 	 * The VAP is responsible for setting and clearing
385 	 * the VIMAGE context.
386 	 */
387 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
388 		ieee80211_vap_destroy(vap);
389 	ieee80211_waitfor_parent(ic);
390 
391 	ieee80211_sysctl_detach(ic);
392 	ieee80211_dfs_detach(ic);
393 	ieee80211_regdomain_detach(ic);
394 	ieee80211_scan_detach(ic);
395 #ifdef IEEE80211_SUPPORT_SUPERG
396 	ieee80211_superg_detach(ic);
397 #endif
398 	ieee80211_ht_detach(ic);
399 	/* NB: must be called before ieee80211_node_detach */
400 	ieee80211_proto_detach(ic);
401 	ieee80211_crypto_detach(ic);
402 	ieee80211_power_detach(ic);
403 	ieee80211_node_detach(ic);
404 
405 	/* XXX VNET needed? */
406 	ifmedia_removeall(&ic->ic_media);
407 	counter_u64_free(ic->ic_ierrors);
408 	counter_u64_free(ic->ic_oerrors);
409 
410 	taskqueue_free(ic->ic_tq);
411 	IEEE80211_TX_LOCK_DESTROY(ic);
412 	IEEE80211_LOCK_DESTROY(ic);
413 }
414 
415 /*
416  * Default reset method for use with the ioctl support.  This
417  * method is invoked after any state change in the 802.11
418  * layer that should be propagated to the hardware but not
419  * require re-initialization of the 802.11 state machine (e.g
420  * rescanning for an ap).  We always return ENETRESET which
421  * should cause the driver to re-initialize the device. Drivers
422  * can override this method to implement more optimized support.
423  */
424 static int
425 default_reset(struct ieee80211vap *vap, u_long cmd)
426 {
427 	return ENETRESET;
428 }
429 
430 /*
431  * Add underlying device errors to vap errors.
432  */
433 static uint64_t
434 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
435 {
436 	struct ieee80211vap *vap = ifp->if_softc;
437 	struct ieee80211com *ic = vap->iv_ic;
438 	uint64_t rv;
439 
440 	rv = if_get_counter_default(ifp, cnt);
441 	switch (cnt) {
442 	case IFCOUNTER_OERRORS:
443 		rv += counter_u64_fetch(ic->ic_oerrors);
444 		break;
445 	case IFCOUNTER_IERRORS:
446 		rv += counter_u64_fetch(ic->ic_ierrors);
447 		break;
448 	default:
449 		break;
450 	}
451 
452 	return (rv);
453 }
454 
455 /*
456  * Prepare a vap for use.  Drivers use this call to
457  * setup net80211 state in new vap's prior attaching
458  * them with ieee80211_vap_attach (below).
459  */
460 int
461 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
462     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
463     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
464     const uint8_t macaddr[IEEE80211_ADDR_LEN])
465 {
466 	struct ifnet *ifp;
467 
468 	ifp = if_alloc(IFT_ETHER);
469 	if (ifp == NULL) {
470 		ic_printf(ic, "%s: unable to allocate ifnet\n",
471 		    __func__);
472 		return ENOMEM;
473 	}
474 	if_initname(ifp, name, unit);
475 	ifp->if_softc = vap;			/* back pointer */
476 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
477 	ifp->if_transmit = ieee80211_vap_transmit;
478 	ifp->if_qflush = ieee80211_vap_qflush;
479 	ifp->if_ioctl = ieee80211_ioctl;
480 	ifp->if_init = ieee80211_init;
481 	ifp->if_get_counter = ieee80211_get_counter;
482 
483 	vap->iv_ifp = ifp;
484 	vap->iv_ic = ic;
485 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
486 	vap->iv_flags_ext = ic->ic_flags_ext;
487 	vap->iv_flags_ven = ic->ic_flags_ven;
488 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
489 	vap->iv_htcaps = ic->ic_htcaps;
490 	vap->iv_htextcaps = ic->ic_htextcaps;
491 	vap->iv_opmode = opmode;
492 	vap->iv_caps |= ieee80211_opcap[opmode];
493 	switch (opmode) {
494 	case IEEE80211_M_WDS:
495 		/*
496 		 * WDS links must specify the bssid of the far end.
497 		 * For legacy operation this is a static relationship.
498 		 * For non-legacy operation the station must associate
499 		 * and be authorized to pass traffic.  Plumbing the
500 		 * vap to the proper node happens when the vap
501 		 * transitions to RUN state.
502 		 */
503 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
504 		vap->iv_flags |= IEEE80211_F_DESBSSID;
505 		if (flags & IEEE80211_CLONE_WDSLEGACY)
506 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
507 		break;
508 #ifdef IEEE80211_SUPPORT_TDMA
509 	case IEEE80211_M_AHDEMO:
510 		if (flags & IEEE80211_CLONE_TDMA) {
511 			/* NB: checked before clone operation allowed */
512 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
513 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
514 			/*
515 			 * Propagate TDMA capability to mark vap; this
516 			 * cannot be removed and is used to distinguish
517 			 * regular ahdemo operation from ahdemo+tdma.
518 			 */
519 			vap->iv_caps |= IEEE80211_C_TDMA;
520 		}
521 		break;
522 #endif
523 	default:
524 		break;
525 	}
526 	/* auto-enable s/w beacon miss support */
527 	if (flags & IEEE80211_CLONE_NOBEACONS)
528 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
529 	/* auto-generated or user supplied MAC address */
530 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
531 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
532 	/*
533 	 * Enable various functionality by default if we're
534 	 * capable; the driver can override us if it knows better.
535 	 */
536 	if (vap->iv_caps & IEEE80211_C_WME)
537 		vap->iv_flags |= IEEE80211_F_WME;
538 	if (vap->iv_caps & IEEE80211_C_BURST)
539 		vap->iv_flags |= IEEE80211_F_BURST;
540 	/* NB: bg scanning only makes sense for station mode right now */
541 	if (vap->iv_opmode == IEEE80211_M_STA &&
542 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
543 		vap->iv_flags |= IEEE80211_F_BGSCAN;
544 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
545 	/* NB: DFS support only makes sense for ap mode right now */
546 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
547 	    (vap->iv_caps & IEEE80211_C_DFS))
548 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
549 
550 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
551 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
552 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
553 	/*
554 	 * Install a default reset method for the ioctl support;
555 	 * the driver can override this.
556 	 */
557 	vap->iv_reset = default_reset;
558 
559 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
560 
561 	ieee80211_sysctl_vattach(vap);
562 	ieee80211_crypto_vattach(vap);
563 	ieee80211_node_vattach(vap);
564 	ieee80211_power_vattach(vap);
565 	ieee80211_proto_vattach(vap);
566 #ifdef IEEE80211_SUPPORT_SUPERG
567 	ieee80211_superg_vattach(vap);
568 #endif
569 	ieee80211_ht_vattach(vap);
570 	ieee80211_scan_vattach(vap);
571 	ieee80211_regdomain_vattach(vap);
572 	ieee80211_radiotap_vattach(vap);
573 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
574 
575 	return 0;
576 }
577 
578 /*
579  * Activate a vap.  State should have been prepared with a
580  * call to ieee80211_vap_setup and by the driver.  On return
581  * from this call the vap is ready for use.
582  */
583 int
584 ieee80211_vap_attach(struct ieee80211vap *vap,
585 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
586 {
587 	struct ifnet *ifp = vap->iv_ifp;
588 	struct ieee80211com *ic = vap->iv_ic;
589 	struct ifmediareq imr;
590 	int maxrate;
591 
592 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
593 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
594 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
595 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
596 
597 	/*
598 	 * Do late attach work that cannot happen until after
599 	 * the driver has had a chance to override defaults.
600 	 */
601 	ieee80211_node_latevattach(vap);
602 	ieee80211_power_latevattach(vap);
603 
604 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
605 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
606 	ieee80211_media_status(ifp, &imr);
607 	/* NB: strip explicit mode; we're actually in autoselect */
608 	ifmedia_set(&vap->iv_media,
609 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
610 	if (maxrate)
611 		ifp->if_baudrate = IF_Mbps(maxrate);
612 
613 	ether_ifattach(ifp, vap->iv_myaddr);
614 	/* hook output method setup by ether_ifattach */
615 	vap->iv_output = ifp->if_output;
616 	ifp->if_output = ieee80211_output;
617 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
618 
619 	IEEE80211_LOCK(ic);
620 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
621 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
622 #ifdef IEEE80211_SUPPORT_SUPERG
623 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
624 #endif
625 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
626 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
627 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
628 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
629 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
630 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
631 	IEEE80211_UNLOCK(ic);
632 
633 	return 1;
634 }
635 
636 /*
637  * Tear down vap state and reclaim the ifnet.
638  * The driver is assumed to have prepared for
639  * this; e.g. by turning off interrupts for the
640  * underlying device.
641  */
642 void
643 ieee80211_vap_detach(struct ieee80211vap *vap)
644 {
645 	struct ieee80211com *ic = vap->iv_ic;
646 	struct ifnet *ifp = vap->iv_ifp;
647 
648 	CURVNET_SET(ifp->if_vnet);
649 
650 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
651 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
652 
653 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
654 	ether_ifdetach(ifp);
655 
656 	ieee80211_stop(vap);
657 
658 	/*
659 	 * Flush any deferred vap tasks.
660 	 */
661 	ieee80211_draintask(ic, &vap->iv_nstate_task);
662 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
663 
664 	/* XXX band-aid until ifnet handles this for us */
665 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
666 
667 	IEEE80211_LOCK(ic);
668 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
669 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
670 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
671 #ifdef IEEE80211_SUPPORT_SUPERG
672 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
673 #endif
674 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
675 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
676 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
677 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
678 	/* NB: this handles the bpfdetach done below */
679 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
680 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
681 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
682 	IEEE80211_UNLOCK(ic);
683 
684 	ifmedia_removeall(&vap->iv_media);
685 
686 	ieee80211_radiotap_vdetach(vap);
687 	ieee80211_regdomain_vdetach(vap);
688 	ieee80211_scan_vdetach(vap);
689 #ifdef IEEE80211_SUPPORT_SUPERG
690 	ieee80211_superg_vdetach(vap);
691 #endif
692 	ieee80211_ht_vdetach(vap);
693 	/* NB: must be before ieee80211_node_vdetach */
694 	ieee80211_proto_vdetach(vap);
695 	ieee80211_crypto_vdetach(vap);
696 	ieee80211_power_vdetach(vap);
697 	ieee80211_node_vdetach(vap);
698 	ieee80211_sysctl_vdetach(vap);
699 
700 	if_free(ifp);
701 
702 	CURVNET_RESTORE();
703 }
704 
705 /*
706  * Synchronize flag bit state in the parent ifnet structure
707  * according to the state of all vap ifnet's.  This is used,
708  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
709  */
710 void
711 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
712 {
713 	struct ifnet *ifp = ic->ic_ifp;
714 	struct ieee80211vap *vap;
715 	int bit, oflags;
716 
717 	IEEE80211_LOCK_ASSERT(ic);
718 
719 	bit = 0;
720 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
721 		if (vap->iv_ifp->if_flags & flag) {
722 			/*
723 			 * XXX the bridge sets PROMISC but we don't want to
724 			 * enable it on the device, discard here so all the
725 			 * drivers don't need to special-case it
726 			 */
727 			if (flag == IFF_PROMISC &&
728 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
729 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
730 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
731 				continue;
732 			bit = 1;
733 			break;
734 		}
735 	oflags = ifp->if_flags;
736 	if (bit)
737 		ifp->if_flags |= flag;
738 	else
739 		ifp->if_flags &= ~flag;
740 	if ((ifp->if_flags ^ oflags) & flag) {
741 		/* XXX should we return 1/0 and let caller do this? */
742 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
743 			if (flag == IFF_PROMISC)
744 				ieee80211_runtask(ic, &ic->ic_promisc_task);
745 			else if (flag == IFF_ALLMULTI)
746 				ieee80211_runtask(ic, &ic->ic_mcast_task);
747 		}
748 	}
749 }
750 
751 /*
752  * Synchronize flag bit state in the com structure
753  * according to the state of all vap's.  This is used,
754  * for example, to handle state changes via ioctls.
755  */
756 static void
757 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
758 {
759 	struct ieee80211vap *vap;
760 	int bit;
761 
762 	IEEE80211_LOCK_ASSERT(ic);
763 
764 	bit = 0;
765 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
766 		if (vap->iv_flags & flag) {
767 			bit = 1;
768 			break;
769 		}
770 	if (bit)
771 		ic->ic_flags |= flag;
772 	else
773 		ic->ic_flags &= ~flag;
774 }
775 
776 void
777 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
778 {
779 	struct ieee80211com *ic = vap->iv_ic;
780 
781 	IEEE80211_LOCK(ic);
782 	if (flag < 0) {
783 		flag = -flag;
784 		vap->iv_flags &= ~flag;
785 	} else
786 		vap->iv_flags |= flag;
787 	ieee80211_syncflag_locked(ic, flag);
788 	IEEE80211_UNLOCK(ic);
789 }
790 
791 /*
792  * Synchronize flags_ht bit state in the com structure
793  * according to the state of all vap's.  This is used,
794  * for example, to handle state changes via ioctls.
795  */
796 static void
797 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
798 {
799 	struct ieee80211vap *vap;
800 	int bit;
801 
802 	IEEE80211_LOCK_ASSERT(ic);
803 
804 	bit = 0;
805 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
806 		if (vap->iv_flags_ht & flag) {
807 			bit = 1;
808 			break;
809 		}
810 	if (bit)
811 		ic->ic_flags_ht |= flag;
812 	else
813 		ic->ic_flags_ht &= ~flag;
814 }
815 
816 void
817 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
818 {
819 	struct ieee80211com *ic = vap->iv_ic;
820 
821 	IEEE80211_LOCK(ic);
822 	if (flag < 0) {
823 		flag = -flag;
824 		vap->iv_flags_ht &= ~flag;
825 	} else
826 		vap->iv_flags_ht |= flag;
827 	ieee80211_syncflag_ht_locked(ic, flag);
828 	IEEE80211_UNLOCK(ic);
829 }
830 
831 /*
832  * Synchronize flags_ext bit state in the com structure
833  * according to the state of all vap's.  This is used,
834  * for example, to handle state changes via ioctls.
835  */
836 static void
837 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
838 {
839 	struct ieee80211vap *vap;
840 	int bit;
841 
842 	IEEE80211_LOCK_ASSERT(ic);
843 
844 	bit = 0;
845 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
846 		if (vap->iv_flags_ext & flag) {
847 			bit = 1;
848 			break;
849 		}
850 	if (bit)
851 		ic->ic_flags_ext |= flag;
852 	else
853 		ic->ic_flags_ext &= ~flag;
854 }
855 
856 void
857 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
858 {
859 	struct ieee80211com *ic = vap->iv_ic;
860 
861 	IEEE80211_LOCK(ic);
862 	if (flag < 0) {
863 		flag = -flag;
864 		vap->iv_flags_ext &= ~flag;
865 	} else
866 		vap->iv_flags_ext |= flag;
867 	ieee80211_syncflag_ext_locked(ic, flag);
868 	IEEE80211_UNLOCK(ic);
869 }
870 
871 static __inline int
872 mapgsm(u_int freq, u_int flags)
873 {
874 	freq *= 10;
875 	if (flags & IEEE80211_CHAN_QUARTER)
876 		freq += 5;
877 	else if (flags & IEEE80211_CHAN_HALF)
878 		freq += 10;
879 	else
880 		freq += 20;
881 	/* NB: there is no 907/20 wide but leave room */
882 	return (freq - 906*10) / 5;
883 }
884 
885 static __inline int
886 mappsb(u_int freq, u_int flags)
887 {
888 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
889 }
890 
891 /*
892  * Convert MHz frequency to IEEE channel number.
893  */
894 int
895 ieee80211_mhz2ieee(u_int freq, u_int flags)
896 {
897 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
898 	if (flags & IEEE80211_CHAN_GSM)
899 		return mapgsm(freq, flags);
900 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
901 		if (freq == 2484)
902 			return 14;
903 		if (freq < 2484)
904 			return ((int) freq - 2407) / 5;
905 		else
906 			return 15 + ((freq - 2512) / 20);
907 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
908 		if (freq <= 5000) {
909 			/* XXX check regdomain? */
910 			if (IS_FREQ_IN_PSB(freq))
911 				return mappsb(freq, flags);
912 			return (freq - 4000) / 5;
913 		} else
914 			return (freq - 5000) / 5;
915 	} else {				/* either, guess */
916 		if (freq == 2484)
917 			return 14;
918 		if (freq < 2484) {
919 			if (907 <= freq && freq <= 922)
920 				return mapgsm(freq, flags);
921 			return ((int) freq - 2407) / 5;
922 		}
923 		if (freq < 5000) {
924 			if (IS_FREQ_IN_PSB(freq))
925 				return mappsb(freq, flags);
926 			else if (freq > 4900)
927 				return (freq - 4000) / 5;
928 			else
929 				return 15 + ((freq - 2512) / 20);
930 		}
931 		return (freq - 5000) / 5;
932 	}
933 #undef IS_FREQ_IN_PSB
934 }
935 
936 /*
937  * Convert channel to IEEE channel number.
938  */
939 int
940 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
941 {
942 	if (c == NULL) {
943 		ic_printf(ic, "invalid channel (NULL)\n");
944 		return 0;		/* XXX */
945 	}
946 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
947 }
948 
949 /*
950  * Convert IEEE channel number to MHz frequency.
951  */
952 u_int
953 ieee80211_ieee2mhz(u_int chan, u_int flags)
954 {
955 	if (flags & IEEE80211_CHAN_GSM)
956 		return 907 + 5 * (chan / 10);
957 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
958 		if (chan == 14)
959 			return 2484;
960 		if (chan < 14)
961 			return 2407 + chan*5;
962 		else
963 			return 2512 + ((chan-15)*20);
964 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
965 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
966 			chan -= 37;
967 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
968 		}
969 		return 5000 + (chan*5);
970 	} else {				/* either, guess */
971 		/* XXX can't distinguish PSB+GSM channels */
972 		if (chan == 14)
973 			return 2484;
974 		if (chan < 14)			/* 0-13 */
975 			return 2407 + chan*5;
976 		if (chan < 27)			/* 15-26 */
977 			return 2512 + ((chan-15)*20);
978 		return 5000 + (chan*5);
979 	}
980 }
981 
982 /*
983  * Locate a channel given a frequency+flags.  We cache
984  * the previous lookup to optimize switching between two
985  * channels--as happens with dynamic turbo.
986  */
987 struct ieee80211_channel *
988 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
989 {
990 	struct ieee80211_channel *c;
991 	int i;
992 
993 	flags &= IEEE80211_CHAN_ALLTURBO;
994 	c = ic->ic_prevchan;
995 	if (c != NULL && c->ic_freq == freq &&
996 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
997 		return c;
998 	/* brute force search */
999 	for (i = 0; i < ic->ic_nchans; i++) {
1000 		c = &ic->ic_channels[i];
1001 		if (c->ic_freq == freq &&
1002 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1003 			return c;
1004 	}
1005 	return NULL;
1006 }
1007 
1008 /*
1009  * Locate a channel given a channel number+flags.  We cache
1010  * the previous lookup to optimize switching between two
1011  * channels--as happens with dynamic turbo.
1012  */
1013 struct ieee80211_channel *
1014 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1015 {
1016 	struct ieee80211_channel *c;
1017 	int i;
1018 
1019 	flags &= IEEE80211_CHAN_ALLTURBO;
1020 	c = ic->ic_prevchan;
1021 	if (c != NULL && c->ic_ieee == ieee &&
1022 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1023 		return c;
1024 	/* brute force search */
1025 	for (i = 0; i < ic->ic_nchans; i++) {
1026 		c = &ic->ic_channels[i];
1027 		if (c->ic_ieee == ieee &&
1028 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1029 			return c;
1030 	}
1031 	return NULL;
1032 }
1033 
1034 /*
1035  * Lookup a channel suitable for the given rx status.
1036  *
1037  * This is used to find a channel for a frame (eg beacon, probe
1038  * response) based purely on the received PHY information.
1039  *
1040  * For now it tries to do it based on R_FREQ / R_IEEE.
1041  * This is enough for 11bg and 11a (and thus 11ng/11na)
1042  * but it will not be enough for GSM, PSB channels and the
1043  * like.  It also doesn't know about legacy-turbog and
1044  * legacy-turbo modes, which some offload NICs actually
1045  * support in weird ways.
1046  *
1047  * Takes the ic and rxstatus; returns the channel or NULL
1048  * if not found.
1049  *
1050  * XXX TODO: Add support for that when the need arises.
1051  */
1052 struct ieee80211_channel *
1053 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1054     const struct ieee80211_rx_stats *rxs)
1055 {
1056 	struct ieee80211com *ic = vap->iv_ic;
1057 	uint32_t flags;
1058 	struct ieee80211_channel *c;
1059 
1060 	if (rxs == NULL)
1061 		return (NULL);
1062 
1063 	/*
1064 	 * Strictly speaking we only use freq for now,
1065 	 * however later on we may wish to just store
1066 	 * the ieee for verification.
1067 	 */
1068 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1069 		return (NULL);
1070 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1071 		return (NULL);
1072 
1073 	/*
1074 	 * If the rx status contains a valid ieee/freq, then
1075 	 * ensure we populate the correct channel information
1076 	 * in rxchan before passing it up to the scan infrastructure.
1077 	 * Offload NICs will pass up beacons from all channels
1078 	 * during background scans.
1079 	 */
1080 
1081 	/* Determine a band */
1082 	/* XXX should be done by the driver? */
1083 	if (rxs->c_freq < 3000) {
1084 		flags = IEEE80211_CHAN_G;
1085 	} else {
1086 		flags = IEEE80211_CHAN_A;
1087 	}
1088 
1089 	/* Channel lookup */
1090 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1091 
1092 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1093 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1094 	    __func__,
1095 	    (int) rxs->c_freq,
1096 	    (int) rxs->c_ieee,
1097 	    flags,
1098 	    c);
1099 
1100 	return (c);
1101 }
1102 
1103 static void
1104 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1105 {
1106 #define	ADD(_ic, _s, _o) \
1107 	ifmedia_add(media, \
1108 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1109 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1110 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1111 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1112 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1113 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1114 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1115 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1116 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1117 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1118 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1119 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1120 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1121 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1122 	};
1123 	u_int mopt;
1124 
1125 	mopt = mopts[mode];
1126 	if (addsta)
1127 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1128 	if (caps & IEEE80211_C_IBSS)
1129 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1130 	if (caps & IEEE80211_C_HOSTAP)
1131 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1132 	if (caps & IEEE80211_C_AHDEMO)
1133 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1134 	if (caps & IEEE80211_C_MONITOR)
1135 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1136 	if (caps & IEEE80211_C_WDS)
1137 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1138 	if (caps & IEEE80211_C_MBSS)
1139 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1140 #undef ADD
1141 }
1142 
1143 /*
1144  * Setup the media data structures according to the channel and
1145  * rate tables.
1146  */
1147 static int
1148 ieee80211_media_setup(struct ieee80211com *ic,
1149 	struct ifmedia *media, int caps, int addsta,
1150 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1151 {
1152 	int i, j, rate, maxrate, mword, r;
1153 	enum ieee80211_phymode mode;
1154 	const struct ieee80211_rateset *rs;
1155 	struct ieee80211_rateset allrates;
1156 
1157 	/*
1158 	 * Fill in media characteristics.
1159 	 */
1160 	ifmedia_init(media, 0, media_change, media_stat);
1161 	maxrate = 0;
1162 	/*
1163 	 * Add media for legacy operating modes.
1164 	 */
1165 	memset(&allrates, 0, sizeof(allrates));
1166 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1167 		if (isclr(ic->ic_modecaps, mode))
1168 			continue;
1169 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1170 		if (mode == IEEE80211_MODE_AUTO)
1171 			continue;
1172 		rs = &ic->ic_sup_rates[mode];
1173 		for (i = 0; i < rs->rs_nrates; i++) {
1174 			rate = rs->rs_rates[i];
1175 			mword = ieee80211_rate2media(ic, rate, mode);
1176 			if (mword == 0)
1177 				continue;
1178 			addmedia(media, caps, addsta, mode, mword);
1179 			/*
1180 			 * Add legacy rate to the collection of all rates.
1181 			 */
1182 			r = rate & IEEE80211_RATE_VAL;
1183 			for (j = 0; j < allrates.rs_nrates; j++)
1184 				if (allrates.rs_rates[j] == r)
1185 					break;
1186 			if (j == allrates.rs_nrates) {
1187 				/* unique, add to the set */
1188 				allrates.rs_rates[j] = r;
1189 				allrates.rs_nrates++;
1190 			}
1191 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1192 			if (rate > maxrate)
1193 				maxrate = rate;
1194 		}
1195 	}
1196 	for (i = 0; i < allrates.rs_nrates; i++) {
1197 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1198 				IEEE80211_MODE_AUTO);
1199 		if (mword == 0)
1200 			continue;
1201 		/* NB: remove media options from mword */
1202 		addmedia(media, caps, addsta,
1203 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1204 	}
1205 	/*
1206 	 * Add HT/11n media.  Note that we do not have enough
1207 	 * bits in the media subtype to express the MCS so we
1208 	 * use a "placeholder" media subtype and any fixed MCS
1209 	 * must be specified with a different mechanism.
1210 	 */
1211 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1212 		if (isclr(ic->ic_modecaps, mode))
1213 			continue;
1214 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1215 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1216 	}
1217 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1218 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1219 		addmedia(media, caps, addsta,
1220 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1221 		i = ic->ic_txstream * 8 - 1;
1222 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1223 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1224 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1225 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1226 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1227 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1228 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1229 		else
1230 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1231 		if (rate > maxrate)
1232 			maxrate = rate;
1233 	}
1234 	return maxrate;
1235 }
1236 
1237 void
1238 ieee80211_media_init(struct ieee80211com *ic)
1239 {
1240 	struct ifnet *ifp = ic->ic_ifp;
1241 	int maxrate;
1242 
1243 	/* NB: this works because the structure is initialized to zero */
1244 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1245 		/*
1246 		 * We are re-initializing the channel list; clear
1247 		 * the existing media state as the media routines
1248 		 * don't suppress duplicates.
1249 		 */
1250 		ifmedia_removeall(&ic->ic_media);
1251 	}
1252 	ieee80211_chan_init(ic);
1253 
1254 	/*
1255 	 * Recalculate media settings in case new channel list changes
1256 	 * the set of available modes.
1257 	 */
1258 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1259 		ieee80211com_media_change, ieee80211com_media_status);
1260 	/* NB: strip explicit mode; we're actually in autoselect */
1261 	ifmedia_set(&ic->ic_media,
1262 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1263 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1264 	if (maxrate)
1265 		ifp->if_baudrate = IF_Mbps(maxrate);
1266 
1267 	/* XXX need to propagate new media settings to vap's */
1268 }
1269 
1270 /* XXX inline or eliminate? */
1271 const struct ieee80211_rateset *
1272 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1273 {
1274 	/* XXX does this work for 11ng basic rates? */
1275 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1276 }
1277 
1278 void
1279 ieee80211_announce(struct ieee80211com *ic)
1280 {
1281 	int i, rate, mword;
1282 	enum ieee80211_phymode mode;
1283 	const struct ieee80211_rateset *rs;
1284 
1285 	/* NB: skip AUTO since it has no rates */
1286 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1287 		if (isclr(ic->ic_modecaps, mode))
1288 			continue;
1289 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1290 		rs = &ic->ic_sup_rates[mode];
1291 		for (i = 0; i < rs->rs_nrates; i++) {
1292 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1293 			if (mword == 0)
1294 				continue;
1295 			rate = ieee80211_media2rate(mword);
1296 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1297 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1298 		}
1299 		printf("\n");
1300 	}
1301 	ieee80211_ht_announce(ic);
1302 }
1303 
1304 void
1305 ieee80211_announce_channels(struct ieee80211com *ic)
1306 {
1307 	const struct ieee80211_channel *c;
1308 	char type;
1309 	int i, cw;
1310 
1311 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1312 	for (i = 0; i < ic->ic_nchans; i++) {
1313 		c = &ic->ic_channels[i];
1314 		if (IEEE80211_IS_CHAN_ST(c))
1315 			type = 'S';
1316 		else if (IEEE80211_IS_CHAN_108A(c))
1317 			type = 'T';
1318 		else if (IEEE80211_IS_CHAN_108G(c))
1319 			type = 'G';
1320 		else if (IEEE80211_IS_CHAN_HT(c))
1321 			type = 'n';
1322 		else if (IEEE80211_IS_CHAN_A(c))
1323 			type = 'a';
1324 		else if (IEEE80211_IS_CHAN_ANYG(c))
1325 			type = 'g';
1326 		else if (IEEE80211_IS_CHAN_B(c))
1327 			type = 'b';
1328 		else
1329 			type = 'f';
1330 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1331 			cw = 40;
1332 		else if (IEEE80211_IS_CHAN_HALF(c))
1333 			cw = 10;
1334 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1335 			cw = 5;
1336 		else
1337 			cw = 20;
1338 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1339 			, c->ic_ieee, c->ic_freq, type
1340 			, cw
1341 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1342 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1343 			, c->ic_maxregpower
1344 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1345 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1346 		);
1347 	}
1348 }
1349 
1350 static int
1351 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1352 {
1353 	switch (IFM_MODE(ime->ifm_media)) {
1354 	case IFM_IEEE80211_11A:
1355 		*mode = IEEE80211_MODE_11A;
1356 		break;
1357 	case IFM_IEEE80211_11B:
1358 		*mode = IEEE80211_MODE_11B;
1359 		break;
1360 	case IFM_IEEE80211_11G:
1361 		*mode = IEEE80211_MODE_11G;
1362 		break;
1363 	case IFM_IEEE80211_FH:
1364 		*mode = IEEE80211_MODE_FH;
1365 		break;
1366 	case IFM_IEEE80211_11NA:
1367 		*mode = IEEE80211_MODE_11NA;
1368 		break;
1369 	case IFM_IEEE80211_11NG:
1370 		*mode = IEEE80211_MODE_11NG;
1371 		break;
1372 	case IFM_AUTO:
1373 		*mode = IEEE80211_MODE_AUTO;
1374 		break;
1375 	default:
1376 		return 0;
1377 	}
1378 	/*
1379 	 * Turbo mode is an ``option''.
1380 	 * XXX does not apply to AUTO
1381 	 */
1382 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1383 		if (*mode == IEEE80211_MODE_11A) {
1384 			if (flags & IEEE80211_F_TURBOP)
1385 				*mode = IEEE80211_MODE_TURBO_A;
1386 			else
1387 				*mode = IEEE80211_MODE_STURBO_A;
1388 		} else if (*mode == IEEE80211_MODE_11G)
1389 			*mode = IEEE80211_MODE_TURBO_G;
1390 		else
1391 			return 0;
1392 	}
1393 	/* XXX HT40 +/- */
1394 	return 1;
1395 }
1396 
1397 /*
1398  * Handle a media change request on the underlying interface.
1399  */
1400 int
1401 ieee80211com_media_change(struct ifnet *ifp)
1402 {
1403 	return EINVAL;
1404 }
1405 
1406 /*
1407  * Handle a media change request on the vap interface.
1408  */
1409 int
1410 ieee80211_media_change(struct ifnet *ifp)
1411 {
1412 	struct ieee80211vap *vap = ifp->if_softc;
1413 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1414 	uint16_t newmode;
1415 
1416 	if (!media2mode(ime, vap->iv_flags, &newmode))
1417 		return EINVAL;
1418 	if (vap->iv_des_mode != newmode) {
1419 		vap->iv_des_mode = newmode;
1420 		/* XXX kick state machine if up+running */
1421 	}
1422 	return 0;
1423 }
1424 
1425 /*
1426  * Common code to calculate the media status word
1427  * from the operating mode and channel state.
1428  */
1429 static int
1430 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1431 {
1432 	int status;
1433 
1434 	status = IFM_IEEE80211;
1435 	switch (opmode) {
1436 	case IEEE80211_M_STA:
1437 		break;
1438 	case IEEE80211_M_IBSS:
1439 		status |= IFM_IEEE80211_ADHOC;
1440 		break;
1441 	case IEEE80211_M_HOSTAP:
1442 		status |= IFM_IEEE80211_HOSTAP;
1443 		break;
1444 	case IEEE80211_M_MONITOR:
1445 		status |= IFM_IEEE80211_MONITOR;
1446 		break;
1447 	case IEEE80211_M_AHDEMO:
1448 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1449 		break;
1450 	case IEEE80211_M_WDS:
1451 		status |= IFM_IEEE80211_WDS;
1452 		break;
1453 	case IEEE80211_M_MBSS:
1454 		status |= IFM_IEEE80211_MBSS;
1455 		break;
1456 	}
1457 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1458 		status |= IFM_IEEE80211_11NA;
1459 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1460 		status |= IFM_IEEE80211_11NG;
1461 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1462 		status |= IFM_IEEE80211_11A;
1463 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1464 		status |= IFM_IEEE80211_11B;
1465 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1466 		status |= IFM_IEEE80211_11G;
1467 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1468 		status |= IFM_IEEE80211_FH;
1469 	}
1470 	/* XXX else complain? */
1471 
1472 	if (IEEE80211_IS_CHAN_TURBO(chan))
1473 		status |= IFM_IEEE80211_TURBO;
1474 #if 0
1475 	if (IEEE80211_IS_CHAN_HT20(chan))
1476 		status |= IFM_IEEE80211_HT20;
1477 	if (IEEE80211_IS_CHAN_HT40(chan))
1478 		status |= IFM_IEEE80211_HT40;
1479 #endif
1480 	return status;
1481 }
1482 
1483 static void
1484 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1485 {
1486 	struct ieee80211com *ic = ifp->if_l2com;
1487 	struct ieee80211vap *vap;
1488 
1489 	imr->ifm_status = IFM_AVALID;
1490 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1491 		if (vap->iv_ifp->if_flags & IFF_UP) {
1492 			imr->ifm_status |= IFM_ACTIVE;
1493 			break;
1494 		}
1495 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1496 	if (imr->ifm_status & IFM_ACTIVE)
1497 		imr->ifm_current = imr->ifm_active;
1498 }
1499 
1500 void
1501 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1502 {
1503 	struct ieee80211vap *vap = ifp->if_softc;
1504 	struct ieee80211com *ic = vap->iv_ic;
1505 	enum ieee80211_phymode mode;
1506 
1507 	imr->ifm_status = IFM_AVALID;
1508 	/*
1509 	 * NB: use the current channel's mode to lock down a xmit
1510 	 * rate only when running; otherwise we may have a mismatch
1511 	 * in which case the rate will not be convertible.
1512 	 */
1513 	if (vap->iv_state == IEEE80211_S_RUN ||
1514 	    vap->iv_state == IEEE80211_S_SLEEP) {
1515 		imr->ifm_status |= IFM_ACTIVE;
1516 		mode = ieee80211_chan2mode(ic->ic_curchan);
1517 	} else
1518 		mode = IEEE80211_MODE_AUTO;
1519 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1520 	/*
1521 	 * Calculate a current rate if possible.
1522 	 */
1523 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1524 		/*
1525 		 * A fixed rate is set, report that.
1526 		 */
1527 		imr->ifm_active |= ieee80211_rate2media(ic,
1528 			vap->iv_txparms[mode].ucastrate, mode);
1529 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1530 		/*
1531 		 * In station mode report the current transmit rate.
1532 		 */
1533 		imr->ifm_active |= ieee80211_rate2media(ic,
1534 			vap->iv_bss->ni_txrate, mode);
1535 	} else
1536 		imr->ifm_active |= IFM_AUTO;
1537 	if (imr->ifm_status & IFM_ACTIVE)
1538 		imr->ifm_current = imr->ifm_active;
1539 }
1540 
1541 /*
1542  * Set the current phy mode and recalculate the active channel
1543  * set based on the available channels for this mode.  Also
1544  * select a new default/current channel if the current one is
1545  * inappropriate for this mode.
1546  */
1547 int
1548 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1549 {
1550 	/*
1551 	 * Adjust basic rates in 11b/11g supported rate set.
1552 	 * Note that if operating on a hal/quarter rate channel
1553 	 * this is a noop as those rates sets are different
1554 	 * and used instead.
1555 	 */
1556 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1557 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1558 
1559 	ic->ic_curmode = mode;
1560 	ieee80211_reset_erp(ic);	/* reset ERP state */
1561 
1562 	return 0;
1563 }
1564 
1565 /*
1566  * Return the phy mode for with the specified channel.
1567  */
1568 enum ieee80211_phymode
1569 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1570 {
1571 
1572 	if (IEEE80211_IS_CHAN_HTA(chan))
1573 		return IEEE80211_MODE_11NA;
1574 	else if (IEEE80211_IS_CHAN_HTG(chan))
1575 		return IEEE80211_MODE_11NG;
1576 	else if (IEEE80211_IS_CHAN_108G(chan))
1577 		return IEEE80211_MODE_TURBO_G;
1578 	else if (IEEE80211_IS_CHAN_ST(chan))
1579 		return IEEE80211_MODE_STURBO_A;
1580 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1581 		return IEEE80211_MODE_TURBO_A;
1582 	else if (IEEE80211_IS_CHAN_HALF(chan))
1583 		return IEEE80211_MODE_HALF;
1584 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1585 		return IEEE80211_MODE_QUARTER;
1586 	else if (IEEE80211_IS_CHAN_A(chan))
1587 		return IEEE80211_MODE_11A;
1588 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1589 		return IEEE80211_MODE_11G;
1590 	else if (IEEE80211_IS_CHAN_B(chan))
1591 		return IEEE80211_MODE_11B;
1592 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1593 		return IEEE80211_MODE_FH;
1594 
1595 	/* NB: should not get here */
1596 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1597 		__func__, chan->ic_freq, chan->ic_flags);
1598 	return IEEE80211_MODE_11B;
1599 }
1600 
1601 struct ratemedia {
1602 	u_int	match;	/* rate + mode */
1603 	u_int	media;	/* if_media rate */
1604 };
1605 
1606 static int
1607 findmedia(const struct ratemedia rates[], int n, u_int match)
1608 {
1609 	int i;
1610 
1611 	for (i = 0; i < n; i++)
1612 		if (rates[i].match == match)
1613 			return rates[i].media;
1614 	return IFM_AUTO;
1615 }
1616 
1617 /*
1618  * Convert IEEE80211 rate value to ifmedia subtype.
1619  * Rate is either a legacy rate in units of 0.5Mbps
1620  * or an MCS index.
1621  */
1622 int
1623 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1624 {
1625 	static const struct ratemedia rates[] = {
1626 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1627 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1628 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1629 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1630 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1631 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1632 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1633 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1634 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1635 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1636 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1637 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1638 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1639 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1640 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1641 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1642 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1643 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1644 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1645 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1646 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1647 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1648 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1649 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1650 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1651 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1652 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1653 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1654 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1655 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1656 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1657 	};
1658 	static const struct ratemedia htrates[] = {
1659 		{   0, IFM_IEEE80211_MCS },
1660 		{   1, IFM_IEEE80211_MCS },
1661 		{   2, IFM_IEEE80211_MCS },
1662 		{   3, IFM_IEEE80211_MCS },
1663 		{   4, IFM_IEEE80211_MCS },
1664 		{   5, IFM_IEEE80211_MCS },
1665 		{   6, IFM_IEEE80211_MCS },
1666 		{   7, IFM_IEEE80211_MCS },
1667 		{   8, IFM_IEEE80211_MCS },
1668 		{   9, IFM_IEEE80211_MCS },
1669 		{  10, IFM_IEEE80211_MCS },
1670 		{  11, IFM_IEEE80211_MCS },
1671 		{  12, IFM_IEEE80211_MCS },
1672 		{  13, IFM_IEEE80211_MCS },
1673 		{  14, IFM_IEEE80211_MCS },
1674 		{  15, IFM_IEEE80211_MCS },
1675 		{  16, IFM_IEEE80211_MCS },
1676 		{  17, IFM_IEEE80211_MCS },
1677 		{  18, IFM_IEEE80211_MCS },
1678 		{  19, IFM_IEEE80211_MCS },
1679 		{  20, IFM_IEEE80211_MCS },
1680 		{  21, IFM_IEEE80211_MCS },
1681 		{  22, IFM_IEEE80211_MCS },
1682 		{  23, IFM_IEEE80211_MCS },
1683 		{  24, IFM_IEEE80211_MCS },
1684 		{  25, IFM_IEEE80211_MCS },
1685 		{  26, IFM_IEEE80211_MCS },
1686 		{  27, IFM_IEEE80211_MCS },
1687 		{  28, IFM_IEEE80211_MCS },
1688 		{  29, IFM_IEEE80211_MCS },
1689 		{  30, IFM_IEEE80211_MCS },
1690 		{  31, IFM_IEEE80211_MCS },
1691 		{  32, IFM_IEEE80211_MCS },
1692 		{  33, IFM_IEEE80211_MCS },
1693 		{  34, IFM_IEEE80211_MCS },
1694 		{  35, IFM_IEEE80211_MCS },
1695 		{  36, IFM_IEEE80211_MCS },
1696 		{  37, IFM_IEEE80211_MCS },
1697 		{  38, IFM_IEEE80211_MCS },
1698 		{  39, IFM_IEEE80211_MCS },
1699 		{  40, IFM_IEEE80211_MCS },
1700 		{  41, IFM_IEEE80211_MCS },
1701 		{  42, IFM_IEEE80211_MCS },
1702 		{  43, IFM_IEEE80211_MCS },
1703 		{  44, IFM_IEEE80211_MCS },
1704 		{  45, IFM_IEEE80211_MCS },
1705 		{  46, IFM_IEEE80211_MCS },
1706 		{  47, IFM_IEEE80211_MCS },
1707 		{  48, IFM_IEEE80211_MCS },
1708 		{  49, IFM_IEEE80211_MCS },
1709 		{  50, IFM_IEEE80211_MCS },
1710 		{  51, IFM_IEEE80211_MCS },
1711 		{  52, IFM_IEEE80211_MCS },
1712 		{  53, IFM_IEEE80211_MCS },
1713 		{  54, IFM_IEEE80211_MCS },
1714 		{  55, IFM_IEEE80211_MCS },
1715 		{  56, IFM_IEEE80211_MCS },
1716 		{  57, IFM_IEEE80211_MCS },
1717 		{  58, IFM_IEEE80211_MCS },
1718 		{  59, IFM_IEEE80211_MCS },
1719 		{  60, IFM_IEEE80211_MCS },
1720 		{  61, IFM_IEEE80211_MCS },
1721 		{  62, IFM_IEEE80211_MCS },
1722 		{  63, IFM_IEEE80211_MCS },
1723 		{  64, IFM_IEEE80211_MCS },
1724 		{  65, IFM_IEEE80211_MCS },
1725 		{  66, IFM_IEEE80211_MCS },
1726 		{  67, IFM_IEEE80211_MCS },
1727 		{  68, IFM_IEEE80211_MCS },
1728 		{  69, IFM_IEEE80211_MCS },
1729 		{  70, IFM_IEEE80211_MCS },
1730 		{  71, IFM_IEEE80211_MCS },
1731 		{  72, IFM_IEEE80211_MCS },
1732 		{  73, IFM_IEEE80211_MCS },
1733 		{  74, IFM_IEEE80211_MCS },
1734 		{  75, IFM_IEEE80211_MCS },
1735 		{  76, IFM_IEEE80211_MCS },
1736 	};
1737 	int m;
1738 
1739 	/*
1740 	 * Check 11n rates first for match as an MCS.
1741 	 */
1742 	if (mode == IEEE80211_MODE_11NA) {
1743 		if (rate & IEEE80211_RATE_MCS) {
1744 			rate &= ~IEEE80211_RATE_MCS;
1745 			m = findmedia(htrates, nitems(htrates), rate);
1746 			if (m != IFM_AUTO)
1747 				return m | IFM_IEEE80211_11NA;
1748 		}
1749 	} else if (mode == IEEE80211_MODE_11NG) {
1750 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1751 		if (rate & IEEE80211_RATE_MCS) {
1752 			rate &= ~IEEE80211_RATE_MCS;
1753 			m = findmedia(htrates, nitems(htrates), rate);
1754 			if (m != IFM_AUTO)
1755 				return m | IFM_IEEE80211_11NG;
1756 		}
1757 	}
1758 	rate &= IEEE80211_RATE_VAL;
1759 	switch (mode) {
1760 	case IEEE80211_MODE_11A:
1761 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1762 	case IEEE80211_MODE_QUARTER:
1763 	case IEEE80211_MODE_11NA:
1764 	case IEEE80211_MODE_TURBO_A:
1765 	case IEEE80211_MODE_STURBO_A:
1766 		return findmedia(rates, nitems(rates),
1767 		    rate | IFM_IEEE80211_11A);
1768 	case IEEE80211_MODE_11B:
1769 		return findmedia(rates, nitems(rates),
1770 		    rate | IFM_IEEE80211_11B);
1771 	case IEEE80211_MODE_FH:
1772 		return findmedia(rates, nitems(rates),
1773 		    rate | IFM_IEEE80211_FH);
1774 	case IEEE80211_MODE_AUTO:
1775 		/* NB: ic may be NULL for some drivers */
1776 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1777 			return findmedia(rates, nitems(rates),
1778 			    rate | IFM_IEEE80211_FH);
1779 		/* NB: hack, 11g matches both 11b+11a rates */
1780 		/* fall thru... */
1781 	case IEEE80211_MODE_11G:
1782 	case IEEE80211_MODE_11NG:
1783 	case IEEE80211_MODE_TURBO_G:
1784 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
1785 	}
1786 	return IFM_AUTO;
1787 }
1788 
1789 int
1790 ieee80211_media2rate(int mword)
1791 {
1792 	static const int ieeerates[] = {
1793 		-1,		/* IFM_AUTO */
1794 		0,		/* IFM_MANUAL */
1795 		0,		/* IFM_NONE */
1796 		2,		/* IFM_IEEE80211_FH1 */
1797 		4,		/* IFM_IEEE80211_FH2 */
1798 		2,		/* IFM_IEEE80211_DS1 */
1799 		4,		/* IFM_IEEE80211_DS2 */
1800 		11,		/* IFM_IEEE80211_DS5 */
1801 		22,		/* IFM_IEEE80211_DS11 */
1802 		44,		/* IFM_IEEE80211_DS22 */
1803 		12,		/* IFM_IEEE80211_OFDM6 */
1804 		18,		/* IFM_IEEE80211_OFDM9 */
1805 		24,		/* IFM_IEEE80211_OFDM12 */
1806 		36,		/* IFM_IEEE80211_OFDM18 */
1807 		48,		/* IFM_IEEE80211_OFDM24 */
1808 		72,		/* IFM_IEEE80211_OFDM36 */
1809 		96,		/* IFM_IEEE80211_OFDM48 */
1810 		108,		/* IFM_IEEE80211_OFDM54 */
1811 		144,		/* IFM_IEEE80211_OFDM72 */
1812 		0,		/* IFM_IEEE80211_DS354k */
1813 		0,		/* IFM_IEEE80211_DS512k */
1814 		6,		/* IFM_IEEE80211_OFDM3 */
1815 		9,		/* IFM_IEEE80211_OFDM4 */
1816 		54,		/* IFM_IEEE80211_OFDM27 */
1817 		-1,		/* IFM_IEEE80211_MCS */
1818 	};
1819 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
1820 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1821 }
1822 
1823 /*
1824  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1825  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1826  */
1827 #define	mix(a, b, c)							\
1828 do {									\
1829 	a -= b; a -= c; a ^= (c >> 13);					\
1830 	b -= c; b -= a; b ^= (a << 8);					\
1831 	c -= a; c -= b; c ^= (b >> 13);					\
1832 	a -= b; a -= c; a ^= (c >> 12);					\
1833 	b -= c; b -= a; b ^= (a << 16);					\
1834 	c -= a; c -= b; c ^= (b >> 5);					\
1835 	a -= b; a -= c; a ^= (c >> 3);					\
1836 	b -= c; b -= a; b ^= (a << 10);					\
1837 	c -= a; c -= b; c ^= (b >> 15);					\
1838 } while (/*CONSTCOND*/0)
1839 
1840 uint32_t
1841 ieee80211_mac_hash(const struct ieee80211com *ic,
1842 	const uint8_t addr[IEEE80211_ADDR_LEN])
1843 {
1844 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1845 
1846 	b += addr[5] << 8;
1847 	b += addr[4];
1848 	a += addr[3] << 24;
1849 	a += addr[2] << 16;
1850 	a += addr[1] << 8;
1851 	a += addr[0];
1852 
1853 	mix(a, b, c);
1854 
1855 	return c;
1856 }
1857 #undef mix
1858 
1859 char
1860 ieee80211_channel_type_char(const struct ieee80211_channel *c)
1861 {
1862 	if (IEEE80211_IS_CHAN_ST(c))
1863 		return 'S';
1864 	if (IEEE80211_IS_CHAN_108A(c))
1865 		return 'T';
1866 	if (IEEE80211_IS_CHAN_108G(c))
1867 		return 'G';
1868 	if (IEEE80211_IS_CHAN_HT(c))
1869 		return 'n';
1870 	if (IEEE80211_IS_CHAN_A(c))
1871 		return 'a';
1872 	if (IEEE80211_IS_CHAN_ANYG(c))
1873 		return 'g';
1874 	if (IEEE80211_IS_CHAN_B(c))
1875 		return 'b';
1876 	return 'f';
1877 }
1878