xref: /freebsd/sys/net80211/ieee80211.c (revision 642870485c089b57000fe538d3485e272b038d59)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 #include <net/ethernet.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #include <net80211/ieee80211_ratectl.h>
57 #include <net80211/ieee80211_vht.h>
58 
59 #include <net/bpf.h>
60 
61 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
62 	[IEEE80211_MODE_AUTO]	  = "auto",
63 	[IEEE80211_MODE_11A]	  = "11a",
64 	[IEEE80211_MODE_11B]	  = "11b",
65 	[IEEE80211_MODE_11G]	  = "11g",
66 	[IEEE80211_MODE_FH]	  = "FH",
67 	[IEEE80211_MODE_TURBO_A]  = "turboA",
68 	[IEEE80211_MODE_TURBO_G]  = "turboG",
69 	[IEEE80211_MODE_STURBO_A] = "sturboA",
70 	[IEEE80211_MODE_HALF]	  = "half",
71 	[IEEE80211_MODE_QUARTER]  = "quarter",
72 	[IEEE80211_MODE_11NA]	  = "11na",
73 	[IEEE80211_MODE_11NG]	  = "11ng",
74 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
75 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
76 };
77 /* map ieee80211_opmode to the corresponding capability bit */
78 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
79 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
80 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
81 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
82 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
83 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
84 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
85 #ifdef IEEE80211_SUPPORT_MESH
86 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
87 #endif
88 };
89 
90 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
91 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
92 
93 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
94 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
95 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
97 static	int ieee80211_media_setup(struct ieee80211com *ic,
98 		struct ifmedia *media, int caps, int addsta,
99 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
100 static	int media_status(enum ieee80211_opmode,
101 		const struct ieee80211_channel *);
102 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
103 
104 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
105 
106 /*
107  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
108  */
109 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
110 static const struct ieee80211_rateset ieee80211_rateset_11a =
111 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
112 static const struct ieee80211_rateset ieee80211_rateset_half =
113 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
114 static const struct ieee80211_rateset ieee80211_rateset_quarter =
115 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
116 static const struct ieee80211_rateset ieee80211_rateset_11b =
117 	{ 4, { B(2), B(4), B(11), B(22) } };
118 /* NB: OFDM rates are handled specially based on mode */
119 static const struct ieee80211_rateset ieee80211_rateset_11g =
120 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
121 #undef B
122 
123 static int set_vht_extchan(struct ieee80211_channel *c);
124 
125 /*
126  * Fill in 802.11 available channel set, mark
127  * all available channels as active, and pick
128  * a default channel if not already specified.
129  */
130 void
131 ieee80211_chan_init(struct ieee80211com *ic)
132 {
133 #define	DEFAULTRATES(m, def) do { \
134 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
135 		ic->ic_sup_rates[m] = def; \
136 } while (0)
137 	struct ieee80211_channel *c;
138 	int i;
139 
140 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
141 		("invalid number of channels specified: %u", ic->ic_nchans));
142 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
143 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
144 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
145 	for (i = 0; i < ic->ic_nchans; i++) {
146 		c = &ic->ic_channels[i];
147 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
148 		/*
149 		 * Help drivers that work only with frequencies by filling
150 		 * in IEEE channel #'s if not already calculated.  Note this
151 		 * mimics similar work done in ieee80211_setregdomain when
152 		 * changing regulatory state.
153 		 */
154 		if (c->ic_ieee == 0)
155 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
156 
157 		/*
158 		 * Setup the HT40/VHT40 upper/lower bits.
159 		 * The VHT80 math is done elsewhere.
160 		 */
161 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
162 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
163 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
164 			    c->ic_flags);
165 
166 		/* Update VHT math */
167 		/*
168 		 * XXX VHT again, note that this assumes VHT80 channels
169 		 * are legit already
170 		 */
171 		set_vht_extchan(c);
172 
173 		/* default max tx power to max regulatory */
174 		if (c->ic_maxpower == 0)
175 			c->ic_maxpower = 2*c->ic_maxregpower;
176 		setbit(ic->ic_chan_avail, c->ic_ieee);
177 		/*
178 		 * Identify mode capabilities.
179 		 */
180 		if (IEEE80211_IS_CHAN_A(c))
181 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
182 		if (IEEE80211_IS_CHAN_B(c))
183 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
184 		if (IEEE80211_IS_CHAN_ANYG(c))
185 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
186 		if (IEEE80211_IS_CHAN_FHSS(c))
187 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
188 		if (IEEE80211_IS_CHAN_108A(c))
189 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
190 		if (IEEE80211_IS_CHAN_108G(c))
191 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
192 		if (IEEE80211_IS_CHAN_ST(c))
193 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
194 		if (IEEE80211_IS_CHAN_HALF(c))
195 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
196 		if (IEEE80211_IS_CHAN_QUARTER(c))
197 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
198 		if (IEEE80211_IS_CHAN_HTA(c))
199 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
200 		if (IEEE80211_IS_CHAN_HTG(c))
201 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
202 		if (IEEE80211_IS_CHAN_VHTA(c))
203 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
204 		if (IEEE80211_IS_CHAN_VHTG(c))
205 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
206 	}
207 	/* initialize candidate channels to all available */
208 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
209 		sizeof(ic->ic_chan_avail));
210 
211 	/* sort channel table to allow lookup optimizations */
212 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
213 
214 	/* invalidate any previous state */
215 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
216 	ic->ic_prevchan = NULL;
217 	ic->ic_csa_newchan = NULL;
218 	/* arbitrarily pick the first channel */
219 	ic->ic_curchan = &ic->ic_channels[0];
220 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
221 
222 	/* fillin well-known rate sets if driver has not specified */
223 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
224 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
225 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
226 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
227 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
228 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
229 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
230 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
231 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
232 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
233 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
234 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
235 
236 	/*
237 	 * Setup required information to fill the mcsset field, if driver did
238 	 * not. Assume a 2T2R setup for historic reasons.
239 	 */
240 	if (ic->ic_rxstream == 0)
241 		ic->ic_rxstream = 2;
242 	if (ic->ic_txstream == 0)
243 		ic->ic_txstream = 2;
244 
245 	/*
246 	 * Set auto mode to reset active channel state and any desired channel.
247 	 */
248 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
249 #undef DEFAULTRATES
250 }
251 
252 static void
253 null_update_mcast(struct ieee80211com *ic)
254 {
255 
256 	ic_printf(ic, "need multicast update callback\n");
257 }
258 
259 static void
260 null_update_promisc(struct ieee80211com *ic)
261 {
262 
263 	ic_printf(ic, "need promiscuous mode update callback\n");
264 }
265 
266 static void
267 null_update_chw(struct ieee80211com *ic)
268 {
269 
270 	ic_printf(ic, "%s: need callback\n", __func__);
271 }
272 
273 int
274 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
275 {
276 	va_list ap;
277 	int retval;
278 
279 	retval = printf("%s: ", ic->ic_name);
280 	va_start(ap, fmt);
281 	retval += vprintf(fmt, ap);
282 	va_end(ap);
283 	return (retval);
284 }
285 
286 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
287 static struct mtx ic_list_mtx;
288 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
289 
290 static int
291 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
292 {
293 	struct ieee80211com *ic;
294 	struct sbuf sb;
295 	char *sp;
296 	int error;
297 
298 	error = sysctl_wire_old_buffer(req, 0);
299 	if (error)
300 		return (error);
301 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
302 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
303 	sp = "";
304 	mtx_lock(&ic_list_mtx);
305 	LIST_FOREACH(ic, &ic_head, ic_next) {
306 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
307 		sp = " ";
308 	}
309 	mtx_unlock(&ic_list_mtx);
310 	error = sbuf_finish(&sb);
311 	sbuf_delete(&sb);
312 	return (error);
313 }
314 
315 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
316     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
317     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
318 
319 /*
320  * Attach/setup the common net80211 state.  Called by
321  * the driver on attach to prior to creating any vap's.
322  */
323 void
324 ieee80211_ifattach(struct ieee80211com *ic)
325 {
326 
327 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
328 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
329 	TAILQ_INIT(&ic->ic_vaps);
330 
331 	/* Create a taskqueue for all state changes */
332 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
333 	    taskqueue_thread_enqueue, &ic->ic_tq);
334 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
335 	    ic->ic_name);
336 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
337 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
338 	/*
339 	 * Fill in 802.11 available channel set, mark all
340 	 * available channels as active, and pick a default
341 	 * channel if not already specified.
342 	 */
343 	ieee80211_chan_init(ic);
344 
345 	ic->ic_update_mcast = null_update_mcast;
346 	ic->ic_update_promisc = null_update_promisc;
347 	ic->ic_update_chw = null_update_chw;
348 
349 	ic->ic_hash_key = arc4random();
350 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
351 	ic->ic_lintval = ic->ic_bintval;
352 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
353 
354 	ieee80211_crypto_attach(ic);
355 	ieee80211_node_attach(ic);
356 	ieee80211_power_attach(ic);
357 	ieee80211_proto_attach(ic);
358 #ifdef IEEE80211_SUPPORT_SUPERG
359 	ieee80211_superg_attach(ic);
360 #endif
361 	ieee80211_ht_attach(ic);
362 	ieee80211_vht_attach(ic);
363 	ieee80211_scan_attach(ic);
364 	ieee80211_regdomain_attach(ic);
365 	ieee80211_dfs_attach(ic);
366 
367 	ieee80211_sysctl_attach(ic);
368 
369 	mtx_lock(&ic_list_mtx);
370 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
371 	mtx_unlock(&ic_list_mtx);
372 }
373 
374 /*
375  * Detach net80211 state on device detach.  Tear down
376  * all vap's and reclaim all common state prior to the
377  * device state going away.  Note we may call back into
378  * driver; it must be prepared for this.
379  */
380 void
381 ieee80211_ifdetach(struct ieee80211com *ic)
382 {
383 	struct ieee80211vap *vap;
384 
385 	mtx_lock(&ic_list_mtx);
386 	LIST_REMOVE(ic, ic_next);
387 	mtx_unlock(&ic_list_mtx);
388 
389 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
390 
391 	/*
392 	 * The VAP is responsible for setting and clearing
393 	 * the VIMAGE context.
394 	 */
395 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
396 		ieee80211_vap_destroy(vap);
397 	ieee80211_waitfor_parent(ic);
398 
399 	ieee80211_sysctl_detach(ic);
400 	ieee80211_dfs_detach(ic);
401 	ieee80211_regdomain_detach(ic);
402 	ieee80211_scan_detach(ic);
403 #ifdef IEEE80211_SUPPORT_SUPERG
404 	ieee80211_superg_detach(ic);
405 #endif
406 	ieee80211_vht_detach(ic);
407 	ieee80211_ht_detach(ic);
408 	/* NB: must be called before ieee80211_node_detach */
409 	ieee80211_proto_detach(ic);
410 	ieee80211_crypto_detach(ic);
411 	ieee80211_power_detach(ic);
412 	ieee80211_node_detach(ic);
413 
414 	counter_u64_free(ic->ic_ierrors);
415 	counter_u64_free(ic->ic_oerrors);
416 
417 	taskqueue_free(ic->ic_tq);
418 	IEEE80211_TX_LOCK_DESTROY(ic);
419 	IEEE80211_LOCK_DESTROY(ic);
420 }
421 
422 struct ieee80211com *
423 ieee80211_find_com(const char *name)
424 {
425 	struct ieee80211com *ic;
426 
427 	mtx_lock(&ic_list_mtx);
428 	LIST_FOREACH(ic, &ic_head, ic_next)
429 		if (strcmp(ic->ic_name, name) == 0)
430 			break;
431 	mtx_unlock(&ic_list_mtx);
432 
433 	return (ic);
434 }
435 
436 void
437 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
438 {
439 	struct ieee80211com *ic;
440 
441 	mtx_lock(&ic_list_mtx);
442 	LIST_FOREACH(ic, &ic_head, ic_next)
443 		(*f)(arg, ic);
444 	mtx_unlock(&ic_list_mtx);
445 }
446 
447 /*
448  * Default reset method for use with the ioctl support.  This
449  * method is invoked after any state change in the 802.11
450  * layer that should be propagated to the hardware but not
451  * require re-initialization of the 802.11 state machine (e.g
452  * rescanning for an ap).  We always return ENETRESET which
453  * should cause the driver to re-initialize the device. Drivers
454  * can override this method to implement more optimized support.
455  */
456 static int
457 default_reset(struct ieee80211vap *vap, u_long cmd)
458 {
459 	return ENETRESET;
460 }
461 
462 /*
463  * Default for updating the VAP default TX key index.
464  *
465  * Drivers that support TX offload as well as hardware encryption offload
466  * may need to be informed of key index changes separate from the key
467  * update.
468  */
469 static void
470 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
471 {
472 
473 	/* XXX assert validity */
474 	/* XXX assert we're in a key update block */
475 	vap->iv_def_txkey = kid;
476 }
477 
478 /*
479  * Add underlying device errors to vap errors.
480  */
481 static uint64_t
482 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
483 {
484 	struct ieee80211vap *vap = ifp->if_softc;
485 	struct ieee80211com *ic = vap->iv_ic;
486 	uint64_t rv;
487 
488 	rv = if_get_counter_default(ifp, cnt);
489 	switch (cnt) {
490 	case IFCOUNTER_OERRORS:
491 		rv += counter_u64_fetch(ic->ic_oerrors);
492 		break;
493 	case IFCOUNTER_IERRORS:
494 		rv += counter_u64_fetch(ic->ic_ierrors);
495 		break;
496 	default:
497 		break;
498 	}
499 
500 	return (rv);
501 }
502 
503 /*
504  * Prepare a vap for use.  Drivers use this call to
505  * setup net80211 state in new vap's prior attaching
506  * them with ieee80211_vap_attach (below).
507  */
508 int
509 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
510     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
511     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
512 {
513 	struct ifnet *ifp;
514 
515 	ifp = if_alloc(IFT_ETHER);
516 	if (ifp == NULL) {
517 		ic_printf(ic, "%s: unable to allocate ifnet\n",
518 		    __func__);
519 		return ENOMEM;
520 	}
521 	if_initname(ifp, name, unit);
522 	ifp->if_softc = vap;			/* back pointer */
523 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
524 	ifp->if_transmit = ieee80211_vap_transmit;
525 	ifp->if_qflush = ieee80211_vap_qflush;
526 	ifp->if_ioctl = ieee80211_ioctl;
527 	ifp->if_init = ieee80211_init;
528 	ifp->if_get_counter = ieee80211_get_counter;
529 
530 	vap->iv_ifp = ifp;
531 	vap->iv_ic = ic;
532 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
533 	vap->iv_flags_ext = ic->ic_flags_ext;
534 	vap->iv_flags_ven = ic->ic_flags_ven;
535 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
536 
537 	/* 11n capabilities - XXX methodize */
538 	vap->iv_htcaps = ic->ic_htcaps;
539 	vap->iv_htextcaps = ic->ic_htextcaps;
540 
541 	/* 11ac capabilities - XXX methodize */
542 	vap->iv_vhtcaps = ic->ic_vhtcaps;
543 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
544 
545 	vap->iv_opmode = opmode;
546 	vap->iv_caps |= ieee80211_opcap[opmode];
547 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
548 	switch (opmode) {
549 	case IEEE80211_M_WDS:
550 		/*
551 		 * WDS links must specify the bssid of the far end.
552 		 * For legacy operation this is a static relationship.
553 		 * For non-legacy operation the station must associate
554 		 * and be authorized to pass traffic.  Plumbing the
555 		 * vap to the proper node happens when the vap
556 		 * transitions to RUN state.
557 		 */
558 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
559 		vap->iv_flags |= IEEE80211_F_DESBSSID;
560 		if (flags & IEEE80211_CLONE_WDSLEGACY)
561 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
562 		break;
563 #ifdef IEEE80211_SUPPORT_TDMA
564 	case IEEE80211_M_AHDEMO:
565 		if (flags & IEEE80211_CLONE_TDMA) {
566 			/* NB: checked before clone operation allowed */
567 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
568 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
569 			/*
570 			 * Propagate TDMA capability to mark vap; this
571 			 * cannot be removed and is used to distinguish
572 			 * regular ahdemo operation from ahdemo+tdma.
573 			 */
574 			vap->iv_caps |= IEEE80211_C_TDMA;
575 		}
576 		break;
577 #endif
578 	default:
579 		break;
580 	}
581 	/* auto-enable s/w beacon miss support */
582 	if (flags & IEEE80211_CLONE_NOBEACONS)
583 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
584 	/* auto-generated or user supplied MAC address */
585 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
586 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
587 	/*
588 	 * Enable various functionality by default if we're
589 	 * capable; the driver can override us if it knows better.
590 	 */
591 	if (vap->iv_caps & IEEE80211_C_WME)
592 		vap->iv_flags |= IEEE80211_F_WME;
593 	if (vap->iv_caps & IEEE80211_C_BURST)
594 		vap->iv_flags |= IEEE80211_F_BURST;
595 	/* NB: bg scanning only makes sense for station mode right now */
596 	if (vap->iv_opmode == IEEE80211_M_STA &&
597 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
598 		vap->iv_flags |= IEEE80211_F_BGSCAN;
599 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
600 	/* NB: DFS support only makes sense for ap mode right now */
601 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
602 	    (vap->iv_caps & IEEE80211_C_DFS))
603 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
604 
605 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
606 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
607 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
608 	/*
609 	 * Install a default reset method for the ioctl support;
610 	 * the driver can override this.
611 	 */
612 	vap->iv_reset = default_reset;
613 
614 	/*
615 	 * Install a default crypto key update method, the driver
616 	 * can override this.
617 	 */
618 	vap->iv_update_deftxkey = default_update_deftxkey;
619 
620 	ieee80211_sysctl_vattach(vap);
621 	ieee80211_crypto_vattach(vap);
622 	ieee80211_node_vattach(vap);
623 	ieee80211_power_vattach(vap);
624 	ieee80211_proto_vattach(vap);
625 #ifdef IEEE80211_SUPPORT_SUPERG
626 	ieee80211_superg_vattach(vap);
627 #endif
628 	ieee80211_ht_vattach(vap);
629 	ieee80211_vht_vattach(vap);
630 	ieee80211_scan_vattach(vap);
631 	ieee80211_regdomain_vattach(vap);
632 	ieee80211_radiotap_vattach(vap);
633 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
634 
635 	return 0;
636 }
637 
638 /*
639  * Activate a vap.  State should have been prepared with a
640  * call to ieee80211_vap_setup and by the driver.  On return
641  * from this call the vap is ready for use.
642  */
643 int
644 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
645     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
646 {
647 	struct ifnet *ifp = vap->iv_ifp;
648 	struct ieee80211com *ic = vap->iv_ic;
649 	struct ifmediareq imr;
650 	int maxrate;
651 
652 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
653 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
654 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
655 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
656 
657 	/*
658 	 * Do late attach work that cannot happen until after
659 	 * the driver has had a chance to override defaults.
660 	 */
661 	ieee80211_node_latevattach(vap);
662 	ieee80211_power_latevattach(vap);
663 
664 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
665 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
666 	ieee80211_media_status(ifp, &imr);
667 	/* NB: strip explicit mode; we're actually in autoselect */
668 	ifmedia_set(&vap->iv_media,
669 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
670 	if (maxrate)
671 		ifp->if_baudrate = IF_Mbps(maxrate);
672 
673 	ether_ifattach(ifp, macaddr);
674 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
675 	/* hook output method setup by ether_ifattach */
676 	vap->iv_output = ifp->if_output;
677 	ifp->if_output = ieee80211_output;
678 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
679 
680 	IEEE80211_LOCK(ic);
681 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
682 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
683 #ifdef IEEE80211_SUPPORT_SUPERG
684 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
685 #endif
686 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
687 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
688 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
689 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
690 
691 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
692 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
693 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
694 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
695 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
696 	IEEE80211_UNLOCK(ic);
697 
698 	return 1;
699 }
700 
701 /*
702  * Tear down vap state and reclaim the ifnet.
703  * The driver is assumed to have prepared for
704  * this; e.g. by turning off interrupts for the
705  * underlying device.
706  */
707 void
708 ieee80211_vap_detach(struct ieee80211vap *vap)
709 {
710 	struct ieee80211com *ic = vap->iv_ic;
711 	struct ifnet *ifp = vap->iv_ifp;
712 
713 	CURVNET_SET(ifp->if_vnet);
714 
715 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
716 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
717 
718 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
719 	ether_ifdetach(ifp);
720 
721 	ieee80211_stop(vap);
722 
723 	/*
724 	 * Flush any deferred vap tasks.
725 	 */
726 	ieee80211_draintask(ic, &vap->iv_nstate_task);
727 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
728 
729 	/* XXX band-aid until ifnet handles this for us */
730 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
731 
732 	IEEE80211_LOCK(ic);
733 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
734 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
735 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
736 #ifdef IEEE80211_SUPPORT_SUPERG
737 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
738 #endif
739 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
740 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
741 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
742 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
743 
744 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
745 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
746 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
747 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
748 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
749 
750 	/* NB: this handles the bpfdetach done below */
751 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
752 	if (vap->iv_ifflags & IFF_PROMISC)
753 		ieee80211_promisc(vap, false);
754 	if (vap->iv_ifflags & IFF_ALLMULTI)
755 		ieee80211_allmulti(vap, false);
756 	IEEE80211_UNLOCK(ic);
757 
758 	ifmedia_removeall(&vap->iv_media);
759 
760 	ieee80211_radiotap_vdetach(vap);
761 	ieee80211_regdomain_vdetach(vap);
762 	ieee80211_scan_vdetach(vap);
763 #ifdef IEEE80211_SUPPORT_SUPERG
764 	ieee80211_superg_vdetach(vap);
765 #endif
766 	ieee80211_vht_vdetach(vap);
767 	ieee80211_ht_vdetach(vap);
768 	/* NB: must be before ieee80211_node_vdetach */
769 	ieee80211_proto_vdetach(vap);
770 	ieee80211_crypto_vdetach(vap);
771 	ieee80211_power_vdetach(vap);
772 	ieee80211_node_vdetach(vap);
773 	ieee80211_sysctl_vdetach(vap);
774 
775 	if_free(ifp);
776 
777 	CURVNET_RESTORE();
778 }
779 
780 /*
781  * Count number of vaps in promisc, and issue promisc on
782  * parent respectively.
783  */
784 void
785 ieee80211_promisc(struct ieee80211vap *vap, bool on)
786 {
787 	struct ieee80211com *ic = vap->iv_ic;
788 
789 	IEEE80211_LOCK_ASSERT(ic);
790 
791 	if (on) {
792 		if (++ic->ic_promisc == 1)
793 			ieee80211_runtask(ic, &ic->ic_promisc_task);
794 	} else {
795 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
796 		    __func__, ic));
797 		if (--ic->ic_promisc == 0)
798 			ieee80211_runtask(ic, &ic->ic_promisc_task);
799 	}
800 }
801 
802 /*
803  * Count number of vaps in allmulti, and issue allmulti on
804  * parent respectively.
805  */
806 void
807 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
808 {
809 	struct ieee80211com *ic = vap->iv_ic;
810 
811 	IEEE80211_LOCK_ASSERT(ic);
812 
813 	if (on) {
814 		if (++ic->ic_allmulti == 1)
815 			ieee80211_runtask(ic, &ic->ic_mcast_task);
816 	} else {
817 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
818 		    __func__, ic));
819 		if (--ic->ic_allmulti == 0)
820 			ieee80211_runtask(ic, &ic->ic_mcast_task);
821 	}
822 }
823 
824 /*
825  * Synchronize flag bit state in the com structure
826  * according to the state of all vap's.  This is used,
827  * for example, to handle state changes via ioctls.
828  */
829 static void
830 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
831 {
832 	struct ieee80211vap *vap;
833 	int bit;
834 
835 	IEEE80211_LOCK_ASSERT(ic);
836 
837 	bit = 0;
838 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
839 		if (vap->iv_flags & flag) {
840 			bit = 1;
841 			break;
842 		}
843 	if (bit)
844 		ic->ic_flags |= flag;
845 	else
846 		ic->ic_flags &= ~flag;
847 }
848 
849 void
850 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
851 {
852 	struct ieee80211com *ic = vap->iv_ic;
853 
854 	IEEE80211_LOCK(ic);
855 	if (flag < 0) {
856 		flag = -flag;
857 		vap->iv_flags &= ~flag;
858 	} else
859 		vap->iv_flags |= flag;
860 	ieee80211_syncflag_locked(ic, flag);
861 	IEEE80211_UNLOCK(ic);
862 }
863 
864 /*
865  * Synchronize flags_ht bit state in the com structure
866  * according to the state of all vap's.  This is used,
867  * for example, to handle state changes via ioctls.
868  */
869 static void
870 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
871 {
872 	struct ieee80211vap *vap;
873 	int bit;
874 
875 	IEEE80211_LOCK_ASSERT(ic);
876 
877 	bit = 0;
878 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
879 		if (vap->iv_flags_ht & flag) {
880 			bit = 1;
881 			break;
882 		}
883 	if (bit)
884 		ic->ic_flags_ht |= flag;
885 	else
886 		ic->ic_flags_ht &= ~flag;
887 }
888 
889 void
890 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
891 {
892 	struct ieee80211com *ic = vap->iv_ic;
893 
894 	IEEE80211_LOCK(ic);
895 	if (flag < 0) {
896 		flag = -flag;
897 		vap->iv_flags_ht &= ~flag;
898 	} else
899 		vap->iv_flags_ht |= flag;
900 	ieee80211_syncflag_ht_locked(ic, flag);
901 	IEEE80211_UNLOCK(ic);
902 }
903 
904 /*
905  * Synchronize flags_vht bit state in the com structure
906  * according to the state of all vap's.  This is used,
907  * for example, to handle state changes via ioctls.
908  */
909 static void
910 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
911 {
912 	struct ieee80211vap *vap;
913 	int bit;
914 
915 	IEEE80211_LOCK_ASSERT(ic);
916 
917 	bit = 0;
918 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
919 		if (vap->iv_flags_vht & flag) {
920 			bit = 1;
921 			break;
922 		}
923 	if (bit)
924 		ic->ic_flags_vht |= flag;
925 	else
926 		ic->ic_flags_vht &= ~flag;
927 }
928 
929 void
930 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
931 {
932 	struct ieee80211com *ic = vap->iv_ic;
933 
934 	IEEE80211_LOCK(ic);
935 	if (flag < 0) {
936 		flag = -flag;
937 		vap->iv_flags_vht &= ~flag;
938 	} else
939 		vap->iv_flags_vht |= flag;
940 	ieee80211_syncflag_vht_locked(ic, flag);
941 	IEEE80211_UNLOCK(ic);
942 }
943 
944 /*
945  * Synchronize flags_ext bit state in the com structure
946  * according to the state of all vap's.  This is used,
947  * for example, to handle state changes via ioctls.
948  */
949 static void
950 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
951 {
952 	struct ieee80211vap *vap;
953 	int bit;
954 
955 	IEEE80211_LOCK_ASSERT(ic);
956 
957 	bit = 0;
958 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
959 		if (vap->iv_flags_ext & flag) {
960 			bit = 1;
961 			break;
962 		}
963 	if (bit)
964 		ic->ic_flags_ext |= flag;
965 	else
966 		ic->ic_flags_ext &= ~flag;
967 }
968 
969 void
970 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
971 {
972 	struct ieee80211com *ic = vap->iv_ic;
973 
974 	IEEE80211_LOCK(ic);
975 	if (flag < 0) {
976 		flag = -flag;
977 		vap->iv_flags_ext &= ~flag;
978 	} else
979 		vap->iv_flags_ext |= flag;
980 	ieee80211_syncflag_ext_locked(ic, flag);
981 	IEEE80211_UNLOCK(ic);
982 }
983 
984 static __inline int
985 mapgsm(u_int freq, u_int flags)
986 {
987 	freq *= 10;
988 	if (flags & IEEE80211_CHAN_QUARTER)
989 		freq += 5;
990 	else if (flags & IEEE80211_CHAN_HALF)
991 		freq += 10;
992 	else
993 		freq += 20;
994 	/* NB: there is no 907/20 wide but leave room */
995 	return (freq - 906*10) / 5;
996 }
997 
998 static __inline int
999 mappsb(u_int freq, u_int flags)
1000 {
1001 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1002 }
1003 
1004 /*
1005  * Convert MHz frequency to IEEE channel number.
1006  */
1007 int
1008 ieee80211_mhz2ieee(u_int freq, u_int flags)
1009 {
1010 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1011 	if (flags & IEEE80211_CHAN_GSM)
1012 		return mapgsm(freq, flags);
1013 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1014 		if (freq == 2484)
1015 			return 14;
1016 		if (freq < 2484)
1017 			return ((int) freq - 2407) / 5;
1018 		else
1019 			return 15 + ((freq - 2512) / 20);
1020 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1021 		if (freq <= 5000) {
1022 			/* XXX check regdomain? */
1023 			if (IS_FREQ_IN_PSB(freq))
1024 				return mappsb(freq, flags);
1025 			return (freq - 4000) / 5;
1026 		} else
1027 			return (freq - 5000) / 5;
1028 	} else {				/* either, guess */
1029 		if (freq == 2484)
1030 			return 14;
1031 		if (freq < 2484) {
1032 			if (907 <= freq && freq <= 922)
1033 				return mapgsm(freq, flags);
1034 			return ((int) freq - 2407) / 5;
1035 		}
1036 		if (freq < 5000) {
1037 			if (IS_FREQ_IN_PSB(freq))
1038 				return mappsb(freq, flags);
1039 			else if (freq > 4900)
1040 				return (freq - 4000) / 5;
1041 			else
1042 				return 15 + ((freq - 2512) / 20);
1043 		}
1044 		return (freq - 5000) / 5;
1045 	}
1046 #undef IS_FREQ_IN_PSB
1047 }
1048 
1049 /*
1050  * Convert channel to IEEE channel number.
1051  */
1052 int
1053 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1054 {
1055 	if (c == NULL) {
1056 		ic_printf(ic, "invalid channel (NULL)\n");
1057 		return 0;		/* XXX */
1058 	}
1059 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1060 }
1061 
1062 /*
1063  * Convert IEEE channel number to MHz frequency.
1064  */
1065 u_int
1066 ieee80211_ieee2mhz(u_int chan, u_int flags)
1067 {
1068 	if (flags & IEEE80211_CHAN_GSM)
1069 		return 907 + 5 * (chan / 10);
1070 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1071 		if (chan == 14)
1072 			return 2484;
1073 		if (chan < 14)
1074 			return 2407 + chan*5;
1075 		else
1076 			return 2512 + ((chan-15)*20);
1077 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1078 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1079 			chan -= 37;
1080 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1081 		}
1082 		return 5000 + (chan*5);
1083 	} else {				/* either, guess */
1084 		/* XXX can't distinguish PSB+GSM channels */
1085 		if (chan == 14)
1086 			return 2484;
1087 		if (chan < 14)			/* 0-13 */
1088 			return 2407 + chan*5;
1089 		if (chan < 27)			/* 15-26 */
1090 			return 2512 + ((chan-15)*20);
1091 		return 5000 + (chan*5);
1092 	}
1093 }
1094 
1095 static __inline void
1096 set_extchan(struct ieee80211_channel *c)
1097 {
1098 
1099 	/*
1100 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1101 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1102 	 */
1103 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1104 		c->ic_extieee = c->ic_ieee + 4;
1105 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1106 		c->ic_extieee = c->ic_ieee - 4;
1107 	else
1108 		c->ic_extieee = 0;
1109 }
1110 
1111 /*
1112  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1113  *
1114  * This for now uses a hard-coded list of 80MHz wide channels.
1115  *
1116  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1117  * wide channel we've already decided upon.
1118  *
1119  * For VHT80 and VHT160, there are only a small number of fixed
1120  * 80/160MHz wide channels, so we just use those.
1121  *
1122  * This is all likely very very wrong - both the regulatory code
1123  * and this code needs to ensure that all four channels are
1124  * available and valid before the VHT80 (and eight for VHT160) channel
1125  * is created.
1126  */
1127 
1128 struct vht_chan_range {
1129 	uint16_t freq_start;
1130 	uint16_t freq_end;
1131 };
1132 
1133 struct vht_chan_range vht80_chan_ranges[] = {
1134 	{ 5170, 5250 },
1135 	{ 5250, 5330 },
1136 	{ 5490, 5570 },
1137 	{ 5570, 5650 },
1138 	{ 5650, 5730 },
1139 	{ 5735, 5815 },
1140 	{ 0, 0, }
1141 };
1142 
1143 static int
1144 set_vht_extchan(struct ieee80211_channel *c)
1145 {
1146 	int i;
1147 
1148 	if (! IEEE80211_IS_CHAN_VHT(c)) {
1149 		return (0);
1150 	}
1151 
1152 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1153 		c->ic_vht_ch_freq1 = c->ic_ieee;
1154 		return (1);
1155 	}
1156 
1157 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1158 		if (IEEE80211_IS_CHAN_HT40U(c))
1159 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1160 		else if (IEEE80211_IS_CHAN_HT40D(c))
1161 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1162 		else
1163 			return (0);
1164 		return (1);
1165 	}
1166 
1167 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1168 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1169 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1170 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1171 				int midpoint;
1172 
1173 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1174 				c->ic_vht_ch_freq1 =
1175 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1176 				c->ic_vht_ch_freq2 = 0;
1177 #if 0
1178 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1179 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1180 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1181 #endif
1182 				return (1);
1183 			}
1184 		}
1185 		return (0);
1186 	}
1187 
1188 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1189 	    __func__,
1190 	    c->ic_ieee,
1191 	    c->ic_flags);
1192 
1193 	return (0);
1194 }
1195 
1196 /*
1197  * Return whether the current channel could possibly be a part of
1198  * a VHT80 channel.
1199  *
1200  * This doesn't check that the whole range is in the allowed list
1201  * according to regulatory.
1202  */
1203 static int
1204 is_vht80_valid_freq(uint16_t freq)
1205 {
1206 	int i;
1207 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1208 		if (freq >= vht80_chan_ranges[i].freq_start &&
1209 		    freq < vht80_chan_ranges[i].freq_end)
1210 			return (1);
1211 	}
1212 	return (0);
1213 }
1214 
1215 static int
1216 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1217     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1218 {
1219 	struct ieee80211_channel *c;
1220 
1221 	if (*nchans >= maxchans)
1222 		return (ENOBUFS);
1223 
1224 #if 0
1225 	printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n",
1226 	    __func__,
1227 	    *nchans,
1228 	    ieee,
1229 	    freq,
1230 	    flags);
1231 #endif
1232 
1233 	c = &chans[(*nchans)++];
1234 	c->ic_ieee = ieee;
1235 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1236 	c->ic_maxregpower = maxregpower;
1237 	c->ic_maxpower = 2 * maxregpower;
1238 	c->ic_flags = flags;
1239 	c->ic_vht_ch_freq1 = 0;
1240 	c->ic_vht_ch_freq2 = 0;
1241 	set_extchan(c);
1242 	set_vht_extchan(c);
1243 
1244 	return (0);
1245 }
1246 
1247 static int
1248 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1249     uint32_t flags)
1250 {
1251 	struct ieee80211_channel *c;
1252 
1253 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1254 
1255 	if (*nchans >= maxchans)
1256 		return (ENOBUFS);
1257 
1258 #if 0
1259 	printf("%s: %d: flags=0x%08x\n",
1260 	    __func__,
1261 	    *nchans,
1262 	    flags);
1263 #endif
1264 
1265 	c = &chans[(*nchans)++];
1266 	c[0] = c[-1];
1267 	c->ic_flags = flags;
1268 	c->ic_vht_ch_freq1 = 0;
1269 	c->ic_vht_ch_freq2 = 0;
1270 	set_extchan(c);
1271 	set_vht_extchan(c);
1272 
1273 	return (0);
1274 }
1275 
1276 /*
1277  * XXX VHT-2GHz
1278  */
1279 static void
1280 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1281 {
1282 	int nmodes;
1283 
1284 	nmodes = 0;
1285 	if (isset(bands, IEEE80211_MODE_11B))
1286 		flags[nmodes++] = IEEE80211_CHAN_B;
1287 	if (isset(bands, IEEE80211_MODE_11G))
1288 		flags[nmodes++] = IEEE80211_CHAN_G;
1289 	if (isset(bands, IEEE80211_MODE_11NG))
1290 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1291 	if (ht40) {
1292 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1293 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1294 	}
1295 	flags[nmodes] = 0;
1296 }
1297 
1298 static void
1299 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
1300 {
1301 	int nmodes;
1302 
1303 	/*
1304 	 * the addchan_list function seems to expect the flags array to
1305 	 * be in channel width order, so the VHT bits are interspersed
1306 	 * as appropriate to maintain said order.
1307 	 *
1308 	 * It also assumes HT40U is before HT40D.
1309 	 */
1310 	nmodes = 0;
1311 
1312 	/* 20MHz */
1313 	if (isset(bands, IEEE80211_MODE_11A))
1314 		flags[nmodes++] = IEEE80211_CHAN_A;
1315 	if (isset(bands, IEEE80211_MODE_11NA))
1316 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1317 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1318 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1319 		    IEEE80211_CHAN_VHT20;
1320 	}
1321 
1322 	/* 40MHz */
1323 	if (ht40) {
1324 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1325 	}
1326 	if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1327 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U
1328 		    | IEEE80211_CHAN_VHT40U;
1329 	}
1330 	if (ht40) {
1331 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1332 	}
1333 	if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1334 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D
1335 		    | IEEE80211_CHAN_VHT40D;
1336 	}
1337 
1338 	/* 80MHz */
1339 	if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1340 		flags[nmodes++] = IEEE80211_CHAN_A |
1341 		    IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80;
1342 		flags[nmodes++] = IEEE80211_CHAN_A |
1343 		    IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80;
1344 	}
1345 
1346 	/* XXX VHT80+80 */
1347 	/* XXX VHT160 */
1348 	flags[nmodes] = 0;
1349 }
1350 
1351 static void
1352 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
1353 {
1354 
1355 	flags[0] = 0;
1356 	if (isset(bands, IEEE80211_MODE_11A) ||
1357 	    isset(bands, IEEE80211_MODE_11NA) ||
1358 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1359 		if (isset(bands, IEEE80211_MODE_11B) ||
1360 		    isset(bands, IEEE80211_MODE_11G) ||
1361 		    isset(bands, IEEE80211_MODE_11NG) ||
1362 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1363 			return;
1364 
1365 		getflags_5ghz(bands, flags, ht40, vht80);
1366 	} else
1367 		getflags_2ghz(bands, flags, ht40);
1368 }
1369 
1370 /*
1371  * Add one 20 MHz channel into specified channel list.
1372  */
1373 /* XXX VHT */
1374 int
1375 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1376     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1377     uint32_t chan_flags, const uint8_t bands[])
1378 {
1379 	uint32_t flags[IEEE80211_MODE_MAX];
1380 	int i, error;
1381 
1382 	getflags(bands, flags, 0, 0);
1383 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1384 
1385 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1386 	    flags[0] | chan_flags);
1387 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1388 		error = copychan_prev(chans, maxchans, nchans,
1389 		    flags[i] | chan_flags);
1390 	}
1391 
1392 	return (error);
1393 }
1394 
1395 static struct ieee80211_channel *
1396 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1397     uint32_t flags)
1398 {
1399 	struct ieee80211_channel *c;
1400 	int i;
1401 
1402 	flags &= IEEE80211_CHAN_ALLTURBO;
1403 	/* brute force search */
1404 	for (i = 0; i < nchans; i++) {
1405 		c = &chans[i];
1406 		if (c->ic_freq == freq &&
1407 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1408 			return c;
1409 	}
1410 	return NULL;
1411 }
1412 
1413 /*
1414  * Add 40 MHz channel pair into specified channel list.
1415  */
1416 /* XXX VHT */
1417 int
1418 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1419     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1420 {
1421 	struct ieee80211_channel *cent, *extc;
1422 	uint16_t freq;
1423 	int error;
1424 
1425 	freq = ieee80211_ieee2mhz(ieee, flags);
1426 
1427 	/*
1428 	 * Each entry defines an HT40 channel pair; find the
1429 	 * center channel, then the extension channel above.
1430 	 */
1431 	flags |= IEEE80211_CHAN_HT20;
1432 	cent = findchannel(chans, *nchans, freq, flags);
1433 	if (cent == NULL)
1434 		return (EINVAL);
1435 
1436 	extc = findchannel(chans, *nchans, freq + 20, flags);
1437 	if (extc == NULL)
1438 		return (ENOENT);
1439 
1440 	flags &= ~IEEE80211_CHAN_HT;
1441 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1442 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1443 	if (error != 0)
1444 		return (error);
1445 
1446 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1447 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1448 
1449 	return (error);
1450 }
1451 
1452 /*
1453  * Fetch the center frequency for the primary channel.
1454  */
1455 uint32_t
1456 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1457 {
1458 
1459 	return (c->ic_freq);
1460 }
1461 
1462 /*
1463  * Fetch the center frequency for the primary BAND channel.
1464  *
1465  * For 5, 10, 20MHz channels it'll be the normally configured channel
1466  * frequency.
1467  *
1468  * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the
1469  * wide channel, not the centre of the primary channel (that's ic_freq).
1470  *
1471  * For 80+80MHz channels this will be the centre of the primary
1472  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1473  */
1474 uint32_t
1475 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1476 {
1477 
1478 	/*
1479 	 * VHT - use the pre-calculated centre frequency
1480 	 * of the given channel.
1481 	 */
1482 	if (IEEE80211_IS_CHAN_VHT(c))
1483 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1484 
1485 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1486 		return (c->ic_freq + 10);
1487 	}
1488 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1489 		return (c->ic_freq - 10);
1490 	}
1491 
1492 	return (c->ic_freq);
1493 }
1494 
1495 /*
1496  * For now, no 80+80 support; it will likely always return 0.
1497  */
1498 uint32_t
1499 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1500 {
1501 
1502 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1503 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1504 
1505 	return (0);
1506 }
1507 
1508 /*
1509  * Adds channels into specified channel list (ieee[] array must be sorted).
1510  * Channels are already sorted.
1511  */
1512 static int
1513 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1514     const uint8_t ieee[], int nieee, uint32_t flags[])
1515 {
1516 	uint16_t freq;
1517 	int i, j, error;
1518 	int is_vht;
1519 
1520 	for (i = 0; i < nieee; i++) {
1521 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1522 		for (j = 0; flags[j] != 0; j++) {
1523 			/*
1524 			 * Notes:
1525 			 * + HT40 and VHT40 channels occur together, so
1526 			 *   we need to be careful that we actually allow that.
1527 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1528 			 *   make sure it's not skipped because of the overlap
1529 			 *   check used for (V)HT40.
1530 			 */
1531 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1532 
1533 			/*
1534 			 * Test for VHT80.
1535 			 * XXX This is all very broken right now.
1536 			 * What we /should/ do is:
1537 			 *
1538 			 * + check that the frequency is in the list of
1539 			 *   allowed VHT80 ranges; and
1540 			 * + the other 3 channels in the list are actually
1541 			 *   also available.
1542 			 */
1543 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1544 				if (! is_vht80_valid_freq(freq))
1545 					continue;
1546 
1547 			/*
1548 			 * Test for (V)HT40.
1549 			 *
1550 			 * This is also a fall through from VHT80; as we only
1551 			 * allow a VHT80 channel if the VHT40 combination is
1552 			 * also valid.  If the VHT40 form is not valid then
1553 			 * we certainly can't do VHT80..
1554 			 */
1555 			if (flags[j] & IEEE80211_CHAN_HT40D)
1556 				/*
1557 				 * Can't have a "lower" channel if we are the
1558 				 * first channel.
1559 				 *
1560 				 * Can't have a "lower" channel if it's below/
1561 				 * within 20MHz of the first channel.
1562 				 *
1563 				 * Can't have a "lower" channel if the channel
1564 				 * below it is not 20MHz away.
1565 				 */
1566 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1567 				    freq - 20 !=
1568 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1569 					continue;
1570 			if (flags[j] & IEEE80211_CHAN_HT40U)
1571 				/*
1572 				 * Can't have an "upper" channel if we are
1573 				 * the last channel.
1574 				 *
1575 				 * Can't have an "upper" channel be above the
1576 				 * last channel in the list.
1577 				 *
1578 				 * Can't have an "upper" channel if the next
1579 				 * channel according to the math isn't 20MHz
1580 				 * away.  (Likely for channel 13/14.)
1581 				 */
1582 				if (i == nieee - 1 ||
1583 				    ieee[i] + 4 > ieee[nieee - 1] ||
1584 				    freq + 20 !=
1585 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1586 					continue;
1587 
1588 			if (j == 0) {
1589 				error = addchan(chans, maxchans, nchans,
1590 				    ieee[i], freq, 0, flags[j]);
1591 			} else {
1592 				error = copychan_prev(chans, maxchans, nchans,
1593 				    flags[j]);
1594 			}
1595 			if (error != 0)
1596 				return (error);
1597 		}
1598 	}
1599 
1600 	return (0);
1601 }
1602 
1603 int
1604 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1605     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1606     int ht40)
1607 {
1608 	uint32_t flags[IEEE80211_MODE_MAX];
1609 
1610 	/* XXX no VHT for now */
1611 	getflags_2ghz(bands, flags, ht40);
1612 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1613 
1614 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1615 }
1616 
1617 int
1618 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1619     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1620     int ht40)
1621 {
1622 	uint32_t flags[IEEE80211_MODE_MAX];
1623 	int vht80 = 0;
1624 
1625 	/*
1626 	 * For now, assume VHT == VHT80 support as a minimum.
1627 	 */
1628 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ))
1629 		vht80 = 1;
1630 
1631 	getflags_5ghz(bands, flags, ht40, vht80);
1632 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1633 
1634 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1635 }
1636 
1637 /*
1638  * Locate a channel given a frequency+flags.  We cache
1639  * the previous lookup to optimize switching between two
1640  * channels--as happens with dynamic turbo.
1641  */
1642 struct ieee80211_channel *
1643 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1644 {
1645 	struct ieee80211_channel *c;
1646 
1647 	flags &= IEEE80211_CHAN_ALLTURBO;
1648 	c = ic->ic_prevchan;
1649 	if (c != NULL && c->ic_freq == freq &&
1650 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1651 		return c;
1652 	/* brute force search */
1653 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1654 }
1655 
1656 /*
1657  * Locate a channel given a channel number+flags.  We cache
1658  * the previous lookup to optimize switching between two
1659  * channels--as happens with dynamic turbo.
1660  */
1661 struct ieee80211_channel *
1662 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1663 {
1664 	struct ieee80211_channel *c;
1665 	int i;
1666 
1667 	flags &= IEEE80211_CHAN_ALLTURBO;
1668 	c = ic->ic_prevchan;
1669 	if (c != NULL && c->ic_ieee == ieee &&
1670 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1671 		return c;
1672 	/* brute force search */
1673 	for (i = 0; i < ic->ic_nchans; i++) {
1674 		c = &ic->ic_channels[i];
1675 		if (c->ic_ieee == ieee &&
1676 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1677 			return c;
1678 	}
1679 	return NULL;
1680 }
1681 
1682 /*
1683  * Lookup a channel suitable for the given rx status.
1684  *
1685  * This is used to find a channel for a frame (eg beacon, probe
1686  * response) based purely on the received PHY information.
1687  *
1688  * For now it tries to do it based on R_FREQ / R_IEEE.
1689  * This is enough for 11bg and 11a (and thus 11ng/11na)
1690  * but it will not be enough for GSM, PSB channels and the
1691  * like.  It also doesn't know about legacy-turbog and
1692  * legacy-turbo modes, which some offload NICs actually
1693  * support in weird ways.
1694  *
1695  * Takes the ic and rxstatus; returns the channel or NULL
1696  * if not found.
1697  *
1698  * XXX TODO: Add support for that when the need arises.
1699  */
1700 struct ieee80211_channel *
1701 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1702     const struct ieee80211_rx_stats *rxs)
1703 {
1704 	struct ieee80211com *ic = vap->iv_ic;
1705 	uint32_t flags;
1706 	struct ieee80211_channel *c;
1707 
1708 	if (rxs == NULL)
1709 		return (NULL);
1710 
1711 	/*
1712 	 * Strictly speaking we only use freq for now,
1713 	 * however later on we may wish to just store
1714 	 * the ieee for verification.
1715 	 */
1716 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1717 		return (NULL);
1718 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1719 		return (NULL);
1720 
1721 	/*
1722 	 * If the rx status contains a valid ieee/freq, then
1723 	 * ensure we populate the correct channel information
1724 	 * in rxchan before passing it up to the scan infrastructure.
1725 	 * Offload NICs will pass up beacons from all channels
1726 	 * during background scans.
1727 	 */
1728 
1729 	/* Determine a band */
1730 	/* XXX should be done by the driver? */
1731 	if (rxs->c_freq < 3000) {
1732 		flags = IEEE80211_CHAN_G;
1733 	} else {
1734 		flags = IEEE80211_CHAN_A;
1735 	}
1736 
1737 	/* Channel lookup */
1738 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1739 
1740 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1741 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1742 	    __func__,
1743 	    (int) rxs->c_freq,
1744 	    (int) rxs->c_ieee,
1745 	    flags,
1746 	    c);
1747 
1748 	return (c);
1749 }
1750 
1751 static void
1752 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1753 {
1754 #define	ADD(_ic, _s, _o) \
1755 	ifmedia_add(media, \
1756 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1757 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1758 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1759 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1760 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1761 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1762 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1763 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1764 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1765 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1766 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1767 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1768 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1769 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1770 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1771 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1772 	};
1773 	u_int mopt;
1774 
1775 	mopt = mopts[mode];
1776 	if (addsta)
1777 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1778 	if (caps & IEEE80211_C_IBSS)
1779 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1780 	if (caps & IEEE80211_C_HOSTAP)
1781 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1782 	if (caps & IEEE80211_C_AHDEMO)
1783 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1784 	if (caps & IEEE80211_C_MONITOR)
1785 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1786 	if (caps & IEEE80211_C_WDS)
1787 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1788 	if (caps & IEEE80211_C_MBSS)
1789 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1790 #undef ADD
1791 }
1792 
1793 /*
1794  * Setup the media data structures according to the channel and
1795  * rate tables.
1796  */
1797 static int
1798 ieee80211_media_setup(struct ieee80211com *ic,
1799 	struct ifmedia *media, int caps, int addsta,
1800 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1801 {
1802 	int i, j, rate, maxrate, mword, r;
1803 	enum ieee80211_phymode mode;
1804 	const struct ieee80211_rateset *rs;
1805 	struct ieee80211_rateset allrates;
1806 
1807 	/*
1808 	 * Fill in media characteristics.
1809 	 */
1810 	ifmedia_init(media, 0, media_change, media_stat);
1811 	maxrate = 0;
1812 	/*
1813 	 * Add media for legacy operating modes.
1814 	 */
1815 	memset(&allrates, 0, sizeof(allrates));
1816 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1817 		if (isclr(ic->ic_modecaps, mode))
1818 			continue;
1819 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1820 		if (mode == IEEE80211_MODE_AUTO)
1821 			continue;
1822 		rs = &ic->ic_sup_rates[mode];
1823 		for (i = 0; i < rs->rs_nrates; i++) {
1824 			rate = rs->rs_rates[i];
1825 			mword = ieee80211_rate2media(ic, rate, mode);
1826 			if (mword == 0)
1827 				continue;
1828 			addmedia(media, caps, addsta, mode, mword);
1829 			/*
1830 			 * Add legacy rate to the collection of all rates.
1831 			 */
1832 			r = rate & IEEE80211_RATE_VAL;
1833 			for (j = 0; j < allrates.rs_nrates; j++)
1834 				if (allrates.rs_rates[j] == r)
1835 					break;
1836 			if (j == allrates.rs_nrates) {
1837 				/* unique, add to the set */
1838 				allrates.rs_rates[j] = r;
1839 				allrates.rs_nrates++;
1840 			}
1841 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1842 			if (rate > maxrate)
1843 				maxrate = rate;
1844 		}
1845 	}
1846 	for (i = 0; i < allrates.rs_nrates; i++) {
1847 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1848 				IEEE80211_MODE_AUTO);
1849 		if (mword == 0)
1850 			continue;
1851 		/* NB: remove media options from mword */
1852 		addmedia(media, caps, addsta,
1853 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1854 	}
1855 	/*
1856 	 * Add HT/11n media.  Note that we do not have enough
1857 	 * bits in the media subtype to express the MCS so we
1858 	 * use a "placeholder" media subtype and any fixed MCS
1859 	 * must be specified with a different mechanism.
1860 	 */
1861 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1862 		if (isclr(ic->ic_modecaps, mode))
1863 			continue;
1864 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1865 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1866 	}
1867 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1868 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1869 		addmedia(media, caps, addsta,
1870 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1871 		i = ic->ic_txstream * 8 - 1;
1872 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1873 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1874 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1875 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1876 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1877 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1878 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1879 		else
1880 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1881 		if (rate > maxrate)
1882 			maxrate = rate;
1883 	}
1884 
1885 	/*
1886 	 * Add VHT media.
1887 	 */
1888 	for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) {
1889 		if (isclr(ic->ic_modecaps, mode))
1890 			continue;
1891 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1892 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
1893 
1894 		/* XXX TODO: VHT maxrate */
1895 	}
1896 
1897 	return maxrate;
1898 }
1899 
1900 /* XXX inline or eliminate? */
1901 const struct ieee80211_rateset *
1902 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1903 {
1904 	/* XXX does this work for 11ng basic rates? */
1905 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1906 }
1907 
1908 void
1909 ieee80211_announce(struct ieee80211com *ic)
1910 {
1911 	int i, rate, mword;
1912 	enum ieee80211_phymode mode;
1913 	const struct ieee80211_rateset *rs;
1914 
1915 	/* NB: skip AUTO since it has no rates */
1916 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1917 		if (isclr(ic->ic_modecaps, mode))
1918 			continue;
1919 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1920 		rs = &ic->ic_sup_rates[mode];
1921 		for (i = 0; i < rs->rs_nrates; i++) {
1922 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1923 			if (mword == 0)
1924 				continue;
1925 			rate = ieee80211_media2rate(mword);
1926 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1927 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1928 		}
1929 		printf("\n");
1930 	}
1931 	ieee80211_ht_announce(ic);
1932 	ieee80211_vht_announce(ic);
1933 }
1934 
1935 void
1936 ieee80211_announce_channels(struct ieee80211com *ic)
1937 {
1938 	const struct ieee80211_channel *c;
1939 	char type;
1940 	int i, cw;
1941 
1942 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1943 	for (i = 0; i < ic->ic_nchans; i++) {
1944 		c = &ic->ic_channels[i];
1945 		if (IEEE80211_IS_CHAN_ST(c))
1946 			type = 'S';
1947 		else if (IEEE80211_IS_CHAN_108A(c))
1948 			type = 'T';
1949 		else if (IEEE80211_IS_CHAN_108G(c))
1950 			type = 'G';
1951 		else if (IEEE80211_IS_CHAN_HT(c))
1952 			type = 'n';
1953 		else if (IEEE80211_IS_CHAN_A(c))
1954 			type = 'a';
1955 		else if (IEEE80211_IS_CHAN_ANYG(c))
1956 			type = 'g';
1957 		else if (IEEE80211_IS_CHAN_B(c))
1958 			type = 'b';
1959 		else
1960 			type = 'f';
1961 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1962 			cw = 40;
1963 		else if (IEEE80211_IS_CHAN_HALF(c))
1964 			cw = 10;
1965 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1966 			cw = 5;
1967 		else
1968 			cw = 20;
1969 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1970 			, c->ic_ieee, c->ic_freq, type
1971 			, cw
1972 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1973 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1974 			, c->ic_maxregpower
1975 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1976 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1977 		);
1978 	}
1979 }
1980 
1981 static int
1982 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1983 {
1984 	switch (IFM_MODE(ime->ifm_media)) {
1985 	case IFM_IEEE80211_11A:
1986 		*mode = IEEE80211_MODE_11A;
1987 		break;
1988 	case IFM_IEEE80211_11B:
1989 		*mode = IEEE80211_MODE_11B;
1990 		break;
1991 	case IFM_IEEE80211_11G:
1992 		*mode = IEEE80211_MODE_11G;
1993 		break;
1994 	case IFM_IEEE80211_FH:
1995 		*mode = IEEE80211_MODE_FH;
1996 		break;
1997 	case IFM_IEEE80211_11NA:
1998 		*mode = IEEE80211_MODE_11NA;
1999 		break;
2000 	case IFM_IEEE80211_11NG:
2001 		*mode = IEEE80211_MODE_11NG;
2002 		break;
2003 	case IFM_AUTO:
2004 		*mode = IEEE80211_MODE_AUTO;
2005 		break;
2006 	default:
2007 		return 0;
2008 	}
2009 	/*
2010 	 * Turbo mode is an ``option''.
2011 	 * XXX does not apply to AUTO
2012 	 */
2013 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2014 		if (*mode == IEEE80211_MODE_11A) {
2015 			if (flags & IEEE80211_F_TURBOP)
2016 				*mode = IEEE80211_MODE_TURBO_A;
2017 			else
2018 				*mode = IEEE80211_MODE_STURBO_A;
2019 		} else if (*mode == IEEE80211_MODE_11G)
2020 			*mode = IEEE80211_MODE_TURBO_G;
2021 		else
2022 			return 0;
2023 	}
2024 	/* XXX HT40 +/- */
2025 	return 1;
2026 }
2027 
2028 /*
2029  * Handle a media change request on the vap interface.
2030  */
2031 int
2032 ieee80211_media_change(struct ifnet *ifp)
2033 {
2034 	struct ieee80211vap *vap = ifp->if_softc;
2035 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2036 	uint16_t newmode;
2037 
2038 	if (!media2mode(ime, vap->iv_flags, &newmode))
2039 		return EINVAL;
2040 	if (vap->iv_des_mode != newmode) {
2041 		vap->iv_des_mode = newmode;
2042 		/* XXX kick state machine if up+running */
2043 	}
2044 	return 0;
2045 }
2046 
2047 /*
2048  * Common code to calculate the media status word
2049  * from the operating mode and channel state.
2050  */
2051 static int
2052 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2053 {
2054 	int status;
2055 
2056 	status = IFM_IEEE80211;
2057 	switch (opmode) {
2058 	case IEEE80211_M_STA:
2059 		break;
2060 	case IEEE80211_M_IBSS:
2061 		status |= IFM_IEEE80211_ADHOC;
2062 		break;
2063 	case IEEE80211_M_HOSTAP:
2064 		status |= IFM_IEEE80211_HOSTAP;
2065 		break;
2066 	case IEEE80211_M_MONITOR:
2067 		status |= IFM_IEEE80211_MONITOR;
2068 		break;
2069 	case IEEE80211_M_AHDEMO:
2070 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2071 		break;
2072 	case IEEE80211_M_WDS:
2073 		status |= IFM_IEEE80211_WDS;
2074 		break;
2075 	case IEEE80211_M_MBSS:
2076 		status |= IFM_IEEE80211_MBSS;
2077 		break;
2078 	}
2079 	if (IEEE80211_IS_CHAN_HTA(chan)) {
2080 		status |= IFM_IEEE80211_11NA;
2081 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2082 		status |= IFM_IEEE80211_11NG;
2083 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2084 		status |= IFM_IEEE80211_11A;
2085 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2086 		status |= IFM_IEEE80211_11B;
2087 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2088 		status |= IFM_IEEE80211_11G;
2089 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2090 		status |= IFM_IEEE80211_FH;
2091 	}
2092 	/* XXX else complain? */
2093 
2094 	if (IEEE80211_IS_CHAN_TURBO(chan))
2095 		status |= IFM_IEEE80211_TURBO;
2096 #if 0
2097 	if (IEEE80211_IS_CHAN_HT20(chan))
2098 		status |= IFM_IEEE80211_HT20;
2099 	if (IEEE80211_IS_CHAN_HT40(chan))
2100 		status |= IFM_IEEE80211_HT40;
2101 #endif
2102 	return status;
2103 }
2104 
2105 void
2106 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2107 {
2108 	struct ieee80211vap *vap = ifp->if_softc;
2109 	struct ieee80211com *ic = vap->iv_ic;
2110 	enum ieee80211_phymode mode;
2111 
2112 	imr->ifm_status = IFM_AVALID;
2113 	/*
2114 	 * NB: use the current channel's mode to lock down a xmit
2115 	 * rate only when running; otherwise we may have a mismatch
2116 	 * in which case the rate will not be convertible.
2117 	 */
2118 	if (vap->iv_state == IEEE80211_S_RUN ||
2119 	    vap->iv_state == IEEE80211_S_SLEEP) {
2120 		imr->ifm_status |= IFM_ACTIVE;
2121 		mode = ieee80211_chan2mode(ic->ic_curchan);
2122 	} else
2123 		mode = IEEE80211_MODE_AUTO;
2124 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2125 	/*
2126 	 * Calculate a current rate if possible.
2127 	 */
2128 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2129 		/*
2130 		 * A fixed rate is set, report that.
2131 		 */
2132 		imr->ifm_active |= ieee80211_rate2media(ic,
2133 			vap->iv_txparms[mode].ucastrate, mode);
2134 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2135 		/*
2136 		 * In station mode report the current transmit rate.
2137 		 */
2138 		imr->ifm_active |= ieee80211_rate2media(ic,
2139 			vap->iv_bss->ni_txrate, mode);
2140 	} else
2141 		imr->ifm_active |= IFM_AUTO;
2142 	if (imr->ifm_status & IFM_ACTIVE)
2143 		imr->ifm_current = imr->ifm_active;
2144 }
2145 
2146 /*
2147  * Set the current phy mode and recalculate the active channel
2148  * set based on the available channels for this mode.  Also
2149  * select a new default/current channel if the current one is
2150  * inappropriate for this mode.
2151  */
2152 int
2153 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2154 {
2155 	/*
2156 	 * Adjust basic rates in 11b/11g supported rate set.
2157 	 * Note that if operating on a hal/quarter rate channel
2158 	 * this is a noop as those rates sets are different
2159 	 * and used instead.
2160 	 */
2161 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2162 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2163 
2164 	ic->ic_curmode = mode;
2165 	ieee80211_reset_erp(ic);	/* reset ERP state */
2166 
2167 	return 0;
2168 }
2169 
2170 /*
2171  * Return the phy mode for with the specified channel.
2172  */
2173 enum ieee80211_phymode
2174 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2175 {
2176 
2177 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2178 		return IEEE80211_MODE_VHT_2GHZ;
2179 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2180 		return IEEE80211_MODE_VHT_5GHZ;
2181 	else if (IEEE80211_IS_CHAN_HTA(chan))
2182 		return IEEE80211_MODE_11NA;
2183 	else if (IEEE80211_IS_CHAN_HTG(chan))
2184 		return IEEE80211_MODE_11NG;
2185 	else if (IEEE80211_IS_CHAN_108G(chan))
2186 		return IEEE80211_MODE_TURBO_G;
2187 	else if (IEEE80211_IS_CHAN_ST(chan))
2188 		return IEEE80211_MODE_STURBO_A;
2189 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2190 		return IEEE80211_MODE_TURBO_A;
2191 	else if (IEEE80211_IS_CHAN_HALF(chan))
2192 		return IEEE80211_MODE_HALF;
2193 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2194 		return IEEE80211_MODE_QUARTER;
2195 	else if (IEEE80211_IS_CHAN_A(chan))
2196 		return IEEE80211_MODE_11A;
2197 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2198 		return IEEE80211_MODE_11G;
2199 	else if (IEEE80211_IS_CHAN_B(chan))
2200 		return IEEE80211_MODE_11B;
2201 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2202 		return IEEE80211_MODE_FH;
2203 
2204 	/* NB: should not get here */
2205 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2206 		__func__, chan->ic_freq, chan->ic_flags);
2207 	return IEEE80211_MODE_11B;
2208 }
2209 
2210 struct ratemedia {
2211 	u_int	match;	/* rate + mode */
2212 	u_int	media;	/* if_media rate */
2213 };
2214 
2215 static int
2216 findmedia(const struct ratemedia rates[], int n, u_int match)
2217 {
2218 	int i;
2219 
2220 	for (i = 0; i < n; i++)
2221 		if (rates[i].match == match)
2222 			return rates[i].media;
2223 	return IFM_AUTO;
2224 }
2225 
2226 /*
2227  * Convert IEEE80211 rate value to ifmedia subtype.
2228  * Rate is either a legacy rate in units of 0.5Mbps
2229  * or an MCS index.
2230  */
2231 int
2232 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2233 {
2234 	static const struct ratemedia rates[] = {
2235 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2236 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2237 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2238 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2239 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2240 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2241 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2242 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2243 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2244 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2245 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2246 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2247 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2248 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2249 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2250 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2251 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2252 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2253 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2254 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2255 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2256 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2257 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2258 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2259 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2260 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2261 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2262 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2263 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2264 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2265 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2266 	};
2267 	static const struct ratemedia htrates[] = {
2268 		{   0, IFM_IEEE80211_MCS },
2269 		{   1, IFM_IEEE80211_MCS },
2270 		{   2, IFM_IEEE80211_MCS },
2271 		{   3, IFM_IEEE80211_MCS },
2272 		{   4, IFM_IEEE80211_MCS },
2273 		{   5, IFM_IEEE80211_MCS },
2274 		{   6, IFM_IEEE80211_MCS },
2275 		{   7, IFM_IEEE80211_MCS },
2276 		{   8, IFM_IEEE80211_MCS },
2277 		{   9, IFM_IEEE80211_MCS },
2278 		{  10, IFM_IEEE80211_MCS },
2279 		{  11, IFM_IEEE80211_MCS },
2280 		{  12, IFM_IEEE80211_MCS },
2281 		{  13, IFM_IEEE80211_MCS },
2282 		{  14, IFM_IEEE80211_MCS },
2283 		{  15, IFM_IEEE80211_MCS },
2284 		{  16, IFM_IEEE80211_MCS },
2285 		{  17, IFM_IEEE80211_MCS },
2286 		{  18, IFM_IEEE80211_MCS },
2287 		{  19, IFM_IEEE80211_MCS },
2288 		{  20, IFM_IEEE80211_MCS },
2289 		{  21, IFM_IEEE80211_MCS },
2290 		{  22, IFM_IEEE80211_MCS },
2291 		{  23, IFM_IEEE80211_MCS },
2292 		{  24, IFM_IEEE80211_MCS },
2293 		{  25, IFM_IEEE80211_MCS },
2294 		{  26, IFM_IEEE80211_MCS },
2295 		{  27, IFM_IEEE80211_MCS },
2296 		{  28, IFM_IEEE80211_MCS },
2297 		{  29, IFM_IEEE80211_MCS },
2298 		{  30, IFM_IEEE80211_MCS },
2299 		{  31, IFM_IEEE80211_MCS },
2300 		{  32, IFM_IEEE80211_MCS },
2301 		{  33, IFM_IEEE80211_MCS },
2302 		{  34, IFM_IEEE80211_MCS },
2303 		{  35, IFM_IEEE80211_MCS },
2304 		{  36, IFM_IEEE80211_MCS },
2305 		{  37, IFM_IEEE80211_MCS },
2306 		{  38, IFM_IEEE80211_MCS },
2307 		{  39, IFM_IEEE80211_MCS },
2308 		{  40, IFM_IEEE80211_MCS },
2309 		{  41, IFM_IEEE80211_MCS },
2310 		{  42, IFM_IEEE80211_MCS },
2311 		{  43, IFM_IEEE80211_MCS },
2312 		{  44, IFM_IEEE80211_MCS },
2313 		{  45, IFM_IEEE80211_MCS },
2314 		{  46, IFM_IEEE80211_MCS },
2315 		{  47, IFM_IEEE80211_MCS },
2316 		{  48, IFM_IEEE80211_MCS },
2317 		{  49, IFM_IEEE80211_MCS },
2318 		{  50, IFM_IEEE80211_MCS },
2319 		{  51, IFM_IEEE80211_MCS },
2320 		{  52, IFM_IEEE80211_MCS },
2321 		{  53, IFM_IEEE80211_MCS },
2322 		{  54, IFM_IEEE80211_MCS },
2323 		{  55, IFM_IEEE80211_MCS },
2324 		{  56, IFM_IEEE80211_MCS },
2325 		{  57, IFM_IEEE80211_MCS },
2326 		{  58, IFM_IEEE80211_MCS },
2327 		{  59, IFM_IEEE80211_MCS },
2328 		{  60, IFM_IEEE80211_MCS },
2329 		{  61, IFM_IEEE80211_MCS },
2330 		{  62, IFM_IEEE80211_MCS },
2331 		{  63, IFM_IEEE80211_MCS },
2332 		{  64, IFM_IEEE80211_MCS },
2333 		{  65, IFM_IEEE80211_MCS },
2334 		{  66, IFM_IEEE80211_MCS },
2335 		{  67, IFM_IEEE80211_MCS },
2336 		{  68, IFM_IEEE80211_MCS },
2337 		{  69, IFM_IEEE80211_MCS },
2338 		{  70, IFM_IEEE80211_MCS },
2339 		{  71, IFM_IEEE80211_MCS },
2340 		{  72, IFM_IEEE80211_MCS },
2341 		{  73, IFM_IEEE80211_MCS },
2342 		{  74, IFM_IEEE80211_MCS },
2343 		{  75, IFM_IEEE80211_MCS },
2344 		{  76, IFM_IEEE80211_MCS },
2345 	};
2346 	int m;
2347 
2348 	/*
2349 	 * Check 11n rates first for match as an MCS.
2350 	 */
2351 	if (mode == IEEE80211_MODE_11NA) {
2352 		if (rate & IEEE80211_RATE_MCS) {
2353 			rate &= ~IEEE80211_RATE_MCS;
2354 			m = findmedia(htrates, nitems(htrates), rate);
2355 			if (m != IFM_AUTO)
2356 				return m | IFM_IEEE80211_11NA;
2357 		}
2358 	} else if (mode == IEEE80211_MODE_11NG) {
2359 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2360 		if (rate & IEEE80211_RATE_MCS) {
2361 			rate &= ~IEEE80211_RATE_MCS;
2362 			m = findmedia(htrates, nitems(htrates), rate);
2363 			if (m != IFM_AUTO)
2364 				return m | IFM_IEEE80211_11NG;
2365 		}
2366 	}
2367 	rate &= IEEE80211_RATE_VAL;
2368 	switch (mode) {
2369 	case IEEE80211_MODE_11A:
2370 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2371 	case IEEE80211_MODE_QUARTER:
2372 	case IEEE80211_MODE_11NA:
2373 	case IEEE80211_MODE_TURBO_A:
2374 	case IEEE80211_MODE_STURBO_A:
2375 		return findmedia(rates, nitems(rates),
2376 		    rate | IFM_IEEE80211_11A);
2377 	case IEEE80211_MODE_11B:
2378 		return findmedia(rates, nitems(rates),
2379 		    rate | IFM_IEEE80211_11B);
2380 	case IEEE80211_MODE_FH:
2381 		return findmedia(rates, nitems(rates),
2382 		    rate | IFM_IEEE80211_FH);
2383 	case IEEE80211_MODE_AUTO:
2384 		/* NB: ic may be NULL for some drivers */
2385 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2386 			return findmedia(rates, nitems(rates),
2387 			    rate | IFM_IEEE80211_FH);
2388 		/* NB: hack, 11g matches both 11b+11a rates */
2389 		/* fall thru... */
2390 	case IEEE80211_MODE_11G:
2391 	case IEEE80211_MODE_11NG:
2392 	case IEEE80211_MODE_TURBO_G:
2393 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2394 	case IEEE80211_MODE_VHT_2GHZ:
2395 	case IEEE80211_MODE_VHT_5GHZ:
2396 		/* XXX TODO: need to figure out mapping for VHT rates */
2397 		return IFM_AUTO;
2398 	}
2399 	return IFM_AUTO;
2400 }
2401 
2402 int
2403 ieee80211_media2rate(int mword)
2404 {
2405 	static const int ieeerates[] = {
2406 		-1,		/* IFM_AUTO */
2407 		0,		/* IFM_MANUAL */
2408 		0,		/* IFM_NONE */
2409 		2,		/* IFM_IEEE80211_FH1 */
2410 		4,		/* IFM_IEEE80211_FH2 */
2411 		2,		/* IFM_IEEE80211_DS1 */
2412 		4,		/* IFM_IEEE80211_DS2 */
2413 		11,		/* IFM_IEEE80211_DS5 */
2414 		22,		/* IFM_IEEE80211_DS11 */
2415 		44,		/* IFM_IEEE80211_DS22 */
2416 		12,		/* IFM_IEEE80211_OFDM6 */
2417 		18,		/* IFM_IEEE80211_OFDM9 */
2418 		24,		/* IFM_IEEE80211_OFDM12 */
2419 		36,		/* IFM_IEEE80211_OFDM18 */
2420 		48,		/* IFM_IEEE80211_OFDM24 */
2421 		72,		/* IFM_IEEE80211_OFDM36 */
2422 		96,		/* IFM_IEEE80211_OFDM48 */
2423 		108,		/* IFM_IEEE80211_OFDM54 */
2424 		144,		/* IFM_IEEE80211_OFDM72 */
2425 		0,		/* IFM_IEEE80211_DS354k */
2426 		0,		/* IFM_IEEE80211_DS512k */
2427 		6,		/* IFM_IEEE80211_OFDM3 */
2428 		9,		/* IFM_IEEE80211_OFDM4 */
2429 		54,		/* IFM_IEEE80211_OFDM27 */
2430 		-1,		/* IFM_IEEE80211_MCS */
2431 		-1,		/* IFM_IEEE80211_VHT */
2432 	};
2433 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2434 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2435 }
2436 
2437 /*
2438  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2439  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2440  */
2441 #define	mix(a, b, c)							\
2442 do {									\
2443 	a -= b; a -= c; a ^= (c >> 13);					\
2444 	b -= c; b -= a; b ^= (a << 8);					\
2445 	c -= a; c -= b; c ^= (b >> 13);					\
2446 	a -= b; a -= c; a ^= (c >> 12);					\
2447 	b -= c; b -= a; b ^= (a << 16);					\
2448 	c -= a; c -= b; c ^= (b >> 5);					\
2449 	a -= b; a -= c; a ^= (c >> 3);					\
2450 	b -= c; b -= a; b ^= (a << 10);					\
2451 	c -= a; c -= b; c ^= (b >> 15);					\
2452 } while (/*CONSTCOND*/0)
2453 
2454 uint32_t
2455 ieee80211_mac_hash(const struct ieee80211com *ic,
2456 	const uint8_t addr[IEEE80211_ADDR_LEN])
2457 {
2458 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2459 
2460 	b += addr[5] << 8;
2461 	b += addr[4];
2462 	a += addr[3] << 24;
2463 	a += addr[2] << 16;
2464 	a += addr[1] << 8;
2465 	a += addr[0];
2466 
2467 	mix(a, b, c);
2468 
2469 	return c;
2470 }
2471 #undef mix
2472 
2473 char
2474 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2475 {
2476 	if (IEEE80211_IS_CHAN_ST(c))
2477 		return 'S';
2478 	if (IEEE80211_IS_CHAN_108A(c))
2479 		return 'T';
2480 	if (IEEE80211_IS_CHAN_108G(c))
2481 		return 'G';
2482 	if (IEEE80211_IS_CHAN_VHT(c))
2483 		return 'v';
2484 	if (IEEE80211_IS_CHAN_HT(c))
2485 		return 'n';
2486 	if (IEEE80211_IS_CHAN_A(c))
2487 		return 'a';
2488 	if (IEEE80211_IS_CHAN_ANYG(c))
2489 		return 'g';
2490 	if (IEEE80211_IS_CHAN_B(c))
2491 		return 'b';
2492 	return 'f';
2493 }
2494