xref: /freebsd/sys/net80211/ieee80211.c (revision 5861f9665471e98e544f6fa3ce73c4912229ff82)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ethernet.h>
46 
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_regdomain.h>
49 #ifdef IEEE80211_SUPPORT_SUPERG
50 #include <net80211/ieee80211_superg.h>
51 #endif
52 
53 #include <net/bpf.h>
54 
55 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
56 	[IEEE80211_MODE_AUTO]	  = "auto",
57 	[IEEE80211_MODE_11A]	  = "11a",
58 	[IEEE80211_MODE_11B]	  = "11b",
59 	[IEEE80211_MODE_11G]	  = "11g",
60 	[IEEE80211_MODE_FH]	  = "FH",
61 	[IEEE80211_MODE_TURBO_A]  = "turboA",
62 	[IEEE80211_MODE_TURBO_G]  = "turboG",
63 	[IEEE80211_MODE_STURBO_A] = "sturboA",
64 	[IEEE80211_MODE_HALF]	  = "half",
65 	[IEEE80211_MODE_QUARTER]  = "quarter",
66 	[IEEE80211_MODE_11NA]	  = "11na",
67 	[IEEE80211_MODE_11NG]	  = "11ng",
68 };
69 /* map ieee80211_opmode to the corresponding capability bit */
70 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
71 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
72 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
73 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
74 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
75 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
76 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
77 #ifdef IEEE80211_SUPPORT_MESH
78 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
79 #endif
80 };
81 
82 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
83 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
84 
85 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
86 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
87 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
88 static	int ieee80211_media_setup(struct ieee80211com *ic,
89 		struct ifmedia *media, int caps, int addsta,
90 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
91 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
92 static	int ieee80211com_media_change(struct ifnet *);
93 static	int media_status(enum ieee80211_opmode,
94 		const struct ieee80211_channel *);
95 
96 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
97 
98 /*
99  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
100  */
101 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
102 static const struct ieee80211_rateset ieee80211_rateset_11a =
103 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
104 static const struct ieee80211_rateset ieee80211_rateset_half =
105 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
106 static const struct ieee80211_rateset ieee80211_rateset_quarter =
107 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
108 static const struct ieee80211_rateset ieee80211_rateset_11b =
109 	{ 4, { B(2), B(4), B(11), B(22) } };
110 /* NB: OFDM rates are handled specially based on mode */
111 static const struct ieee80211_rateset ieee80211_rateset_11g =
112 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
113 #undef B
114 
115 /*
116  * Fill in 802.11 available channel set, mark
117  * all available channels as active, and pick
118  * a default channel if not already specified.
119  */
120 static void
121 ieee80211_chan_init(struct ieee80211com *ic)
122 {
123 #define	DEFAULTRATES(m, def) do { \
124 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
125 		ic->ic_sup_rates[m] = def; \
126 } while (0)
127 	struct ieee80211_channel *c;
128 	int i;
129 
130 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
131 		("invalid number of channels specified: %u", ic->ic_nchans));
132 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
133 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
134 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
135 	for (i = 0; i < ic->ic_nchans; i++) {
136 		c = &ic->ic_channels[i];
137 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
138 		/*
139 		 * Help drivers that work only with frequencies by filling
140 		 * in IEEE channel #'s if not already calculated.  Note this
141 		 * mimics similar work done in ieee80211_setregdomain when
142 		 * changing regulatory state.
143 		 */
144 		if (c->ic_ieee == 0)
145 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
146 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
147 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
148 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
149 			    c->ic_flags);
150 		/* default max tx power to max regulatory */
151 		if (c->ic_maxpower == 0)
152 			c->ic_maxpower = 2*c->ic_maxregpower;
153 		setbit(ic->ic_chan_avail, c->ic_ieee);
154 		/*
155 		 * Identify mode capabilities.
156 		 */
157 		if (IEEE80211_IS_CHAN_A(c))
158 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
159 		if (IEEE80211_IS_CHAN_B(c))
160 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
161 		if (IEEE80211_IS_CHAN_ANYG(c))
162 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
163 		if (IEEE80211_IS_CHAN_FHSS(c))
164 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
165 		if (IEEE80211_IS_CHAN_108A(c))
166 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
167 		if (IEEE80211_IS_CHAN_108G(c))
168 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
169 		if (IEEE80211_IS_CHAN_ST(c))
170 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
171 		if (IEEE80211_IS_CHAN_HALF(c))
172 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
173 		if (IEEE80211_IS_CHAN_QUARTER(c))
174 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
175 		if (IEEE80211_IS_CHAN_HTA(c))
176 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
177 		if (IEEE80211_IS_CHAN_HTG(c))
178 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
179 	}
180 	/* initialize candidate channels to all available */
181 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
182 		sizeof(ic->ic_chan_avail));
183 
184 	/* sort channel table to allow lookup optimizations */
185 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
186 
187 	/* invalidate any previous state */
188 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
189 	ic->ic_prevchan = NULL;
190 	ic->ic_csa_newchan = NULL;
191 	/* arbitrarily pick the first channel */
192 	ic->ic_curchan = &ic->ic_channels[0];
193 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
194 
195 	/* fillin well-known rate sets if driver has not specified */
196 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
197 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
198 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
199 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
200 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
201 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
202 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
203 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
204 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
205 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
206 
207 	/*
208 	 * Set auto mode to reset active channel state and any desired channel.
209 	 */
210 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
211 #undef DEFAULTRATES
212 }
213 
214 static void
215 null_update_mcast(struct ifnet *ifp)
216 {
217 	if_printf(ifp, "need multicast update callback\n");
218 }
219 
220 static void
221 null_update_promisc(struct ifnet *ifp)
222 {
223 	if_printf(ifp, "need promiscuous mode update callback\n");
224 }
225 
226 static int
227 null_output(struct ifnet *ifp, struct mbuf *m,
228 	struct sockaddr *dst, struct route *ro)
229 {
230 	if_printf(ifp, "discard raw packet\n");
231 	m_freem(m);
232 	return EIO;
233 }
234 
235 static void
236 null_input(struct ifnet *ifp, struct mbuf *m)
237 {
238 	if_printf(ifp, "if_input should not be called\n");
239 	m_freem(m);
240 }
241 
242 /*
243  * Attach/setup the common net80211 state.  Called by
244  * the driver on attach to prior to creating any vap's.
245  */
246 void
247 ieee80211_ifattach(struct ieee80211com *ic,
248 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
249 {
250 	struct ifnet *ifp = ic->ic_ifp;
251 	struct sockaddr_dl *sdl;
252 	struct ifaddr *ifa;
253 
254 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
255 
256 	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
257 	TAILQ_INIT(&ic->ic_vaps);
258 
259 	/* Create a taskqueue for all state changes */
260 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
261 	    taskqueue_thread_enqueue, &ic->ic_tq);
262 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq",
263 	    ifp->if_xname);
264 	/*
265 	 * Fill in 802.11 available channel set, mark all
266 	 * available channels as active, and pick a default
267 	 * channel if not already specified.
268 	 */
269 	ieee80211_media_init(ic);
270 
271 	ic->ic_update_mcast = null_update_mcast;
272 	ic->ic_update_promisc = null_update_promisc;
273 
274 	ic->ic_hash_key = arc4random();
275 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
276 	ic->ic_lintval = ic->ic_bintval;
277 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
278 
279 	ieee80211_crypto_attach(ic);
280 	ieee80211_node_attach(ic);
281 	ieee80211_power_attach(ic);
282 	ieee80211_proto_attach(ic);
283 #ifdef IEEE80211_SUPPORT_SUPERG
284 	ieee80211_superg_attach(ic);
285 #endif
286 	ieee80211_ht_attach(ic);
287 	ieee80211_scan_attach(ic);
288 	ieee80211_regdomain_attach(ic);
289 	ieee80211_dfs_attach(ic);
290 
291 	ieee80211_sysctl_attach(ic);
292 
293 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
294 	ifp->if_hdrlen = 0;
295 	if_attach(ifp);
296 	ifp->if_mtu = IEEE80211_MTU_MAX;
297 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
298 	ifp->if_output = null_output;
299 	ifp->if_input = null_input;	/* just in case */
300 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
301 
302 	ifa = ifaddr_byindex(ifp->if_index);
303 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
304 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
305 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
306 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
307 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
308 	ifa_free(ifa);
309 }
310 
311 /*
312  * Detach net80211 state on device detach.  Tear down
313  * all vap's and reclaim all common state prior to the
314  * device state going away.  Note we may call back into
315  * driver; it must be prepared for this.
316  */
317 void
318 ieee80211_ifdetach(struct ieee80211com *ic)
319 {
320 	struct ifnet *ifp = ic->ic_ifp;
321 	struct ieee80211vap *vap;
322 
323 	if_detach(ifp);
324 
325 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
326 		ieee80211_vap_destroy(vap);
327 	ieee80211_waitfor_parent(ic);
328 
329 	ieee80211_sysctl_detach(ic);
330 	ieee80211_dfs_detach(ic);
331 	ieee80211_regdomain_detach(ic);
332 	ieee80211_scan_detach(ic);
333 #ifdef IEEE80211_SUPPORT_SUPERG
334 	ieee80211_superg_detach(ic);
335 #endif
336 	ieee80211_ht_detach(ic);
337 	/* NB: must be called before ieee80211_node_detach */
338 	ieee80211_proto_detach(ic);
339 	ieee80211_crypto_detach(ic);
340 	ieee80211_power_detach(ic);
341 	ieee80211_node_detach(ic);
342 
343 	ifmedia_removeall(&ic->ic_media);
344 	taskqueue_free(ic->ic_tq);
345 	IEEE80211_LOCK_DESTROY(ic);
346 }
347 
348 /*
349  * Default reset method for use with the ioctl support.  This
350  * method is invoked after any state change in the 802.11
351  * layer that should be propagated to the hardware but not
352  * require re-initialization of the 802.11 state machine (e.g
353  * rescanning for an ap).  We always return ENETRESET which
354  * should cause the driver to re-initialize the device. Drivers
355  * can override this method to implement more optimized support.
356  */
357 static int
358 default_reset(struct ieee80211vap *vap, u_long cmd)
359 {
360 	return ENETRESET;
361 }
362 
363 /*
364  * Prepare a vap for use.  Drivers use this call to
365  * setup net80211 state in new vap's prior attaching
366  * them with ieee80211_vap_attach (below).
367  */
368 int
369 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
370 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
371 	const uint8_t bssid[IEEE80211_ADDR_LEN],
372 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
373 {
374 	struct ifnet *ifp;
375 
376 	ifp = if_alloc(IFT_ETHER);
377 	if (ifp == NULL) {
378 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
379 		    __func__);
380 		return ENOMEM;
381 	}
382 	if_initname(ifp, name, unit);
383 	ifp->if_softc = vap;			/* back pointer */
384 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
385 	ifp->if_start = ieee80211_start;
386 	ifp->if_ioctl = ieee80211_ioctl;
387 	ifp->if_watchdog = NULL;		/* NB: no watchdog routine */
388 	ifp->if_init = ieee80211_init;
389 	/* NB: input+output filled in by ether_ifattach */
390 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
391 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
392 	IFQ_SET_READY(&ifp->if_snd);
393 
394 	vap->iv_ifp = ifp;
395 	vap->iv_ic = ic;
396 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
397 	vap->iv_flags_ext = ic->ic_flags_ext;
398 	vap->iv_flags_ven = ic->ic_flags_ven;
399 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
400 	vap->iv_htcaps = ic->ic_htcaps;
401 	vap->iv_opmode = opmode;
402 	vap->iv_caps |= ieee80211_opcap[opmode];
403 	switch (opmode) {
404 	case IEEE80211_M_WDS:
405 		/*
406 		 * WDS links must specify the bssid of the far end.
407 		 * For legacy operation this is a static relationship.
408 		 * For non-legacy operation the station must associate
409 		 * and be authorized to pass traffic.  Plumbing the
410 		 * vap to the proper node happens when the vap
411 		 * transitions to RUN state.
412 		 */
413 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
414 		vap->iv_flags |= IEEE80211_F_DESBSSID;
415 		if (flags & IEEE80211_CLONE_WDSLEGACY)
416 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
417 		break;
418 #ifdef IEEE80211_SUPPORT_TDMA
419 	case IEEE80211_M_AHDEMO:
420 		if (flags & IEEE80211_CLONE_TDMA) {
421 			/* NB: checked before clone operation allowed */
422 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
423 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
424 			/*
425 			 * Propagate TDMA capability to mark vap; this
426 			 * cannot be removed and is used to distinguish
427 			 * regular ahdemo operation from ahdemo+tdma.
428 			 */
429 			vap->iv_caps |= IEEE80211_C_TDMA;
430 		}
431 		break;
432 #endif
433 	}
434 	/* auto-enable s/w beacon miss support */
435 	if (flags & IEEE80211_CLONE_NOBEACONS)
436 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
437 	/*
438 	 * Enable various functionality by default if we're
439 	 * capable; the driver can override us if it knows better.
440 	 */
441 	if (vap->iv_caps & IEEE80211_C_WME)
442 		vap->iv_flags |= IEEE80211_F_WME;
443 	if (vap->iv_caps & IEEE80211_C_BURST)
444 		vap->iv_flags |= IEEE80211_F_BURST;
445 	/* NB: bg scanning only makes sense for station mode right now */
446 	if (vap->iv_opmode == IEEE80211_M_STA &&
447 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
448 		vap->iv_flags |= IEEE80211_F_BGSCAN;
449 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
450 	/* NB: DFS support only makes sense for ap mode right now */
451 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
452 	    (vap->iv_caps & IEEE80211_C_DFS))
453 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
454 
455 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
456 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
457 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
458 	/*
459 	 * Install a default reset method for the ioctl support;
460 	 * the driver can override this.
461 	 */
462 	vap->iv_reset = default_reset;
463 
464 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
465 
466 	ieee80211_sysctl_vattach(vap);
467 	ieee80211_crypto_vattach(vap);
468 	ieee80211_node_vattach(vap);
469 	ieee80211_power_vattach(vap);
470 	ieee80211_proto_vattach(vap);
471 #ifdef IEEE80211_SUPPORT_SUPERG
472 	ieee80211_superg_vattach(vap);
473 #endif
474 	ieee80211_ht_vattach(vap);
475 	ieee80211_scan_vattach(vap);
476 	ieee80211_regdomain_vattach(vap);
477 	ieee80211_radiotap_vattach(vap);
478 
479 	return 0;
480 }
481 
482 /*
483  * Activate a vap.  State should have been prepared with a
484  * call to ieee80211_vap_setup and by the driver.  On return
485  * from this call the vap is ready for use.
486  */
487 int
488 ieee80211_vap_attach(struct ieee80211vap *vap,
489 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
490 {
491 	struct ifnet *ifp = vap->iv_ifp;
492 	struct ieee80211com *ic = vap->iv_ic;
493 	struct ifmediareq imr;
494 	int maxrate;
495 
496 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
497 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
498 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
499 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
500 
501 	/*
502 	 * Do late attach work that cannot happen until after
503 	 * the driver has had a chance to override defaults.
504 	 */
505 	ieee80211_node_latevattach(vap);
506 	ieee80211_power_latevattach(vap);
507 
508 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
509 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
510 	ieee80211_media_status(ifp, &imr);
511 	/* NB: strip explicit mode; we're actually in autoselect */
512 	ifmedia_set(&vap->iv_media,
513 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
514 	if (maxrate)
515 		ifp->if_baudrate = IF_Mbps(maxrate);
516 
517 	ether_ifattach(ifp, vap->iv_myaddr);
518 	/* hook output method setup by ether_ifattach */
519 	vap->iv_output = ifp->if_output;
520 	ifp->if_output = ieee80211_output;
521 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
522 
523 	IEEE80211_LOCK(ic);
524 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
525 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
526 #ifdef IEEE80211_SUPPORT_SUPERG
527 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
528 #endif
529 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
530 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
531 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
532 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
533 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
534 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
535 	IEEE80211_UNLOCK(ic);
536 
537 	return 1;
538 }
539 
540 /*
541  * Tear down vap state and reclaim the ifnet.
542  * The driver is assumed to have prepared for
543  * this; e.g. by turning off interrupts for the
544  * underlying device.
545  */
546 void
547 ieee80211_vap_detach(struct ieee80211vap *vap)
548 {
549 	struct ieee80211com *ic = vap->iv_ic;
550 	struct ifnet *ifp = vap->iv_ifp;
551 
552 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
553 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
554 	    ic->ic_ifp->if_xname);
555 
556 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
557 	ether_ifdetach(ifp);
558 
559 	ieee80211_stop(vap);
560 
561 	/*
562 	 * Flush any deferred vap tasks.
563 	 * NB: must be before ether_ifdetach() and removal from ic_vaps list
564 	 */
565 	ieee80211_draintask(ic, &vap->iv_nstate_task);
566 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
567 
568 	IEEE80211_LOCK(ic);
569 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
570 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
571 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
572 #ifdef IEEE80211_SUPPORT_SUPERG
573 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
574 #endif
575 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
576 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
577 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
578 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
579 	/* NB: this handles the bpfdetach done below */
580 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
581 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
582 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
583 	IEEE80211_UNLOCK(ic);
584 
585 	ifmedia_removeall(&vap->iv_media);
586 
587 	ieee80211_radiotap_vdetach(vap);
588 	ieee80211_regdomain_vdetach(vap);
589 	ieee80211_scan_vdetach(vap);
590 #ifdef IEEE80211_SUPPORT_SUPERG
591 	ieee80211_superg_vdetach(vap);
592 #endif
593 	ieee80211_ht_vdetach(vap);
594 	/* NB: must be before ieee80211_node_vdetach */
595 	ieee80211_proto_vdetach(vap);
596 	ieee80211_crypto_vdetach(vap);
597 	ieee80211_power_vdetach(vap);
598 	ieee80211_node_vdetach(vap);
599 	ieee80211_sysctl_vdetach(vap);
600 
601 	if_free(ifp);
602 }
603 
604 /*
605  * Synchronize flag bit state in the parent ifnet structure
606  * according to the state of all vap ifnet's.  This is used,
607  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
608  */
609 void
610 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
611 {
612 	struct ifnet *ifp = ic->ic_ifp;
613 	struct ieee80211vap *vap;
614 	int bit, oflags;
615 
616 	IEEE80211_LOCK_ASSERT(ic);
617 
618 	bit = 0;
619 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
620 		if (vap->iv_ifp->if_flags & flag) {
621 			/*
622 			 * XXX the bridge sets PROMISC but we don't want to
623 			 * enable it on the device, discard here so all the
624 			 * drivers don't need to special-case it
625 			 */
626 			if (flag == IFF_PROMISC &&
627 			    vap->iv_opmode == IEEE80211_M_HOSTAP)
628 				continue;
629 			bit = 1;
630 			break;
631 		}
632 	oflags = ifp->if_flags;
633 	if (bit)
634 		ifp->if_flags |= flag;
635 	else
636 		ifp->if_flags &= ~flag;
637 	if ((ifp->if_flags ^ oflags) & flag) {
638 		/* XXX should we return 1/0 and let caller do this? */
639 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
640 			if (flag == IFF_PROMISC)
641 				ieee80211_runtask(ic, &ic->ic_promisc_task);
642 			else if (flag == IFF_ALLMULTI)
643 				ieee80211_runtask(ic, &ic->ic_mcast_task);
644 		}
645 	}
646 }
647 
648 /*
649  * Synchronize flag bit state in the com structure
650  * according to the state of all vap's.  This is used,
651  * for example, to handle state changes via ioctls.
652  */
653 static void
654 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
655 {
656 	struct ieee80211vap *vap;
657 	int bit;
658 
659 	IEEE80211_LOCK_ASSERT(ic);
660 
661 	bit = 0;
662 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
663 		if (vap->iv_flags & flag) {
664 			bit = 1;
665 			break;
666 		}
667 	if (bit)
668 		ic->ic_flags |= flag;
669 	else
670 		ic->ic_flags &= ~flag;
671 }
672 
673 void
674 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
675 {
676 	struct ieee80211com *ic = vap->iv_ic;
677 
678 	IEEE80211_LOCK(ic);
679 	if (flag < 0) {
680 		flag = -flag;
681 		vap->iv_flags &= ~flag;
682 	} else
683 		vap->iv_flags |= flag;
684 	ieee80211_syncflag_locked(ic, flag);
685 	IEEE80211_UNLOCK(ic);
686 }
687 
688 /*
689  * Synchronize flags_ht bit state in the com structure
690  * according to the state of all vap's.  This is used,
691  * for example, to handle state changes via ioctls.
692  */
693 static void
694 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
695 {
696 	struct ieee80211vap *vap;
697 	int bit;
698 
699 	IEEE80211_LOCK_ASSERT(ic);
700 
701 	bit = 0;
702 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
703 		if (vap->iv_flags_ht & flag) {
704 			bit = 1;
705 			break;
706 		}
707 	if (bit)
708 		ic->ic_flags_ht |= flag;
709 	else
710 		ic->ic_flags_ht &= ~flag;
711 }
712 
713 void
714 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
715 {
716 	struct ieee80211com *ic = vap->iv_ic;
717 
718 	IEEE80211_LOCK(ic);
719 	if (flag < 0) {
720 		flag = -flag;
721 		vap->iv_flags_ht &= ~flag;
722 	} else
723 		vap->iv_flags_ht |= flag;
724 	ieee80211_syncflag_ht_locked(ic, flag);
725 	IEEE80211_UNLOCK(ic);
726 }
727 
728 /*
729  * Synchronize flags_ext bit state in the com structure
730  * according to the state of all vap's.  This is used,
731  * for example, to handle state changes via ioctls.
732  */
733 static void
734 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
735 {
736 	struct ieee80211vap *vap;
737 	int bit;
738 
739 	IEEE80211_LOCK_ASSERT(ic);
740 
741 	bit = 0;
742 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
743 		if (vap->iv_flags_ext & flag) {
744 			bit = 1;
745 			break;
746 		}
747 	if (bit)
748 		ic->ic_flags_ext |= flag;
749 	else
750 		ic->ic_flags_ext &= ~flag;
751 }
752 
753 void
754 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
755 {
756 	struct ieee80211com *ic = vap->iv_ic;
757 
758 	IEEE80211_LOCK(ic);
759 	if (flag < 0) {
760 		flag = -flag;
761 		vap->iv_flags_ext &= ~flag;
762 	} else
763 		vap->iv_flags_ext |= flag;
764 	ieee80211_syncflag_ext_locked(ic, flag);
765 	IEEE80211_UNLOCK(ic);
766 }
767 
768 static __inline int
769 mapgsm(u_int freq, u_int flags)
770 {
771 	freq *= 10;
772 	if (flags & IEEE80211_CHAN_QUARTER)
773 		freq += 5;
774 	else if (flags & IEEE80211_CHAN_HALF)
775 		freq += 10;
776 	else
777 		freq += 20;
778 	/* NB: there is no 907/20 wide but leave room */
779 	return (freq - 906*10) / 5;
780 }
781 
782 static __inline int
783 mappsb(u_int freq, u_int flags)
784 {
785 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
786 }
787 
788 /*
789  * Convert MHz frequency to IEEE channel number.
790  */
791 int
792 ieee80211_mhz2ieee(u_int freq, u_int flags)
793 {
794 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
795 	if (flags & IEEE80211_CHAN_GSM)
796 		return mapgsm(freq, flags);
797 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
798 		if (freq == 2484)
799 			return 14;
800 		if (freq < 2484)
801 			return ((int) freq - 2407) / 5;
802 		else
803 			return 15 + ((freq - 2512) / 20);
804 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
805 		if (freq <= 5000) {
806 			/* XXX check regdomain? */
807 			if (IS_FREQ_IN_PSB(freq))
808 				return mappsb(freq, flags);
809 			return (freq - 4000) / 5;
810 		} else
811 			return (freq - 5000) / 5;
812 	} else {				/* either, guess */
813 		if (freq == 2484)
814 			return 14;
815 		if (freq < 2484) {
816 			if (907 <= freq && freq <= 922)
817 				return mapgsm(freq, flags);
818 			return ((int) freq - 2407) / 5;
819 		}
820 		if (freq < 5000) {
821 			if (IS_FREQ_IN_PSB(freq))
822 				return mappsb(freq, flags);
823 			else if (freq > 4900)
824 				return (freq - 4000) / 5;
825 			else
826 				return 15 + ((freq - 2512) / 20);
827 		}
828 		return (freq - 5000) / 5;
829 	}
830 #undef IS_FREQ_IN_PSB
831 }
832 
833 /*
834  * Convert channel to IEEE channel number.
835  */
836 int
837 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
838 {
839 	if (c == NULL) {
840 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
841 		return 0;		/* XXX */
842 	}
843 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
844 }
845 
846 /*
847  * Convert IEEE channel number to MHz frequency.
848  */
849 u_int
850 ieee80211_ieee2mhz(u_int chan, u_int flags)
851 {
852 	if (flags & IEEE80211_CHAN_GSM)
853 		return 907 + 5 * (chan / 10);
854 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
855 		if (chan == 14)
856 			return 2484;
857 		if (chan < 14)
858 			return 2407 + chan*5;
859 		else
860 			return 2512 + ((chan-15)*20);
861 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
862 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
863 			chan -= 37;
864 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
865 		}
866 		return 5000 + (chan*5);
867 	} else {				/* either, guess */
868 		/* XXX can't distinguish PSB+GSM channels */
869 		if (chan == 14)
870 			return 2484;
871 		if (chan < 14)			/* 0-13 */
872 			return 2407 + chan*5;
873 		if (chan < 27)			/* 15-26 */
874 			return 2512 + ((chan-15)*20);
875 		return 5000 + (chan*5);
876 	}
877 }
878 
879 /*
880  * Locate a channel given a frequency+flags.  We cache
881  * the previous lookup to optimize switching between two
882  * channels--as happens with dynamic turbo.
883  */
884 struct ieee80211_channel *
885 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
886 {
887 	struct ieee80211_channel *c;
888 	int i;
889 
890 	flags &= IEEE80211_CHAN_ALLTURBO;
891 	c = ic->ic_prevchan;
892 	if (c != NULL && c->ic_freq == freq &&
893 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
894 		return c;
895 	/* brute force search */
896 	for (i = 0; i < ic->ic_nchans; i++) {
897 		c = &ic->ic_channels[i];
898 		if (c->ic_freq == freq &&
899 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
900 			return c;
901 	}
902 	return NULL;
903 }
904 
905 /*
906  * Locate a channel given a channel number+flags.  We cache
907  * the previous lookup to optimize switching between two
908  * channels--as happens with dynamic turbo.
909  */
910 struct ieee80211_channel *
911 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
912 {
913 	struct ieee80211_channel *c;
914 	int i;
915 
916 	flags &= IEEE80211_CHAN_ALLTURBO;
917 	c = ic->ic_prevchan;
918 	if (c != NULL && c->ic_ieee == ieee &&
919 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
920 		return c;
921 	/* brute force search */
922 	for (i = 0; i < ic->ic_nchans; i++) {
923 		c = &ic->ic_channels[i];
924 		if (c->ic_ieee == ieee &&
925 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
926 			return c;
927 	}
928 	return NULL;
929 }
930 
931 static void
932 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
933 {
934 #define	ADD(_ic, _s, _o) \
935 	ifmedia_add(media, \
936 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
937 	static const u_int mopts[IEEE80211_MODE_MAX] = {
938 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
939 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
940 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
941 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
942 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
943 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
944 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
945 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
946 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
947 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
948 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
949 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
950 	};
951 	u_int mopt;
952 
953 	mopt = mopts[mode];
954 	if (addsta)
955 		ADD(ic, mword, mopt);	/* STA mode has no cap */
956 	if (caps & IEEE80211_C_IBSS)
957 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
958 	if (caps & IEEE80211_C_HOSTAP)
959 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
960 	if (caps & IEEE80211_C_AHDEMO)
961 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
962 	if (caps & IEEE80211_C_MONITOR)
963 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
964 	if (caps & IEEE80211_C_WDS)
965 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
966 	if (caps & IEEE80211_C_MBSS)
967 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
968 #undef ADD
969 }
970 
971 /*
972  * Setup the media data structures according to the channel and
973  * rate tables.
974  */
975 static int
976 ieee80211_media_setup(struct ieee80211com *ic,
977 	struct ifmedia *media, int caps, int addsta,
978 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
979 {
980 	int i, j, mode, rate, maxrate, mword, r;
981 	const struct ieee80211_rateset *rs;
982 	struct ieee80211_rateset allrates;
983 
984 	/*
985 	 * Fill in media characteristics.
986 	 */
987 	ifmedia_init(media, 0, media_change, media_stat);
988 	maxrate = 0;
989 	/*
990 	 * Add media for legacy operating modes.
991 	 */
992 	memset(&allrates, 0, sizeof(allrates));
993 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
994 		if (isclr(ic->ic_modecaps, mode))
995 			continue;
996 		addmedia(media, caps, addsta, mode, IFM_AUTO);
997 		if (mode == IEEE80211_MODE_AUTO)
998 			continue;
999 		rs = &ic->ic_sup_rates[mode];
1000 		for (i = 0; i < rs->rs_nrates; i++) {
1001 			rate = rs->rs_rates[i];
1002 			mword = ieee80211_rate2media(ic, rate, mode);
1003 			if (mword == 0)
1004 				continue;
1005 			addmedia(media, caps, addsta, mode, mword);
1006 			/*
1007 			 * Add legacy rate to the collection of all rates.
1008 			 */
1009 			r = rate & IEEE80211_RATE_VAL;
1010 			for (j = 0; j < allrates.rs_nrates; j++)
1011 				if (allrates.rs_rates[j] == r)
1012 					break;
1013 			if (j == allrates.rs_nrates) {
1014 				/* unique, add to the set */
1015 				allrates.rs_rates[j] = r;
1016 				allrates.rs_nrates++;
1017 			}
1018 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1019 			if (rate > maxrate)
1020 				maxrate = rate;
1021 		}
1022 	}
1023 	for (i = 0; i < allrates.rs_nrates; i++) {
1024 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1025 				IEEE80211_MODE_AUTO);
1026 		if (mword == 0)
1027 			continue;
1028 		/* NB: remove media options from mword */
1029 		addmedia(media, caps, addsta,
1030 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1031 	}
1032 	/*
1033 	 * Add HT/11n media.  Note that we do not have enough
1034 	 * bits in the media subtype to express the MCS so we
1035 	 * use a "placeholder" media subtype and any fixed MCS
1036 	 * must be specified with a different mechanism.
1037 	 */
1038 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1039 		if (isclr(ic->ic_modecaps, mode))
1040 			continue;
1041 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1042 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1043 	}
1044 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1045 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1046 		addmedia(media, caps, addsta,
1047 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1048 		/* XXX could walk htrates */
1049 		/* XXX known array size */
1050 		if (ieee80211_htrates[15].ht40_rate_400ns > maxrate)
1051 			maxrate = ieee80211_htrates[15].ht40_rate_400ns;
1052 	}
1053 	return maxrate;
1054 }
1055 
1056 void
1057 ieee80211_media_init(struct ieee80211com *ic)
1058 {
1059 	struct ifnet *ifp = ic->ic_ifp;
1060 	int maxrate;
1061 
1062 	/* NB: this works because the structure is initialized to zero */
1063 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1064 		/*
1065 		 * We are re-initializing the channel list; clear
1066 		 * the existing media state as the media routines
1067 		 * don't suppress duplicates.
1068 		 */
1069 		ifmedia_removeall(&ic->ic_media);
1070 	}
1071 	ieee80211_chan_init(ic);
1072 
1073 	/*
1074 	 * Recalculate media settings in case new channel list changes
1075 	 * the set of available modes.
1076 	 */
1077 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1078 		ieee80211com_media_change, ieee80211com_media_status);
1079 	/* NB: strip explicit mode; we're actually in autoselect */
1080 	ifmedia_set(&ic->ic_media,
1081 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1082 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1083 	if (maxrate)
1084 		ifp->if_baudrate = IF_Mbps(maxrate);
1085 
1086 	/* XXX need to propagate new media settings to vap's */
1087 }
1088 
1089 /* XXX inline or eliminate? */
1090 const struct ieee80211_rateset *
1091 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1092 {
1093 	/* XXX does this work for 11ng basic rates? */
1094 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1095 }
1096 
1097 void
1098 ieee80211_announce(struct ieee80211com *ic)
1099 {
1100 	struct ifnet *ifp = ic->ic_ifp;
1101 	int i, mode, rate, mword;
1102 	const struct ieee80211_rateset *rs;
1103 
1104 	/* NB: skip AUTO since it has no rates */
1105 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1106 		if (isclr(ic->ic_modecaps, mode))
1107 			continue;
1108 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1109 		rs = &ic->ic_sup_rates[mode];
1110 		for (i = 0; i < rs->rs_nrates; i++) {
1111 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1112 			if (mword == 0)
1113 				continue;
1114 			rate = ieee80211_media2rate(mword);
1115 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1116 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1117 		}
1118 		printf("\n");
1119 	}
1120 	ieee80211_ht_announce(ic);
1121 }
1122 
1123 void
1124 ieee80211_announce_channels(struct ieee80211com *ic)
1125 {
1126 	const struct ieee80211_channel *c;
1127 	char type;
1128 	int i, cw;
1129 
1130 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1131 	for (i = 0; i < ic->ic_nchans; i++) {
1132 		c = &ic->ic_channels[i];
1133 		if (IEEE80211_IS_CHAN_ST(c))
1134 			type = 'S';
1135 		else if (IEEE80211_IS_CHAN_108A(c))
1136 			type = 'T';
1137 		else if (IEEE80211_IS_CHAN_108G(c))
1138 			type = 'G';
1139 		else if (IEEE80211_IS_CHAN_HT(c))
1140 			type = 'n';
1141 		else if (IEEE80211_IS_CHAN_A(c))
1142 			type = 'a';
1143 		else if (IEEE80211_IS_CHAN_ANYG(c))
1144 			type = 'g';
1145 		else if (IEEE80211_IS_CHAN_B(c))
1146 			type = 'b';
1147 		else
1148 			type = 'f';
1149 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1150 			cw = 40;
1151 		else if (IEEE80211_IS_CHAN_HALF(c))
1152 			cw = 10;
1153 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1154 			cw = 5;
1155 		else
1156 			cw = 20;
1157 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1158 			, c->ic_ieee, c->ic_freq, type
1159 			, cw
1160 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1161 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1162 			, c->ic_maxregpower
1163 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1164 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1165 		);
1166 	}
1167 }
1168 
1169 static int
1170 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1171 {
1172 	switch (IFM_MODE(ime->ifm_media)) {
1173 	case IFM_IEEE80211_11A:
1174 		*mode = IEEE80211_MODE_11A;
1175 		break;
1176 	case IFM_IEEE80211_11B:
1177 		*mode = IEEE80211_MODE_11B;
1178 		break;
1179 	case IFM_IEEE80211_11G:
1180 		*mode = IEEE80211_MODE_11G;
1181 		break;
1182 	case IFM_IEEE80211_FH:
1183 		*mode = IEEE80211_MODE_FH;
1184 		break;
1185 	case IFM_IEEE80211_11NA:
1186 		*mode = IEEE80211_MODE_11NA;
1187 		break;
1188 	case IFM_IEEE80211_11NG:
1189 		*mode = IEEE80211_MODE_11NG;
1190 		break;
1191 	case IFM_AUTO:
1192 		*mode = IEEE80211_MODE_AUTO;
1193 		break;
1194 	default:
1195 		return 0;
1196 	}
1197 	/*
1198 	 * Turbo mode is an ``option''.
1199 	 * XXX does not apply to AUTO
1200 	 */
1201 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1202 		if (*mode == IEEE80211_MODE_11A) {
1203 			if (flags & IEEE80211_F_TURBOP)
1204 				*mode = IEEE80211_MODE_TURBO_A;
1205 			else
1206 				*mode = IEEE80211_MODE_STURBO_A;
1207 		} else if (*mode == IEEE80211_MODE_11G)
1208 			*mode = IEEE80211_MODE_TURBO_G;
1209 		else
1210 			return 0;
1211 	}
1212 	/* XXX HT40 +/- */
1213 	return 1;
1214 }
1215 
1216 /*
1217  * Handle a media change request on the underlying interface.
1218  */
1219 int
1220 ieee80211com_media_change(struct ifnet *ifp)
1221 {
1222 	return EINVAL;
1223 }
1224 
1225 /*
1226  * Handle a media change request on the vap interface.
1227  */
1228 int
1229 ieee80211_media_change(struct ifnet *ifp)
1230 {
1231 	struct ieee80211vap *vap = ifp->if_softc;
1232 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1233 	uint16_t newmode;
1234 
1235 	if (!media2mode(ime, vap->iv_flags, &newmode))
1236 		return EINVAL;
1237 	if (vap->iv_des_mode != newmode) {
1238 		vap->iv_des_mode = newmode;
1239 		/* XXX kick state machine if up+running */
1240 	}
1241 	return 0;
1242 }
1243 
1244 /*
1245  * Common code to calculate the media status word
1246  * from the operating mode and channel state.
1247  */
1248 static int
1249 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1250 {
1251 	int status;
1252 
1253 	status = IFM_IEEE80211;
1254 	switch (opmode) {
1255 	case IEEE80211_M_STA:
1256 		break;
1257 	case IEEE80211_M_IBSS:
1258 		status |= IFM_IEEE80211_ADHOC;
1259 		break;
1260 	case IEEE80211_M_HOSTAP:
1261 		status |= IFM_IEEE80211_HOSTAP;
1262 		break;
1263 	case IEEE80211_M_MONITOR:
1264 		status |= IFM_IEEE80211_MONITOR;
1265 		break;
1266 	case IEEE80211_M_AHDEMO:
1267 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1268 		break;
1269 	case IEEE80211_M_WDS:
1270 		status |= IFM_IEEE80211_WDS;
1271 		break;
1272 	case IEEE80211_M_MBSS:
1273 		status |= IFM_IEEE80211_MBSS;
1274 		break;
1275 	}
1276 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1277 		status |= IFM_IEEE80211_11NA;
1278 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1279 		status |= IFM_IEEE80211_11NG;
1280 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1281 		status |= IFM_IEEE80211_11A;
1282 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1283 		status |= IFM_IEEE80211_11B;
1284 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1285 		status |= IFM_IEEE80211_11G;
1286 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1287 		status |= IFM_IEEE80211_FH;
1288 	}
1289 	/* XXX else complain? */
1290 
1291 	if (IEEE80211_IS_CHAN_TURBO(chan))
1292 		status |= IFM_IEEE80211_TURBO;
1293 #if 0
1294 	if (IEEE80211_IS_CHAN_HT20(chan))
1295 		status |= IFM_IEEE80211_HT20;
1296 	if (IEEE80211_IS_CHAN_HT40(chan))
1297 		status |= IFM_IEEE80211_HT40;
1298 #endif
1299 	return status;
1300 }
1301 
1302 static void
1303 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1304 {
1305 	struct ieee80211com *ic = ifp->if_l2com;
1306 	struct ieee80211vap *vap;
1307 
1308 	imr->ifm_status = IFM_AVALID;
1309 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1310 		if (vap->iv_ifp->if_flags & IFF_UP) {
1311 			imr->ifm_status |= IFM_ACTIVE;
1312 			break;
1313 		}
1314 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1315 	if (imr->ifm_status & IFM_ACTIVE)
1316 		imr->ifm_current = imr->ifm_active;
1317 }
1318 
1319 void
1320 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1321 {
1322 	struct ieee80211vap *vap = ifp->if_softc;
1323 	struct ieee80211com *ic = vap->iv_ic;
1324 	enum ieee80211_phymode mode;
1325 
1326 	imr->ifm_status = IFM_AVALID;
1327 	/*
1328 	 * NB: use the current channel's mode to lock down a xmit
1329 	 * rate only when running; otherwise we may have a mismatch
1330 	 * in which case the rate will not be convertible.
1331 	 */
1332 	if (vap->iv_state == IEEE80211_S_RUN) {
1333 		imr->ifm_status |= IFM_ACTIVE;
1334 		mode = ieee80211_chan2mode(ic->ic_curchan);
1335 	} else
1336 		mode = IEEE80211_MODE_AUTO;
1337 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1338 	/*
1339 	 * Calculate a current rate if possible.
1340 	 */
1341 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1342 		/*
1343 		 * A fixed rate is set, report that.
1344 		 */
1345 		imr->ifm_active |= ieee80211_rate2media(ic,
1346 			vap->iv_txparms[mode].ucastrate, mode);
1347 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1348 		/*
1349 		 * In station mode report the current transmit rate.
1350 		 */
1351 		imr->ifm_active |= ieee80211_rate2media(ic,
1352 			vap->iv_bss->ni_txrate, mode);
1353 	} else
1354 		imr->ifm_active |= IFM_AUTO;
1355 	if (imr->ifm_status & IFM_ACTIVE)
1356 		imr->ifm_current = imr->ifm_active;
1357 }
1358 
1359 /*
1360  * Set the current phy mode and recalculate the active channel
1361  * set based on the available channels for this mode.  Also
1362  * select a new default/current channel if the current one is
1363  * inappropriate for this mode.
1364  */
1365 int
1366 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1367 {
1368 	/*
1369 	 * Adjust basic rates in 11b/11g supported rate set.
1370 	 * Note that if operating on a hal/quarter rate channel
1371 	 * this is a noop as those rates sets are different
1372 	 * and used instead.
1373 	 */
1374 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1375 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1376 
1377 	ic->ic_curmode = mode;
1378 	ieee80211_reset_erp(ic);	/* reset ERP state */
1379 
1380 	return 0;
1381 }
1382 
1383 /*
1384  * Return the phy mode for with the specified channel.
1385  */
1386 enum ieee80211_phymode
1387 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1388 {
1389 
1390 	if (IEEE80211_IS_CHAN_HTA(chan))
1391 		return IEEE80211_MODE_11NA;
1392 	else if (IEEE80211_IS_CHAN_HTG(chan))
1393 		return IEEE80211_MODE_11NG;
1394 	else if (IEEE80211_IS_CHAN_108G(chan))
1395 		return IEEE80211_MODE_TURBO_G;
1396 	else if (IEEE80211_IS_CHAN_ST(chan))
1397 		return IEEE80211_MODE_STURBO_A;
1398 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1399 		return IEEE80211_MODE_TURBO_A;
1400 	else if (IEEE80211_IS_CHAN_HALF(chan))
1401 		return IEEE80211_MODE_HALF;
1402 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1403 		return IEEE80211_MODE_QUARTER;
1404 	else if (IEEE80211_IS_CHAN_A(chan))
1405 		return IEEE80211_MODE_11A;
1406 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1407 		return IEEE80211_MODE_11G;
1408 	else if (IEEE80211_IS_CHAN_B(chan))
1409 		return IEEE80211_MODE_11B;
1410 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1411 		return IEEE80211_MODE_FH;
1412 
1413 	/* NB: should not get here */
1414 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1415 		__func__, chan->ic_freq, chan->ic_flags);
1416 	return IEEE80211_MODE_11B;
1417 }
1418 
1419 struct ratemedia {
1420 	u_int	match;	/* rate + mode */
1421 	u_int	media;	/* if_media rate */
1422 };
1423 
1424 static int
1425 findmedia(const struct ratemedia rates[], int n, u_int match)
1426 {
1427 	int i;
1428 
1429 	for (i = 0; i < n; i++)
1430 		if (rates[i].match == match)
1431 			return rates[i].media;
1432 	return IFM_AUTO;
1433 }
1434 
1435 /*
1436  * Convert IEEE80211 rate value to ifmedia subtype.
1437  * Rate is either a legacy rate in units of 0.5Mbps
1438  * or an MCS index.
1439  */
1440 int
1441 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1442 {
1443 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1444 	static const struct ratemedia rates[] = {
1445 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1446 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1447 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1448 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1449 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1450 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1451 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1452 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1453 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1454 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1455 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1456 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1457 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1458 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1459 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1460 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1461 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1462 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1463 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1464 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1465 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1466 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1467 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1468 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1469 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1470 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1471 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1472 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1473 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1474 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1475 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1476 	};
1477 	static const struct ratemedia htrates[] = {
1478 		{   0, IFM_IEEE80211_MCS },
1479 		{   1, IFM_IEEE80211_MCS },
1480 		{   2, IFM_IEEE80211_MCS },
1481 		{   3, IFM_IEEE80211_MCS },
1482 		{   4, IFM_IEEE80211_MCS },
1483 		{   5, IFM_IEEE80211_MCS },
1484 		{   6, IFM_IEEE80211_MCS },
1485 		{   7, IFM_IEEE80211_MCS },
1486 		{   8, IFM_IEEE80211_MCS },
1487 		{   9, IFM_IEEE80211_MCS },
1488 		{  10, IFM_IEEE80211_MCS },
1489 		{  11, IFM_IEEE80211_MCS },
1490 		{  12, IFM_IEEE80211_MCS },
1491 		{  13, IFM_IEEE80211_MCS },
1492 		{  14, IFM_IEEE80211_MCS },
1493 		{  15, IFM_IEEE80211_MCS },
1494 	};
1495 	int m;
1496 
1497 	/*
1498 	 * Check 11n rates first for match as an MCS.
1499 	 */
1500 	if (mode == IEEE80211_MODE_11NA) {
1501 		if (rate & IEEE80211_RATE_MCS) {
1502 			rate &= ~IEEE80211_RATE_MCS;
1503 			m = findmedia(htrates, N(htrates), rate);
1504 			if (m != IFM_AUTO)
1505 				return m | IFM_IEEE80211_11NA;
1506 		}
1507 	} else if (mode == IEEE80211_MODE_11NG) {
1508 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1509 		if (rate & IEEE80211_RATE_MCS) {
1510 			rate &= ~IEEE80211_RATE_MCS;
1511 			m = findmedia(htrates, N(htrates), rate);
1512 			if (m != IFM_AUTO)
1513 				return m | IFM_IEEE80211_11NG;
1514 		}
1515 	}
1516 	rate &= IEEE80211_RATE_VAL;
1517 	switch (mode) {
1518 	case IEEE80211_MODE_11A:
1519 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1520 	case IEEE80211_MODE_QUARTER:
1521 	case IEEE80211_MODE_11NA:
1522 	case IEEE80211_MODE_TURBO_A:
1523 	case IEEE80211_MODE_STURBO_A:
1524 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A);
1525 	case IEEE80211_MODE_11B:
1526 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B);
1527 	case IEEE80211_MODE_FH:
1528 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH);
1529 	case IEEE80211_MODE_AUTO:
1530 		/* NB: ic may be NULL for some drivers */
1531 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1532 			return findmedia(rates, N(rates),
1533 			    rate | IFM_IEEE80211_FH);
1534 		/* NB: hack, 11g matches both 11b+11a rates */
1535 		/* fall thru... */
1536 	case IEEE80211_MODE_11G:
1537 	case IEEE80211_MODE_11NG:
1538 	case IEEE80211_MODE_TURBO_G:
1539 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G);
1540 	}
1541 	return IFM_AUTO;
1542 #undef N
1543 }
1544 
1545 int
1546 ieee80211_media2rate(int mword)
1547 {
1548 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1549 	static const int ieeerates[] = {
1550 		-1,		/* IFM_AUTO */
1551 		0,		/* IFM_MANUAL */
1552 		0,		/* IFM_NONE */
1553 		2,		/* IFM_IEEE80211_FH1 */
1554 		4,		/* IFM_IEEE80211_FH2 */
1555 		2,		/* IFM_IEEE80211_DS1 */
1556 		4,		/* IFM_IEEE80211_DS2 */
1557 		11,		/* IFM_IEEE80211_DS5 */
1558 		22,		/* IFM_IEEE80211_DS11 */
1559 		44,		/* IFM_IEEE80211_DS22 */
1560 		12,		/* IFM_IEEE80211_OFDM6 */
1561 		18,		/* IFM_IEEE80211_OFDM9 */
1562 		24,		/* IFM_IEEE80211_OFDM12 */
1563 		36,		/* IFM_IEEE80211_OFDM18 */
1564 		48,		/* IFM_IEEE80211_OFDM24 */
1565 		72,		/* IFM_IEEE80211_OFDM36 */
1566 		96,		/* IFM_IEEE80211_OFDM48 */
1567 		108,		/* IFM_IEEE80211_OFDM54 */
1568 		144,		/* IFM_IEEE80211_OFDM72 */
1569 		0,		/* IFM_IEEE80211_DS354k */
1570 		0,		/* IFM_IEEE80211_DS512k */
1571 		6,		/* IFM_IEEE80211_OFDM3 */
1572 		9,		/* IFM_IEEE80211_OFDM4 */
1573 		54,		/* IFM_IEEE80211_OFDM27 */
1574 		-1,		/* IFM_IEEE80211_MCS */
1575 	};
1576 	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1577 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1578 #undef N
1579 }
1580 
1581 /*
1582  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1583  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1584  */
1585 #define	mix(a, b, c)							\
1586 do {									\
1587 	a -= b; a -= c; a ^= (c >> 13);					\
1588 	b -= c; b -= a; b ^= (a << 8);					\
1589 	c -= a; c -= b; c ^= (b >> 13);					\
1590 	a -= b; a -= c; a ^= (c >> 12);					\
1591 	b -= c; b -= a; b ^= (a << 16);					\
1592 	c -= a; c -= b; c ^= (b >> 5);					\
1593 	a -= b; a -= c; a ^= (c >> 3);					\
1594 	b -= c; b -= a; b ^= (a << 10);					\
1595 	c -= a; c -= b; c ^= (b >> 15);					\
1596 } while (/*CONSTCOND*/0)
1597 
1598 uint32_t
1599 ieee80211_mac_hash(const struct ieee80211com *ic,
1600 	const uint8_t addr[IEEE80211_ADDR_LEN])
1601 {
1602 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1603 
1604 	b += addr[5] << 8;
1605 	b += addr[4];
1606 	a += addr[3] << 24;
1607 	a += addr[2] << 16;
1608 	a += addr[1] << 8;
1609 	a += addr[0];
1610 
1611 	mix(a, b, c);
1612 
1613 	return c;
1614 }
1615 #undef mix
1616