xref: /freebsd/sys/net80211/ieee80211.c (revision 56e53cb8ef000c3ef72337a4095987a932cdedef)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * IEEE 802.11 generic handler
34  */
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/socket.h>
42 #include <sys/sbuf.h>
43 
44 #include <machine/stdarg.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/ethernet.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_regdomain.h>
55 #ifdef IEEE80211_SUPPORT_SUPERG
56 #include <net80211/ieee80211_superg.h>
57 #endif
58 #include <net80211/ieee80211_ratectl.h>
59 #include <net80211/ieee80211_vht.h>
60 
61 #include <net/bpf.h>
62 
63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
64 	[IEEE80211_MODE_AUTO]	  = "auto",
65 	[IEEE80211_MODE_11A]	  = "11a",
66 	[IEEE80211_MODE_11B]	  = "11b",
67 	[IEEE80211_MODE_11G]	  = "11g",
68 	[IEEE80211_MODE_FH]	  = "FH",
69 	[IEEE80211_MODE_TURBO_A]  = "turboA",
70 	[IEEE80211_MODE_TURBO_G]  = "turboG",
71 	[IEEE80211_MODE_STURBO_A] = "sturboA",
72 	[IEEE80211_MODE_HALF]	  = "half",
73 	[IEEE80211_MODE_QUARTER]  = "quarter",
74 	[IEEE80211_MODE_11NA]	  = "11na",
75 	[IEEE80211_MODE_11NG]	  = "11ng",
76 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
77 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
78 };
79 /* map ieee80211_opmode to the corresponding capability bit */
80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
81 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
82 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
83 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
84 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
85 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
86 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
87 #ifdef IEEE80211_SUPPORT_MESH
88 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
89 #endif
90 };
91 
92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
93 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
94 
95 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
98 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
99 static	int ieee80211_media_setup(struct ieee80211com *ic,
100 		struct ifmedia *media, int caps, int addsta,
101 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
102 static	int media_status(enum ieee80211_opmode,
103 		const struct ieee80211_channel *);
104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
105 
106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
107 
108 /*
109  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
110  */
111 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
112 static const struct ieee80211_rateset ieee80211_rateset_11a =
113 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
114 static const struct ieee80211_rateset ieee80211_rateset_half =
115 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
116 static const struct ieee80211_rateset ieee80211_rateset_quarter =
117 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
118 static const struct ieee80211_rateset ieee80211_rateset_11b =
119 	{ 4, { B(2), B(4), B(11), B(22) } };
120 /* NB: OFDM rates are handled specially based on mode */
121 static const struct ieee80211_rateset ieee80211_rateset_11g =
122 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
123 #undef B
124 
125 static int set_vht_extchan(struct ieee80211_channel *c);
126 
127 /*
128  * Fill in 802.11 available channel set, mark
129  * all available channels as active, and pick
130  * a default channel if not already specified.
131  */
132 void
133 ieee80211_chan_init(struct ieee80211com *ic)
134 {
135 #define	DEFAULTRATES(m, def) do { \
136 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
137 		ic->ic_sup_rates[m] = def; \
138 } while (0)
139 	struct ieee80211_channel *c;
140 	int i;
141 
142 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
143 		("invalid number of channels specified: %u", ic->ic_nchans));
144 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
145 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
146 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
147 	for (i = 0; i < ic->ic_nchans; i++) {
148 		c = &ic->ic_channels[i];
149 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
150 		/*
151 		 * Help drivers that work only with frequencies by filling
152 		 * in IEEE channel #'s if not already calculated.  Note this
153 		 * mimics similar work done in ieee80211_setregdomain when
154 		 * changing regulatory state.
155 		 */
156 		if (c->ic_ieee == 0)
157 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
158 
159 		/*
160 		 * Setup the HT40/VHT40 upper/lower bits.
161 		 * The VHT80 math is done elsewhere.
162 		 */
163 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
164 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
165 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
166 			    c->ic_flags);
167 
168 		/* Update VHT math */
169 		/*
170 		 * XXX VHT again, note that this assumes VHT80 channels
171 		 * are legit already
172 		 */
173 		set_vht_extchan(c);
174 
175 		/* default max tx power to max regulatory */
176 		if (c->ic_maxpower == 0)
177 			c->ic_maxpower = 2*c->ic_maxregpower;
178 		setbit(ic->ic_chan_avail, c->ic_ieee);
179 		/*
180 		 * Identify mode capabilities.
181 		 */
182 		if (IEEE80211_IS_CHAN_A(c))
183 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
184 		if (IEEE80211_IS_CHAN_B(c))
185 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
186 		if (IEEE80211_IS_CHAN_ANYG(c))
187 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
188 		if (IEEE80211_IS_CHAN_FHSS(c))
189 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
190 		if (IEEE80211_IS_CHAN_108A(c))
191 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
192 		if (IEEE80211_IS_CHAN_108G(c))
193 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
194 		if (IEEE80211_IS_CHAN_ST(c))
195 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
196 		if (IEEE80211_IS_CHAN_HALF(c))
197 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
198 		if (IEEE80211_IS_CHAN_QUARTER(c))
199 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
200 		if (IEEE80211_IS_CHAN_HTA(c))
201 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
202 		if (IEEE80211_IS_CHAN_HTG(c))
203 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
204 		if (IEEE80211_IS_CHAN_VHTA(c))
205 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
206 		if (IEEE80211_IS_CHAN_VHTG(c))
207 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
208 	}
209 	/* initialize candidate channels to all available */
210 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
211 		sizeof(ic->ic_chan_avail));
212 
213 	/* sort channel table to allow lookup optimizations */
214 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
215 
216 	/* invalidate any previous state */
217 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
218 	ic->ic_prevchan = NULL;
219 	ic->ic_csa_newchan = NULL;
220 	/* arbitrarily pick the first channel */
221 	ic->ic_curchan = &ic->ic_channels[0];
222 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
223 
224 	/* fillin well-known rate sets if driver has not specified */
225 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
226 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
227 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
228 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
229 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
230 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
231 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
232 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
233 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
234 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
235 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
236 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
237 
238 	/*
239 	 * Setup required information to fill the mcsset field, if driver did
240 	 * not. Assume a 2T2R setup for historic reasons.
241 	 */
242 	if (ic->ic_rxstream == 0)
243 		ic->ic_rxstream = 2;
244 	if (ic->ic_txstream == 0)
245 		ic->ic_txstream = 2;
246 
247 	ieee80211_init_suphtrates(ic);
248 
249 	/*
250 	 * Set auto mode to reset active channel state and any desired channel.
251 	 */
252 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
253 #undef DEFAULTRATES
254 }
255 
256 static void
257 null_update_mcast(struct ieee80211com *ic)
258 {
259 
260 	ic_printf(ic, "need multicast update callback\n");
261 }
262 
263 static void
264 null_update_promisc(struct ieee80211com *ic)
265 {
266 
267 	ic_printf(ic, "need promiscuous mode update callback\n");
268 }
269 
270 static void
271 null_update_chw(struct ieee80211com *ic)
272 {
273 
274 	ic_printf(ic, "%s: need callback\n", __func__);
275 }
276 
277 int
278 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
279 {
280 	va_list ap;
281 	int retval;
282 
283 	retval = printf("%s: ", ic->ic_name);
284 	va_start(ap, fmt);
285 	retval += vprintf(fmt, ap);
286 	va_end(ap);
287 	return (retval);
288 }
289 
290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
291 static struct mtx ic_list_mtx;
292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
293 
294 static int
295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
296 {
297 	struct ieee80211com *ic;
298 	struct sbuf sb;
299 	char *sp;
300 	int error;
301 
302 	error = sysctl_wire_old_buffer(req, 0);
303 	if (error)
304 		return (error);
305 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
306 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
307 	sp = "";
308 	mtx_lock(&ic_list_mtx);
309 	LIST_FOREACH(ic, &ic_head, ic_next) {
310 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
311 		sp = " ";
312 	}
313 	mtx_unlock(&ic_list_mtx);
314 	error = sbuf_finish(&sb);
315 	sbuf_delete(&sb);
316 	return (error);
317 }
318 
319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
320     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
321     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
322 
323 /*
324  * Attach/setup the common net80211 state.  Called by
325  * the driver on attach to prior to creating any vap's.
326  */
327 void
328 ieee80211_ifattach(struct ieee80211com *ic)
329 {
330 
331 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
332 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
333 	TAILQ_INIT(&ic->ic_vaps);
334 
335 	/* Create a taskqueue for all state changes */
336 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
337 	    taskqueue_thread_enqueue, &ic->ic_tq);
338 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
339 	    ic->ic_name);
340 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
341 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
342 	/*
343 	 * Fill in 802.11 available channel set, mark all
344 	 * available channels as active, and pick a default
345 	 * channel if not already specified.
346 	 */
347 	ieee80211_chan_init(ic);
348 
349 	ic->ic_update_mcast = null_update_mcast;
350 	ic->ic_update_promisc = null_update_promisc;
351 	ic->ic_update_chw = null_update_chw;
352 
353 	ic->ic_hash_key = arc4random();
354 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
355 	ic->ic_lintval = ic->ic_bintval;
356 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
357 
358 	ieee80211_crypto_attach(ic);
359 	ieee80211_node_attach(ic);
360 	ieee80211_power_attach(ic);
361 	ieee80211_proto_attach(ic);
362 #ifdef IEEE80211_SUPPORT_SUPERG
363 	ieee80211_superg_attach(ic);
364 #endif
365 	ieee80211_ht_attach(ic);
366 	ieee80211_vht_attach(ic);
367 	ieee80211_scan_attach(ic);
368 	ieee80211_regdomain_attach(ic);
369 	ieee80211_dfs_attach(ic);
370 
371 	ieee80211_sysctl_attach(ic);
372 
373 	mtx_lock(&ic_list_mtx);
374 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
375 	mtx_unlock(&ic_list_mtx);
376 }
377 
378 /*
379  * Detach net80211 state on device detach.  Tear down
380  * all vap's and reclaim all common state prior to the
381  * device state going away.  Note we may call back into
382  * driver; it must be prepared for this.
383  */
384 void
385 ieee80211_ifdetach(struct ieee80211com *ic)
386 {
387 	struct ieee80211vap *vap;
388 
389 	mtx_lock(&ic_list_mtx);
390 	LIST_REMOVE(ic, ic_next);
391 	mtx_unlock(&ic_list_mtx);
392 
393 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
394 
395 	/*
396 	 * The VAP is responsible for setting and clearing
397 	 * the VIMAGE context.
398 	 */
399 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
400 		ieee80211_vap_destroy(vap);
401 	ieee80211_waitfor_parent(ic);
402 
403 	ieee80211_sysctl_detach(ic);
404 	ieee80211_dfs_detach(ic);
405 	ieee80211_regdomain_detach(ic);
406 	ieee80211_scan_detach(ic);
407 #ifdef IEEE80211_SUPPORT_SUPERG
408 	ieee80211_superg_detach(ic);
409 #endif
410 	ieee80211_vht_detach(ic);
411 	ieee80211_ht_detach(ic);
412 	/* NB: must be called before ieee80211_node_detach */
413 	ieee80211_proto_detach(ic);
414 	ieee80211_crypto_detach(ic);
415 	ieee80211_power_detach(ic);
416 	ieee80211_node_detach(ic);
417 
418 	counter_u64_free(ic->ic_ierrors);
419 	counter_u64_free(ic->ic_oerrors);
420 
421 	taskqueue_free(ic->ic_tq);
422 	IEEE80211_TX_LOCK_DESTROY(ic);
423 	IEEE80211_LOCK_DESTROY(ic);
424 }
425 
426 struct ieee80211com *
427 ieee80211_find_com(const char *name)
428 {
429 	struct ieee80211com *ic;
430 
431 	mtx_lock(&ic_list_mtx);
432 	LIST_FOREACH(ic, &ic_head, ic_next)
433 		if (strcmp(ic->ic_name, name) == 0)
434 			break;
435 	mtx_unlock(&ic_list_mtx);
436 
437 	return (ic);
438 }
439 
440 void
441 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
442 {
443 	struct ieee80211com *ic;
444 
445 	mtx_lock(&ic_list_mtx);
446 	LIST_FOREACH(ic, &ic_head, ic_next)
447 		(*f)(arg, ic);
448 	mtx_unlock(&ic_list_mtx);
449 }
450 
451 /*
452  * Default reset method for use with the ioctl support.  This
453  * method is invoked after any state change in the 802.11
454  * layer that should be propagated to the hardware but not
455  * require re-initialization of the 802.11 state machine (e.g
456  * rescanning for an ap).  We always return ENETRESET which
457  * should cause the driver to re-initialize the device. Drivers
458  * can override this method to implement more optimized support.
459  */
460 static int
461 default_reset(struct ieee80211vap *vap, u_long cmd)
462 {
463 	return ENETRESET;
464 }
465 
466 /*
467  * Default for updating the VAP default TX key index.
468  *
469  * Drivers that support TX offload as well as hardware encryption offload
470  * may need to be informed of key index changes separate from the key
471  * update.
472  */
473 static void
474 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
475 {
476 
477 	/* XXX assert validity */
478 	/* XXX assert we're in a key update block */
479 	vap->iv_def_txkey = kid;
480 }
481 
482 /*
483  * Add underlying device errors to vap errors.
484  */
485 static uint64_t
486 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
487 {
488 	struct ieee80211vap *vap = ifp->if_softc;
489 	struct ieee80211com *ic = vap->iv_ic;
490 	uint64_t rv;
491 
492 	rv = if_get_counter_default(ifp, cnt);
493 	switch (cnt) {
494 	case IFCOUNTER_OERRORS:
495 		rv += counter_u64_fetch(ic->ic_oerrors);
496 		break;
497 	case IFCOUNTER_IERRORS:
498 		rv += counter_u64_fetch(ic->ic_ierrors);
499 		break;
500 	default:
501 		break;
502 	}
503 
504 	return (rv);
505 }
506 
507 /*
508  * Prepare a vap for use.  Drivers use this call to
509  * setup net80211 state in new vap's prior attaching
510  * them with ieee80211_vap_attach (below).
511  */
512 int
513 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
514     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
515     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
516 {
517 	struct ifnet *ifp;
518 
519 	ifp = if_alloc(IFT_ETHER);
520 	if (ifp == NULL) {
521 		ic_printf(ic, "%s: unable to allocate ifnet\n",
522 		    __func__);
523 		return ENOMEM;
524 	}
525 	if_initname(ifp, name, unit);
526 	ifp->if_softc = vap;			/* back pointer */
527 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
528 	ifp->if_transmit = ieee80211_vap_transmit;
529 	ifp->if_qflush = ieee80211_vap_qflush;
530 	ifp->if_ioctl = ieee80211_ioctl;
531 	ifp->if_init = ieee80211_init;
532 	ifp->if_get_counter = ieee80211_get_counter;
533 
534 	vap->iv_ifp = ifp;
535 	vap->iv_ic = ic;
536 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
537 	vap->iv_flags_ext = ic->ic_flags_ext;
538 	vap->iv_flags_ven = ic->ic_flags_ven;
539 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
540 
541 	/* 11n capabilities - XXX methodize */
542 	vap->iv_htcaps = ic->ic_htcaps;
543 	vap->iv_htextcaps = ic->ic_htextcaps;
544 
545 	/* 11ac capabilities - XXX methodize */
546 	vap->iv_vhtcaps = ic->ic_vhtcaps;
547 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
548 
549 	vap->iv_opmode = opmode;
550 	vap->iv_caps |= ieee80211_opcap[opmode];
551 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
552 	switch (opmode) {
553 	case IEEE80211_M_WDS:
554 		/*
555 		 * WDS links must specify the bssid of the far end.
556 		 * For legacy operation this is a static relationship.
557 		 * For non-legacy operation the station must associate
558 		 * and be authorized to pass traffic.  Plumbing the
559 		 * vap to the proper node happens when the vap
560 		 * transitions to RUN state.
561 		 */
562 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
563 		vap->iv_flags |= IEEE80211_F_DESBSSID;
564 		if (flags & IEEE80211_CLONE_WDSLEGACY)
565 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
566 		break;
567 #ifdef IEEE80211_SUPPORT_TDMA
568 	case IEEE80211_M_AHDEMO:
569 		if (flags & IEEE80211_CLONE_TDMA) {
570 			/* NB: checked before clone operation allowed */
571 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
572 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
573 			/*
574 			 * Propagate TDMA capability to mark vap; this
575 			 * cannot be removed and is used to distinguish
576 			 * regular ahdemo operation from ahdemo+tdma.
577 			 */
578 			vap->iv_caps |= IEEE80211_C_TDMA;
579 		}
580 		break;
581 #endif
582 	default:
583 		break;
584 	}
585 	/* auto-enable s/w beacon miss support */
586 	if (flags & IEEE80211_CLONE_NOBEACONS)
587 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
588 	/* auto-generated or user supplied MAC address */
589 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
590 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
591 	/*
592 	 * Enable various functionality by default if we're
593 	 * capable; the driver can override us if it knows better.
594 	 */
595 	if (vap->iv_caps & IEEE80211_C_WME)
596 		vap->iv_flags |= IEEE80211_F_WME;
597 	if (vap->iv_caps & IEEE80211_C_BURST)
598 		vap->iv_flags |= IEEE80211_F_BURST;
599 	/* NB: bg scanning only makes sense for station mode right now */
600 	if (vap->iv_opmode == IEEE80211_M_STA &&
601 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
602 		vap->iv_flags |= IEEE80211_F_BGSCAN;
603 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
604 	/* NB: DFS support only makes sense for ap mode right now */
605 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
606 	    (vap->iv_caps & IEEE80211_C_DFS))
607 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
608 
609 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
610 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
611 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
612 	/*
613 	 * Install a default reset method for the ioctl support;
614 	 * the driver can override this.
615 	 */
616 	vap->iv_reset = default_reset;
617 
618 	/*
619 	 * Install a default crypto key update method, the driver
620 	 * can override this.
621 	 */
622 	vap->iv_update_deftxkey = default_update_deftxkey;
623 
624 	ieee80211_sysctl_vattach(vap);
625 	ieee80211_crypto_vattach(vap);
626 	ieee80211_node_vattach(vap);
627 	ieee80211_power_vattach(vap);
628 	ieee80211_proto_vattach(vap);
629 #ifdef IEEE80211_SUPPORT_SUPERG
630 	ieee80211_superg_vattach(vap);
631 #endif
632 	ieee80211_ht_vattach(vap);
633 	ieee80211_vht_vattach(vap);
634 	ieee80211_scan_vattach(vap);
635 	ieee80211_regdomain_vattach(vap);
636 	ieee80211_radiotap_vattach(vap);
637 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
638 
639 	return 0;
640 }
641 
642 /*
643  * Activate a vap.  State should have been prepared with a
644  * call to ieee80211_vap_setup and by the driver.  On return
645  * from this call the vap is ready for use.
646  */
647 int
648 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
649     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
650 {
651 	struct ifnet *ifp = vap->iv_ifp;
652 	struct ieee80211com *ic = vap->iv_ic;
653 	struct ifmediareq imr;
654 	int maxrate;
655 
656 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
657 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
658 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
659 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
660 
661 	/*
662 	 * Do late attach work that cannot happen until after
663 	 * the driver has had a chance to override defaults.
664 	 */
665 	ieee80211_node_latevattach(vap);
666 	ieee80211_power_latevattach(vap);
667 
668 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
669 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
670 	ieee80211_media_status(ifp, &imr);
671 	/* NB: strip explicit mode; we're actually in autoselect */
672 	ifmedia_set(&vap->iv_media,
673 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
674 	if (maxrate)
675 		ifp->if_baudrate = IF_Mbps(maxrate);
676 
677 	ether_ifattach(ifp, macaddr);
678 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
679 	/* hook output method setup by ether_ifattach */
680 	vap->iv_output = ifp->if_output;
681 	ifp->if_output = ieee80211_output;
682 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
683 
684 	IEEE80211_LOCK(ic);
685 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
686 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
687 #ifdef IEEE80211_SUPPORT_SUPERG
688 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
689 #endif
690 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
691 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
692 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
693 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
694 
695 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
696 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
697 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
698 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
699 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
700 	IEEE80211_UNLOCK(ic);
701 
702 	return 1;
703 }
704 
705 /*
706  * Tear down vap state and reclaim the ifnet.
707  * The driver is assumed to have prepared for
708  * this; e.g. by turning off interrupts for the
709  * underlying device.
710  */
711 void
712 ieee80211_vap_detach(struct ieee80211vap *vap)
713 {
714 	struct ieee80211com *ic = vap->iv_ic;
715 	struct ifnet *ifp = vap->iv_ifp;
716 
717 	CURVNET_SET(ifp->if_vnet);
718 
719 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
720 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
721 
722 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
723 	ether_ifdetach(ifp);
724 
725 	ieee80211_stop(vap);
726 
727 	/*
728 	 * Flush any deferred vap tasks.
729 	 */
730 	ieee80211_draintask(ic, &vap->iv_nstate_task);
731 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
732 	ieee80211_draintask(ic, &vap->iv_wme_task);
733 	ieee80211_draintask(ic, &ic->ic_parent_task);
734 
735 	/* XXX band-aid until ifnet handles this for us */
736 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
737 
738 	IEEE80211_LOCK(ic);
739 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
740 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
741 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
742 #ifdef IEEE80211_SUPPORT_SUPERG
743 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
744 #endif
745 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
746 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
747 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
748 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
749 
750 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
751 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
752 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
753 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
754 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
755 
756 	/* NB: this handles the bpfdetach done below */
757 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
758 	if (vap->iv_ifflags & IFF_PROMISC)
759 		ieee80211_promisc(vap, false);
760 	if (vap->iv_ifflags & IFF_ALLMULTI)
761 		ieee80211_allmulti(vap, false);
762 	IEEE80211_UNLOCK(ic);
763 
764 	ifmedia_removeall(&vap->iv_media);
765 
766 	ieee80211_radiotap_vdetach(vap);
767 	ieee80211_regdomain_vdetach(vap);
768 	ieee80211_scan_vdetach(vap);
769 #ifdef IEEE80211_SUPPORT_SUPERG
770 	ieee80211_superg_vdetach(vap);
771 #endif
772 	ieee80211_vht_vdetach(vap);
773 	ieee80211_ht_vdetach(vap);
774 	/* NB: must be before ieee80211_node_vdetach */
775 	ieee80211_proto_vdetach(vap);
776 	ieee80211_crypto_vdetach(vap);
777 	ieee80211_power_vdetach(vap);
778 	ieee80211_node_vdetach(vap);
779 	ieee80211_sysctl_vdetach(vap);
780 
781 	if_free(ifp);
782 
783 	CURVNET_RESTORE();
784 }
785 
786 /*
787  * Count number of vaps in promisc, and issue promisc on
788  * parent respectively.
789  */
790 void
791 ieee80211_promisc(struct ieee80211vap *vap, bool on)
792 {
793 	struct ieee80211com *ic = vap->iv_ic;
794 
795 	IEEE80211_LOCK_ASSERT(ic);
796 
797 	if (on) {
798 		if (++ic->ic_promisc == 1)
799 			ieee80211_runtask(ic, &ic->ic_promisc_task);
800 	} else {
801 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
802 		    __func__, ic));
803 		if (--ic->ic_promisc == 0)
804 			ieee80211_runtask(ic, &ic->ic_promisc_task);
805 	}
806 }
807 
808 /*
809  * Count number of vaps in allmulti, and issue allmulti on
810  * parent respectively.
811  */
812 void
813 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
814 {
815 	struct ieee80211com *ic = vap->iv_ic;
816 
817 	IEEE80211_LOCK_ASSERT(ic);
818 
819 	if (on) {
820 		if (++ic->ic_allmulti == 1)
821 			ieee80211_runtask(ic, &ic->ic_mcast_task);
822 	} else {
823 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
824 		    __func__, ic));
825 		if (--ic->ic_allmulti == 0)
826 			ieee80211_runtask(ic, &ic->ic_mcast_task);
827 	}
828 }
829 
830 /*
831  * Synchronize flag bit state in the com structure
832  * according to the state of all vap's.  This is used,
833  * for example, to handle state changes via ioctls.
834  */
835 static void
836 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
837 {
838 	struct ieee80211vap *vap;
839 	int bit;
840 
841 	IEEE80211_LOCK_ASSERT(ic);
842 
843 	bit = 0;
844 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
845 		if (vap->iv_flags & flag) {
846 			bit = 1;
847 			break;
848 		}
849 	if (bit)
850 		ic->ic_flags |= flag;
851 	else
852 		ic->ic_flags &= ~flag;
853 }
854 
855 void
856 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
857 {
858 	struct ieee80211com *ic = vap->iv_ic;
859 
860 	IEEE80211_LOCK(ic);
861 	if (flag < 0) {
862 		flag = -flag;
863 		vap->iv_flags &= ~flag;
864 	} else
865 		vap->iv_flags |= flag;
866 	ieee80211_syncflag_locked(ic, flag);
867 	IEEE80211_UNLOCK(ic);
868 }
869 
870 /*
871  * Synchronize flags_ht bit state in the com structure
872  * according to the state of all vap's.  This is used,
873  * for example, to handle state changes via ioctls.
874  */
875 static void
876 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
877 {
878 	struct ieee80211vap *vap;
879 	int bit;
880 
881 	IEEE80211_LOCK_ASSERT(ic);
882 
883 	bit = 0;
884 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
885 		if (vap->iv_flags_ht & flag) {
886 			bit = 1;
887 			break;
888 		}
889 	if (bit)
890 		ic->ic_flags_ht |= flag;
891 	else
892 		ic->ic_flags_ht &= ~flag;
893 }
894 
895 void
896 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
897 {
898 	struct ieee80211com *ic = vap->iv_ic;
899 
900 	IEEE80211_LOCK(ic);
901 	if (flag < 0) {
902 		flag = -flag;
903 		vap->iv_flags_ht &= ~flag;
904 	} else
905 		vap->iv_flags_ht |= flag;
906 	ieee80211_syncflag_ht_locked(ic, flag);
907 	IEEE80211_UNLOCK(ic);
908 }
909 
910 /*
911  * Synchronize flags_vht bit state in the com structure
912  * according to the state of all vap's.  This is used,
913  * for example, to handle state changes via ioctls.
914  */
915 static void
916 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
917 {
918 	struct ieee80211vap *vap;
919 	int bit;
920 
921 	IEEE80211_LOCK_ASSERT(ic);
922 
923 	bit = 0;
924 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
925 		if (vap->iv_flags_vht & flag) {
926 			bit = 1;
927 			break;
928 		}
929 	if (bit)
930 		ic->ic_flags_vht |= flag;
931 	else
932 		ic->ic_flags_vht &= ~flag;
933 }
934 
935 void
936 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
937 {
938 	struct ieee80211com *ic = vap->iv_ic;
939 
940 	IEEE80211_LOCK(ic);
941 	if (flag < 0) {
942 		flag = -flag;
943 		vap->iv_flags_vht &= ~flag;
944 	} else
945 		vap->iv_flags_vht |= flag;
946 	ieee80211_syncflag_vht_locked(ic, flag);
947 	IEEE80211_UNLOCK(ic);
948 }
949 
950 /*
951  * Synchronize flags_ext bit state in the com structure
952  * according to the state of all vap's.  This is used,
953  * for example, to handle state changes via ioctls.
954  */
955 static void
956 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
957 {
958 	struct ieee80211vap *vap;
959 	int bit;
960 
961 	IEEE80211_LOCK_ASSERT(ic);
962 
963 	bit = 0;
964 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
965 		if (vap->iv_flags_ext & flag) {
966 			bit = 1;
967 			break;
968 		}
969 	if (bit)
970 		ic->ic_flags_ext |= flag;
971 	else
972 		ic->ic_flags_ext &= ~flag;
973 }
974 
975 void
976 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
977 {
978 	struct ieee80211com *ic = vap->iv_ic;
979 
980 	IEEE80211_LOCK(ic);
981 	if (flag < 0) {
982 		flag = -flag;
983 		vap->iv_flags_ext &= ~flag;
984 	} else
985 		vap->iv_flags_ext |= flag;
986 	ieee80211_syncflag_ext_locked(ic, flag);
987 	IEEE80211_UNLOCK(ic);
988 }
989 
990 static __inline int
991 mapgsm(u_int freq, u_int flags)
992 {
993 	freq *= 10;
994 	if (flags & IEEE80211_CHAN_QUARTER)
995 		freq += 5;
996 	else if (flags & IEEE80211_CHAN_HALF)
997 		freq += 10;
998 	else
999 		freq += 20;
1000 	/* NB: there is no 907/20 wide but leave room */
1001 	return (freq - 906*10) / 5;
1002 }
1003 
1004 static __inline int
1005 mappsb(u_int freq, u_int flags)
1006 {
1007 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1008 }
1009 
1010 /*
1011  * Convert MHz frequency to IEEE channel number.
1012  */
1013 int
1014 ieee80211_mhz2ieee(u_int freq, u_int flags)
1015 {
1016 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1017 	if (flags & IEEE80211_CHAN_GSM)
1018 		return mapgsm(freq, flags);
1019 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1020 		if (freq == 2484)
1021 			return 14;
1022 		if (freq < 2484)
1023 			return ((int) freq - 2407) / 5;
1024 		else
1025 			return 15 + ((freq - 2512) / 20);
1026 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1027 		if (freq <= 5000) {
1028 			/* XXX check regdomain? */
1029 			if (IS_FREQ_IN_PSB(freq))
1030 				return mappsb(freq, flags);
1031 			return (freq - 4000) / 5;
1032 		} else
1033 			return (freq - 5000) / 5;
1034 	} else {				/* either, guess */
1035 		if (freq == 2484)
1036 			return 14;
1037 		if (freq < 2484) {
1038 			if (907 <= freq && freq <= 922)
1039 				return mapgsm(freq, flags);
1040 			return ((int) freq - 2407) / 5;
1041 		}
1042 		if (freq < 5000) {
1043 			if (IS_FREQ_IN_PSB(freq))
1044 				return mappsb(freq, flags);
1045 			else if (freq > 4900)
1046 				return (freq - 4000) / 5;
1047 			else
1048 				return 15 + ((freq - 2512) / 20);
1049 		}
1050 		return (freq - 5000) / 5;
1051 	}
1052 #undef IS_FREQ_IN_PSB
1053 }
1054 
1055 /*
1056  * Convert channel to IEEE channel number.
1057  */
1058 int
1059 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1060 {
1061 	if (c == NULL) {
1062 		ic_printf(ic, "invalid channel (NULL)\n");
1063 		return 0;		/* XXX */
1064 	}
1065 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1066 }
1067 
1068 /*
1069  * Convert IEEE channel number to MHz frequency.
1070  */
1071 u_int
1072 ieee80211_ieee2mhz(u_int chan, u_int flags)
1073 {
1074 	if (flags & IEEE80211_CHAN_GSM)
1075 		return 907 + 5 * (chan / 10);
1076 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1077 		if (chan == 14)
1078 			return 2484;
1079 		if (chan < 14)
1080 			return 2407 + chan*5;
1081 		else
1082 			return 2512 + ((chan-15)*20);
1083 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1084 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1085 			chan -= 37;
1086 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1087 		}
1088 		return 5000 + (chan*5);
1089 	} else {				/* either, guess */
1090 		/* XXX can't distinguish PSB+GSM channels */
1091 		if (chan == 14)
1092 			return 2484;
1093 		if (chan < 14)			/* 0-13 */
1094 			return 2407 + chan*5;
1095 		if (chan < 27)			/* 15-26 */
1096 			return 2512 + ((chan-15)*20);
1097 		return 5000 + (chan*5);
1098 	}
1099 }
1100 
1101 static __inline void
1102 set_extchan(struct ieee80211_channel *c)
1103 {
1104 
1105 	/*
1106 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1107 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1108 	 */
1109 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1110 		c->ic_extieee = c->ic_ieee + 4;
1111 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1112 		c->ic_extieee = c->ic_ieee - 4;
1113 	else
1114 		c->ic_extieee = 0;
1115 }
1116 
1117 /*
1118  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1119  *
1120  * This for now uses a hard-coded list of 80MHz wide channels.
1121  *
1122  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1123  * wide channel we've already decided upon.
1124  *
1125  * For VHT80 and VHT160, there are only a small number of fixed
1126  * 80/160MHz wide channels, so we just use those.
1127  *
1128  * This is all likely very very wrong - both the regulatory code
1129  * and this code needs to ensure that all four channels are
1130  * available and valid before the VHT80 (and eight for VHT160) channel
1131  * is created.
1132  */
1133 
1134 struct vht_chan_range {
1135 	uint16_t freq_start;
1136 	uint16_t freq_end;
1137 };
1138 
1139 struct vht_chan_range vht80_chan_ranges[] = {
1140 	{ 5170, 5250 },
1141 	{ 5250, 5330 },
1142 	{ 5490, 5570 },
1143 	{ 5570, 5650 },
1144 	{ 5650, 5730 },
1145 	{ 5735, 5815 },
1146 	{ 0, 0, }
1147 };
1148 
1149 static int
1150 set_vht_extchan(struct ieee80211_channel *c)
1151 {
1152 	int i;
1153 
1154 	if (! IEEE80211_IS_CHAN_VHT(c)) {
1155 		return (0);
1156 	}
1157 
1158 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1159 		c->ic_vht_ch_freq1 = c->ic_ieee;
1160 		return (1);
1161 	}
1162 
1163 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1164 		if (IEEE80211_IS_CHAN_HT40U(c))
1165 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1166 		else if (IEEE80211_IS_CHAN_HT40D(c))
1167 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1168 		else
1169 			return (0);
1170 		return (1);
1171 	}
1172 
1173 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1174 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1175 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1176 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1177 				int midpoint;
1178 
1179 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1180 				c->ic_vht_ch_freq1 =
1181 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1182 				c->ic_vht_ch_freq2 = 0;
1183 #if 0
1184 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1185 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1186 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1187 #endif
1188 				return (1);
1189 			}
1190 		}
1191 		return (0);
1192 	}
1193 
1194 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1195 	    __func__,
1196 	    c->ic_ieee,
1197 	    c->ic_flags);
1198 
1199 	return (0);
1200 }
1201 
1202 /*
1203  * Return whether the current channel could possibly be a part of
1204  * a VHT80 channel.
1205  *
1206  * This doesn't check that the whole range is in the allowed list
1207  * according to regulatory.
1208  */
1209 static int
1210 is_vht80_valid_freq(uint16_t freq)
1211 {
1212 	int i;
1213 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1214 		if (freq >= vht80_chan_ranges[i].freq_start &&
1215 		    freq < vht80_chan_ranges[i].freq_end)
1216 			return (1);
1217 	}
1218 	return (0);
1219 }
1220 
1221 static int
1222 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1223     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1224 {
1225 	struct ieee80211_channel *c;
1226 
1227 	if (*nchans >= maxchans)
1228 		return (ENOBUFS);
1229 
1230 #if 0
1231 	printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n",
1232 	    __func__,
1233 	    *nchans,
1234 	    ieee,
1235 	    freq,
1236 	    flags);
1237 #endif
1238 
1239 	c = &chans[(*nchans)++];
1240 	c->ic_ieee = ieee;
1241 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1242 	c->ic_maxregpower = maxregpower;
1243 	c->ic_maxpower = 2 * maxregpower;
1244 	c->ic_flags = flags;
1245 	c->ic_vht_ch_freq1 = 0;
1246 	c->ic_vht_ch_freq2 = 0;
1247 	set_extchan(c);
1248 	set_vht_extchan(c);
1249 
1250 	return (0);
1251 }
1252 
1253 static int
1254 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1255     uint32_t flags)
1256 {
1257 	struct ieee80211_channel *c;
1258 
1259 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1260 
1261 	if (*nchans >= maxchans)
1262 		return (ENOBUFS);
1263 
1264 #if 0
1265 	printf("%s: %d: flags=0x%08x\n",
1266 	    __func__,
1267 	    *nchans,
1268 	    flags);
1269 #endif
1270 
1271 	c = &chans[(*nchans)++];
1272 	c[0] = c[-1];
1273 	c->ic_flags = flags;
1274 	c->ic_vht_ch_freq1 = 0;
1275 	c->ic_vht_ch_freq2 = 0;
1276 	set_extchan(c);
1277 	set_vht_extchan(c);
1278 
1279 	return (0);
1280 }
1281 
1282 /*
1283  * XXX VHT-2GHz
1284  */
1285 static void
1286 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1287 {
1288 	int nmodes;
1289 
1290 	nmodes = 0;
1291 	if (isset(bands, IEEE80211_MODE_11B))
1292 		flags[nmodes++] = IEEE80211_CHAN_B;
1293 	if (isset(bands, IEEE80211_MODE_11G))
1294 		flags[nmodes++] = IEEE80211_CHAN_G;
1295 	if (isset(bands, IEEE80211_MODE_11NG))
1296 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1297 	if (ht40) {
1298 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1299 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1300 	}
1301 	flags[nmodes] = 0;
1302 }
1303 
1304 static void
1305 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
1306 {
1307 	int nmodes;
1308 
1309 	/*
1310 	 * the addchan_list function seems to expect the flags array to
1311 	 * be in channel width order, so the VHT bits are interspersed
1312 	 * as appropriate to maintain said order.
1313 	 *
1314 	 * It also assumes HT40U is before HT40D.
1315 	 */
1316 	nmodes = 0;
1317 
1318 	/* 20MHz */
1319 	if (isset(bands, IEEE80211_MODE_11A))
1320 		flags[nmodes++] = IEEE80211_CHAN_A;
1321 	if (isset(bands, IEEE80211_MODE_11NA))
1322 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1323 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1324 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1325 		    IEEE80211_CHAN_VHT20;
1326 	}
1327 
1328 	/* 40MHz */
1329 	if (ht40) {
1330 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1331 	}
1332 	if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1333 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U
1334 		    | IEEE80211_CHAN_VHT40U;
1335 	}
1336 	if (ht40) {
1337 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1338 	}
1339 	if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1340 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D
1341 		    | IEEE80211_CHAN_VHT40D;
1342 	}
1343 
1344 	/* 80MHz */
1345 	if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1346 		flags[nmodes++] = IEEE80211_CHAN_A |
1347 		    IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80;
1348 		flags[nmodes++] = IEEE80211_CHAN_A |
1349 		    IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80;
1350 	}
1351 
1352 	/* XXX VHT80+80 */
1353 	/* XXX VHT160 */
1354 	flags[nmodes] = 0;
1355 }
1356 
1357 static void
1358 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
1359 {
1360 
1361 	flags[0] = 0;
1362 	if (isset(bands, IEEE80211_MODE_11A) ||
1363 	    isset(bands, IEEE80211_MODE_11NA) ||
1364 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1365 		if (isset(bands, IEEE80211_MODE_11B) ||
1366 		    isset(bands, IEEE80211_MODE_11G) ||
1367 		    isset(bands, IEEE80211_MODE_11NG) ||
1368 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1369 			return;
1370 
1371 		getflags_5ghz(bands, flags, ht40, vht80);
1372 	} else
1373 		getflags_2ghz(bands, flags, ht40);
1374 }
1375 
1376 /*
1377  * Add one 20 MHz channel into specified channel list.
1378  */
1379 /* XXX VHT */
1380 int
1381 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1382     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1383     uint32_t chan_flags, const uint8_t bands[])
1384 {
1385 	uint32_t flags[IEEE80211_MODE_MAX];
1386 	int i, error;
1387 
1388 	getflags(bands, flags, 0, 0);
1389 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1390 
1391 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1392 	    flags[0] | chan_flags);
1393 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1394 		error = copychan_prev(chans, maxchans, nchans,
1395 		    flags[i] | chan_flags);
1396 	}
1397 
1398 	return (error);
1399 }
1400 
1401 static struct ieee80211_channel *
1402 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1403     uint32_t flags)
1404 {
1405 	struct ieee80211_channel *c;
1406 	int i;
1407 
1408 	flags &= IEEE80211_CHAN_ALLTURBO;
1409 	/* brute force search */
1410 	for (i = 0; i < nchans; i++) {
1411 		c = &chans[i];
1412 		if (c->ic_freq == freq &&
1413 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1414 			return c;
1415 	}
1416 	return NULL;
1417 }
1418 
1419 /*
1420  * Add 40 MHz channel pair into specified channel list.
1421  */
1422 /* XXX VHT */
1423 int
1424 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1425     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1426 {
1427 	struct ieee80211_channel *cent, *extc;
1428 	uint16_t freq;
1429 	int error;
1430 
1431 	freq = ieee80211_ieee2mhz(ieee, flags);
1432 
1433 	/*
1434 	 * Each entry defines an HT40 channel pair; find the
1435 	 * center channel, then the extension channel above.
1436 	 */
1437 	flags |= IEEE80211_CHAN_HT20;
1438 	cent = findchannel(chans, *nchans, freq, flags);
1439 	if (cent == NULL)
1440 		return (EINVAL);
1441 
1442 	extc = findchannel(chans, *nchans, freq + 20, flags);
1443 	if (extc == NULL)
1444 		return (ENOENT);
1445 
1446 	flags &= ~IEEE80211_CHAN_HT;
1447 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1448 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1449 	if (error != 0)
1450 		return (error);
1451 
1452 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1453 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1454 
1455 	return (error);
1456 }
1457 
1458 /*
1459  * Fetch the center frequency for the primary channel.
1460  */
1461 uint32_t
1462 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1463 {
1464 
1465 	return (c->ic_freq);
1466 }
1467 
1468 /*
1469  * Fetch the center frequency for the primary BAND channel.
1470  *
1471  * For 5, 10, 20MHz channels it'll be the normally configured channel
1472  * frequency.
1473  *
1474  * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the
1475  * wide channel, not the centre of the primary channel (that's ic_freq).
1476  *
1477  * For 80+80MHz channels this will be the centre of the primary
1478  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1479  */
1480 uint32_t
1481 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1482 {
1483 
1484 	/*
1485 	 * VHT - use the pre-calculated centre frequency
1486 	 * of the given channel.
1487 	 */
1488 	if (IEEE80211_IS_CHAN_VHT(c))
1489 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1490 
1491 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1492 		return (c->ic_freq + 10);
1493 	}
1494 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1495 		return (c->ic_freq - 10);
1496 	}
1497 
1498 	return (c->ic_freq);
1499 }
1500 
1501 /*
1502  * For now, no 80+80 support; it will likely always return 0.
1503  */
1504 uint32_t
1505 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1506 {
1507 
1508 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1509 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1510 
1511 	return (0);
1512 }
1513 
1514 /*
1515  * Adds channels into specified channel list (ieee[] array must be sorted).
1516  * Channels are already sorted.
1517  */
1518 static int
1519 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1520     const uint8_t ieee[], int nieee, uint32_t flags[])
1521 {
1522 	uint16_t freq;
1523 	int i, j, error;
1524 	int is_vht;
1525 
1526 	for (i = 0; i < nieee; i++) {
1527 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1528 		for (j = 0; flags[j] != 0; j++) {
1529 			/*
1530 			 * Notes:
1531 			 * + HT40 and VHT40 channels occur together, so
1532 			 *   we need to be careful that we actually allow that.
1533 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1534 			 *   make sure it's not skipped because of the overlap
1535 			 *   check used for (V)HT40.
1536 			 */
1537 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1538 
1539 			/*
1540 			 * Test for VHT80.
1541 			 * XXX This is all very broken right now.
1542 			 * What we /should/ do is:
1543 			 *
1544 			 * + check that the frequency is in the list of
1545 			 *   allowed VHT80 ranges; and
1546 			 * + the other 3 channels in the list are actually
1547 			 *   also available.
1548 			 */
1549 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1550 				if (! is_vht80_valid_freq(freq))
1551 					continue;
1552 
1553 			/*
1554 			 * Test for (V)HT40.
1555 			 *
1556 			 * This is also a fall through from VHT80; as we only
1557 			 * allow a VHT80 channel if the VHT40 combination is
1558 			 * also valid.  If the VHT40 form is not valid then
1559 			 * we certainly can't do VHT80..
1560 			 */
1561 			if (flags[j] & IEEE80211_CHAN_HT40D)
1562 				/*
1563 				 * Can't have a "lower" channel if we are the
1564 				 * first channel.
1565 				 *
1566 				 * Can't have a "lower" channel if it's below/
1567 				 * within 20MHz of the first channel.
1568 				 *
1569 				 * Can't have a "lower" channel if the channel
1570 				 * below it is not 20MHz away.
1571 				 */
1572 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1573 				    freq - 20 !=
1574 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1575 					continue;
1576 			if (flags[j] & IEEE80211_CHAN_HT40U)
1577 				/*
1578 				 * Can't have an "upper" channel if we are
1579 				 * the last channel.
1580 				 *
1581 				 * Can't have an "upper" channel be above the
1582 				 * last channel in the list.
1583 				 *
1584 				 * Can't have an "upper" channel if the next
1585 				 * channel according to the math isn't 20MHz
1586 				 * away.  (Likely for channel 13/14.)
1587 				 */
1588 				if (i == nieee - 1 ||
1589 				    ieee[i] + 4 > ieee[nieee - 1] ||
1590 				    freq + 20 !=
1591 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1592 					continue;
1593 
1594 			if (j == 0) {
1595 				error = addchan(chans, maxchans, nchans,
1596 				    ieee[i], freq, 0, flags[j]);
1597 			} else {
1598 				error = copychan_prev(chans, maxchans, nchans,
1599 				    flags[j]);
1600 			}
1601 			if (error != 0)
1602 				return (error);
1603 		}
1604 	}
1605 
1606 	return (0);
1607 }
1608 
1609 int
1610 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1611     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1612     int ht40)
1613 {
1614 	uint32_t flags[IEEE80211_MODE_MAX];
1615 
1616 	/* XXX no VHT for now */
1617 	getflags_2ghz(bands, flags, ht40);
1618 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1619 
1620 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1621 }
1622 
1623 int
1624 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1625     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1626     int ht40)
1627 {
1628 	uint32_t flags[IEEE80211_MODE_MAX];
1629 	int vht80 = 0;
1630 
1631 	/*
1632 	 * For now, assume VHT == VHT80 support as a minimum.
1633 	 */
1634 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ))
1635 		vht80 = 1;
1636 
1637 	getflags_5ghz(bands, flags, ht40, vht80);
1638 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1639 
1640 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1641 }
1642 
1643 /*
1644  * Locate a channel given a frequency+flags.  We cache
1645  * the previous lookup to optimize switching between two
1646  * channels--as happens with dynamic turbo.
1647  */
1648 struct ieee80211_channel *
1649 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1650 {
1651 	struct ieee80211_channel *c;
1652 
1653 	flags &= IEEE80211_CHAN_ALLTURBO;
1654 	c = ic->ic_prevchan;
1655 	if (c != NULL && c->ic_freq == freq &&
1656 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1657 		return c;
1658 	/* brute force search */
1659 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1660 }
1661 
1662 /*
1663  * Locate a channel given a channel number+flags.  We cache
1664  * the previous lookup to optimize switching between two
1665  * channels--as happens with dynamic turbo.
1666  */
1667 struct ieee80211_channel *
1668 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1669 {
1670 	struct ieee80211_channel *c;
1671 	int i;
1672 
1673 	flags &= IEEE80211_CHAN_ALLTURBO;
1674 	c = ic->ic_prevchan;
1675 	if (c != NULL && c->ic_ieee == ieee &&
1676 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1677 		return c;
1678 	/* brute force search */
1679 	for (i = 0; i < ic->ic_nchans; i++) {
1680 		c = &ic->ic_channels[i];
1681 		if (c->ic_ieee == ieee &&
1682 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1683 			return c;
1684 	}
1685 	return NULL;
1686 }
1687 
1688 /*
1689  * Lookup a channel suitable for the given rx status.
1690  *
1691  * This is used to find a channel for a frame (eg beacon, probe
1692  * response) based purely on the received PHY information.
1693  *
1694  * For now it tries to do it based on R_FREQ / R_IEEE.
1695  * This is enough for 11bg and 11a (and thus 11ng/11na)
1696  * but it will not be enough for GSM, PSB channels and the
1697  * like.  It also doesn't know about legacy-turbog and
1698  * legacy-turbo modes, which some offload NICs actually
1699  * support in weird ways.
1700  *
1701  * Takes the ic and rxstatus; returns the channel or NULL
1702  * if not found.
1703  *
1704  * XXX TODO: Add support for that when the need arises.
1705  */
1706 struct ieee80211_channel *
1707 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1708     const struct ieee80211_rx_stats *rxs)
1709 {
1710 	struct ieee80211com *ic = vap->iv_ic;
1711 	uint32_t flags;
1712 	struct ieee80211_channel *c;
1713 
1714 	if (rxs == NULL)
1715 		return (NULL);
1716 
1717 	/*
1718 	 * Strictly speaking we only use freq for now,
1719 	 * however later on we may wish to just store
1720 	 * the ieee for verification.
1721 	 */
1722 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1723 		return (NULL);
1724 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1725 		return (NULL);
1726 
1727 	/*
1728 	 * If the rx status contains a valid ieee/freq, then
1729 	 * ensure we populate the correct channel information
1730 	 * in rxchan before passing it up to the scan infrastructure.
1731 	 * Offload NICs will pass up beacons from all channels
1732 	 * during background scans.
1733 	 */
1734 
1735 	/* Determine a band */
1736 	/* XXX should be done by the driver? */
1737 	if (rxs->c_freq < 3000) {
1738 		flags = IEEE80211_CHAN_G;
1739 	} else {
1740 		flags = IEEE80211_CHAN_A;
1741 	}
1742 
1743 	/* Channel lookup */
1744 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1745 
1746 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1747 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1748 	    __func__,
1749 	    (int) rxs->c_freq,
1750 	    (int) rxs->c_ieee,
1751 	    flags,
1752 	    c);
1753 
1754 	return (c);
1755 }
1756 
1757 static void
1758 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1759 {
1760 #define	ADD(_ic, _s, _o) \
1761 	ifmedia_add(media, \
1762 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1763 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1764 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1765 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1766 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1767 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1768 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1769 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1770 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1771 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1772 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1773 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1774 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1775 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1776 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1777 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1778 	};
1779 	u_int mopt;
1780 
1781 	mopt = mopts[mode];
1782 	if (addsta)
1783 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1784 	if (caps & IEEE80211_C_IBSS)
1785 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1786 	if (caps & IEEE80211_C_HOSTAP)
1787 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1788 	if (caps & IEEE80211_C_AHDEMO)
1789 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1790 	if (caps & IEEE80211_C_MONITOR)
1791 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1792 	if (caps & IEEE80211_C_WDS)
1793 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1794 	if (caps & IEEE80211_C_MBSS)
1795 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1796 #undef ADD
1797 }
1798 
1799 /*
1800  * Setup the media data structures according to the channel and
1801  * rate tables.
1802  */
1803 static int
1804 ieee80211_media_setup(struct ieee80211com *ic,
1805 	struct ifmedia *media, int caps, int addsta,
1806 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1807 {
1808 	int i, j, rate, maxrate, mword, r;
1809 	enum ieee80211_phymode mode;
1810 	const struct ieee80211_rateset *rs;
1811 	struct ieee80211_rateset allrates;
1812 
1813 	/*
1814 	 * Fill in media characteristics.
1815 	 */
1816 	ifmedia_init(media, 0, media_change, media_stat);
1817 	maxrate = 0;
1818 	/*
1819 	 * Add media for legacy operating modes.
1820 	 */
1821 	memset(&allrates, 0, sizeof(allrates));
1822 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1823 		if (isclr(ic->ic_modecaps, mode))
1824 			continue;
1825 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1826 		if (mode == IEEE80211_MODE_AUTO)
1827 			continue;
1828 		rs = &ic->ic_sup_rates[mode];
1829 		for (i = 0; i < rs->rs_nrates; i++) {
1830 			rate = rs->rs_rates[i];
1831 			mword = ieee80211_rate2media(ic, rate, mode);
1832 			if (mword == 0)
1833 				continue;
1834 			addmedia(media, caps, addsta, mode, mword);
1835 			/*
1836 			 * Add legacy rate to the collection of all rates.
1837 			 */
1838 			r = rate & IEEE80211_RATE_VAL;
1839 			for (j = 0; j < allrates.rs_nrates; j++)
1840 				if (allrates.rs_rates[j] == r)
1841 					break;
1842 			if (j == allrates.rs_nrates) {
1843 				/* unique, add to the set */
1844 				allrates.rs_rates[j] = r;
1845 				allrates.rs_nrates++;
1846 			}
1847 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1848 			if (rate > maxrate)
1849 				maxrate = rate;
1850 		}
1851 	}
1852 	for (i = 0; i < allrates.rs_nrates; i++) {
1853 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1854 				IEEE80211_MODE_AUTO);
1855 		if (mword == 0)
1856 			continue;
1857 		/* NB: remove media options from mword */
1858 		addmedia(media, caps, addsta,
1859 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1860 	}
1861 	/*
1862 	 * Add HT/11n media.  Note that we do not have enough
1863 	 * bits in the media subtype to express the MCS so we
1864 	 * use a "placeholder" media subtype and any fixed MCS
1865 	 * must be specified with a different mechanism.
1866 	 */
1867 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1868 		if (isclr(ic->ic_modecaps, mode))
1869 			continue;
1870 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1871 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1872 	}
1873 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1874 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1875 		addmedia(media, caps, addsta,
1876 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1877 		i = ic->ic_txstream * 8 - 1;
1878 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1879 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1880 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1881 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1882 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1883 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1884 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1885 		else
1886 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1887 		if (rate > maxrate)
1888 			maxrate = rate;
1889 	}
1890 
1891 	/*
1892 	 * Add VHT media.
1893 	 */
1894 	for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) {
1895 		if (isclr(ic->ic_modecaps, mode))
1896 			continue;
1897 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1898 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
1899 
1900 		/* XXX TODO: VHT maxrate */
1901 	}
1902 
1903 	return maxrate;
1904 }
1905 
1906 /* XXX inline or eliminate? */
1907 const struct ieee80211_rateset *
1908 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1909 {
1910 	/* XXX does this work for 11ng basic rates? */
1911 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1912 }
1913 
1914 /* XXX inline or eliminate? */
1915 const struct ieee80211_htrateset *
1916 ieee80211_get_suphtrates(struct ieee80211com *ic,
1917     const struct ieee80211_channel *c)
1918 {
1919 	return &ic->ic_sup_htrates;
1920 }
1921 
1922 void
1923 ieee80211_announce(struct ieee80211com *ic)
1924 {
1925 	int i, rate, mword;
1926 	enum ieee80211_phymode mode;
1927 	const struct ieee80211_rateset *rs;
1928 
1929 	/* NB: skip AUTO since it has no rates */
1930 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1931 		if (isclr(ic->ic_modecaps, mode))
1932 			continue;
1933 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1934 		rs = &ic->ic_sup_rates[mode];
1935 		for (i = 0; i < rs->rs_nrates; i++) {
1936 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1937 			if (mword == 0)
1938 				continue;
1939 			rate = ieee80211_media2rate(mword);
1940 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1941 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1942 		}
1943 		printf("\n");
1944 	}
1945 	ieee80211_ht_announce(ic);
1946 	ieee80211_vht_announce(ic);
1947 }
1948 
1949 void
1950 ieee80211_announce_channels(struct ieee80211com *ic)
1951 {
1952 	const struct ieee80211_channel *c;
1953 	char type;
1954 	int i, cw;
1955 
1956 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1957 	for (i = 0; i < ic->ic_nchans; i++) {
1958 		c = &ic->ic_channels[i];
1959 		if (IEEE80211_IS_CHAN_ST(c))
1960 			type = 'S';
1961 		else if (IEEE80211_IS_CHAN_108A(c))
1962 			type = 'T';
1963 		else if (IEEE80211_IS_CHAN_108G(c))
1964 			type = 'G';
1965 		else if (IEEE80211_IS_CHAN_HT(c))
1966 			type = 'n';
1967 		else if (IEEE80211_IS_CHAN_A(c))
1968 			type = 'a';
1969 		else if (IEEE80211_IS_CHAN_ANYG(c))
1970 			type = 'g';
1971 		else if (IEEE80211_IS_CHAN_B(c))
1972 			type = 'b';
1973 		else
1974 			type = 'f';
1975 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1976 			cw = 40;
1977 		else if (IEEE80211_IS_CHAN_HALF(c))
1978 			cw = 10;
1979 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1980 			cw = 5;
1981 		else
1982 			cw = 20;
1983 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1984 			, c->ic_ieee, c->ic_freq, type
1985 			, cw
1986 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1987 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1988 			, c->ic_maxregpower
1989 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1990 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1991 		);
1992 	}
1993 }
1994 
1995 static int
1996 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1997 {
1998 	switch (IFM_MODE(ime->ifm_media)) {
1999 	case IFM_IEEE80211_11A:
2000 		*mode = IEEE80211_MODE_11A;
2001 		break;
2002 	case IFM_IEEE80211_11B:
2003 		*mode = IEEE80211_MODE_11B;
2004 		break;
2005 	case IFM_IEEE80211_11G:
2006 		*mode = IEEE80211_MODE_11G;
2007 		break;
2008 	case IFM_IEEE80211_FH:
2009 		*mode = IEEE80211_MODE_FH;
2010 		break;
2011 	case IFM_IEEE80211_11NA:
2012 		*mode = IEEE80211_MODE_11NA;
2013 		break;
2014 	case IFM_IEEE80211_11NG:
2015 		*mode = IEEE80211_MODE_11NG;
2016 		break;
2017 	case IFM_AUTO:
2018 		*mode = IEEE80211_MODE_AUTO;
2019 		break;
2020 	default:
2021 		return 0;
2022 	}
2023 	/*
2024 	 * Turbo mode is an ``option''.
2025 	 * XXX does not apply to AUTO
2026 	 */
2027 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2028 		if (*mode == IEEE80211_MODE_11A) {
2029 			if (flags & IEEE80211_F_TURBOP)
2030 				*mode = IEEE80211_MODE_TURBO_A;
2031 			else
2032 				*mode = IEEE80211_MODE_STURBO_A;
2033 		} else if (*mode == IEEE80211_MODE_11G)
2034 			*mode = IEEE80211_MODE_TURBO_G;
2035 		else
2036 			return 0;
2037 	}
2038 	/* XXX HT40 +/- */
2039 	return 1;
2040 }
2041 
2042 /*
2043  * Handle a media change request on the vap interface.
2044  */
2045 int
2046 ieee80211_media_change(struct ifnet *ifp)
2047 {
2048 	struct ieee80211vap *vap = ifp->if_softc;
2049 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2050 	uint16_t newmode;
2051 
2052 	if (!media2mode(ime, vap->iv_flags, &newmode))
2053 		return EINVAL;
2054 	if (vap->iv_des_mode != newmode) {
2055 		vap->iv_des_mode = newmode;
2056 		/* XXX kick state machine if up+running */
2057 	}
2058 	return 0;
2059 }
2060 
2061 /*
2062  * Common code to calculate the media status word
2063  * from the operating mode and channel state.
2064  */
2065 static int
2066 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2067 {
2068 	int status;
2069 
2070 	status = IFM_IEEE80211;
2071 	switch (opmode) {
2072 	case IEEE80211_M_STA:
2073 		break;
2074 	case IEEE80211_M_IBSS:
2075 		status |= IFM_IEEE80211_ADHOC;
2076 		break;
2077 	case IEEE80211_M_HOSTAP:
2078 		status |= IFM_IEEE80211_HOSTAP;
2079 		break;
2080 	case IEEE80211_M_MONITOR:
2081 		status |= IFM_IEEE80211_MONITOR;
2082 		break;
2083 	case IEEE80211_M_AHDEMO:
2084 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2085 		break;
2086 	case IEEE80211_M_WDS:
2087 		status |= IFM_IEEE80211_WDS;
2088 		break;
2089 	case IEEE80211_M_MBSS:
2090 		status |= IFM_IEEE80211_MBSS;
2091 		break;
2092 	}
2093 	if (IEEE80211_IS_CHAN_HTA(chan)) {
2094 		status |= IFM_IEEE80211_11NA;
2095 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2096 		status |= IFM_IEEE80211_11NG;
2097 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2098 		status |= IFM_IEEE80211_11A;
2099 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2100 		status |= IFM_IEEE80211_11B;
2101 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2102 		status |= IFM_IEEE80211_11G;
2103 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2104 		status |= IFM_IEEE80211_FH;
2105 	}
2106 	/* XXX else complain? */
2107 
2108 	if (IEEE80211_IS_CHAN_TURBO(chan))
2109 		status |= IFM_IEEE80211_TURBO;
2110 #if 0
2111 	if (IEEE80211_IS_CHAN_HT20(chan))
2112 		status |= IFM_IEEE80211_HT20;
2113 	if (IEEE80211_IS_CHAN_HT40(chan))
2114 		status |= IFM_IEEE80211_HT40;
2115 #endif
2116 	return status;
2117 }
2118 
2119 void
2120 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2121 {
2122 	struct ieee80211vap *vap = ifp->if_softc;
2123 	struct ieee80211com *ic = vap->iv_ic;
2124 	enum ieee80211_phymode mode;
2125 
2126 	imr->ifm_status = IFM_AVALID;
2127 	/*
2128 	 * NB: use the current channel's mode to lock down a xmit
2129 	 * rate only when running; otherwise we may have a mismatch
2130 	 * in which case the rate will not be convertible.
2131 	 */
2132 	if (vap->iv_state == IEEE80211_S_RUN ||
2133 	    vap->iv_state == IEEE80211_S_SLEEP) {
2134 		imr->ifm_status |= IFM_ACTIVE;
2135 		mode = ieee80211_chan2mode(ic->ic_curchan);
2136 	} else
2137 		mode = IEEE80211_MODE_AUTO;
2138 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2139 	/*
2140 	 * Calculate a current rate if possible.
2141 	 */
2142 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2143 		/*
2144 		 * A fixed rate is set, report that.
2145 		 */
2146 		imr->ifm_active |= ieee80211_rate2media(ic,
2147 			vap->iv_txparms[mode].ucastrate, mode);
2148 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2149 		/*
2150 		 * In station mode report the current transmit rate.
2151 		 */
2152 		imr->ifm_active |= ieee80211_rate2media(ic,
2153 			vap->iv_bss->ni_txrate, mode);
2154 	} else
2155 		imr->ifm_active |= IFM_AUTO;
2156 	if (imr->ifm_status & IFM_ACTIVE)
2157 		imr->ifm_current = imr->ifm_active;
2158 }
2159 
2160 /*
2161  * Set the current phy mode and recalculate the active channel
2162  * set based on the available channels for this mode.  Also
2163  * select a new default/current channel if the current one is
2164  * inappropriate for this mode.
2165  */
2166 int
2167 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2168 {
2169 	/*
2170 	 * Adjust basic rates in 11b/11g supported rate set.
2171 	 * Note that if operating on a hal/quarter rate channel
2172 	 * this is a noop as those rates sets are different
2173 	 * and used instead.
2174 	 */
2175 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2176 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2177 
2178 	ic->ic_curmode = mode;
2179 	ieee80211_reset_erp(ic);	/* reset ERP state */
2180 
2181 	return 0;
2182 }
2183 
2184 /*
2185  * Return the phy mode for with the specified channel.
2186  */
2187 enum ieee80211_phymode
2188 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2189 {
2190 
2191 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2192 		return IEEE80211_MODE_VHT_2GHZ;
2193 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2194 		return IEEE80211_MODE_VHT_5GHZ;
2195 	else if (IEEE80211_IS_CHAN_HTA(chan))
2196 		return IEEE80211_MODE_11NA;
2197 	else if (IEEE80211_IS_CHAN_HTG(chan))
2198 		return IEEE80211_MODE_11NG;
2199 	else if (IEEE80211_IS_CHAN_108G(chan))
2200 		return IEEE80211_MODE_TURBO_G;
2201 	else if (IEEE80211_IS_CHAN_ST(chan))
2202 		return IEEE80211_MODE_STURBO_A;
2203 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2204 		return IEEE80211_MODE_TURBO_A;
2205 	else if (IEEE80211_IS_CHAN_HALF(chan))
2206 		return IEEE80211_MODE_HALF;
2207 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2208 		return IEEE80211_MODE_QUARTER;
2209 	else if (IEEE80211_IS_CHAN_A(chan))
2210 		return IEEE80211_MODE_11A;
2211 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2212 		return IEEE80211_MODE_11G;
2213 	else if (IEEE80211_IS_CHAN_B(chan))
2214 		return IEEE80211_MODE_11B;
2215 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2216 		return IEEE80211_MODE_FH;
2217 
2218 	/* NB: should not get here */
2219 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2220 		__func__, chan->ic_freq, chan->ic_flags);
2221 	return IEEE80211_MODE_11B;
2222 }
2223 
2224 struct ratemedia {
2225 	u_int	match;	/* rate + mode */
2226 	u_int	media;	/* if_media rate */
2227 };
2228 
2229 static int
2230 findmedia(const struct ratemedia rates[], int n, u_int match)
2231 {
2232 	int i;
2233 
2234 	for (i = 0; i < n; i++)
2235 		if (rates[i].match == match)
2236 			return rates[i].media;
2237 	return IFM_AUTO;
2238 }
2239 
2240 /*
2241  * Convert IEEE80211 rate value to ifmedia subtype.
2242  * Rate is either a legacy rate in units of 0.5Mbps
2243  * or an MCS index.
2244  */
2245 int
2246 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2247 {
2248 	static const struct ratemedia rates[] = {
2249 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2250 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2251 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2252 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2253 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2254 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2255 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2256 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2257 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2258 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2259 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2260 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2261 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2262 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2263 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2264 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2265 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2266 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2267 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2268 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2269 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2270 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2271 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2272 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2273 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2274 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2275 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2276 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2277 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2278 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2279 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2280 	};
2281 	static const struct ratemedia htrates[] = {
2282 		{   0, IFM_IEEE80211_MCS },
2283 		{   1, IFM_IEEE80211_MCS },
2284 		{   2, IFM_IEEE80211_MCS },
2285 		{   3, IFM_IEEE80211_MCS },
2286 		{   4, IFM_IEEE80211_MCS },
2287 		{   5, IFM_IEEE80211_MCS },
2288 		{   6, IFM_IEEE80211_MCS },
2289 		{   7, IFM_IEEE80211_MCS },
2290 		{   8, IFM_IEEE80211_MCS },
2291 		{   9, IFM_IEEE80211_MCS },
2292 		{  10, IFM_IEEE80211_MCS },
2293 		{  11, IFM_IEEE80211_MCS },
2294 		{  12, IFM_IEEE80211_MCS },
2295 		{  13, IFM_IEEE80211_MCS },
2296 		{  14, IFM_IEEE80211_MCS },
2297 		{  15, IFM_IEEE80211_MCS },
2298 		{  16, IFM_IEEE80211_MCS },
2299 		{  17, IFM_IEEE80211_MCS },
2300 		{  18, IFM_IEEE80211_MCS },
2301 		{  19, IFM_IEEE80211_MCS },
2302 		{  20, IFM_IEEE80211_MCS },
2303 		{  21, IFM_IEEE80211_MCS },
2304 		{  22, IFM_IEEE80211_MCS },
2305 		{  23, IFM_IEEE80211_MCS },
2306 		{  24, IFM_IEEE80211_MCS },
2307 		{  25, IFM_IEEE80211_MCS },
2308 		{  26, IFM_IEEE80211_MCS },
2309 		{  27, IFM_IEEE80211_MCS },
2310 		{  28, IFM_IEEE80211_MCS },
2311 		{  29, IFM_IEEE80211_MCS },
2312 		{  30, IFM_IEEE80211_MCS },
2313 		{  31, IFM_IEEE80211_MCS },
2314 		{  32, IFM_IEEE80211_MCS },
2315 		{  33, IFM_IEEE80211_MCS },
2316 		{  34, IFM_IEEE80211_MCS },
2317 		{  35, IFM_IEEE80211_MCS },
2318 		{  36, IFM_IEEE80211_MCS },
2319 		{  37, IFM_IEEE80211_MCS },
2320 		{  38, IFM_IEEE80211_MCS },
2321 		{  39, IFM_IEEE80211_MCS },
2322 		{  40, IFM_IEEE80211_MCS },
2323 		{  41, IFM_IEEE80211_MCS },
2324 		{  42, IFM_IEEE80211_MCS },
2325 		{  43, IFM_IEEE80211_MCS },
2326 		{  44, IFM_IEEE80211_MCS },
2327 		{  45, IFM_IEEE80211_MCS },
2328 		{  46, IFM_IEEE80211_MCS },
2329 		{  47, IFM_IEEE80211_MCS },
2330 		{  48, IFM_IEEE80211_MCS },
2331 		{  49, IFM_IEEE80211_MCS },
2332 		{  50, IFM_IEEE80211_MCS },
2333 		{  51, IFM_IEEE80211_MCS },
2334 		{  52, IFM_IEEE80211_MCS },
2335 		{  53, IFM_IEEE80211_MCS },
2336 		{  54, IFM_IEEE80211_MCS },
2337 		{  55, IFM_IEEE80211_MCS },
2338 		{  56, IFM_IEEE80211_MCS },
2339 		{  57, IFM_IEEE80211_MCS },
2340 		{  58, IFM_IEEE80211_MCS },
2341 		{  59, IFM_IEEE80211_MCS },
2342 		{  60, IFM_IEEE80211_MCS },
2343 		{  61, IFM_IEEE80211_MCS },
2344 		{  62, IFM_IEEE80211_MCS },
2345 		{  63, IFM_IEEE80211_MCS },
2346 		{  64, IFM_IEEE80211_MCS },
2347 		{  65, IFM_IEEE80211_MCS },
2348 		{  66, IFM_IEEE80211_MCS },
2349 		{  67, IFM_IEEE80211_MCS },
2350 		{  68, IFM_IEEE80211_MCS },
2351 		{  69, IFM_IEEE80211_MCS },
2352 		{  70, IFM_IEEE80211_MCS },
2353 		{  71, IFM_IEEE80211_MCS },
2354 		{  72, IFM_IEEE80211_MCS },
2355 		{  73, IFM_IEEE80211_MCS },
2356 		{  74, IFM_IEEE80211_MCS },
2357 		{  75, IFM_IEEE80211_MCS },
2358 		{  76, IFM_IEEE80211_MCS },
2359 	};
2360 	int m;
2361 
2362 	/*
2363 	 * Check 11n rates first for match as an MCS.
2364 	 */
2365 	if (mode == IEEE80211_MODE_11NA) {
2366 		if (rate & IEEE80211_RATE_MCS) {
2367 			rate &= ~IEEE80211_RATE_MCS;
2368 			m = findmedia(htrates, nitems(htrates), rate);
2369 			if (m != IFM_AUTO)
2370 				return m | IFM_IEEE80211_11NA;
2371 		}
2372 	} else if (mode == IEEE80211_MODE_11NG) {
2373 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2374 		if (rate & IEEE80211_RATE_MCS) {
2375 			rate &= ~IEEE80211_RATE_MCS;
2376 			m = findmedia(htrates, nitems(htrates), rate);
2377 			if (m != IFM_AUTO)
2378 				return m | IFM_IEEE80211_11NG;
2379 		}
2380 	}
2381 	rate &= IEEE80211_RATE_VAL;
2382 	switch (mode) {
2383 	case IEEE80211_MODE_11A:
2384 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2385 	case IEEE80211_MODE_QUARTER:
2386 	case IEEE80211_MODE_11NA:
2387 	case IEEE80211_MODE_TURBO_A:
2388 	case IEEE80211_MODE_STURBO_A:
2389 		return findmedia(rates, nitems(rates),
2390 		    rate | IFM_IEEE80211_11A);
2391 	case IEEE80211_MODE_11B:
2392 		return findmedia(rates, nitems(rates),
2393 		    rate | IFM_IEEE80211_11B);
2394 	case IEEE80211_MODE_FH:
2395 		return findmedia(rates, nitems(rates),
2396 		    rate | IFM_IEEE80211_FH);
2397 	case IEEE80211_MODE_AUTO:
2398 		/* NB: ic may be NULL for some drivers */
2399 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2400 			return findmedia(rates, nitems(rates),
2401 			    rate | IFM_IEEE80211_FH);
2402 		/* NB: hack, 11g matches both 11b+11a rates */
2403 		/* fall thru... */
2404 	case IEEE80211_MODE_11G:
2405 	case IEEE80211_MODE_11NG:
2406 	case IEEE80211_MODE_TURBO_G:
2407 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2408 	case IEEE80211_MODE_VHT_2GHZ:
2409 	case IEEE80211_MODE_VHT_5GHZ:
2410 		/* XXX TODO: need to figure out mapping for VHT rates */
2411 		return IFM_AUTO;
2412 	}
2413 	return IFM_AUTO;
2414 }
2415 
2416 int
2417 ieee80211_media2rate(int mword)
2418 {
2419 	static const int ieeerates[] = {
2420 		-1,		/* IFM_AUTO */
2421 		0,		/* IFM_MANUAL */
2422 		0,		/* IFM_NONE */
2423 		2,		/* IFM_IEEE80211_FH1 */
2424 		4,		/* IFM_IEEE80211_FH2 */
2425 		2,		/* IFM_IEEE80211_DS1 */
2426 		4,		/* IFM_IEEE80211_DS2 */
2427 		11,		/* IFM_IEEE80211_DS5 */
2428 		22,		/* IFM_IEEE80211_DS11 */
2429 		44,		/* IFM_IEEE80211_DS22 */
2430 		12,		/* IFM_IEEE80211_OFDM6 */
2431 		18,		/* IFM_IEEE80211_OFDM9 */
2432 		24,		/* IFM_IEEE80211_OFDM12 */
2433 		36,		/* IFM_IEEE80211_OFDM18 */
2434 		48,		/* IFM_IEEE80211_OFDM24 */
2435 		72,		/* IFM_IEEE80211_OFDM36 */
2436 		96,		/* IFM_IEEE80211_OFDM48 */
2437 		108,		/* IFM_IEEE80211_OFDM54 */
2438 		144,		/* IFM_IEEE80211_OFDM72 */
2439 		0,		/* IFM_IEEE80211_DS354k */
2440 		0,		/* IFM_IEEE80211_DS512k */
2441 		6,		/* IFM_IEEE80211_OFDM3 */
2442 		9,		/* IFM_IEEE80211_OFDM4 */
2443 		54,		/* IFM_IEEE80211_OFDM27 */
2444 		-1,		/* IFM_IEEE80211_MCS */
2445 		-1,		/* IFM_IEEE80211_VHT */
2446 	};
2447 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2448 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2449 }
2450 
2451 /*
2452  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2453  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2454  */
2455 #define	mix(a, b, c)							\
2456 do {									\
2457 	a -= b; a -= c; a ^= (c >> 13);					\
2458 	b -= c; b -= a; b ^= (a << 8);					\
2459 	c -= a; c -= b; c ^= (b >> 13);					\
2460 	a -= b; a -= c; a ^= (c >> 12);					\
2461 	b -= c; b -= a; b ^= (a << 16);					\
2462 	c -= a; c -= b; c ^= (b >> 5);					\
2463 	a -= b; a -= c; a ^= (c >> 3);					\
2464 	b -= c; b -= a; b ^= (a << 10);					\
2465 	c -= a; c -= b; c ^= (b >> 15);					\
2466 } while (/*CONSTCOND*/0)
2467 
2468 uint32_t
2469 ieee80211_mac_hash(const struct ieee80211com *ic,
2470 	const uint8_t addr[IEEE80211_ADDR_LEN])
2471 {
2472 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2473 
2474 	b += addr[5] << 8;
2475 	b += addr[4];
2476 	a += addr[3] << 24;
2477 	a += addr[2] << 16;
2478 	a += addr[1] << 8;
2479 	a += addr[0];
2480 
2481 	mix(a, b, c);
2482 
2483 	return c;
2484 }
2485 #undef mix
2486 
2487 char
2488 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2489 {
2490 	if (IEEE80211_IS_CHAN_ST(c))
2491 		return 'S';
2492 	if (IEEE80211_IS_CHAN_108A(c))
2493 		return 'T';
2494 	if (IEEE80211_IS_CHAN_108G(c))
2495 		return 'G';
2496 	if (IEEE80211_IS_CHAN_VHT(c))
2497 		return 'v';
2498 	if (IEEE80211_IS_CHAN_HT(c))
2499 		return 'n';
2500 	if (IEEE80211_IS_CHAN_A(c))
2501 		return 'a';
2502 	if (IEEE80211_IS_CHAN_ANYG(c))
2503 		return 'g';
2504 	if (IEEE80211_IS_CHAN_B(c))
2505 		return 'b';
2506 	return 'f';
2507 }
2508