xref: /freebsd/sys/net80211/ieee80211.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ethernet.h>
46 
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_regdomain.h>
49 #ifdef IEEE80211_SUPPORT_SUPERG
50 #include <net80211/ieee80211_superg.h>
51 #endif
52 
53 #include <net/bpf.h>
54 
55 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
56 	[IEEE80211_MODE_AUTO]	  = "auto",
57 	[IEEE80211_MODE_11A]	  = "11a",
58 	[IEEE80211_MODE_11B]	  = "11b",
59 	[IEEE80211_MODE_11G]	  = "11g",
60 	[IEEE80211_MODE_FH]	  = "FH",
61 	[IEEE80211_MODE_TURBO_A]  = "turboA",
62 	[IEEE80211_MODE_TURBO_G]  = "turboG",
63 	[IEEE80211_MODE_STURBO_A] = "sturboA",
64 	[IEEE80211_MODE_HALF]	  = "half",
65 	[IEEE80211_MODE_QUARTER]  = "quarter",
66 	[IEEE80211_MODE_11NA]	  = "11na",
67 	[IEEE80211_MODE_11NG]	  = "11ng",
68 };
69 /* map ieee80211_opmode to the corresponding capability bit */
70 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
71 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
72 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
73 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
74 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
75 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
76 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
77 #ifdef IEEE80211_SUPPORT_MESH
78 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
79 #endif
80 };
81 
82 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
83 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
84 
85 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
86 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
87 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
88 static	int ieee80211_media_setup(struct ieee80211com *ic,
89 		struct ifmedia *media, int caps, int addsta,
90 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
91 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
92 static	int ieee80211com_media_change(struct ifnet *);
93 static	int media_status(enum ieee80211_opmode,
94 		const struct ieee80211_channel *);
95 
96 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
97 
98 /*
99  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
100  */
101 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
102 static const struct ieee80211_rateset ieee80211_rateset_11a =
103 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
104 static const struct ieee80211_rateset ieee80211_rateset_half =
105 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
106 static const struct ieee80211_rateset ieee80211_rateset_quarter =
107 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
108 static const struct ieee80211_rateset ieee80211_rateset_11b =
109 	{ 4, { B(2), B(4), B(11), B(22) } };
110 /* NB: OFDM rates are handled specially based on mode */
111 static const struct ieee80211_rateset ieee80211_rateset_11g =
112 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
113 #undef B
114 
115 /*
116  * Fill in 802.11 available channel set, mark
117  * all available channels as active, and pick
118  * a default channel if not already specified.
119  */
120 static void
121 ieee80211_chan_init(struct ieee80211com *ic)
122 {
123 #define	DEFAULTRATES(m, def) do { \
124 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
125 		ic->ic_sup_rates[m] = def; \
126 } while (0)
127 	struct ieee80211_channel *c;
128 	int i;
129 
130 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
131 		("invalid number of channels specified: %u", ic->ic_nchans));
132 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
133 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
134 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
135 	for (i = 0; i < ic->ic_nchans; i++) {
136 		c = &ic->ic_channels[i];
137 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
138 		/*
139 		 * Help drivers that work only with frequencies by filling
140 		 * in IEEE channel #'s if not already calculated.  Note this
141 		 * mimics similar work done in ieee80211_setregdomain when
142 		 * changing regulatory state.
143 		 */
144 		if (c->ic_ieee == 0)
145 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
146 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
147 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
148 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
149 			    c->ic_flags);
150 		/* default max tx power to max regulatory */
151 		if (c->ic_maxpower == 0)
152 			c->ic_maxpower = 2*c->ic_maxregpower;
153 		setbit(ic->ic_chan_avail, c->ic_ieee);
154 		/*
155 		 * Identify mode capabilities.
156 		 */
157 		if (IEEE80211_IS_CHAN_A(c))
158 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
159 		if (IEEE80211_IS_CHAN_B(c))
160 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
161 		if (IEEE80211_IS_CHAN_ANYG(c))
162 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
163 		if (IEEE80211_IS_CHAN_FHSS(c))
164 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
165 		if (IEEE80211_IS_CHAN_108A(c))
166 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
167 		if (IEEE80211_IS_CHAN_108G(c))
168 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
169 		if (IEEE80211_IS_CHAN_ST(c))
170 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
171 		if (IEEE80211_IS_CHAN_HALF(c))
172 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
173 		if (IEEE80211_IS_CHAN_QUARTER(c))
174 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
175 		if (IEEE80211_IS_CHAN_HTA(c))
176 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
177 		if (IEEE80211_IS_CHAN_HTG(c))
178 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
179 	}
180 	/* initialize candidate channels to all available */
181 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
182 		sizeof(ic->ic_chan_avail));
183 
184 	/* sort channel table to allow lookup optimizations */
185 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
186 
187 	/* invalidate any previous state */
188 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
189 	ic->ic_prevchan = NULL;
190 	ic->ic_csa_newchan = NULL;
191 	/* arbitrarily pick the first channel */
192 	ic->ic_curchan = &ic->ic_channels[0];
193 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
194 
195 	/* fillin well-known rate sets if driver has not specified */
196 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
197 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
198 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
199 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
200 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
201 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
202 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
203 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
204 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
205 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
206 
207 	/*
208 	 * Set auto mode to reset active channel state and any desired channel.
209 	 */
210 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
211 #undef DEFAULTRATES
212 }
213 
214 static void
215 null_update_mcast(struct ifnet *ifp)
216 {
217 	if_printf(ifp, "need multicast update callback\n");
218 }
219 
220 static void
221 null_update_promisc(struct ifnet *ifp)
222 {
223 	if_printf(ifp, "need promiscuous mode update callback\n");
224 }
225 
226 static int
227 null_transmit(struct ifnet *ifp, struct mbuf *m)
228 {
229 	m_freem(m);
230 	ifp->if_oerrors++;
231 	return EACCES;		/* XXX EIO/EPERM? */
232 }
233 
234 static int
235 null_output(struct ifnet *ifp, struct mbuf *m,
236 	struct sockaddr *dst, struct route *ro)
237 {
238 	if_printf(ifp, "discard raw packet\n");
239 	return null_transmit(ifp, m);
240 }
241 
242 static void
243 null_input(struct ifnet *ifp, struct mbuf *m)
244 {
245 	if_printf(ifp, "if_input should not be called\n");
246 	m_freem(m);
247 }
248 
249 /*
250  * Attach/setup the common net80211 state.  Called by
251  * the driver on attach to prior to creating any vap's.
252  */
253 void
254 ieee80211_ifattach(struct ieee80211com *ic,
255 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
256 {
257 	struct ifnet *ifp = ic->ic_ifp;
258 	struct sockaddr_dl *sdl;
259 	struct ifaddr *ifa;
260 
261 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
262 
263 	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
264 	TAILQ_INIT(&ic->ic_vaps);
265 
266 	/* Create a taskqueue for all state changes */
267 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
268 	    taskqueue_thread_enqueue, &ic->ic_tq);
269 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq",
270 	    ifp->if_xname);
271 	/*
272 	 * Fill in 802.11 available channel set, mark all
273 	 * available channels as active, and pick a default
274 	 * channel if not already specified.
275 	 */
276 	ieee80211_media_init(ic);
277 
278 	ic->ic_update_mcast = null_update_mcast;
279 	ic->ic_update_promisc = null_update_promisc;
280 
281 	ic->ic_hash_key = arc4random();
282 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
283 	ic->ic_lintval = ic->ic_bintval;
284 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
285 
286 	ieee80211_crypto_attach(ic);
287 	ieee80211_node_attach(ic);
288 	ieee80211_power_attach(ic);
289 	ieee80211_proto_attach(ic);
290 #ifdef IEEE80211_SUPPORT_SUPERG
291 	ieee80211_superg_attach(ic);
292 #endif
293 	ieee80211_ht_attach(ic);
294 	ieee80211_scan_attach(ic);
295 	ieee80211_regdomain_attach(ic);
296 	ieee80211_dfs_attach(ic);
297 
298 	ieee80211_sysctl_attach(ic);
299 
300 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
301 	ifp->if_hdrlen = 0;
302 	if_attach(ifp);
303 	ifp->if_mtu = IEEE80211_MTU_MAX;
304 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
305 	ifp->if_output = null_output;
306 	ifp->if_input = null_input;	/* just in case */
307 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
308 
309 	ifa = ifaddr_byindex(ifp->if_index);
310 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
311 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
312 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
313 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
314 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
315 	ifa_free(ifa);
316 }
317 
318 /*
319  * Detach net80211 state on device detach.  Tear down
320  * all vap's and reclaim all common state prior to the
321  * device state going away.  Note we may call back into
322  * driver; it must be prepared for this.
323  */
324 void
325 ieee80211_ifdetach(struct ieee80211com *ic)
326 {
327 	struct ifnet *ifp = ic->ic_ifp;
328 	struct ieee80211vap *vap;
329 
330 	if_detach(ifp);
331 
332 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
333 		ieee80211_vap_destroy(vap);
334 	ieee80211_waitfor_parent(ic);
335 
336 	ieee80211_sysctl_detach(ic);
337 	ieee80211_dfs_detach(ic);
338 	ieee80211_regdomain_detach(ic);
339 	ieee80211_scan_detach(ic);
340 #ifdef IEEE80211_SUPPORT_SUPERG
341 	ieee80211_superg_detach(ic);
342 #endif
343 	ieee80211_ht_detach(ic);
344 	/* NB: must be called before ieee80211_node_detach */
345 	ieee80211_proto_detach(ic);
346 	ieee80211_crypto_detach(ic);
347 	ieee80211_power_detach(ic);
348 	ieee80211_node_detach(ic);
349 
350 	ifmedia_removeall(&ic->ic_media);
351 	taskqueue_free(ic->ic_tq);
352 	IEEE80211_LOCK_DESTROY(ic);
353 }
354 
355 /*
356  * Default reset method for use with the ioctl support.  This
357  * method is invoked after any state change in the 802.11
358  * layer that should be propagated to the hardware but not
359  * require re-initialization of the 802.11 state machine (e.g
360  * rescanning for an ap).  We always return ENETRESET which
361  * should cause the driver to re-initialize the device. Drivers
362  * can override this method to implement more optimized support.
363  */
364 static int
365 default_reset(struct ieee80211vap *vap, u_long cmd)
366 {
367 	return ENETRESET;
368 }
369 
370 /*
371  * Prepare a vap for use.  Drivers use this call to
372  * setup net80211 state in new vap's prior attaching
373  * them with ieee80211_vap_attach (below).
374  */
375 int
376 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
377 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
378 	const uint8_t bssid[IEEE80211_ADDR_LEN],
379 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
380 {
381 	struct ifnet *ifp;
382 
383 	ifp = if_alloc(IFT_ETHER);
384 	if (ifp == NULL) {
385 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
386 		    __func__);
387 		return ENOMEM;
388 	}
389 	if_initname(ifp, name, unit);
390 	ifp->if_softc = vap;			/* back pointer */
391 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
392 	ifp->if_start = ieee80211_start;
393 	ifp->if_ioctl = ieee80211_ioctl;
394 	ifp->if_init = ieee80211_init;
395 	/* NB: input+output filled in by ether_ifattach */
396 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
397 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
398 	IFQ_SET_READY(&ifp->if_snd);
399 
400 	vap->iv_ifp = ifp;
401 	vap->iv_ic = ic;
402 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
403 	vap->iv_flags_ext = ic->ic_flags_ext;
404 	vap->iv_flags_ven = ic->ic_flags_ven;
405 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
406 	vap->iv_htcaps = ic->ic_htcaps;
407 	vap->iv_opmode = opmode;
408 	vap->iv_caps |= ieee80211_opcap[opmode];
409 	switch (opmode) {
410 	case IEEE80211_M_WDS:
411 		/*
412 		 * WDS links must specify the bssid of the far end.
413 		 * For legacy operation this is a static relationship.
414 		 * For non-legacy operation the station must associate
415 		 * and be authorized to pass traffic.  Plumbing the
416 		 * vap to the proper node happens when the vap
417 		 * transitions to RUN state.
418 		 */
419 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
420 		vap->iv_flags |= IEEE80211_F_DESBSSID;
421 		if (flags & IEEE80211_CLONE_WDSLEGACY)
422 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
423 		break;
424 #ifdef IEEE80211_SUPPORT_TDMA
425 	case IEEE80211_M_AHDEMO:
426 		if (flags & IEEE80211_CLONE_TDMA) {
427 			/* NB: checked before clone operation allowed */
428 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
429 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
430 			/*
431 			 * Propagate TDMA capability to mark vap; this
432 			 * cannot be removed and is used to distinguish
433 			 * regular ahdemo operation from ahdemo+tdma.
434 			 */
435 			vap->iv_caps |= IEEE80211_C_TDMA;
436 		}
437 		break;
438 #endif
439 	}
440 	/* auto-enable s/w beacon miss support */
441 	if (flags & IEEE80211_CLONE_NOBEACONS)
442 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
443 	/* auto-generated or user supplied MAC address */
444 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
445 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
446 	/*
447 	 * Enable various functionality by default if we're
448 	 * capable; the driver can override us if it knows better.
449 	 */
450 	if (vap->iv_caps & IEEE80211_C_WME)
451 		vap->iv_flags |= IEEE80211_F_WME;
452 	if (vap->iv_caps & IEEE80211_C_BURST)
453 		vap->iv_flags |= IEEE80211_F_BURST;
454 	/* NB: bg scanning only makes sense for station mode right now */
455 	if (vap->iv_opmode == IEEE80211_M_STA &&
456 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
457 		vap->iv_flags |= IEEE80211_F_BGSCAN;
458 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
459 	/* NB: DFS support only makes sense for ap mode right now */
460 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
461 	    (vap->iv_caps & IEEE80211_C_DFS))
462 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
463 
464 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
465 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
466 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
467 	/*
468 	 * Install a default reset method for the ioctl support;
469 	 * the driver can override this.
470 	 */
471 	vap->iv_reset = default_reset;
472 
473 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
474 
475 	ieee80211_sysctl_vattach(vap);
476 	ieee80211_crypto_vattach(vap);
477 	ieee80211_node_vattach(vap);
478 	ieee80211_power_vattach(vap);
479 	ieee80211_proto_vattach(vap);
480 #ifdef IEEE80211_SUPPORT_SUPERG
481 	ieee80211_superg_vattach(vap);
482 #endif
483 	ieee80211_ht_vattach(vap);
484 	ieee80211_scan_vattach(vap);
485 	ieee80211_regdomain_vattach(vap);
486 	ieee80211_radiotap_vattach(vap);
487 
488 	return 0;
489 }
490 
491 /*
492  * Activate a vap.  State should have been prepared with a
493  * call to ieee80211_vap_setup and by the driver.  On return
494  * from this call the vap is ready for use.
495  */
496 int
497 ieee80211_vap_attach(struct ieee80211vap *vap,
498 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
499 {
500 	struct ifnet *ifp = vap->iv_ifp;
501 	struct ieee80211com *ic = vap->iv_ic;
502 	struct ifmediareq imr;
503 	int maxrate;
504 
505 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
506 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
507 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
508 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
509 
510 	/*
511 	 * Do late attach work that cannot happen until after
512 	 * the driver has had a chance to override defaults.
513 	 */
514 	ieee80211_node_latevattach(vap);
515 	ieee80211_power_latevattach(vap);
516 
517 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
518 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
519 	ieee80211_media_status(ifp, &imr);
520 	/* NB: strip explicit mode; we're actually in autoselect */
521 	ifmedia_set(&vap->iv_media,
522 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
523 	if (maxrate)
524 		ifp->if_baudrate = IF_Mbps(maxrate);
525 
526 	ether_ifattach(ifp, vap->iv_myaddr);
527 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
528 		/* NB: disallow transmit */
529 		ifp->if_transmit = null_transmit;
530 		ifp->if_output = null_output;
531 	} else {
532 		/* hook output method setup by ether_ifattach */
533 		vap->iv_output = ifp->if_output;
534 		ifp->if_output = ieee80211_output;
535 	}
536 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
537 
538 	IEEE80211_LOCK(ic);
539 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
540 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
541 #ifdef IEEE80211_SUPPORT_SUPERG
542 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
543 #endif
544 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
545 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
546 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
547 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
548 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
549 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
550 	IEEE80211_UNLOCK(ic);
551 
552 	return 1;
553 }
554 
555 /*
556  * Tear down vap state and reclaim the ifnet.
557  * The driver is assumed to have prepared for
558  * this; e.g. by turning off interrupts for the
559  * underlying device.
560  */
561 void
562 ieee80211_vap_detach(struct ieee80211vap *vap)
563 {
564 	struct ieee80211com *ic = vap->iv_ic;
565 	struct ifnet *ifp = vap->iv_ifp;
566 
567 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
568 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
569 	    ic->ic_ifp->if_xname);
570 
571 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
572 	ether_ifdetach(ifp);
573 
574 	ieee80211_stop(vap);
575 
576 	/*
577 	 * Flush any deferred vap tasks.
578 	 */
579 	ieee80211_draintask(ic, &vap->iv_nstate_task);
580 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
581 
582 	/* XXX band-aid until ifnet handles this for us */
583 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
584 
585 	IEEE80211_LOCK(ic);
586 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
587 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
588 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
589 #ifdef IEEE80211_SUPPORT_SUPERG
590 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
591 #endif
592 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
593 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
594 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
595 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
596 	/* NB: this handles the bpfdetach done below */
597 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
598 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
599 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
600 	IEEE80211_UNLOCK(ic);
601 
602 	ifmedia_removeall(&vap->iv_media);
603 
604 	ieee80211_radiotap_vdetach(vap);
605 	ieee80211_regdomain_vdetach(vap);
606 	ieee80211_scan_vdetach(vap);
607 #ifdef IEEE80211_SUPPORT_SUPERG
608 	ieee80211_superg_vdetach(vap);
609 #endif
610 	ieee80211_ht_vdetach(vap);
611 	/* NB: must be before ieee80211_node_vdetach */
612 	ieee80211_proto_vdetach(vap);
613 	ieee80211_crypto_vdetach(vap);
614 	ieee80211_power_vdetach(vap);
615 	ieee80211_node_vdetach(vap);
616 	ieee80211_sysctl_vdetach(vap);
617 
618 	if_free(ifp);
619 }
620 
621 /*
622  * Synchronize flag bit state in the parent ifnet structure
623  * according to the state of all vap ifnet's.  This is used,
624  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
625  */
626 void
627 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
628 {
629 	struct ifnet *ifp = ic->ic_ifp;
630 	struct ieee80211vap *vap;
631 	int bit, oflags;
632 
633 	IEEE80211_LOCK_ASSERT(ic);
634 
635 	bit = 0;
636 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
637 		if (vap->iv_ifp->if_flags & flag) {
638 			/*
639 			 * XXX the bridge sets PROMISC but we don't want to
640 			 * enable it on the device, discard here so all the
641 			 * drivers don't need to special-case it
642 			 */
643 			if (flag == IFF_PROMISC &&
644 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
645 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
646 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
647 				continue;
648 			bit = 1;
649 			break;
650 		}
651 	oflags = ifp->if_flags;
652 	if (bit)
653 		ifp->if_flags |= flag;
654 	else
655 		ifp->if_flags &= ~flag;
656 	if ((ifp->if_flags ^ oflags) & flag) {
657 		/* XXX should we return 1/0 and let caller do this? */
658 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
659 			if (flag == IFF_PROMISC)
660 				ieee80211_runtask(ic, &ic->ic_promisc_task);
661 			else if (flag == IFF_ALLMULTI)
662 				ieee80211_runtask(ic, &ic->ic_mcast_task);
663 		}
664 	}
665 }
666 
667 /*
668  * Synchronize flag bit state in the com structure
669  * according to the state of all vap's.  This is used,
670  * for example, to handle state changes via ioctls.
671  */
672 static void
673 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
674 {
675 	struct ieee80211vap *vap;
676 	int bit;
677 
678 	IEEE80211_LOCK_ASSERT(ic);
679 
680 	bit = 0;
681 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
682 		if (vap->iv_flags & flag) {
683 			bit = 1;
684 			break;
685 		}
686 	if (bit)
687 		ic->ic_flags |= flag;
688 	else
689 		ic->ic_flags &= ~flag;
690 }
691 
692 void
693 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
694 {
695 	struct ieee80211com *ic = vap->iv_ic;
696 
697 	IEEE80211_LOCK(ic);
698 	if (flag < 0) {
699 		flag = -flag;
700 		vap->iv_flags &= ~flag;
701 	} else
702 		vap->iv_flags |= flag;
703 	ieee80211_syncflag_locked(ic, flag);
704 	IEEE80211_UNLOCK(ic);
705 }
706 
707 /*
708  * Synchronize flags_ht bit state in the com structure
709  * according to the state of all vap's.  This is used,
710  * for example, to handle state changes via ioctls.
711  */
712 static void
713 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
714 {
715 	struct ieee80211vap *vap;
716 	int bit;
717 
718 	IEEE80211_LOCK_ASSERT(ic);
719 
720 	bit = 0;
721 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
722 		if (vap->iv_flags_ht & flag) {
723 			bit = 1;
724 			break;
725 		}
726 	if (bit)
727 		ic->ic_flags_ht |= flag;
728 	else
729 		ic->ic_flags_ht &= ~flag;
730 }
731 
732 void
733 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
734 {
735 	struct ieee80211com *ic = vap->iv_ic;
736 
737 	IEEE80211_LOCK(ic);
738 	if (flag < 0) {
739 		flag = -flag;
740 		vap->iv_flags_ht &= ~flag;
741 	} else
742 		vap->iv_flags_ht |= flag;
743 	ieee80211_syncflag_ht_locked(ic, flag);
744 	IEEE80211_UNLOCK(ic);
745 }
746 
747 /*
748  * Synchronize flags_ext bit state in the com structure
749  * according to the state of all vap's.  This is used,
750  * for example, to handle state changes via ioctls.
751  */
752 static void
753 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
754 {
755 	struct ieee80211vap *vap;
756 	int bit;
757 
758 	IEEE80211_LOCK_ASSERT(ic);
759 
760 	bit = 0;
761 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
762 		if (vap->iv_flags_ext & flag) {
763 			bit = 1;
764 			break;
765 		}
766 	if (bit)
767 		ic->ic_flags_ext |= flag;
768 	else
769 		ic->ic_flags_ext &= ~flag;
770 }
771 
772 void
773 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
774 {
775 	struct ieee80211com *ic = vap->iv_ic;
776 
777 	IEEE80211_LOCK(ic);
778 	if (flag < 0) {
779 		flag = -flag;
780 		vap->iv_flags_ext &= ~flag;
781 	} else
782 		vap->iv_flags_ext |= flag;
783 	ieee80211_syncflag_ext_locked(ic, flag);
784 	IEEE80211_UNLOCK(ic);
785 }
786 
787 static __inline int
788 mapgsm(u_int freq, u_int flags)
789 {
790 	freq *= 10;
791 	if (flags & IEEE80211_CHAN_QUARTER)
792 		freq += 5;
793 	else if (flags & IEEE80211_CHAN_HALF)
794 		freq += 10;
795 	else
796 		freq += 20;
797 	/* NB: there is no 907/20 wide but leave room */
798 	return (freq - 906*10) / 5;
799 }
800 
801 static __inline int
802 mappsb(u_int freq, u_int flags)
803 {
804 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
805 }
806 
807 /*
808  * Convert MHz frequency to IEEE channel number.
809  */
810 int
811 ieee80211_mhz2ieee(u_int freq, u_int flags)
812 {
813 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
814 	if (flags & IEEE80211_CHAN_GSM)
815 		return mapgsm(freq, flags);
816 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
817 		if (freq == 2484)
818 			return 14;
819 		if (freq < 2484)
820 			return ((int) freq - 2407) / 5;
821 		else
822 			return 15 + ((freq - 2512) / 20);
823 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
824 		if (freq <= 5000) {
825 			/* XXX check regdomain? */
826 			if (IS_FREQ_IN_PSB(freq))
827 				return mappsb(freq, flags);
828 			return (freq - 4000) / 5;
829 		} else
830 			return (freq - 5000) / 5;
831 	} else {				/* either, guess */
832 		if (freq == 2484)
833 			return 14;
834 		if (freq < 2484) {
835 			if (907 <= freq && freq <= 922)
836 				return mapgsm(freq, flags);
837 			return ((int) freq - 2407) / 5;
838 		}
839 		if (freq < 5000) {
840 			if (IS_FREQ_IN_PSB(freq))
841 				return mappsb(freq, flags);
842 			else if (freq > 4900)
843 				return (freq - 4000) / 5;
844 			else
845 				return 15 + ((freq - 2512) / 20);
846 		}
847 		return (freq - 5000) / 5;
848 	}
849 #undef IS_FREQ_IN_PSB
850 }
851 
852 /*
853  * Convert channel to IEEE channel number.
854  */
855 int
856 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
857 {
858 	if (c == NULL) {
859 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
860 		return 0;		/* XXX */
861 	}
862 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
863 }
864 
865 /*
866  * Convert IEEE channel number to MHz frequency.
867  */
868 u_int
869 ieee80211_ieee2mhz(u_int chan, u_int flags)
870 {
871 	if (flags & IEEE80211_CHAN_GSM)
872 		return 907 + 5 * (chan / 10);
873 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
874 		if (chan == 14)
875 			return 2484;
876 		if (chan < 14)
877 			return 2407 + chan*5;
878 		else
879 			return 2512 + ((chan-15)*20);
880 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
881 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
882 			chan -= 37;
883 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
884 		}
885 		return 5000 + (chan*5);
886 	} else {				/* either, guess */
887 		/* XXX can't distinguish PSB+GSM channels */
888 		if (chan == 14)
889 			return 2484;
890 		if (chan < 14)			/* 0-13 */
891 			return 2407 + chan*5;
892 		if (chan < 27)			/* 15-26 */
893 			return 2512 + ((chan-15)*20);
894 		return 5000 + (chan*5);
895 	}
896 }
897 
898 /*
899  * Locate a channel given a frequency+flags.  We cache
900  * the previous lookup to optimize switching between two
901  * channels--as happens with dynamic turbo.
902  */
903 struct ieee80211_channel *
904 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
905 {
906 	struct ieee80211_channel *c;
907 	int i;
908 
909 	flags &= IEEE80211_CHAN_ALLTURBO;
910 	c = ic->ic_prevchan;
911 	if (c != NULL && c->ic_freq == freq &&
912 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
913 		return c;
914 	/* brute force search */
915 	for (i = 0; i < ic->ic_nchans; i++) {
916 		c = &ic->ic_channels[i];
917 		if (c->ic_freq == freq &&
918 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
919 			return c;
920 	}
921 	return NULL;
922 }
923 
924 /*
925  * Locate a channel given a channel number+flags.  We cache
926  * the previous lookup to optimize switching between two
927  * channels--as happens with dynamic turbo.
928  */
929 struct ieee80211_channel *
930 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
931 {
932 	struct ieee80211_channel *c;
933 	int i;
934 
935 	flags &= IEEE80211_CHAN_ALLTURBO;
936 	c = ic->ic_prevchan;
937 	if (c != NULL && c->ic_ieee == ieee &&
938 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
939 		return c;
940 	/* brute force search */
941 	for (i = 0; i < ic->ic_nchans; i++) {
942 		c = &ic->ic_channels[i];
943 		if (c->ic_ieee == ieee &&
944 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
945 			return c;
946 	}
947 	return NULL;
948 }
949 
950 static void
951 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
952 {
953 #define	ADD(_ic, _s, _o) \
954 	ifmedia_add(media, \
955 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
956 	static const u_int mopts[IEEE80211_MODE_MAX] = {
957 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
958 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
959 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
960 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
961 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
962 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
963 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
964 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
965 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
966 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
967 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
968 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
969 	};
970 	u_int mopt;
971 
972 	mopt = mopts[mode];
973 	if (addsta)
974 		ADD(ic, mword, mopt);	/* STA mode has no cap */
975 	if (caps & IEEE80211_C_IBSS)
976 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
977 	if (caps & IEEE80211_C_HOSTAP)
978 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
979 	if (caps & IEEE80211_C_AHDEMO)
980 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
981 	if (caps & IEEE80211_C_MONITOR)
982 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
983 	if (caps & IEEE80211_C_WDS)
984 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
985 	if (caps & IEEE80211_C_MBSS)
986 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
987 #undef ADD
988 }
989 
990 /*
991  * Setup the media data structures according to the channel and
992  * rate tables.
993  */
994 static int
995 ieee80211_media_setup(struct ieee80211com *ic,
996 	struct ifmedia *media, int caps, int addsta,
997 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
998 {
999 	int i, j, mode, rate, maxrate, mword, r;
1000 	const struct ieee80211_rateset *rs;
1001 	struct ieee80211_rateset allrates;
1002 
1003 	/*
1004 	 * Fill in media characteristics.
1005 	 */
1006 	ifmedia_init(media, 0, media_change, media_stat);
1007 	maxrate = 0;
1008 	/*
1009 	 * Add media for legacy operating modes.
1010 	 */
1011 	memset(&allrates, 0, sizeof(allrates));
1012 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1013 		if (isclr(ic->ic_modecaps, mode))
1014 			continue;
1015 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1016 		if (mode == IEEE80211_MODE_AUTO)
1017 			continue;
1018 		rs = &ic->ic_sup_rates[mode];
1019 		for (i = 0; i < rs->rs_nrates; i++) {
1020 			rate = rs->rs_rates[i];
1021 			mword = ieee80211_rate2media(ic, rate, mode);
1022 			if (mword == 0)
1023 				continue;
1024 			addmedia(media, caps, addsta, mode, mword);
1025 			/*
1026 			 * Add legacy rate to the collection of all rates.
1027 			 */
1028 			r = rate & IEEE80211_RATE_VAL;
1029 			for (j = 0; j < allrates.rs_nrates; j++)
1030 				if (allrates.rs_rates[j] == r)
1031 					break;
1032 			if (j == allrates.rs_nrates) {
1033 				/* unique, add to the set */
1034 				allrates.rs_rates[j] = r;
1035 				allrates.rs_nrates++;
1036 			}
1037 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1038 			if (rate > maxrate)
1039 				maxrate = rate;
1040 		}
1041 	}
1042 	for (i = 0; i < allrates.rs_nrates; i++) {
1043 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1044 				IEEE80211_MODE_AUTO);
1045 		if (mword == 0)
1046 			continue;
1047 		/* NB: remove media options from mword */
1048 		addmedia(media, caps, addsta,
1049 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1050 	}
1051 	/*
1052 	 * Add HT/11n media.  Note that we do not have enough
1053 	 * bits in the media subtype to express the MCS so we
1054 	 * use a "placeholder" media subtype and any fixed MCS
1055 	 * must be specified with a different mechanism.
1056 	 */
1057 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1058 		if (isclr(ic->ic_modecaps, mode))
1059 			continue;
1060 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1061 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1062 	}
1063 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1064 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1065 		addmedia(media, caps, addsta,
1066 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1067 		/* XXX could walk htrates */
1068 		/* XXX known array size */
1069 		if (ieee80211_htrates[15].ht40_rate_400ns > maxrate)
1070 			maxrate = ieee80211_htrates[15].ht40_rate_400ns;
1071 	}
1072 	return maxrate;
1073 }
1074 
1075 void
1076 ieee80211_media_init(struct ieee80211com *ic)
1077 {
1078 	struct ifnet *ifp = ic->ic_ifp;
1079 	int maxrate;
1080 
1081 	/* NB: this works because the structure is initialized to zero */
1082 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1083 		/*
1084 		 * We are re-initializing the channel list; clear
1085 		 * the existing media state as the media routines
1086 		 * don't suppress duplicates.
1087 		 */
1088 		ifmedia_removeall(&ic->ic_media);
1089 	}
1090 	ieee80211_chan_init(ic);
1091 
1092 	/*
1093 	 * Recalculate media settings in case new channel list changes
1094 	 * the set of available modes.
1095 	 */
1096 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1097 		ieee80211com_media_change, ieee80211com_media_status);
1098 	/* NB: strip explicit mode; we're actually in autoselect */
1099 	ifmedia_set(&ic->ic_media,
1100 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1101 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1102 	if (maxrate)
1103 		ifp->if_baudrate = IF_Mbps(maxrate);
1104 
1105 	/* XXX need to propagate new media settings to vap's */
1106 }
1107 
1108 /* XXX inline or eliminate? */
1109 const struct ieee80211_rateset *
1110 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1111 {
1112 	/* XXX does this work for 11ng basic rates? */
1113 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1114 }
1115 
1116 void
1117 ieee80211_announce(struct ieee80211com *ic)
1118 {
1119 	struct ifnet *ifp = ic->ic_ifp;
1120 	int i, mode, rate, mword;
1121 	const struct ieee80211_rateset *rs;
1122 
1123 	/* NB: skip AUTO since it has no rates */
1124 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1125 		if (isclr(ic->ic_modecaps, mode))
1126 			continue;
1127 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1128 		rs = &ic->ic_sup_rates[mode];
1129 		for (i = 0; i < rs->rs_nrates; i++) {
1130 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1131 			if (mword == 0)
1132 				continue;
1133 			rate = ieee80211_media2rate(mword);
1134 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1135 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1136 		}
1137 		printf("\n");
1138 	}
1139 	ieee80211_ht_announce(ic);
1140 }
1141 
1142 void
1143 ieee80211_announce_channels(struct ieee80211com *ic)
1144 {
1145 	const struct ieee80211_channel *c;
1146 	char type;
1147 	int i, cw;
1148 
1149 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1150 	for (i = 0; i < ic->ic_nchans; i++) {
1151 		c = &ic->ic_channels[i];
1152 		if (IEEE80211_IS_CHAN_ST(c))
1153 			type = 'S';
1154 		else if (IEEE80211_IS_CHAN_108A(c))
1155 			type = 'T';
1156 		else if (IEEE80211_IS_CHAN_108G(c))
1157 			type = 'G';
1158 		else if (IEEE80211_IS_CHAN_HT(c))
1159 			type = 'n';
1160 		else if (IEEE80211_IS_CHAN_A(c))
1161 			type = 'a';
1162 		else if (IEEE80211_IS_CHAN_ANYG(c))
1163 			type = 'g';
1164 		else if (IEEE80211_IS_CHAN_B(c))
1165 			type = 'b';
1166 		else
1167 			type = 'f';
1168 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1169 			cw = 40;
1170 		else if (IEEE80211_IS_CHAN_HALF(c))
1171 			cw = 10;
1172 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1173 			cw = 5;
1174 		else
1175 			cw = 20;
1176 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1177 			, c->ic_ieee, c->ic_freq, type
1178 			, cw
1179 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1180 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1181 			, c->ic_maxregpower
1182 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1183 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1184 		);
1185 	}
1186 }
1187 
1188 static int
1189 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1190 {
1191 	switch (IFM_MODE(ime->ifm_media)) {
1192 	case IFM_IEEE80211_11A:
1193 		*mode = IEEE80211_MODE_11A;
1194 		break;
1195 	case IFM_IEEE80211_11B:
1196 		*mode = IEEE80211_MODE_11B;
1197 		break;
1198 	case IFM_IEEE80211_11G:
1199 		*mode = IEEE80211_MODE_11G;
1200 		break;
1201 	case IFM_IEEE80211_FH:
1202 		*mode = IEEE80211_MODE_FH;
1203 		break;
1204 	case IFM_IEEE80211_11NA:
1205 		*mode = IEEE80211_MODE_11NA;
1206 		break;
1207 	case IFM_IEEE80211_11NG:
1208 		*mode = IEEE80211_MODE_11NG;
1209 		break;
1210 	case IFM_AUTO:
1211 		*mode = IEEE80211_MODE_AUTO;
1212 		break;
1213 	default:
1214 		return 0;
1215 	}
1216 	/*
1217 	 * Turbo mode is an ``option''.
1218 	 * XXX does not apply to AUTO
1219 	 */
1220 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1221 		if (*mode == IEEE80211_MODE_11A) {
1222 			if (flags & IEEE80211_F_TURBOP)
1223 				*mode = IEEE80211_MODE_TURBO_A;
1224 			else
1225 				*mode = IEEE80211_MODE_STURBO_A;
1226 		} else if (*mode == IEEE80211_MODE_11G)
1227 			*mode = IEEE80211_MODE_TURBO_G;
1228 		else
1229 			return 0;
1230 	}
1231 	/* XXX HT40 +/- */
1232 	return 1;
1233 }
1234 
1235 /*
1236  * Handle a media change request on the underlying interface.
1237  */
1238 int
1239 ieee80211com_media_change(struct ifnet *ifp)
1240 {
1241 	return EINVAL;
1242 }
1243 
1244 /*
1245  * Handle a media change request on the vap interface.
1246  */
1247 int
1248 ieee80211_media_change(struct ifnet *ifp)
1249 {
1250 	struct ieee80211vap *vap = ifp->if_softc;
1251 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1252 	uint16_t newmode;
1253 
1254 	if (!media2mode(ime, vap->iv_flags, &newmode))
1255 		return EINVAL;
1256 	if (vap->iv_des_mode != newmode) {
1257 		vap->iv_des_mode = newmode;
1258 		/* XXX kick state machine if up+running */
1259 	}
1260 	return 0;
1261 }
1262 
1263 /*
1264  * Common code to calculate the media status word
1265  * from the operating mode and channel state.
1266  */
1267 static int
1268 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1269 {
1270 	int status;
1271 
1272 	status = IFM_IEEE80211;
1273 	switch (opmode) {
1274 	case IEEE80211_M_STA:
1275 		break;
1276 	case IEEE80211_M_IBSS:
1277 		status |= IFM_IEEE80211_ADHOC;
1278 		break;
1279 	case IEEE80211_M_HOSTAP:
1280 		status |= IFM_IEEE80211_HOSTAP;
1281 		break;
1282 	case IEEE80211_M_MONITOR:
1283 		status |= IFM_IEEE80211_MONITOR;
1284 		break;
1285 	case IEEE80211_M_AHDEMO:
1286 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1287 		break;
1288 	case IEEE80211_M_WDS:
1289 		status |= IFM_IEEE80211_WDS;
1290 		break;
1291 	case IEEE80211_M_MBSS:
1292 		status |= IFM_IEEE80211_MBSS;
1293 		break;
1294 	}
1295 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1296 		status |= IFM_IEEE80211_11NA;
1297 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1298 		status |= IFM_IEEE80211_11NG;
1299 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1300 		status |= IFM_IEEE80211_11A;
1301 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1302 		status |= IFM_IEEE80211_11B;
1303 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1304 		status |= IFM_IEEE80211_11G;
1305 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1306 		status |= IFM_IEEE80211_FH;
1307 	}
1308 	/* XXX else complain? */
1309 
1310 	if (IEEE80211_IS_CHAN_TURBO(chan))
1311 		status |= IFM_IEEE80211_TURBO;
1312 #if 0
1313 	if (IEEE80211_IS_CHAN_HT20(chan))
1314 		status |= IFM_IEEE80211_HT20;
1315 	if (IEEE80211_IS_CHAN_HT40(chan))
1316 		status |= IFM_IEEE80211_HT40;
1317 #endif
1318 	return status;
1319 }
1320 
1321 static void
1322 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1323 {
1324 	struct ieee80211com *ic = ifp->if_l2com;
1325 	struct ieee80211vap *vap;
1326 
1327 	imr->ifm_status = IFM_AVALID;
1328 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1329 		if (vap->iv_ifp->if_flags & IFF_UP) {
1330 			imr->ifm_status |= IFM_ACTIVE;
1331 			break;
1332 		}
1333 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1334 	if (imr->ifm_status & IFM_ACTIVE)
1335 		imr->ifm_current = imr->ifm_active;
1336 }
1337 
1338 void
1339 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1340 {
1341 	struct ieee80211vap *vap = ifp->if_softc;
1342 	struct ieee80211com *ic = vap->iv_ic;
1343 	enum ieee80211_phymode mode;
1344 
1345 	imr->ifm_status = IFM_AVALID;
1346 	/*
1347 	 * NB: use the current channel's mode to lock down a xmit
1348 	 * rate only when running; otherwise we may have a mismatch
1349 	 * in which case the rate will not be convertible.
1350 	 */
1351 	if (vap->iv_state == IEEE80211_S_RUN) {
1352 		imr->ifm_status |= IFM_ACTIVE;
1353 		mode = ieee80211_chan2mode(ic->ic_curchan);
1354 	} else
1355 		mode = IEEE80211_MODE_AUTO;
1356 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1357 	/*
1358 	 * Calculate a current rate if possible.
1359 	 */
1360 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1361 		/*
1362 		 * A fixed rate is set, report that.
1363 		 */
1364 		imr->ifm_active |= ieee80211_rate2media(ic,
1365 			vap->iv_txparms[mode].ucastrate, mode);
1366 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1367 		/*
1368 		 * In station mode report the current transmit rate.
1369 		 */
1370 		imr->ifm_active |= ieee80211_rate2media(ic,
1371 			vap->iv_bss->ni_txrate, mode);
1372 	} else
1373 		imr->ifm_active |= IFM_AUTO;
1374 	if (imr->ifm_status & IFM_ACTIVE)
1375 		imr->ifm_current = imr->ifm_active;
1376 }
1377 
1378 /*
1379  * Set the current phy mode and recalculate the active channel
1380  * set based on the available channels for this mode.  Also
1381  * select a new default/current channel if the current one is
1382  * inappropriate for this mode.
1383  */
1384 int
1385 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1386 {
1387 	/*
1388 	 * Adjust basic rates in 11b/11g supported rate set.
1389 	 * Note that if operating on a hal/quarter rate channel
1390 	 * this is a noop as those rates sets are different
1391 	 * and used instead.
1392 	 */
1393 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1394 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1395 
1396 	ic->ic_curmode = mode;
1397 	ieee80211_reset_erp(ic);	/* reset ERP state */
1398 
1399 	return 0;
1400 }
1401 
1402 /*
1403  * Return the phy mode for with the specified channel.
1404  */
1405 enum ieee80211_phymode
1406 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1407 {
1408 
1409 	if (IEEE80211_IS_CHAN_HTA(chan))
1410 		return IEEE80211_MODE_11NA;
1411 	else if (IEEE80211_IS_CHAN_HTG(chan))
1412 		return IEEE80211_MODE_11NG;
1413 	else if (IEEE80211_IS_CHAN_108G(chan))
1414 		return IEEE80211_MODE_TURBO_G;
1415 	else if (IEEE80211_IS_CHAN_ST(chan))
1416 		return IEEE80211_MODE_STURBO_A;
1417 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1418 		return IEEE80211_MODE_TURBO_A;
1419 	else if (IEEE80211_IS_CHAN_HALF(chan))
1420 		return IEEE80211_MODE_HALF;
1421 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1422 		return IEEE80211_MODE_QUARTER;
1423 	else if (IEEE80211_IS_CHAN_A(chan))
1424 		return IEEE80211_MODE_11A;
1425 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1426 		return IEEE80211_MODE_11G;
1427 	else if (IEEE80211_IS_CHAN_B(chan))
1428 		return IEEE80211_MODE_11B;
1429 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1430 		return IEEE80211_MODE_FH;
1431 
1432 	/* NB: should not get here */
1433 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1434 		__func__, chan->ic_freq, chan->ic_flags);
1435 	return IEEE80211_MODE_11B;
1436 }
1437 
1438 struct ratemedia {
1439 	u_int	match;	/* rate + mode */
1440 	u_int	media;	/* if_media rate */
1441 };
1442 
1443 static int
1444 findmedia(const struct ratemedia rates[], int n, u_int match)
1445 {
1446 	int i;
1447 
1448 	for (i = 0; i < n; i++)
1449 		if (rates[i].match == match)
1450 			return rates[i].media;
1451 	return IFM_AUTO;
1452 }
1453 
1454 /*
1455  * Convert IEEE80211 rate value to ifmedia subtype.
1456  * Rate is either a legacy rate in units of 0.5Mbps
1457  * or an MCS index.
1458  */
1459 int
1460 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1461 {
1462 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1463 	static const struct ratemedia rates[] = {
1464 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1465 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1466 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1467 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1468 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1469 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1470 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1471 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1472 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1473 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1474 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1475 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1476 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1477 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1478 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1479 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1480 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1481 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1482 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1483 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1484 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1485 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1486 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1487 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1488 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1489 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1490 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1491 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1492 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1493 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1494 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1495 	};
1496 	static const struct ratemedia htrates[] = {
1497 		{   0, IFM_IEEE80211_MCS },
1498 		{   1, IFM_IEEE80211_MCS },
1499 		{   2, IFM_IEEE80211_MCS },
1500 		{   3, IFM_IEEE80211_MCS },
1501 		{   4, IFM_IEEE80211_MCS },
1502 		{   5, IFM_IEEE80211_MCS },
1503 		{   6, IFM_IEEE80211_MCS },
1504 		{   7, IFM_IEEE80211_MCS },
1505 		{   8, IFM_IEEE80211_MCS },
1506 		{   9, IFM_IEEE80211_MCS },
1507 		{  10, IFM_IEEE80211_MCS },
1508 		{  11, IFM_IEEE80211_MCS },
1509 		{  12, IFM_IEEE80211_MCS },
1510 		{  13, IFM_IEEE80211_MCS },
1511 		{  14, IFM_IEEE80211_MCS },
1512 		{  15, IFM_IEEE80211_MCS },
1513 	};
1514 	int m;
1515 
1516 	/*
1517 	 * Check 11n rates first for match as an MCS.
1518 	 */
1519 	if (mode == IEEE80211_MODE_11NA) {
1520 		if (rate & IEEE80211_RATE_MCS) {
1521 			rate &= ~IEEE80211_RATE_MCS;
1522 			m = findmedia(htrates, N(htrates), rate);
1523 			if (m != IFM_AUTO)
1524 				return m | IFM_IEEE80211_11NA;
1525 		}
1526 	} else if (mode == IEEE80211_MODE_11NG) {
1527 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1528 		if (rate & IEEE80211_RATE_MCS) {
1529 			rate &= ~IEEE80211_RATE_MCS;
1530 			m = findmedia(htrates, N(htrates), rate);
1531 			if (m != IFM_AUTO)
1532 				return m | IFM_IEEE80211_11NG;
1533 		}
1534 	}
1535 	rate &= IEEE80211_RATE_VAL;
1536 	switch (mode) {
1537 	case IEEE80211_MODE_11A:
1538 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1539 	case IEEE80211_MODE_QUARTER:
1540 	case IEEE80211_MODE_11NA:
1541 	case IEEE80211_MODE_TURBO_A:
1542 	case IEEE80211_MODE_STURBO_A:
1543 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A);
1544 	case IEEE80211_MODE_11B:
1545 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B);
1546 	case IEEE80211_MODE_FH:
1547 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH);
1548 	case IEEE80211_MODE_AUTO:
1549 		/* NB: ic may be NULL for some drivers */
1550 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1551 			return findmedia(rates, N(rates),
1552 			    rate | IFM_IEEE80211_FH);
1553 		/* NB: hack, 11g matches both 11b+11a rates */
1554 		/* fall thru... */
1555 	case IEEE80211_MODE_11G:
1556 	case IEEE80211_MODE_11NG:
1557 	case IEEE80211_MODE_TURBO_G:
1558 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G);
1559 	}
1560 	return IFM_AUTO;
1561 #undef N
1562 }
1563 
1564 int
1565 ieee80211_media2rate(int mword)
1566 {
1567 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1568 	static const int ieeerates[] = {
1569 		-1,		/* IFM_AUTO */
1570 		0,		/* IFM_MANUAL */
1571 		0,		/* IFM_NONE */
1572 		2,		/* IFM_IEEE80211_FH1 */
1573 		4,		/* IFM_IEEE80211_FH2 */
1574 		2,		/* IFM_IEEE80211_DS1 */
1575 		4,		/* IFM_IEEE80211_DS2 */
1576 		11,		/* IFM_IEEE80211_DS5 */
1577 		22,		/* IFM_IEEE80211_DS11 */
1578 		44,		/* IFM_IEEE80211_DS22 */
1579 		12,		/* IFM_IEEE80211_OFDM6 */
1580 		18,		/* IFM_IEEE80211_OFDM9 */
1581 		24,		/* IFM_IEEE80211_OFDM12 */
1582 		36,		/* IFM_IEEE80211_OFDM18 */
1583 		48,		/* IFM_IEEE80211_OFDM24 */
1584 		72,		/* IFM_IEEE80211_OFDM36 */
1585 		96,		/* IFM_IEEE80211_OFDM48 */
1586 		108,		/* IFM_IEEE80211_OFDM54 */
1587 		144,		/* IFM_IEEE80211_OFDM72 */
1588 		0,		/* IFM_IEEE80211_DS354k */
1589 		0,		/* IFM_IEEE80211_DS512k */
1590 		6,		/* IFM_IEEE80211_OFDM3 */
1591 		9,		/* IFM_IEEE80211_OFDM4 */
1592 		54,		/* IFM_IEEE80211_OFDM27 */
1593 		-1,		/* IFM_IEEE80211_MCS */
1594 	};
1595 	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1596 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1597 #undef N
1598 }
1599 
1600 /*
1601  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1602  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1603  */
1604 #define	mix(a, b, c)							\
1605 do {									\
1606 	a -= b; a -= c; a ^= (c >> 13);					\
1607 	b -= c; b -= a; b ^= (a << 8);					\
1608 	c -= a; c -= b; c ^= (b >> 13);					\
1609 	a -= b; a -= c; a ^= (c >> 12);					\
1610 	b -= c; b -= a; b ^= (a << 16);					\
1611 	c -= a; c -= b; c ^= (b >> 5);					\
1612 	a -= b; a -= c; a ^= (c >> 3);					\
1613 	b -= c; b -= a; b ^= (a << 10);					\
1614 	c -= a; c -= b; c ^= (b >> 15);					\
1615 } while (/*CONSTCOND*/0)
1616 
1617 uint32_t
1618 ieee80211_mac_hash(const struct ieee80211com *ic,
1619 	const uint8_t addr[IEEE80211_ADDR_LEN])
1620 {
1621 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1622 
1623 	b += addr[5] << 8;
1624 	b += addr[4];
1625 	a += addr[3] << 24;
1626 	a += addr[2] << 16;
1627 	a += addr[1] << 8;
1628 	a += addr[0];
1629 
1630 	mix(a, b, c);
1631 
1632 	return c;
1633 }
1634 #undef mix
1635