1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ethernet.h> 46 47 #include <net80211/ieee80211_var.h> 48 #include <net80211/ieee80211_regdomain.h> 49 #ifdef IEEE80211_SUPPORT_SUPERG 50 #include <net80211/ieee80211_superg.h> 51 #endif 52 53 #include <net/bpf.h> 54 55 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 56 [IEEE80211_MODE_AUTO] = "auto", 57 [IEEE80211_MODE_11A] = "11a", 58 [IEEE80211_MODE_11B] = "11b", 59 [IEEE80211_MODE_11G] = "11g", 60 [IEEE80211_MODE_FH] = "FH", 61 [IEEE80211_MODE_TURBO_A] = "turboA", 62 [IEEE80211_MODE_TURBO_G] = "turboG", 63 [IEEE80211_MODE_STURBO_A] = "sturboA", 64 [IEEE80211_MODE_HALF] = "half", 65 [IEEE80211_MODE_QUARTER] = "quarter", 66 [IEEE80211_MODE_11NA] = "11na", 67 [IEEE80211_MODE_11NG] = "11ng", 68 }; 69 /* map ieee80211_opmode to the corresponding capability bit */ 70 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 71 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 72 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 73 [IEEE80211_M_STA] = IEEE80211_C_STA, 74 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 75 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 76 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 77 #ifdef IEEE80211_SUPPORT_MESH 78 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 79 #endif 80 }; 81 82 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 83 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 84 85 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 86 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 87 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 88 static int ieee80211_media_setup(struct ieee80211com *ic, 89 struct ifmedia *media, int caps, int addsta, 90 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 91 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 92 static int ieee80211com_media_change(struct ifnet *); 93 static int media_status(enum ieee80211_opmode, 94 const struct ieee80211_channel *); 95 96 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 97 98 /* 99 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 100 */ 101 #define B(r) ((r) | IEEE80211_RATE_BASIC) 102 static const struct ieee80211_rateset ieee80211_rateset_11a = 103 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 104 static const struct ieee80211_rateset ieee80211_rateset_half = 105 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 106 static const struct ieee80211_rateset ieee80211_rateset_quarter = 107 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 108 static const struct ieee80211_rateset ieee80211_rateset_11b = 109 { 4, { B(2), B(4), B(11), B(22) } }; 110 /* NB: OFDM rates are handled specially based on mode */ 111 static const struct ieee80211_rateset ieee80211_rateset_11g = 112 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 113 #undef B 114 115 /* 116 * Fill in 802.11 available channel set, mark 117 * all available channels as active, and pick 118 * a default channel if not already specified. 119 */ 120 static void 121 ieee80211_chan_init(struct ieee80211com *ic) 122 { 123 #define DEFAULTRATES(m, def) do { \ 124 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 125 ic->ic_sup_rates[m] = def; \ 126 } while (0) 127 struct ieee80211_channel *c; 128 int i; 129 130 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 131 ("invalid number of channels specified: %u", ic->ic_nchans)); 132 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 133 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 134 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 135 for (i = 0; i < ic->ic_nchans; i++) { 136 c = &ic->ic_channels[i]; 137 KASSERT(c->ic_flags != 0, ("channel with no flags")); 138 /* 139 * Help drivers that work only with frequencies by filling 140 * in IEEE channel #'s if not already calculated. Note this 141 * mimics similar work done in ieee80211_setregdomain when 142 * changing regulatory state. 143 */ 144 if (c->ic_ieee == 0) 145 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 146 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 147 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 148 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 149 c->ic_flags); 150 /* default max tx power to max regulatory */ 151 if (c->ic_maxpower == 0) 152 c->ic_maxpower = 2*c->ic_maxregpower; 153 setbit(ic->ic_chan_avail, c->ic_ieee); 154 /* 155 * Identify mode capabilities. 156 */ 157 if (IEEE80211_IS_CHAN_A(c)) 158 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 159 if (IEEE80211_IS_CHAN_B(c)) 160 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 161 if (IEEE80211_IS_CHAN_ANYG(c)) 162 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 163 if (IEEE80211_IS_CHAN_FHSS(c)) 164 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 165 if (IEEE80211_IS_CHAN_108A(c)) 166 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 167 if (IEEE80211_IS_CHAN_108G(c)) 168 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 169 if (IEEE80211_IS_CHAN_ST(c)) 170 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 171 if (IEEE80211_IS_CHAN_HALF(c)) 172 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 173 if (IEEE80211_IS_CHAN_QUARTER(c)) 174 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 175 if (IEEE80211_IS_CHAN_HTA(c)) 176 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 177 if (IEEE80211_IS_CHAN_HTG(c)) 178 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 179 } 180 /* initialize candidate channels to all available */ 181 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 182 sizeof(ic->ic_chan_avail)); 183 184 /* sort channel table to allow lookup optimizations */ 185 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 186 187 /* invalidate any previous state */ 188 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 189 ic->ic_prevchan = NULL; 190 ic->ic_csa_newchan = NULL; 191 /* arbitrarily pick the first channel */ 192 ic->ic_curchan = &ic->ic_channels[0]; 193 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 194 195 /* fillin well-known rate sets if driver has not specified */ 196 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 197 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 198 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 199 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 200 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 201 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 202 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 203 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 204 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 205 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 206 207 /* 208 * Set auto mode to reset active channel state and any desired channel. 209 */ 210 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 211 #undef DEFAULTRATES 212 } 213 214 static void 215 null_update_mcast(struct ifnet *ifp) 216 { 217 if_printf(ifp, "need multicast update callback\n"); 218 } 219 220 static void 221 null_update_promisc(struct ifnet *ifp) 222 { 223 if_printf(ifp, "need promiscuous mode update callback\n"); 224 } 225 226 static int 227 null_transmit(struct ifnet *ifp, struct mbuf *m) 228 { 229 m_freem(m); 230 ifp->if_oerrors++; 231 return EACCES; /* XXX EIO/EPERM? */ 232 } 233 234 static int 235 null_output(struct ifnet *ifp, struct mbuf *m, 236 struct sockaddr *dst, struct route *ro) 237 { 238 if_printf(ifp, "discard raw packet\n"); 239 return null_transmit(ifp, m); 240 } 241 242 static void 243 null_input(struct ifnet *ifp, struct mbuf *m) 244 { 245 if_printf(ifp, "if_input should not be called\n"); 246 m_freem(m); 247 } 248 249 /* 250 * Attach/setup the common net80211 state. Called by 251 * the driver on attach to prior to creating any vap's. 252 */ 253 void 254 ieee80211_ifattach(struct ieee80211com *ic, 255 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 256 { 257 struct ifnet *ifp = ic->ic_ifp; 258 struct sockaddr_dl *sdl; 259 struct ifaddr *ifa; 260 261 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 262 263 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 264 TAILQ_INIT(&ic->ic_vaps); 265 266 /* Create a taskqueue for all state changes */ 267 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 268 taskqueue_thread_enqueue, &ic->ic_tq); 269 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq", 270 ifp->if_xname); 271 /* 272 * Fill in 802.11 available channel set, mark all 273 * available channels as active, and pick a default 274 * channel if not already specified. 275 */ 276 ieee80211_media_init(ic); 277 278 ic->ic_update_mcast = null_update_mcast; 279 ic->ic_update_promisc = null_update_promisc; 280 281 ic->ic_hash_key = arc4random(); 282 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 283 ic->ic_lintval = ic->ic_bintval; 284 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 285 286 ieee80211_crypto_attach(ic); 287 ieee80211_node_attach(ic); 288 ieee80211_power_attach(ic); 289 ieee80211_proto_attach(ic); 290 #ifdef IEEE80211_SUPPORT_SUPERG 291 ieee80211_superg_attach(ic); 292 #endif 293 ieee80211_ht_attach(ic); 294 ieee80211_scan_attach(ic); 295 ieee80211_regdomain_attach(ic); 296 ieee80211_dfs_attach(ic); 297 298 ieee80211_sysctl_attach(ic); 299 300 ifp->if_addrlen = IEEE80211_ADDR_LEN; 301 ifp->if_hdrlen = 0; 302 if_attach(ifp); 303 ifp->if_mtu = IEEE80211_MTU_MAX; 304 ifp->if_broadcastaddr = ieee80211broadcastaddr; 305 ifp->if_output = null_output; 306 ifp->if_input = null_input; /* just in case */ 307 ifp->if_resolvemulti = NULL; /* NB: callers check */ 308 309 ifa = ifaddr_byindex(ifp->if_index); 310 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 311 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 312 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 313 sdl->sdl_alen = IEEE80211_ADDR_LEN; 314 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 315 ifa_free(ifa); 316 } 317 318 /* 319 * Detach net80211 state on device detach. Tear down 320 * all vap's and reclaim all common state prior to the 321 * device state going away. Note we may call back into 322 * driver; it must be prepared for this. 323 */ 324 void 325 ieee80211_ifdetach(struct ieee80211com *ic) 326 { 327 struct ifnet *ifp = ic->ic_ifp; 328 struct ieee80211vap *vap; 329 330 if_detach(ifp); 331 332 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 333 ieee80211_vap_destroy(vap); 334 ieee80211_waitfor_parent(ic); 335 336 ieee80211_sysctl_detach(ic); 337 ieee80211_dfs_detach(ic); 338 ieee80211_regdomain_detach(ic); 339 ieee80211_scan_detach(ic); 340 #ifdef IEEE80211_SUPPORT_SUPERG 341 ieee80211_superg_detach(ic); 342 #endif 343 ieee80211_ht_detach(ic); 344 /* NB: must be called before ieee80211_node_detach */ 345 ieee80211_proto_detach(ic); 346 ieee80211_crypto_detach(ic); 347 ieee80211_power_detach(ic); 348 ieee80211_node_detach(ic); 349 350 ifmedia_removeall(&ic->ic_media); 351 taskqueue_free(ic->ic_tq); 352 IEEE80211_LOCK_DESTROY(ic); 353 } 354 355 /* 356 * Default reset method for use with the ioctl support. This 357 * method is invoked after any state change in the 802.11 358 * layer that should be propagated to the hardware but not 359 * require re-initialization of the 802.11 state machine (e.g 360 * rescanning for an ap). We always return ENETRESET which 361 * should cause the driver to re-initialize the device. Drivers 362 * can override this method to implement more optimized support. 363 */ 364 static int 365 default_reset(struct ieee80211vap *vap, u_long cmd) 366 { 367 return ENETRESET; 368 } 369 370 /* 371 * Prepare a vap for use. Drivers use this call to 372 * setup net80211 state in new vap's prior attaching 373 * them with ieee80211_vap_attach (below). 374 */ 375 int 376 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 377 const char name[IFNAMSIZ], int unit, int opmode, int flags, 378 const uint8_t bssid[IEEE80211_ADDR_LEN], 379 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 380 { 381 struct ifnet *ifp; 382 383 ifp = if_alloc(IFT_ETHER); 384 if (ifp == NULL) { 385 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 386 __func__); 387 return ENOMEM; 388 } 389 if_initname(ifp, name, unit); 390 ifp->if_softc = vap; /* back pointer */ 391 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 392 ifp->if_start = ieee80211_start; 393 ifp->if_ioctl = ieee80211_ioctl; 394 ifp->if_init = ieee80211_init; 395 /* NB: input+output filled in by ether_ifattach */ 396 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 397 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 398 IFQ_SET_READY(&ifp->if_snd); 399 400 vap->iv_ifp = ifp; 401 vap->iv_ic = ic; 402 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 403 vap->iv_flags_ext = ic->ic_flags_ext; 404 vap->iv_flags_ven = ic->ic_flags_ven; 405 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 406 vap->iv_htcaps = ic->ic_htcaps; 407 vap->iv_opmode = opmode; 408 vap->iv_caps |= ieee80211_opcap[opmode]; 409 switch (opmode) { 410 case IEEE80211_M_WDS: 411 /* 412 * WDS links must specify the bssid of the far end. 413 * For legacy operation this is a static relationship. 414 * For non-legacy operation the station must associate 415 * and be authorized to pass traffic. Plumbing the 416 * vap to the proper node happens when the vap 417 * transitions to RUN state. 418 */ 419 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 420 vap->iv_flags |= IEEE80211_F_DESBSSID; 421 if (flags & IEEE80211_CLONE_WDSLEGACY) 422 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 423 break; 424 #ifdef IEEE80211_SUPPORT_TDMA 425 case IEEE80211_M_AHDEMO: 426 if (flags & IEEE80211_CLONE_TDMA) { 427 /* NB: checked before clone operation allowed */ 428 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 429 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 430 /* 431 * Propagate TDMA capability to mark vap; this 432 * cannot be removed and is used to distinguish 433 * regular ahdemo operation from ahdemo+tdma. 434 */ 435 vap->iv_caps |= IEEE80211_C_TDMA; 436 } 437 break; 438 #endif 439 } 440 /* auto-enable s/w beacon miss support */ 441 if (flags & IEEE80211_CLONE_NOBEACONS) 442 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 443 /* auto-generated or user supplied MAC address */ 444 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 445 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 446 /* 447 * Enable various functionality by default if we're 448 * capable; the driver can override us if it knows better. 449 */ 450 if (vap->iv_caps & IEEE80211_C_WME) 451 vap->iv_flags |= IEEE80211_F_WME; 452 if (vap->iv_caps & IEEE80211_C_BURST) 453 vap->iv_flags |= IEEE80211_F_BURST; 454 /* NB: bg scanning only makes sense for station mode right now */ 455 if (vap->iv_opmode == IEEE80211_M_STA && 456 (vap->iv_caps & IEEE80211_C_BGSCAN)) 457 vap->iv_flags |= IEEE80211_F_BGSCAN; 458 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 459 /* NB: DFS support only makes sense for ap mode right now */ 460 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 461 (vap->iv_caps & IEEE80211_C_DFS)) 462 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 463 464 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 465 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 466 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 467 /* 468 * Install a default reset method for the ioctl support; 469 * the driver can override this. 470 */ 471 vap->iv_reset = default_reset; 472 473 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 474 475 ieee80211_sysctl_vattach(vap); 476 ieee80211_crypto_vattach(vap); 477 ieee80211_node_vattach(vap); 478 ieee80211_power_vattach(vap); 479 ieee80211_proto_vattach(vap); 480 #ifdef IEEE80211_SUPPORT_SUPERG 481 ieee80211_superg_vattach(vap); 482 #endif 483 ieee80211_ht_vattach(vap); 484 ieee80211_scan_vattach(vap); 485 ieee80211_regdomain_vattach(vap); 486 ieee80211_radiotap_vattach(vap); 487 488 return 0; 489 } 490 491 /* 492 * Activate a vap. State should have been prepared with a 493 * call to ieee80211_vap_setup and by the driver. On return 494 * from this call the vap is ready for use. 495 */ 496 int 497 ieee80211_vap_attach(struct ieee80211vap *vap, 498 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 499 { 500 struct ifnet *ifp = vap->iv_ifp; 501 struct ieee80211com *ic = vap->iv_ic; 502 struct ifmediareq imr; 503 int maxrate; 504 505 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 506 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 507 __func__, ieee80211_opmode_name[vap->iv_opmode], 508 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 509 510 /* 511 * Do late attach work that cannot happen until after 512 * the driver has had a chance to override defaults. 513 */ 514 ieee80211_node_latevattach(vap); 515 ieee80211_power_latevattach(vap); 516 517 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 518 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 519 ieee80211_media_status(ifp, &imr); 520 /* NB: strip explicit mode; we're actually in autoselect */ 521 ifmedia_set(&vap->iv_media, 522 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 523 if (maxrate) 524 ifp->if_baudrate = IF_Mbps(maxrate); 525 526 ether_ifattach(ifp, vap->iv_myaddr); 527 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 528 /* NB: disallow transmit */ 529 ifp->if_transmit = null_transmit; 530 ifp->if_output = null_output; 531 } else { 532 /* hook output method setup by ether_ifattach */ 533 vap->iv_output = ifp->if_output; 534 ifp->if_output = ieee80211_output; 535 } 536 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 537 538 IEEE80211_LOCK(ic); 539 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 540 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 541 #ifdef IEEE80211_SUPPORT_SUPERG 542 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 543 #endif 544 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 545 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 546 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 547 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 548 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 549 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 550 IEEE80211_UNLOCK(ic); 551 552 return 1; 553 } 554 555 /* 556 * Tear down vap state and reclaim the ifnet. 557 * The driver is assumed to have prepared for 558 * this; e.g. by turning off interrupts for the 559 * underlying device. 560 */ 561 void 562 ieee80211_vap_detach(struct ieee80211vap *vap) 563 { 564 struct ieee80211com *ic = vap->iv_ic; 565 struct ifnet *ifp = vap->iv_ifp; 566 567 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 568 __func__, ieee80211_opmode_name[vap->iv_opmode], 569 ic->ic_ifp->if_xname); 570 571 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 572 ether_ifdetach(ifp); 573 574 ieee80211_stop(vap); 575 576 /* 577 * Flush any deferred vap tasks. 578 */ 579 ieee80211_draintask(ic, &vap->iv_nstate_task); 580 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 581 582 /* XXX band-aid until ifnet handles this for us */ 583 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 584 585 IEEE80211_LOCK(ic); 586 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 587 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 588 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 589 #ifdef IEEE80211_SUPPORT_SUPERG 590 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 591 #endif 592 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 593 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 594 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 595 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 596 /* NB: this handles the bpfdetach done below */ 597 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 598 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 599 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 600 IEEE80211_UNLOCK(ic); 601 602 ifmedia_removeall(&vap->iv_media); 603 604 ieee80211_radiotap_vdetach(vap); 605 ieee80211_regdomain_vdetach(vap); 606 ieee80211_scan_vdetach(vap); 607 #ifdef IEEE80211_SUPPORT_SUPERG 608 ieee80211_superg_vdetach(vap); 609 #endif 610 ieee80211_ht_vdetach(vap); 611 /* NB: must be before ieee80211_node_vdetach */ 612 ieee80211_proto_vdetach(vap); 613 ieee80211_crypto_vdetach(vap); 614 ieee80211_power_vdetach(vap); 615 ieee80211_node_vdetach(vap); 616 ieee80211_sysctl_vdetach(vap); 617 618 if_free(ifp); 619 } 620 621 /* 622 * Synchronize flag bit state in the parent ifnet structure 623 * according to the state of all vap ifnet's. This is used, 624 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 625 */ 626 void 627 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 628 { 629 struct ifnet *ifp = ic->ic_ifp; 630 struct ieee80211vap *vap; 631 int bit, oflags; 632 633 IEEE80211_LOCK_ASSERT(ic); 634 635 bit = 0; 636 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 637 if (vap->iv_ifp->if_flags & flag) { 638 /* 639 * XXX the bridge sets PROMISC but we don't want to 640 * enable it on the device, discard here so all the 641 * drivers don't need to special-case it 642 */ 643 if (flag == IFF_PROMISC && 644 !(vap->iv_opmode == IEEE80211_M_MONITOR || 645 (vap->iv_opmode == IEEE80211_M_AHDEMO && 646 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 647 continue; 648 bit = 1; 649 break; 650 } 651 oflags = ifp->if_flags; 652 if (bit) 653 ifp->if_flags |= flag; 654 else 655 ifp->if_flags &= ~flag; 656 if ((ifp->if_flags ^ oflags) & flag) { 657 /* XXX should we return 1/0 and let caller do this? */ 658 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 659 if (flag == IFF_PROMISC) 660 ieee80211_runtask(ic, &ic->ic_promisc_task); 661 else if (flag == IFF_ALLMULTI) 662 ieee80211_runtask(ic, &ic->ic_mcast_task); 663 } 664 } 665 } 666 667 /* 668 * Synchronize flag bit state in the com structure 669 * according to the state of all vap's. This is used, 670 * for example, to handle state changes via ioctls. 671 */ 672 static void 673 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 674 { 675 struct ieee80211vap *vap; 676 int bit; 677 678 IEEE80211_LOCK_ASSERT(ic); 679 680 bit = 0; 681 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 682 if (vap->iv_flags & flag) { 683 bit = 1; 684 break; 685 } 686 if (bit) 687 ic->ic_flags |= flag; 688 else 689 ic->ic_flags &= ~flag; 690 } 691 692 void 693 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 694 { 695 struct ieee80211com *ic = vap->iv_ic; 696 697 IEEE80211_LOCK(ic); 698 if (flag < 0) { 699 flag = -flag; 700 vap->iv_flags &= ~flag; 701 } else 702 vap->iv_flags |= flag; 703 ieee80211_syncflag_locked(ic, flag); 704 IEEE80211_UNLOCK(ic); 705 } 706 707 /* 708 * Synchronize flags_ht bit state in the com structure 709 * according to the state of all vap's. This is used, 710 * for example, to handle state changes via ioctls. 711 */ 712 static void 713 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 714 { 715 struct ieee80211vap *vap; 716 int bit; 717 718 IEEE80211_LOCK_ASSERT(ic); 719 720 bit = 0; 721 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 722 if (vap->iv_flags_ht & flag) { 723 bit = 1; 724 break; 725 } 726 if (bit) 727 ic->ic_flags_ht |= flag; 728 else 729 ic->ic_flags_ht &= ~flag; 730 } 731 732 void 733 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 734 { 735 struct ieee80211com *ic = vap->iv_ic; 736 737 IEEE80211_LOCK(ic); 738 if (flag < 0) { 739 flag = -flag; 740 vap->iv_flags_ht &= ~flag; 741 } else 742 vap->iv_flags_ht |= flag; 743 ieee80211_syncflag_ht_locked(ic, flag); 744 IEEE80211_UNLOCK(ic); 745 } 746 747 /* 748 * Synchronize flags_ext bit state in the com structure 749 * according to the state of all vap's. This is used, 750 * for example, to handle state changes via ioctls. 751 */ 752 static void 753 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 754 { 755 struct ieee80211vap *vap; 756 int bit; 757 758 IEEE80211_LOCK_ASSERT(ic); 759 760 bit = 0; 761 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 762 if (vap->iv_flags_ext & flag) { 763 bit = 1; 764 break; 765 } 766 if (bit) 767 ic->ic_flags_ext |= flag; 768 else 769 ic->ic_flags_ext &= ~flag; 770 } 771 772 void 773 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 774 { 775 struct ieee80211com *ic = vap->iv_ic; 776 777 IEEE80211_LOCK(ic); 778 if (flag < 0) { 779 flag = -flag; 780 vap->iv_flags_ext &= ~flag; 781 } else 782 vap->iv_flags_ext |= flag; 783 ieee80211_syncflag_ext_locked(ic, flag); 784 IEEE80211_UNLOCK(ic); 785 } 786 787 static __inline int 788 mapgsm(u_int freq, u_int flags) 789 { 790 freq *= 10; 791 if (flags & IEEE80211_CHAN_QUARTER) 792 freq += 5; 793 else if (flags & IEEE80211_CHAN_HALF) 794 freq += 10; 795 else 796 freq += 20; 797 /* NB: there is no 907/20 wide but leave room */ 798 return (freq - 906*10) / 5; 799 } 800 801 static __inline int 802 mappsb(u_int freq, u_int flags) 803 { 804 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 805 } 806 807 /* 808 * Convert MHz frequency to IEEE channel number. 809 */ 810 int 811 ieee80211_mhz2ieee(u_int freq, u_int flags) 812 { 813 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 814 if (flags & IEEE80211_CHAN_GSM) 815 return mapgsm(freq, flags); 816 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 817 if (freq == 2484) 818 return 14; 819 if (freq < 2484) 820 return ((int) freq - 2407) / 5; 821 else 822 return 15 + ((freq - 2512) / 20); 823 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 824 if (freq <= 5000) { 825 /* XXX check regdomain? */ 826 if (IS_FREQ_IN_PSB(freq)) 827 return mappsb(freq, flags); 828 return (freq - 4000) / 5; 829 } else 830 return (freq - 5000) / 5; 831 } else { /* either, guess */ 832 if (freq == 2484) 833 return 14; 834 if (freq < 2484) { 835 if (907 <= freq && freq <= 922) 836 return mapgsm(freq, flags); 837 return ((int) freq - 2407) / 5; 838 } 839 if (freq < 5000) { 840 if (IS_FREQ_IN_PSB(freq)) 841 return mappsb(freq, flags); 842 else if (freq > 4900) 843 return (freq - 4000) / 5; 844 else 845 return 15 + ((freq - 2512) / 20); 846 } 847 return (freq - 5000) / 5; 848 } 849 #undef IS_FREQ_IN_PSB 850 } 851 852 /* 853 * Convert channel to IEEE channel number. 854 */ 855 int 856 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 857 { 858 if (c == NULL) { 859 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 860 return 0; /* XXX */ 861 } 862 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 863 } 864 865 /* 866 * Convert IEEE channel number to MHz frequency. 867 */ 868 u_int 869 ieee80211_ieee2mhz(u_int chan, u_int flags) 870 { 871 if (flags & IEEE80211_CHAN_GSM) 872 return 907 + 5 * (chan / 10); 873 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 874 if (chan == 14) 875 return 2484; 876 if (chan < 14) 877 return 2407 + chan*5; 878 else 879 return 2512 + ((chan-15)*20); 880 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 881 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 882 chan -= 37; 883 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 884 } 885 return 5000 + (chan*5); 886 } else { /* either, guess */ 887 /* XXX can't distinguish PSB+GSM channels */ 888 if (chan == 14) 889 return 2484; 890 if (chan < 14) /* 0-13 */ 891 return 2407 + chan*5; 892 if (chan < 27) /* 15-26 */ 893 return 2512 + ((chan-15)*20); 894 return 5000 + (chan*5); 895 } 896 } 897 898 /* 899 * Locate a channel given a frequency+flags. We cache 900 * the previous lookup to optimize switching between two 901 * channels--as happens with dynamic turbo. 902 */ 903 struct ieee80211_channel * 904 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 905 { 906 struct ieee80211_channel *c; 907 int i; 908 909 flags &= IEEE80211_CHAN_ALLTURBO; 910 c = ic->ic_prevchan; 911 if (c != NULL && c->ic_freq == freq && 912 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 913 return c; 914 /* brute force search */ 915 for (i = 0; i < ic->ic_nchans; i++) { 916 c = &ic->ic_channels[i]; 917 if (c->ic_freq == freq && 918 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 919 return c; 920 } 921 return NULL; 922 } 923 924 /* 925 * Locate a channel given a channel number+flags. We cache 926 * the previous lookup to optimize switching between two 927 * channels--as happens with dynamic turbo. 928 */ 929 struct ieee80211_channel * 930 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 931 { 932 struct ieee80211_channel *c; 933 int i; 934 935 flags &= IEEE80211_CHAN_ALLTURBO; 936 c = ic->ic_prevchan; 937 if (c != NULL && c->ic_ieee == ieee && 938 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 939 return c; 940 /* brute force search */ 941 for (i = 0; i < ic->ic_nchans; i++) { 942 c = &ic->ic_channels[i]; 943 if (c->ic_ieee == ieee && 944 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 945 return c; 946 } 947 return NULL; 948 } 949 950 static void 951 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 952 { 953 #define ADD(_ic, _s, _o) \ 954 ifmedia_add(media, \ 955 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 956 static const u_int mopts[IEEE80211_MODE_MAX] = { 957 [IEEE80211_MODE_AUTO] = IFM_AUTO, 958 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 959 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 960 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 961 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 962 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 963 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 964 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 965 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 966 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 967 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 968 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 969 }; 970 u_int mopt; 971 972 mopt = mopts[mode]; 973 if (addsta) 974 ADD(ic, mword, mopt); /* STA mode has no cap */ 975 if (caps & IEEE80211_C_IBSS) 976 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 977 if (caps & IEEE80211_C_HOSTAP) 978 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 979 if (caps & IEEE80211_C_AHDEMO) 980 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 981 if (caps & IEEE80211_C_MONITOR) 982 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 983 if (caps & IEEE80211_C_WDS) 984 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 985 if (caps & IEEE80211_C_MBSS) 986 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 987 #undef ADD 988 } 989 990 /* 991 * Setup the media data structures according to the channel and 992 * rate tables. 993 */ 994 static int 995 ieee80211_media_setup(struct ieee80211com *ic, 996 struct ifmedia *media, int caps, int addsta, 997 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 998 { 999 int i, j, mode, rate, maxrate, mword, r; 1000 const struct ieee80211_rateset *rs; 1001 struct ieee80211_rateset allrates; 1002 1003 /* 1004 * Fill in media characteristics. 1005 */ 1006 ifmedia_init(media, 0, media_change, media_stat); 1007 maxrate = 0; 1008 /* 1009 * Add media for legacy operating modes. 1010 */ 1011 memset(&allrates, 0, sizeof(allrates)); 1012 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1013 if (isclr(ic->ic_modecaps, mode)) 1014 continue; 1015 addmedia(media, caps, addsta, mode, IFM_AUTO); 1016 if (mode == IEEE80211_MODE_AUTO) 1017 continue; 1018 rs = &ic->ic_sup_rates[mode]; 1019 for (i = 0; i < rs->rs_nrates; i++) { 1020 rate = rs->rs_rates[i]; 1021 mword = ieee80211_rate2media(ic, rate, mode); 1022 if (mword == 0) 1023 continue; 1024 addmedia(media, caps, addsta, mode, mword); 1025 /* 1026 * Add legacy rate to the collection of all rates. 1027 */ 1028 r = rate & IEEE80211_RATE_VAL; 1029 for (j = 0; j < allrates.rs_nrates; j++) 1030 if (allrates.rs_rates[j] == r) 1031 break; 1032 if (j == allrates.rs_nrates) { 1033 /* unique, add to the set */ 1034 allrates.rs_rates[j] = r; 1035 allrates.rs_nrates++; 1036 } 1037 rate = (rate & IEEE80211_RATE_VAL) / 2; 1038 if (rate > maxrate) 1039 maxrate = rate; 1040 } 1041 } 1042 for (i = 0; i < allrates.rs_nrates; i++) { 1043 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1044 IEEE80211_MODE_AUTO); 1045 if (mword == 0) 1046 continue; 1047 /* NB: remove media options from mword */ 1048 addmedia(media, caps, addsta, 1049 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1050 } 1051 /* 1052 * Add HT/11n media. Note that we do not have enough 1053 * bits in the media subtype to express the MCS so we 1054 * use a "placeholder" media subtype and any fixed MCS 1055 * must be specified with a different mechanism. 1056 */ 1057 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1058 if (isclr(ic->ic_modecaps, mode)) 1059 continue; 1060 addmedia(media, caps, addsta, mode, IFM_AUTO); 1061 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1062 } 1063 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1064 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1065 addmedia(media, caps, addsta, 1066 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1067 /* XXX could walk htrates */ 1068 /* XXX known array size */ 1069 if (ieee80211_htrates[15].ht40_rate_400ns > maxrate) 1070 maxrate = ieee80211_htrates[15].ht40_rate_400ns; 1071 } 1072 return maxrate; 1073 } 1074 1075 void 1076 ieee80211_media_init(struct ieee80211com *ic) 1077 { 1078 struct ifnet *ifp = ic->ic_ifp; 1079 int maxrate; 1080 1081 /* NB: this works because the structure is initialized to zero */ 1082 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1083 /* 1084 * We are re-initializing the channel list; clear 1085 * the existing media state as the media routines 1086 * don't suppress duplicates. 1087 */ 1088 ifmedia_removeall(&ic->ic_media); 1089 } 1090 ieee80211_chan_init(ic); 1091 1092 /* 1093 * Recalculate media settings in case new channel list changes 1094 * the set of available modes. 1095 */ 1096 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1097 ieee80211com_media_change, ieee80211com_media_status); 1098 /* NB: strip explicit mode; we're actually in autoselect */ 1099 ifmedia_set(&ic->ic_media, 1100 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1101 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1102 if (maxrate) 1103 ifp->if_baudrate = IF_Mbps(maxrate); 1104 1105 /* XXX need to propagate new media settings to vap's */ 1106 } 1107 1108 /* XXX inline or eliminate? */ 1109 const struct ieee80211_rateset * 1110 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1111 { 1112 /* XXX does this work for 11ng basic rates? */ 1113 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1114 } 1115 1116 void 1117 ieee80211_announce(struct ieee80211com *ic) 1118 { 1119 struct ifnet *ifp = ic->ic_ifp; 1120 int i, mode, rate, mword; 1121 const struct ieee80211_rateset *rs; 1122 1123 /* NB: skip AUTO since it has no rates */ 1124 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1125 if (isclr(ic->ic_modecaps, mode)) 1126 continue; 1127 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1128 rs = &ic->ic_sup_rates[mode]; 1129 for (i = 0; i < rs->rs_nrates; i++) { 1130 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1131 if (mword == 0) 1132 continue; 1133 rate = ieee80211_media2rate(mword); 1134 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1135 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1136 } 1137 printf("\n"); 1138 } 1139 ieee80211_ht_announce(ic); 1140 } 1141 1142 void 1143 ieee80211_announce_channels(struct ieee80211com *ic) 1144 { 1145 const struct ieee80211_channel *c; 1146 char type; 1147 int i, cw; 1148 1149 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1150 for (i = 0; i < ic->ic_nchans; i++) { 1151 c = &ic->ic_channels[i]; 1152 if (IEEE80211_IS_CHAN_ST(c)) 1153 type = 'S'; 1154 else if (IEEE80211_IS_CHAN_108A(c)) 1155 type = 'T'; 1156 else if (IEEE80211_IS_CHAN_108G(c)) 1157 type = 'G'; 1158 else if (IEEE80211_IS_CHAN_HT(c)) 1159 type = 'n'; 1160 else if (IEEE80211_IS_CHAN_A(c)) 1161 type = 'a'; 1162 else if (IEEE80211_IS_CHAN_ANYG(c)) 1163 type = 'g'; 1164 else if (IEEE80211_IS_CHAN_B(c)) 1165 type = 'b'; 1166 else 1167 type = 'f'; 1168 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1169 cw = 40; 1170 else if (IEEE80211_IS_CHAN_HALF(c)) 1171 cw = 10; 1172 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1173 cw = 5; 1174 else 1175 cw = 20; 1176 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1177 , c->ic_ieee, c->ic_freq, type 1178 , cw 1179 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1180 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1181 , c->ic_maxregpower 1182 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1183 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1184 ); 1185 } 1186 } 1187 1188 static int 1189 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1190 { 1191 switch (IFM_MODE(ime->ifm_media)) { 1192 case IFM_IEEE80211_11A: 1193 *mode = IEEE80211_MODE_11A; 1194 break; 1195 case IFM_IEEE80211_11B: 1196 *mode = IEEE80211_MODE_11B; 1197 break; 1198 case IFM_IEEE80211_11G: 1199 *mode = IEEE80211_MODE_11G; 1200 break; 1201 case IFM_IEEE80211_FH: 1202 *mode = IEEE80211_MODE_FH; 1203 break; 1204 case IFM_IEEE80211_11NA: 1205 *mode = IEEE80211_MODE_11NA; 1206 break; 1207 case IFM_IEEE80211_11NG: 1208 *mode = IEEE80211_MODE_11NG; 1209 break; 1210 case IFM_AUTO: 1211 *mode = IEEE80211_MODE_AUTO; 1212 break; 1213 default: 1214 return 0; 1215 } 1216 /* 1217 * Turbo mode is an ``option''. 1218 * XXX does not apply to AUTO 1219 */ 1220 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1221 if (*mode == IEEE80211_MODE_11A) { 1222 if (flags & IEEE80211_F_TURBOP) 1223 *mode = IEEE80211_MODE_TURBO_A; 1224 else 1225 *mode = IEEE80211_MODE_STURBO_A; 1226 } else if (*mode == IEEE80211_MODE_11G) 1227 *mode = IEEE80211_MODE_TURBO_G; 1228 else 1229 return 0; 1230 } 1231 /* XXX HT40 +/- */ 1232 return 1; 1233 } 1234 1235 /* 1236 * Handle a media change request on the underlying interface. 1237 */ 1238 int 1239 ieee80211com_media_change(struct ifnet *ifp) 1240 { 1241 return EINVAL; 1242 } 1243 1244 /* 1245 * Handle a media change request on the vap interface. 1246 */ 1247 int 1248 ieee80211_media_change(struct ifnet *ifp) 1249 { 1250 struct ieee80211vap *vap = ifp->if_softc; 1251 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1252 uint16_t newmode; 1253 1254 if (!media2mode(ime, vap->iv_flags, &newmode)) 1255 return EINVAL; 1256 if (vap->iv_des_mode != newmode) { 1257 vap->iv_des_mode = newmode; 1258 /* XXX kick state machine if up+running */ 1259 } 1260 return 0; 1261 } 1262 1263 /* 1264 * Common code to calculate the media status word 1265 * from the operating mode and channel state. 1266 */ 1267 static int 1268 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1269 { 1270 int status; 1271 1272 status = IFM_IEEE80211; 1273 switch (opmode) { 1274 case IEEE80211_M_STA: 1275 break; 1276 case IEEE80211_M_IBSS: 1277 status |= IFM_IEEE80211_ADHOC; 1278 break; 1279 case IEEE80211_M_HOSTAP: 1280 status |= IFM_IEEE80211_HOSTAP; 1281 break; 1282 case IEEE80211_M_MONITOR: 1283 status |= IFM_IEEE80211_MONITOR; 1284 break; 1285 case IEEE80211_M_AHDEMO: 1286 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1287 break; 1288 case IEEE80211_M_WDS: 1289 status |= IFM_IEEE80211_WDS; 1290 break; 1291 case IEEE80211_M_MBSS: 1292 status |= IFM_IEEE80211_MBSS; 1293 break; 1294 } 1295 if (IEEE80211_IS_CHAN_HTA(chan)) { 1296 status |= IFM_IEEE80211_11NA; 1297 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1298 status |= IFM_IEEE80211_11NG; 1299 } else if (IEEE80211_IS_CHAN_A(chan)) { 1300 status |= IFM_IEEE80211_11A; 1301 } else if (IEEE80211_IS_CHAN_B(chan)) { 1302 status |= IFM_IEEE80211_11B; 1303 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1304 status |= IFM_IEEE80211_11G; 1305 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1306 status |= IFM_IEEE80211_FH; 1307 } 1308 /* XXX else complain? */ 1309 1310 if (IEEE80211_IS_CHAN_TURBO(chan)) 1311 status |= IFM_IEEE80211_TURBO; 1312 #if 0 1313 if (IEEE80211_IS_CHAN_HT20(chan)) 1314 status |= IFM_IEEE80211_HT20; 1315 if (IEEE80211_IS_CHAN_HT40(chan)) 1316 status |= IFM_IEEE80211_HT40; 1317 #endif 1318 return status; 1319 } 1320 1321 static void 1322 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1323 { 1324 struct ieee80211com *ic = ifp->if_l2com; 1325 struct ieee80211vap *vap; 1326 1327 imr->ifm_status = IFM_AVALID; 1328 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1329 if (vap->iv_ifp->if_flags & IFF_UP) { 1330 imr->ifm_status |= IFM_ACTIVE; 1331 break; 1332 } 1333 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1334 if (imr->ifm_status & IFM_ACTIVE) 1335 imr->ifm_current = imr->ifm_active; 1336 } 1337 1338 void 1339 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1340 { 1341 struct ieee80211vap *vap = ifp->if_softc; 1342 struct ieee80211com *ic = vap->iv_ic; 1343 enum ieee80211_phymode mode; 1344 1345 imr->ifm_status = IFM_AVALID; 1346 /* 1347 * NB: use the current channel's mode to lock down a xmit 1348 * rate only when running; otherwise we may have a mismatch 1349 * in which case the rate will not be convertible. 1350 */ 1351 if (vap->iv_state == IEEE80211_S_RUN) { 1352 imr->ifm_status |= IFM_ACTIVE; 1353 mode = ieee80211_chan2mode(ic->ic_curchan); 1354 } else 1355 mode = IEEE80211_MODE_AUTO; 1356 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1357 /* 1358 * Calculate a current rate if possible. 1359 */ 1360 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1361 /* 1362 * A fixed rate is set, report that. 1363 */ 1364 imr->ifm_active |= ieee80211_rate2media(ic, 1365 vap->iv_txparms[mode].ucastrate, mode); 1366 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1367 /* 1368 * In station mode report the current transmit rate. 1369 */ 1370 imr->ifm_active |= ieee80211_rate2media(ic, 1371 vap->iv_bss->ni_txrate, mode); 1372 } else 1373 imr->ifm_active |= IFM_AUTO; 1374 if (imr->ifm_status & IFM_ACTIVE) 1375 imr->ifm_current = imr->ifm_active; 1376 } 1377 1378 /* 1379 * Set the current phy mode and recalculate the active channel 1380 * set based on the available channels for this mode. Also 1381 * select a new default/current channel if the current one is 1382 * inappropriate for this mode. 1383 */ 1384 int 1385 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1386 { 1387 /* 1388 * Adjust basic rates in 11b/11g supported rate set. 1389 * Note that if operating on a hal/quarter rate channel 1390 * this is a noop as those rates sets are different 1391 * and used instead. 1392 */ 1393 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1394 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1395 1396 ic->ic_curmode = mode; 1397 ieee80211_reset_erp(ic); /* reset ERP state */ 1398 1399 return 0; 1400 } 1401 1402 /* 1403 * Return the phy mode for with the specified channel. 1404 */ 1405 enum ieee80211_phymode 1406 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1407 { 1408 1409 if (IEEE80211_IS_CHAN_HTA(chan)) 1410 return IEEE80211_MODE_11NA; 1411 else if (IEEE80211_IS_CHAN_HTG(chan)) 1412 return IEEE80211_MODE_11NG; 1413 else if (IEEE80211_IS_CHAN_108G(chan)) 1414 return IEEE80211_MODE_TURBO_G; 1415 else if (IEEE80211_IS_CHAN_ST(chan)) 1416 return IEEE80211_MODE_STURBO_A; 1417 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1418 return IEEE80211_MODE_TURBO_A; 1419 else if (IEEE80211_IS_CHAN_HALF(chan)) 1420 return IEEE80211_MODE_HALF; 1421 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1422 return IEEE80211_MODE_QUARTER; 1423 else if (IEEE80211_IS_CHAN_A(chan)) 1424 return IEEE80211_MODE_11A; 1425 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1426 return IEEE80211_MODE_11G; 1427 else if (IEEE80211_IS_CHAN_B(chan)) 1428 return IEEE80211_MODE_11B; 1429 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1430 return IEEE80211_MODE_FH; 1431 1432 /* NB: should not get here */ 1433 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1434 __func__, chan->ic_freq, chan->ic_flags); 1435 return IEEE80211_MODE_11B; 1436 } 1437 1438 struct ratemedia { 1439 u_int match; /* rate + mode */ 1440 u_int media; /* if_media rate */ 1441 }; 1442 1443 static int 1444 findmedia(const struct ratemedia rates[], int n, u_int match) 1445 { 1446 int i; 1447 1448 for (i = 0; i < n; i++) 1449 if (rates[i].match == match) 1450 return rates[i].media; 1451 return IFM_AUTO; 1452 } 1453 1454 /* 1455 * Convert IEEE80211 rate value to ifmedia subtype. 1456 * Rate is either a legacy rate in units of 0.5Mbps 1457 * or an MCS index. 1458 */ 1459 int 1460 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1461 { 1462 #define N(a) (sizeof(a) / sizeof(a[0])) 1463 static const struct ratemedia rates[] = { 1464 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1465 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1466 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1467 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1468 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1469 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1470 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1471 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1472 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1473 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1474 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1475 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1476 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1477 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1478 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1479 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1480 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1481 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1482 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1483 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1484 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1485 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1486 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1487 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1488 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1489 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1490 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1491 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1492 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1493 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1494 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1495 }; 1496 static const struct ratemedia htrates[] = { 1497 { 0, IFM_IEEE80211_MCS }, 1498 { 1, IFM_IEEE80211_MCS }, 1499 { 2, IFM_IEEE80211_MCS }, 1500 { 3, IFM_IEEE80211_MCS }, 1501 { 4, IFM_IEEE80211_MCS }, 1502 { 5, IFM_IEEE80211_MCS }, 1503 { 6, IFM_IEEE80211_MCS }, 1504 { 7, IFM_IEEE80211_MCS }, 1505 { 8, IFM_IEEE80211_MCS }, 1506 { 9, IFM_IEEE80211_MCS }, 1507 { 10, IFM_IEEE80211_MCS }, 1508 { 11, IFM_IEEE80211_MCS }, 1509 { 12, IFM_IEEE80211_MCS }, 1510 { 13, IFM_IEEE80211_MCS }, 1511 { 14, IFM_IEEE80211_MCS }, 1512 { 15, IFM_IEEE80211_MCS }, 1513 }; 1514 int m; 1515 1516 /* 1517 * Check 11n rates first for match as an MCS. 1518 */ 1519 if (mode == IEEE80211_MODE_11NA) { 1520 if (rate & IEEE80211_RATE_MCS) { 1521 rate &= ~IEEE80211_RATE_MCS; 1522 m = findmedia(htrates, N(htrates), rate); 1523 if (m != IFM_AUTO) 1524 return m | IFM_IEEE80211_11NA; 1525 } 1526 } else if (mode == IEEE80211_MODE_11NG) { 1527 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1528 if (rate & IEEE80211_RATE_MCS) { 1529 rate &= ~IEEE80211_RATE_MCS; 1530 m = findmedia(htrates, N(htrates), rate); 1531 if (m != IFM_AUTO) 1532 return m | IFM_IEEE80211_11NG; 1533 } 1534 } 1535 rate &= IEEE80211_RATE_VAL; 1536 switch (mode) { 1537 case IEEE80211_MODE_11A: 1538 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1539 case IEEE80211_MODE_QUARTER: 1540 case IEEE80211_MODE_11NA: 1541 case IEEE80211_MODE_TURBO_A: 1542 case IEEE80211_MODE_STURBO_A: 1543 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1544 case IEEE80211_MODE_11B: 1545 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1546 case IEEE80211_MODE_FH: 1547 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1548 case IEEE80211_MODE_AUTO: 1549 /* NB: ic may be NULL for some drivers */ 1550 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1551 return findmedia(rates, N(rates), 1552 rate | IFM_IEEE80211_FH); 1553 /* NB: hack, 11g matches both 11b+11a rates */ 1554 /* fall thru... */ 1555 case IEEE80211_MODE_11G: 1556 case IEEE80211_MODE_11NG: 1557 case IEEE80211_MODE_TURBO_G: 1558 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1559 } 1560 return IFM_AUTO; 1561 #undef N 1562 } 1563 1564 int 1565 ieee80211_media2rate(int mword) 1566 { 1567 #define N(a) (sizeof(a) / sizeof(a[0])) 1568 static const int ieeerates[] = { 1569 -1, /* IFM_AUTO */ 1570 0, /* IFM_MANUAL */ 1571 0, /* IFM_NONE */ 1572 2, /* IFM_IEEE80211_FH1 */ 1573 4, /* IFM_IEEE80211_FH2 */ 1574 2, /* IFM_IEEE80211_DS1 */ 1575 4, /* IFM_IEEE80211_DS2 */ 1576 11, /* IFM_IEEE80211_DS5 */ 1577 22, /* IFM_IEEE80211_DS11 */ 1578 44, /* IFM_IEEE80211_DS22 */ 1579 12, /* IFM_IEEE80211_OFDM6 */ 1580 18, /* IFM_IEEE80211_OFDM9 */ 1581 24, /* IFM_IEEE80211_OFDM12 */ 1582 36, /* IFM_IEEE80211_OFDM18 */ 1583 48, /* IFM_IEEE80211_OFDM24 */ 1584 72, /* IFM_IEEE80211_OFDM36 */ 1585 96, /* IFM_IEEE80211_OFDM48 */ 1586 108, /* IFM_IEEE80211_OFDM54 */ 1587 144, /* IFM_IEEE80211_OFDM72 */ 1588 0, /* IFM_IEEE80211_DS354k */ 1589 0, /* IFM_IEEE80211_DS512k */ 1590 6, /* IFM_IEEE80211_OFDM3 */ 1591 9, /* IFM_IEEE80211_OFDM4 */ 1592 54, /* IFM_IEEE80211_OFDM27 */ 1593 -1, /* IFM_IEEE80211_MCS */ 1594 }; 1595 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1596 ieeerates[IFM_SUBTYPE(mword)] : 0; 1597 #undef N 1598 } 1599 1600 /* 1601 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1602 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1603 */ 1604 #define mix(a, b, c) \ 1605 do { \ 1606 a -= b; a -= c; a ^= (c >> 13); \ 1607 b -= c; b -= a; b ^= (a << 8); \ 1608 c -= a; c -= b; c ^= (b >> 13); \ 1609 a -= b; a -= c; a ^= (c >> 12); \ 1610 b -= c; b -= a; b ^= (a << 16); \ 1611 c -= a; c -= b; c ^= (b >> 5); \ 1612 a -= b; a -= c; a ^= (c >> 3); \ 1613 b -= c; b -= a; b ^= (a << 10); \ 1614 c -= a; c -= b; c ^= (b >> 15); \ 1615 } while (/*CONSTCOND*/0) 1616 1617 uint32_t 1618 ieee80211_mac_hash(const struct ieee80211com *ic, 1619 const uint8_t addr[IEEE80211_ADDR_LEN]) 1620 { 1621 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1622 1623 b += addr[5] << 8; 1624 b += addr[4]; 1625 a += addr[3] << 24; 1626 a += addr[2] << 16; 1627 a += addr[1] << 8; 1628 a += addr[0]; 1629 1630 mix(a, b, c); 1631 1632 return c; 1633 } 1634 #undef mix 1635