xref: /freebsd/sys/net80211/ieee80211.c (revision 4e62c3cafa4c4e41efd6f87b7fe559cf819cf3e4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_private.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #include <net80211/ieee80211_ratectl.h>
58 #include <net80211/ieee80211_vht.h>
59 
60 #include <net/bpf.h>
61 
62 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
63 	[IEEE80211_MODE_AUTO]	  = "auto",
64 	[IEEE80211_MODE_11A]	  = "11a",
65 	[IEEE80211_MODE_11B]	  = "11b",
66 	[IEEE80211_MODE_11G]	  = "11g",
67 	[IEEE80211_MODE_FH]	  = "FH",
68 	[IEEE80211_MODE_TURBO_A]  = "turboA",
69 	[IEEE80211_MODE_TURBO_G]  = "turboG",
70 	[IEEE80211_MODE_STURBO_A] = "sturboA",
71 	[IEEE80211_MODE_HALF]	  = "half",
72 	[IEEE80211_MODE_QUARTER]  = "quarter",
73 	[IEEE80211_MODE_11NA]	  = "11na",
74 	[IEEE80211_MODE_11NG]	  = "11ng",
75 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
76 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
77 };
78 /* map ieee80211_opmode to the corresponding capability bit */
79 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
80 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
81 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
82 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
83 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
84 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
85 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
86 #ifdef IEEE80211_SUPPORT_MESH
87 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
88 #endif
89 };
90 
91 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
92 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
93 
94 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
95 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
98 static	int ieee80211_media_setup(struct ieee80211com *ic,
99 		struct ifmedia *media, int caps, int addsta,
100 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
101 static	int media_status(enum ieee80211_opmode,
102 		const struct ieee80211_channel *);
103 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
104 
105 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
106 
107 /*
108  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
109  */
110 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
111 static const struct ieee80211_rateset ieee80211_rateset_11a =
112 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
113 static const struct ieee80211_rateset ieee80211_rateset_half =
114 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
115 static const struct ieee80211_rateset ieee80211_rateset_quarter =
116 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
117 static const struct ieee80211_rateset ieee80211_rateset_11b =
118 	{ 4, { B(2), B(4), B(11), B(22) } };
119 /* NB: OFDM rates are handled specially based on mode */
120 static const struct ieee80211_rateset ieee80211_rateset_11g =
121 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
122 #undef B
123 
124 static int set_vht_extchan(struct ieee80211_channel *c);
125 
126 /*
127  * Fill in 802.11 available channel set, mark
128  * all available channels as active, and pick
129  * a default channel if not already specified.
130  */
131 void
132 ieee80211_chan_init(struct ieee80211com *ic)
133 {
134 #define	DEFAULTRATES(m, def) do { \
135 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
136 		ic->ic_sup_rates[m] = def; \
137 } while (0)
138 	struct ieee80211_channel *c;
139 	int i;
140 
141 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
142 		("invalid number of channels specified: %u", ic->ic_nchans));
143 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
144 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
145 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
146 	for (i = 0; i < ic->ic_nchans; i++) {
147 		c = &ic->ic_channels[i];
148 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
149 		/*
150 		 * Help drivers that work only with frequencies by filling
151 		 * in IEEE channel #'s if not already calculated.  Note this
152 		 * mimics similar work done in ieee80211_setregdomain when
153 		 * changing regulatory state.
154 		 */
155 		if (c->ic_ieee == 0)
156 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
157 
158 		/*
159 		 * Setup the HT40/VHT40 upper/lower bits.
160 		 * The VHT80/... math is done elsewhere.
161 		 */
162 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
163 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
164 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
165 			    c->ic_flags);
166 
167 		/* Update VHT math */
168 		/*
169 		 * XXX VHT again, note that this assumes VHT80/... channels
170 		 * are legit already.
171 		 */
172 		set_vht_extchan(c);
173 
174 		/* default max tx power to max regulatory */
175 		if (c->ic_maxpower == 0)
176 			c->ic_maxpower = 2*c->ic_maxregpower;
177 		setbit(ic->ic_chan_avail, c->ic_ieee);
178 		/*
179 		 * Identify mode capabilities.
180 		 */
181 		if (IEEE80211_IS_CHAN_A(c))
182 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
183 		if (IEEE80211_IS_CHAN_B(c))
184 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
185 		if (IEEE80211_IS_CHAN_ANYG(c))
186 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
187 		if (IEEE80211_IS_CHAN_FHSS(c))
188 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
189 		if (IEEE80211_IS_CHAN_108A(c))
190 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
191 		if (IEEE80211_IS_CHAN_108G(c))
192 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
193 		if (IEEE80211_IS_CHAN_ST(c))
194 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
195 		if (IEEE80211_IS_CHAN_HALF(c))
196 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
197 		if (IEEE80211_IS_CHAN_QUARTER(c))
198 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
199 		if (IEEE80211_IS_CHAN_HTA(c))
200 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
201 		if (IEEE80211_IS_CHAN_HTG(c))
202 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
203 		if (IEEE80211_IS_CHAN_VHTA(c))
204 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
205 		if (IEEE80211_IS_CHAN_VHTG(c))
206 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
207 	}
208 	/* initialize candidate channels to all available */
209 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
210 		sizeof(ic->ic_chan_avail));
211 
212 	/* sort channel table to allow lookup optimizations */
213 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
214 
215 	/* invalidate any previous state */
216 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
217 	ic->ic_prevchan = NULL;
218 	ic->ic_csa_newchan = NULL;
219 	/* arbitrarily pick the first channel */
220 	ic->ic_curchan = &ic->ic_channels[0];
221 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
222 
223 	/* fillin well-known rate sets if driver has not specified */
224 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
225 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
226 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
227 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
228 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
229 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
230 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
231 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
232 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
233 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
234 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
235 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
236 
237 	/*
238 	 * Setup required information to fill the mcsset field, if driver did
239 	 * not. Assume a 2T2R setup for historic reasons.
240 	 */
241 	if (ic->ic_rxstream == 0)
242 		ic->ic_rxstream = 2;
243 	if (ic->ic_txstream == 0)
244 		ic->ic_txstream = 2;
245 
246 	ieee80211_init_suphtrates(ic);
247 
248 	/*
249 	 * Set auto mode to reset active channel state and any desired channel.
250 	 */
251 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
252 #undef DEFAULTRATES
253 }
254 
255 static void
256 null_update_mcast(struct ieee80211com *ic)
257 {
258 
259 	ic_printf(ic, "need multicast update callback\n");
260 }
261 
262 static void
263 null_update_promisc(struct ieee80211com *ic)
264 {
265 
266 	ic_printf(ic, "need promiscuous mode update callback\n");
267 }
268 
269 static void
270 null_update_chw(struct ieee80211com *ic)
271 {
272 
273 	ic_printf(ic, "%s: need callback\n", __func__);
274 }
275 
276 int
277 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
278 {
279 	va_list ap;
280 	int retval;
281 
282 	retval = printf("%s: ", ic->ic_name);
283 	va_start(ap, fmt);
284 	retval += vprintf(fmt, ap);
285 	va_end(ap);
286 	return (retval);
287 }
288 
289 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
290 static struct mtx ic_list_mtx;
291 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
292 
293 static int
294 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
295 {
296 	struct ieee80211com *ic;
297 	struct sbuf sb;
298 	char *sp;
299 	int error;
300 
301 	error = sysctl_wire_old_buffer(req, 0);
302 	if (error)
303 		return (error);
304 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
305 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
306 	sp = "";
307 	mtx_lock(&ic_list_mtx);
308 	LIST_FOREACH(ic, &ic_head, ic_next) {
309 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
310 		sp = " ";
311 	}
312 	mtx_unlock(&ic_list_mtx);
313 	error = sbuf_finish(&sb);
314 	sbuf_delete(&sb);
315 	return (error);
316 }
317 
318 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
319     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
320     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
321 
322 /*
323  * Attach/setup the common net80211 state.  Called by
324  * the driver on attach to prior to creating any vap's.
325  */
326 void
327 ieee80211_ifattach(struct ieee80211com *ic)
328 {
329 
330 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
331 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
332 	TAILQ_INIT(&ic->ic_vaps);
333 
334 	/* Create a taskqueue for all state changes */
335 	ic->ic_tq = taskqueue_create("ic_taskq",
336 	    IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
337 	    taskqueue_thread_enqueue, &ic->ic_tq);
338 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
339 	    ic->ic_name);
340 	ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
341 	ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
342 	/*
343 	 * Fill in 802.11 available channel set, mark all
344 	 * available channels as active, and pick a default
345 	 * channel if not already specified.
346 	 */
347 	ieee80211_chan_init(ic);
348 
349 	ic->ic_update_mcast = null_update_mcast;
350 	ic->ic_update_promisc = null_update_promisc;
351 	ic->ic_update_chw = null_update_chw;
352 
353 	ic->ic_hash_key = arc4random();
354 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
355 	ic->ic_lintval = ic->ic_bintval;
356 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
357 
358 	ieee80211_crypto_attach(ic);
359 	ieee80211_node_attach(ic);
360 	ieee80211_power_attach(ic);
361 	ieee80211_proto_attach(ic);
362 #ifdef IEEE80211_SUPPORT_SUPERG
363 	ieee80211_superg_attach(ic);
364 #endif
365 	ieee80211_ht_attach(ic);
366 	ieee80211_vht_attach(ic);
367 	ieee80211_scan_attach(ic);
368 	ieee80211_regdomain_attach(ic);
369 	ieee80211_dfs_attach(ic);
370 
371 	ieee80211_sysctl_attach(ic);
372 
373 	mtx_lock(&ic_list_mtx);
374 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
375 	mtx_unlock(&ic_list_mtx);
376 }
377 
378 /*
379  * Detach net80211 state on device detach.  Tear down
380  * all vap's and reclaim all common state prior to the
381  * device state going away.  Note we may call back into
382  * driver; it must be prepared for this.
383  */
384 void
385 ieee80211_ifdetach(struct ieee80211com *ic)
386 {
387 	struct ieee80211vap *vap;
388 
389 	/*
390 	 * We use this as an indicator that ifattach never had a chance to be
391 	 * called, e.g. early driver attach failed and ifdetach was called
392 	 * during subsequent detach.  Never fear, for we have nothing to do
393 	 * here.
394 	 */
395 	if (ic->ic_tq == NULL)
396 		return;
397 
398 	mtx_lock(&ic_list_mtx);
399 	LIST_REMOVE(ic, ic_next);
400 	mtx_unlock(&ic_list_mtx);
401 
402 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
403 
404 	/*
405 	 * The VAP is responsible for setting and clearing
406 	 * the VIMAGE context.
407 	 */
408 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
409 		ieee80211_com_vdetach(vap);
410 		ieee80211_vap_destroy(vap);
411 	}
412 	ieee80211_waitfor_parent(ic);
413 
414 	ieee80211_sysctl_detach(ic);
415 	ieee80211_dfs_detach(ic);
416 	ieee80211_regdomain_detach(ic);
417 	ieee80211_scan_detach(ic);
418 #ifdef IEEE80211_SUPPORT_SUPERG
419 	ieee80211_superg_detach(ic);
420 #endif
421 	ieee80211_vht_detach(ic);
422 	ieee80211_ht_detach(ic);
423 	/* NB: must be called before ieee80211_node_detach */
424 	ieee80211_proto_detach(ic);
425 	ieee80211_crypto_detach(ic);
426 	ieee80211_power_detach(ic);
427 	ieee80211_node_detach(ic);
428 
429 	counter_u64_free(ic->ic_ierrors);
430 	counter_u64_free(ic->ic_oerrors);
431 
432 	taskqueue_free(ic->ic_tq);
433 	IEEE80211_TX_LOCK_DESTROY(ic);
434 	IEEE80211_LOCK_DESTROY(ic);
435 }
436 
437 /*
438  * Called by drivers during attach to set the supported
439  * cipher set for software encryption.
440  */
441 void
442 ieee80211_set_software_ciphers(struct ieee80211com *ic,
443     uint32_t cipher_suite)
444 {
445 	ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite);
446 }
447 
448 /*
449  * Called by drivers during attach to set the supported
450  * cipher set for hardware encryption.
451  */
452 void
453 ieee80211_set_hardware_ciphers(struct ieee80211com *ic,
454     uint32_t cipher_suite)
455 {
456 	ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite);
457 }
458 
459 /*
460  * Called by drivers during attach to set the supported
461  * key management suites by the driver/hardware.
462  */
463 void
464 ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic,
465     uint32_t keymgmt_set)
466 {
467 	ieee80211_crypto_set_supported_driver_keymgmt(ic,
468 	    keymgmt_set);
469 }
470 
471 struct ieee80211com *
472 ieee80211_find_com(const char *name)
473 {
474 	struct ieee80211com *ic;
475 
476 	mtx_lock(&ic_list_mtx);
477 	LIST_FOREACH(ic, &ic_head, ic_next)
478 		if (strcmp(ic->ic_name, name) == 0)
479 			break;
480 	mtx_unlock(&ic_list_mtx);
481 
482 	return (ic);
483 }
484 
485 void
486 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
487 {
488 	struct ieee80211com *ic;
489 
490 	mtx_lock(&ic_list_mtx);
491 	LIST_FOREACH(ic, &ic_head, ic_next)
492 		(*f)(arg, ic);
493 	mtx_unlock(&ic_list_mtx);
494 }
495 
496 /*
497  * Default reset method for use with the ioctl support.  This
498  * method is invoked after any state change in the 802.11
499  * layer that should be propagated to the hardware but not
500  * require re-initialization of the 802.11 state machine (e.g
501  * rescanning for an ap).  We always return ENETRESET which
502  * should cause the driver to re-initialize the device. Drivers
503  * can override this method to implement more optimized support.
504  */
505 static int
506 default_reset(struct ieee80211vap *vap, u_long cmd)
507 {
508 	return ENETRESET;
509 }
510 
511 /*
512  * Default for updating the VAP default TX key index.
513  *
514  * Drivers that support TX offload as well as hardware encryption offload
515  * may need to be informed of key index changes separate from the key
516  * update.
517  */
518 static void
519 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
520 {
521 
522 	/* XXX assert validity */
523 	/* XXX assert we're in a key update block */
524 	vap->iv_def_txkey = kid;
525 }
526 
527 /*
528  * Add underlying device errors to vap errors.
529  */
530 static uint64_t
531 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
532 {
533 	struct ieee80211vap *vap = ifp->if_softc;
534 	struct ieee80211com *ic = vap->iv_ic;
535 	uint64_t rv;
536 
537 	rv = if_get_counter_default(ifp, cnt);
538 	switch (cnt) {
539 	case IFCOUNTER_OERRORS:
540 		rv += counter_u64_fetch(ic->ic_oerrors);
541 		break;
542 	case IFCOUNTER_IERRORS:
543 		rv += counter_u64_fetch(ic->ic_ierrors);
544 		break;
545 	default:
546 		break;
547 	}
548 
549 	return (rv);
550 }
551 
552 /*
553  * Prepare a vap for use.  Drivers use this call to
554  * setup net80211 state in new vap's prior attaching
555  * them with ieee80211_vap_attach (below).
556  */
557 int
558 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
559     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
560     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
561 {
562 	struct ifnet *ifp;
563 
564 	ifp = if_alloc(IFT_ETHER);
565 	if_initname(ifp, name, unit);
566 	ifp->if_softc = vap;			/* back pointer */
567 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
568 	ifp->if_transmit = ieee80211_vap_transmit;
569 	ifp->if_qflush = ieee80211_vap_qflush;
570 	ifp->if_ioctl = ieee80211_ioctl;
571 	ifp->if_init = ieee80211_init;
572 	ifp->if_get_counter = ieee80211_get_counter;
573 
574 	vap->iv_ifp = ifp;
575 	vap->iv_ic = ic;
576 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
577 	vap->iv_flags_ext = ic->ic_flags_ext;
578 	vap->iv_flags_ven = ic->ic_flags_ven;
579 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
580 
581 	/* 11n capabilities - XXX methodize */
582 	vap->iv_htcaps = ic->ic_htcaps;
583 	vap->iv_htextcaps = ic->ic_htextcaps;
584 
585 	/* 11ac capabilities - XXX methodize */
586 	vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
587 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
588 
589 	vap->iv_opmode = opmode;
590 	vap->iv_caps |= ieee80211_opcap[opmode];
591 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
592 	switch (opmode) {
593 	case IEEE80211_M_WDS:
594 		/*
595 		 * WDS links must specify the bssid of the far end.
596 		 * For legacy operation this is a static relationship.
597 		 * For non-legacy operation the station must associate
598 		 * and be authorized to pass traffic.  Plumbing the
599 		 * vap to the proper node happens when the vap
600 		 * transitions to RUN state.
601 		 */
602 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
603 		vap->iv_flags |= IEEE80211_F_DESBSSID;
604 		if (flags & IEEE80211_CLONE_WDSLEGACY)
605 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
606 		break;
607 #ifdef IEEE80211_SUPPORT_TDMA
608 	case IEEE80211_M_AHDEMO:
609 		if (flags & IEEE80211_CLONE_TDMA) {
610 			/* NB: checked before clone operation allowed */
611 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
612 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
613 			/*
614 			 * Propagate TDMA capability to mark vap; this
615 			 * cannot be removed and is used to distinguish
616 			 * regular ahdemo operation from ahdemo+tdma.
617 			 */
618 			vap->iv_caps |= IEEE80211_C_TDMA;
619 		}
620 		break;
621 #endif
622 	default:
623 		break;
624 	}
625 	/* auto-enable s/w beacon miss support */
626 	if (flags & IEEE80211_CLONE_NOBEACONS)
627 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
628 	/* auto-generated or user supplied MAC address */
629 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
630 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
631 	/*
632 	 * Enable various functionality by default if we're
633 	 * capable; the driver can override us if it knows better.
634 	 */
635 	if (vap->iv_caps & IEEE80211_C_WME)
636 		vap->iv_flags |= IEEE80211_F_WME;
637 	if (vap->iv_caps & IEEE80211_C_BURST)
638 		vap->iv_flags |= IEEE80211_F_BURST;
639 	/* NB: bg scanning only makes sense for station mode right now */
640 	if (vap->iv_opmode == IEEE80211_M_STA &&
641 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
642 		vap->iv_flags |= IEEE80211_F_BGSCAN;
643 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
644 	/* NB: DFS support only makes sense for ap mode right now */
645 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
646 	    (vap->iv_caps & IEEE80211_C_DFS))
647 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
648 	/* NB: only flip on U-APSD for hostap/sta for now */
649 	if ((vap->iv_opmode == IEEE80211_M_STA)
650 	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
651 		if (vap->iv_caps & IEEE80211_C_UAPSD)
652 			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
653 	}
654 
655 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
656 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
657 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
658 	/*
659 	 * Install a default reset method for the ioctl support;
660 	 * the driver can override this.
661 	 */
662 	vap->iv_reset = default_reset;
663 
664 	/*
665 	 * Install a default crypto key update method, the driver
666 	 * can override this.
667 	 */
668 	vap->iv_update_deftxkey = default_update_deftxkey;
669 
670 	ieee80211_sysctl_vattach(vap);
671 	ieee80211_crypto_vattach(vap);
672 	ieee80211_node_vattach(vap);
673 	ieee80211_power_vattach(vap);
674 	ieee80211_proto_vattach(vap);
675 #ifdef IEEE80211_SUPPORT_SUPERG
676 	ieee80211_superg_vattach(vap);
677 #endif
678 	ieee80211_ht_vattach(vap);
679 	ieee80211_vht_vattach(vap);
680 	ieee80211_scan_vattach(vap);
681 	ieee80211_regdomain_vattach(vap);
682 	ieee80211_radiotap_vattach(vap);
683 	ieee80211_vap_reset_erp(vap);
684 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
685 
686 	return 0;
687 }
688 
689 /*
690  * Activate a vap.  State should have been prepared with a
691  * call to ieee80211_vap_setup and by the driver.  On return
692  * from this call the vap is ready for use.
693  */
694 int
695 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
696     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
697 {
698 	struct ifnet *ifp = vap->iv_ifp;
699 	struct ieee80211com *ic = vap->iv_ic;
700 	struct ifmediareq imr;
701 	int maxrate;
702 
703 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
704 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
705 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
706 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
707 
708 	/*
709 	 * Do late attach work that cannot happen until after
710 	 * the driver has had a chance to override defaults.
711 	 */
712 	ieee80211_node_latevattach(vap);
713 	ieee80211_power_latevattach(vap);
714 
715 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
716 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
717 	ieee80211_media_status(ifp, &imr);
718 	/* NB: strip explicit mode; we're actually in autoselect */
719 	ifmedia_set(&vap->iv_media,
720 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
721 	if (maxrate)
722 		ifp->if_baudrate = IF_Mbps(maxrate);
723 
724 	ether_ifattach(ifp, macaddr);
725 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
726 	/* hook output method setup by ether_ifattach */
727 	vap->iv_output = ifp->if_output;
728 	ifp->if_output = ieee80211_output;
729 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
730 
731 	IEEE80211_LOCK(ic);
732 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
733 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
734 #ifdef IEEE80211_SUPPORT_SUPERG
735 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
736 #endif
737 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
738 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
739 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
740 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
741 
742 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
743 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
744 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
745 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
746 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
747 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
748 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
749 	IEEE80211_UNLOCK(ic);
750 
751 	return 1;
752 }
753 
754 /*
755  * Tear down vap state and reclaim the ifnet.
756  * The driver is assumed to have prepared for
757  * this; e.g. by turning off interrupts for the
758  * underlying device.
759  */
760 void
761 ieee80211_vap_detach(struct ieee80211vap *vap)
762 {
763 	struct ieee80211com *ic = vap->iv_ic;
764 	struct ifnet *ifp = vap->iv_ifp;
765 	int i;
766 
767 	CURVNET_SET(ifp->if_vnet);
768 
769 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
770 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
771 
772 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
773 	ether_ifdetach(ifp);
774 
775 	ieee80211_stop(vap);
776 
777 	/*
778 	 * Flush any deferred vap tasks.
779 	 */
780 	for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
781 		ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
782 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
783 	ieee80211_draintask(ic, &vap->iv_wme_task);
784 	ieee80211_draintask(ic, &ic->ic_parent_task);
785 
786 	/* XXX band-aid until ifnet handles this for us */
787 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
788 
789 	IEEE80211_LOCK(ic);
790 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
791 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
792 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
793 #ifdef IEEE80211_SUPPORT_SUPERG
794 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
795 #endif
796 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
797 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
798 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
799 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
800 
801 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
802 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
803 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
804 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
805 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
806 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
807 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
808 
809 	/* NB: this handles the bpfdetach done below */
810 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
811 	if (vap->iv_ifflags & IFF_PROMISC)
812 		ieee80211_promisc(vap, false);
813 	if (vap->iv_ifflags & IFF_ALLMULTI)
814 		ieee80211_allmulti(vap, false);
815 	IEEE80211_UNLOCK(ic);
816 
817 	ifmedia_removeall(&vap->iv_media);
818 
819 	ieee80211_radiotap_vdetach(vap);
820 	ieee80211_regdomain_vdetach(vap);
821 	ieee80211_scan_vdetach(vap);
822 #ifdef IEEE80211_SUPPORT_SUPERG
823 	ieee80211_superg_vdetach(vap);
824 #endif
825 	ieee80211_vht_vdetach(vap);
826 	ieee80211_ht_vdetach(vap);
827 	/* NB: must be before ieee80211_node_vdetach */
828 	ieee80211_proto_vdetach(vap);
829 	ieee80211_crypto_vdetach(vap);
830 	ieee80211_power_vdetach(vap);
831 	ieee80211_node_vdetach(vap);
832 	ieee80211_sysctl_vdetach(vap);
833 
834 	if_free(ifp);
835 
836 	CURVNET_RESTORE();
837 }
838 
839 /*
840  * Count number of vaps in promisc, and issue promisc on
841  * parent respectively.
842  */
843 void
844 ieee80211_promisc(struct ieee80211vap *vap, bool on)
845 {
846 	struct ieee80211com *ic = vap->iv_ic;
847 
848 	IEEE80211_LOCK_ASSERT(ic);
849 
850 	if (on) {
851 		if (++ic->ic_promisc == 1)
852 			ieee80211_runtask(ic, &ic->ic_promisc_task);
853 	} else {
854 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
855 		    __func__, ic));
856 		if (--ic->ic_promisc == 0)
857 			ieee80211_runtask(ic, &ic->ic_promisc_task);
858 	}
859 }
860 
861 /*
862  * Count number of vaps in allmulti, and issue allmulti on
863  * parent respectively.
864  */
865 void
866 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
867 {
868 	struct ieee80211com *ic = vap->iv_ic;
869 
870 	IEEE80211_LOCK_ASSERT(ic);
871 
872 	if (on) {
873 		if (++ic->ic_allmulti == 1)
874 			ieee80211_runtask(ic, &ic->ic_mcast_task);
875 	} else {
876 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
877 		    __func__, ic));
878 		if (--ic->ic_allmulti == 0)
879 			ieee80211_runtask(ic, &ic->ic_mcast_task);
880 	}
881 }
882 
883 /*
884  * Synchronize flag bit state in the com structure
885  * according to the state of all vap's.  This is used,
886  * for example, to handle state changes via ioctls.
887  */
888 static void
889 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
890 {
891 	struct ieee80211vap *vap;
892 	int bit;
893 
894 	IEEE80211_LOCK_ASSERT(ic);
895 
896 	bit = 0;
897 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
898 		if (vap->iv_flags & flag) {
899 			bit = 1;
900 			break;
901 		}
902 	if (bit)
903 		ic->ic_flags |= flag;
904 	else
905 		ic->ic_flags &= ~flag;
906 }
907 
908 void
909 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
910 {
911 	struct ieee80211com *ic = vap->iv_ic;
912 
913 	IEEE80211_LOCK(ic);
914 	if (flag < 0) {
915 		flag = -flag;
916 		vap->iv_flags &= ~flag;
917 	} else
918 		vap->iv_flags |= flag;
919 	ieee80211_syncflag_locked(ic, flag);
920 	IEEE80211_UNLOCK(ic);
921 }
922 
923 /*
924  * Synchronize flags_ht bit state in the com structure
925  * according to the state of all vap's.  This is used,
926  * for example, to handle state changes via ioctls.
927  */
928 static void
929 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
930 {
931 	struct ieee80211vap *vap;
932 	int bit;
933 
934 	IEEE80211_LOCK_ASSERT(ic);
935 
936 	bit = 0;
937 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
938 		if (vap->iv_flags_ht & flag) {
939 			bit = 1;
940 			break;
941 		}
942 	if (bit)
943 		ic->ic_flags_ht |= flag;
944 	else
945 		ic->ic_flags_ht &= ~flag;
946 }
947 
948 void
949 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
950 {
951 	struct ieee80211com *ic = vap->iv_ic;
952 
953 	IEEE80211_LOCK(ic);
954 	if (flag < 0) {
955 		flag = -flag;
956 		vap->iv_flags_ht &= ~flag;
957 	} else
958 		vap->iv_flags_ht |= flag;
959 	ieee80211_syncflag_ht_locked(ic, flag);
960 	IEEE80211_UNLOCK(ic);
961 }
962 
963 /*
964  * Synchronize flags_vht bit state in the com structure
965  * according to the state of all vap's.  This is used,
966  * for example, to handle state changes via ioctls.
967  */
968 static void
969 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
970 {
971 	struct ieee80211vap *vap;
972 	int bit;
973 
974 	IEEE80211_LOCK_ASSERT(ic);
975 
976 	bit = 0;
977 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
978 		if (vap->iv_vht_flags & flag) {
979 			bit = 1;
980 			break;
981 		}
982 	if (bit)
983 		ic->ic_vht_flags |= flag;
984 	else
985 		ic->ic_vht_flags &= ~flag;
986 }
987 
988 void
989 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
990 {
991 	struct ieee80211com *ic = vap->iv_ic;
992 
993 	IEEE80211_LOCK(ic);
994 	if (flag < 0) {
995 		flag = -flag;
996 		vap->iv_vht_flags &= ~flag;
997 	} else
998 		vap->iv_vht_flags |= flag;
999 	ieee80211_syncflag_vht_locked(ic, flag);
1000 	IEEE80211_UNLOCK(ic);
1001 }
1002 
1003 /*
1004  * Synchronize flags_ext bit state in the com structure
1005  * according to the state of all vap's.  This is used,
1006  * for example, to handle state changes via ioctls.
1007  */
1008 static void
1009 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
1010 {
1011 	struct ieee80211vap *vap;
1012 	int bit;
1013 
1014 	IEEE80211_LOCK_ASSERT(ic);
1015 
1016 	bit = 0;
1017 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1018 		if (vap->iv_flags_ext & flag) {
1019 			bit = 1;
1020 			break;
1021 		}
1022 	if (bit)
1023 		ic->ic_flags_ext |= flag;
1024 	else
1025 		ic->ic_flags_ext &= ~flag;
1026 }
1027 
1028 void
1029 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
1030 {
1031 	struct ieee80211com *ic = vap->iv_ic;
1032 
1033 	IEEE80211_LOCK(ic);
1034 	if (flag < 0) {
1035 		flag = -flag;
1036 		vap->iv_flags_ext &= ~flag;
1037 	} else
1038 		vap->iv_flags_ext |= flag;
1039 	ieee80211_syncflag_ext_locked(ic, flag);
1040 	IEEE80211_UNLOCK(ic);
1041 }
1042 
1043 static __inline int
1044 mapgsm(u_int freq, u_int flags)
1045 {
1046 	freq *= 10;
1047 	if (flags & IEEE80211_CHAN_QUARTER)
1048 		freq += 5;
1049 	else if (flags & IEEE80211_CHAN_HALF)
1050 		freq += 10;
1051 	else
1052 		freq += 20;
1053 	/* NB: there is no 907/20 wide but leave room */
1054 	return (freq - 906*10) / 5;
1055 }
1056 
1057 static __inline int
1058 mappsb(u_int freq, u_int flags)
1059 {
1060 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1061 }
1062 
1063 /*
1064  * Convert MHz frequency to IEEE channel number.
1065  */
1066 int
1067 ieee80211_mhz2ieee(u_int freq, u_int flags)
1068 {
1069 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1070 	if (flags & IEEE80211_CHAN_GSM)
1071 		return mapgsm(freq, flags);
1072 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1073 		if (freq == 2484)
1074 			return 14;
1075 		if (freq < 2484)
1076 			return ((int) freq - 2407) / 5;
1077 		else
1078 			return 15 + ((freq - 2512) / 20);
1079 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1080 		if (freq <= 5000) {
1081 			/* XXX check regdomain? */
1082 			if (IS_FREQ_IN_PSB(freq))
1083 				return mappsb(freq, flags);
1084 			return (freq - 4000) / 5;
1085 		} else
1086 			return (freq - 5000) / 5;
1087 	} else {				/* either, guess */
1088 		if (freq == 2484)
1089 			return 14;
1090 		if (freq < 2484) {
1091 			if (907 <= freq && freq <= 922)
1092 				return mapgsm(freq, flags);
1093 			return ((int) freq - 2407) / 5;
1094 		}
1095 		if (freq < 5000) {
1096 			if (IS_FREQ_IN_PSB(freq))
1097 				return mappsb(freq, flags);
1098 			else if (freq > 4900)
1099 				return (freq - 4000) / 5;
1100 			else
1101 				return 15 + ((freq - 2512) / 20);
1102 		}
1103 		return (freq - 5000) / 5;
1104 	}
1105 #undef IS_FREQ_IN_PSB
1106 }
1107 
1108 /*
1109  * Convert channel to IEEE channel number.
1110  */
1111 int
1112 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1113 {
1114 	if (c == NULL) {
1115 		ic_printf(ic, "invalid channel (NULL)\n");
1116 		return 0;		/* XXX */
1117 	}
1118 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1119 }
1120 
1121 /*
1122  * Convert IEEE channel number to MHz frequency.
1123  */
1124 u_int
1125 ieee80211_ieee2mhz(u_int chan, u_int flags)
1126 {
1127 	if (flags & IEEE80211_CHAN_GSM)
1128 		return 907 + 5 * (chan / 10);
1129 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1130 		if (chan == 14)
1131 			return 2484;
1132 		if (chan < 14)
1133 			return 2407 + chan*5;
1134 		else
1135 			return 2512 + ((chan-15)*20);
1136 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1137 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1138 			chan -= 37;
1139 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1140 		}
1141 		return 5000 + (chan*5);
1142 	} else {				/* either, guess */
1143 		/* XXX can't distinguish PSB+GSM channels */
1144 		if (chan == 14)
1145 			return 2484;
1146 		if (chan < 14)			/* 0-13 */
1147 			return 2407 + chan*5;
1148 		if (chan < 27)			/* 15-26 */
1149 			return 2512 + ((chan-15)*20);
1150 		return 5000 + (chan*5);
1151 	}
1152 }
1153 
1154 static __inline void
1155 set_extchan(struct ieee80211_channel *c)
1156 {
1157 
1158 	/*
1159 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1160 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1161 	 */
1162 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1163 		c->ic_extieee = c->ic_ieee + 4;
1164 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1165 		c->ic_extieee = c->ic_ieee - 4;
1166 	else
1167 		c->ic_extieee = 0;
1168 }
1169 
1170 /*
1171  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1172  *
1173  * This for now uses a hard-coded list of 80MHz wide channels.
1174  *
1175  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1176  * wide channel we've already decided upon.
1177  *
1178  * For VHT80 and VHT160, there are only a small number of fixed
1179  * 80/160MHz wide channels, so we just use those.
1180  *
1181  * This is all likely very very wrong - both the regulatory code
1182  * and this code needs to ensure that all four channels are
1183  * available and valid before the VHT80 (and eight for VHT160) channel
1184  * is created.
1185  */
1186 
1187 struct vht_chan_range {
1188 	uint16_t freq_start;
1189 	uint16_t freq_end;
1190 };
1191 
1192 struct vht_chan_range vht80_chan_ranges[] = {
1193 	{ 5170, 5250 },
1194 	{ 5250, 5330 },
1195 	{ 5490, 5570 },
1196 	{ 5570, 5650 },
1197 	{ 5650, 5730 },
1198 	{ 5735, 5815 },
1199 	{ 0, 0 }
1200 };
1201 
1202 struct vht_chan_range vht160_chan_ranges[] = {
1203 	{ 5170, 5330 },
1204 	{ 5490, 5650 },
1205 	{ 0, 0 }
1206 };
1207 
1208 static int
1209 set_vht_extchan(struct ieee80211_channel *c)
1210 {
1211 	int i;
1212 
1213 	if (! IEEE80211_IS_CHAN_VHT(c))
1214 		return (0);
1215 
1216 	if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1217 		printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1218 		    __func__, c->ic_ieee, c->ic_flags);
1219 	}
1220 
1221 	if (IEEE80211_IS_CHAN_VHT160(c)) {
1222 		for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1223 			if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1224 			    c->ic_freq < vht160_chan_ranges[i].freq_end) {
1225 				int midpoint;
1226 
1227 				midpoint = vht160_chan_ranges[i].freq_start + 80;
1228 				c->ic_vht_ch_freq1 =
1229 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1230 				c->ic_vht_ch_freq2 = 0;
1231 #if 0
1232 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1233 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1234 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1235 #endif
1236 				return (1);
1237 			}
1238 		}
1239 		return (0);
1240 	}
1241 
1242 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1243 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1244 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1245 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1246 				int midpoint;
1247 
1248 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1249 				c->ic_vht_ch_freq1 =
1250 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1251 				c->ic_vht_ch_freq2 = 0;
1252 #if 0
1253 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1254 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1255 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1256 #endif
1257 				return (1);
1258 			}
1259 		}
1260 		return (0);
1261 	}
1262 
1263 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1264 		if (IEEE80211_IS_CHAN_HT40U(c))
1265 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1266 		else if (IEEE80211_IS_CHAN_HT40D(c))
1267 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1268 		else
1269 			return (0);
1270 		return (1);
1271 	}
1272 
1273 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1274 		c->ic_vht_ch_freq1 = c->ic_ieee;
1275 		return (1);
1276 	}
1277 
1278 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1279 	    __func__, c->ic_ieee, c->ic_flags);
1280 
1281 	return (0);
1282 }
1283 
1284 /*
1285  * Return whether the current channel could possibly be a part of
1286  * a VHT80/VHT160 channel.
1287  *
1288  * This doesn't check that the whole range is in the allowed list
1289  * according to regulatory.
1290  */
1291 static bool
1292 is_vht160_valid_freq(uint16_t freq)
1293 {
1294 	int i;
1295 
1296 	for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1297 		if (freq >= vht160_chan_ranges[i].freq_start &&
1298 		    freq < vht160_chan_ranges[i].freq_end)
1299 			return (true);
1300 	}
1301 	return (false);
1302 }
1303 
1304 static int
1305 is_vht80_valid_freq(uint16_t freq)
1306 {
1307 	int i;
1308 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1309 		if (freq >= vht80_chan_ranges[i].freq_start &&
1310 		    freq < vht80_chan_ranges[i].freq_end)
1311 			return (1);
1312 	}
1313 	return (0);
1314 }
1315 
1316 static int
1317 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1318     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1319 {
1320 	struct ieee80211_channel *c;
1321 
1322 	if (*nchans >= maxchans)
1323 		return (ENOBUFS);
1324 
1325 #if 0
1326 	printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1327 	    __func__, *nchans, maxchans, ieee, freq, flags);
1328 #endif
1329 
1330 	c = &chans[(*nchans)++];
1331 	c->ic_ieee = ieee;
1332 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1333 	c->ic_maxregpower = maxregpower;
1334 	c->ic_maxpower = 2 * maxregpower;
1335 	c->ic_flags = flags;
1336 	c->ic_vht_ch_freq1 = 0;
1337 	c->ic_vht_ch_freq2 = 0;
1338 	set_extchan(c);
1339 	set_vht_extchan(c);
1340 
1341 	return (0);
1342 }
1343 
1344 static int
1345 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1346     uint32_t flags)
1347 {
1348 	struct ieee80211_channel *c;
1349 
1350 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1351 
1352 	if (*nchans >= maxchans)
1353 		return (ENOBUFS);
1354 
1355 #if 0
1356 	printf("%s: %d of %d: flags=0x%08x\n",
1357 	    __func__, *nchans, maxchans, flags);
1358 #endif
1359 
1360 	c = &chans[(*nchans)++];
1361 	c[0] = c[-1];
1362 	c->ic_flags = flags;
1363 	c->ic_vht_ch_freq1 = 0;
1364 	c->ic_vht_ch_freq2 = 0;
1365 	set_extchan(c);
1366 	set_vht_extchan(c);
1367 
1368 	return (0);
1369 }
1370 
1371 /*
1372  * XXX VHT-2GHz
1373  */
1374 static void
1375 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1376 {
1377 	int nmodes;
1378 
1379 	nmodes = 0;
1380 	if (isset(bands, IEEE80211_MODE_11B))
1381 		flags[nmodes++] = IEEE80211_CHAN_B;
1382 	if (isset(bands, IEEE80211_MODE_11G))
1383 		flags[nmodes++] = IEEE80211_CHAN_G;
1384 	if (isset(bands, IEEE80211_MODE_11NG))
1385 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1386 	if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1387 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1388 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1389 	}
1390 	flags[nmodes] = 0;
1391 }
1392 
1393 static void
1394 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1395 {
1396 	int nmodes;
1397 
1398 	/*
1399 	 * The addchan_list() function seems to expect the flags array to
1400 	 * be in channel width order, so the VHT bits are interspersed
1401 	 * as appropriate to maintain said order.
1402 	 *
1403 	 * It also assumes HT40U is before HT40D.
1404 	 */
1405 	nmodes = 0;
1406 
1407 	/* 20MHz */
1408 	if (isset(bands, IEEE80211_MODE_11A))
1409 		flags[nmodes++] = IEEE80211_CHAN_A;
1410 	if (isset(bands, IEEE80211_MODE_11NA))
1411 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1412 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1413 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1414 		    IEEE80211_CHAN_VHT20;
1415 	}
1416 
1417 	/* 40MHz */
1418 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1419 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1420 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1421 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1422 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1423 		    IEEE80211_CHAN_VHT40U;
1424 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1425 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1426 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1427 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1428 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1429 		    IEEE80211_CHAN_VHT40D;
1430 
1431 	/* 80MHz */
1432 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1433 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1434 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1435 		    IEEE80211_CHAN_VHT80;
1436 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1437 		    IEEE80211_CHAN_VHT80;
1438 	}
1439 
1440 	/* VHT160 */
1441 	if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1442 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1443 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1444 		    IEEE80211_CHAN_VHT160;
1445 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1446 		    IEEE80211_CHAN_VHT160;
1447 	}
1448 
1449 	/* VHT80+80 */
1450 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1451 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1452 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1453 		    IEEE80211_CHAN_VHT80P80;
1454 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1455 		    IEEE80211_CHAN_VHT80P80;
1456 	}
1457 
1458 	flags[nmodes] = 0;
1459 }
1460 
1461 static void
1462 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1463 {
1464 
1465 	flags[0] = 0;
1466 	if (isset(bands, IEEE80211_MODE_11A) ||
1467 	    isset(bands, IEEE80211_MODE_11NA) ||
1468 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1469 		if (isset(bands, IEEE80211_MODE_11B) ||
1470 		    isset(bands, IEEE80211_MODE_11G) ||
1471 		    isset(bands, IEEE80211_MODE_11NG) ||
1472 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1473 			return;
1474 
1475 		getflags_5ghz(bands, flags, cbw_flags);
1476 	} else
1477 		getflags_2ghz(bands, flags, cbw_flags);
1478 }
1479 
1480 /*
1481  * Add one 20 MHz channel into specified channel list.
1482  * You MUST NOT mix bands when calling this.  It will not add 5ghz
1483  * channels if you have any B/G/N band bit set.
1484  * The _cbw() variant does also support HT40/VHT80/160/80+80.
1485  */
1486 int
1487 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1488     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1489     uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1490 {
1491 	uint32_t flags[IEEE80211_MODE_MAX];
1492 	int i, error;
1493 
1494 	getflags(bands, flags, cbw_flags);
1495 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1496 
1497 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1498 	    flags[0] | chan_flags);
1499 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1500 		error = copychan_prev(chans, maxchans, nchans,
1501 		    flags[i] | chan_flags);
1502 	}
1503 
1504 	return (error);
1505 }
1506 
1507 int
1508 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1509     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1510     uint32_t chan_flags, const uint8_t bands[])
1511 {
1512 
1513 	return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1514 	    maxregpower, chan_flags, bands, 0));
1515 }
1516 
1517 static struct ieee80211_channel *
1518 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1519     uint32_t flags)
1520 {
1521 	struct ieee80211_channel *c;
1522 	int i;
1523 
1524 	flags &= IEEE80211_CHAN_ALLTURBO;
1525 	/* brute force search */
1526 	for (i = 0; i < nchans; i++) {
1527 		c = &chans[i];
1528 		if (c->ic_freq == freq &&
1529 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1530 			return c;
1531 	}
1532 	return NULL;
1533 }
1534 
1535 /*
1536  * Add 40 MHz channel pair into specified channel list.
1537  */
1538 /* XXX VHT */
1539 int
1540 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1541     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1542 {
1543 	struct ieee80211_channel *cent, *extc;
1544 	uint16_t freq;
1545 	int error;
1546 
1547 	freq = ieee80211_ieee2mhz(ieee, flags);
1548 
1549 	/*
1550 	 * Each entry defines an HT40 channel pair; find the
1551 	 * center channel, then the extension channel above.
1552 	 */
1553 	flags |= IEEE80211_CHAN_HT20;
1554 	cent = findchannel(chans, *nchans, freq, flags);
1555 	if (cent == NULL)
1556 		return (EINVAL);
1557 
1558 	extc = findchannel(chans, *nchans, freq + 20, flags);
1559 	if (extc == NULL)
1560 		return (ENOENT);
1561 
1562 	flags &= ~IEEE80211_CHAN_HT;
1563 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1564 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1565 	if (error != 0)
1566 		return (error);
1567 
1568 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1569 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1570 
1571 	return (error);
1572 }
1573 
1574 /*
1575  * Fetch the center frequency for the primary channel.
1576  */
1577 uint32_t
1578 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1579 {
1580 
1581 	return (c->ic_freq);
1582 }
1583 
1584 /*
1585  * Fetch the center frequency for the primary BAND channel.
1586  *
1587  * For 5, 10, 20MHz channels it'll be the normally configured channel
1588  * frequency.
1589  *
1590  * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1591  * wide channel, not the centre of the primary channel (that's ic_freq).
1592  *
1593  * For 80+80MHz channels this will be the centre of the primary
1594  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1595  */
1596 uint32_t
1597 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1598 {
1599 
1600 	/*
1601 	 * VHT - use the pre-calculated centre frequency
1602 	 * of the given channel.
1603 	 */
1604 	if (IEEE80211_IS_CHAN_VHT(c))
1605 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1606 
1607 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1608 		return (c->ic_freq + 10);
1609 	}
1610 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1611 		return (c->ic_freq - 10);
1612 	}
1613 
1614 	return (c->ic_freq);
1615 }
1616 
1617 /*
1618  * For now, no 80+80 support; it will likely always return 0.
1619  */
1620 uint32_t
1621 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1622 {
1623 
1624 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1625 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1626 
1627 	return (0);
1628 }
1629 
1630 /*
1631  * Adds channels into specified channel list (ieee[] array must be sorted).
1632  * Channels are already sorted.
1633  */
1634 static int
1635 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1636     const uint8_t ieee[], int nieee, uint32_t flags[])
1637 {
1638 	uint16_t freq;
1639 	int i, j, error;
1640 	int is_vht;
1641 
1642 	for (i = 0; i < nieee; i++) {
1643 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1644 		for (j = 0; flags[j] != 0; j++) {
1645 			/*
1646 			 * Notes:
1647 			 * + HT40 and VHT40 channels occur together, so
1648 			 *   we need to be careful that we actually allow that.
1649 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1650 			 *   make sure it's not skipped because of the overlap
1651 			 *   check used for (V)HT40.
1652 			 */
1653 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1654 
1655 			/* XXX TODO FIXME VHT80P80. */
1656 
1657 			/* Test for VHT160 analogue to the VHT80 below. */
1658 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1659 				if (! is_vht160_valid_freq(freq))
1660 					continue;
1661 
1662 			/*
1663 			 * Test for VHT80.
1664 			 * XXX This is all very broken right now.
1665 			 * What we /should/ do is:
1666 			 *
1667 			 * + check that the frequency is in the list of
1668 			 *   allowed VHT80 ranges; and
1669 			 * + the other 3 channels in the list are actually
1670 			 *   also available.
1671 			 */
1672 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1673 				if (! is_vht80_valid_freq(freq))
1674 					continue;
1675 
1676 			/*
1677 			 * Test for (V)HT40.
1678 			 *
1679 			 * This is also a fall through from VHT80; as we only
1680 			 * allow a VHT80 channel if the VHT40 combination is
1681 			 * also valid.  If the VHT40 form is not valid then
1682 			 * we certainly can't do VHT80..
1683 			 */
1684 			if (flags[j] & IEEE80211_CHAN_HT40D)
1685 				/*
1686 				 * Can't have a "lower" channel if we are the
1687 				 * first channel.
1688 				 *
1689 				 * Can't have a "lower" channel if it's below/
1690 				 * within 20MHz of the first channel.
1691 				 *
1692 				 * Can't have a "lower" channel if the channel
1693 				 * below it is not 20MHz away.
1694 				 */
1695 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1696 				    freq - 20 !=
1697 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1698 					continue;
1699 			if (flags[j] & IEEE80211_CHAN_HT40U)
1700 				/*
1701 				 * Can't have an "upper" channel if we are
1702 				 * the last channel.
1703 				 *
1704 				 * Can't have an "upper" channel be above the
1705 				 * last channel in the list.
1706 				 *
1707 				 * Can't have an "upper" channel if the next
1708 				 * channel according to the math isn't 20MHz
1709 				 * away.  (Likely for channel 13/14.)
1710 				 */
1711 				if (i == nieee - 1 ||
1712 				    ieee[i] + 4 > ieee[nieee - 1] ||
1713 				    freq + 20 !=
1714 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1715 					continue;
1716 
1717 			if (j == 0) {
1718 				error = addchan(chans, maxchans, nchans,
1719 				    ieee[i], freq, 0, flags[j]);
1720 			} else {
1721 				error = copychan_prev(chans, maxchans, nchans,
1722 				    flags[j]);
1723 			}
1724 			if (error != 0)
1725 				return (error);
1726 		}
1727 	}
1728 
1729 	return (0);
1730 }
1731 
1732 int
1733 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1734     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1735     int cbw_flags)
1736 {
1737 	uint32_t flags[IEEE80211_MODE_MAX];
1738 
1739 	/* XXX no VHT for now */
1740 	getflags_2ghz(bands, flags, cbw_flags);
1741 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1742 
1743 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1744 }
1745 
1746 int
1747 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1748     int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1749 {
1750 	const uint8_t default_chan_list[] =
1751 	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1752 
1753 	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1754 	    default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1755 }
1756 
1757 int
1758 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1759     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1760     int cbw_flags)
1761 {
1762 	/*
1763 	 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
1764 	 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1765 	 */
1766 	uint32_t flags[2 * IEEE80211_MODE_MAX];
1767 
1768 	getflags_5ghz(bands, flags, cbw_flags);
1769 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1770 
1771 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1772 }
1773 
1774 /*
1775  * Locate a channel given a frequency+flags.  We cache
1776  * the previous lookup to optimize switching between two
1777  * channels--as happens with dynamic turbo.
1778  */
1779 struct ieee80211_channel *
1780 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1781 {
1782 	struct ieee80211_channel *c;
1783 
1784 	flags &= IEEE80211_CHAN_ALLTURBO;
1785 	c = ic->ic_prevchan;
1786 	if (c != NULL && c->ic_freq == freq &&
1787 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1788 		return c;
1789 	/* brute force search */
1790 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1791 }
1792 
1793 /*
1794  * Locate a channel given a channel number+flags.  We cache
1795  * the previous lookup to optimize switching between two
1796  * channels--as happens with dynamic turbo.
1797  */
1798 struct ieee80211_channel *
1799 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1800 {
1801 	struct ieee80211_channel *c;
1802 	int i;
1803 
1804 	flags &= IEEE80211_CHAN_ALLTURBO;
1805 	c = ic->ic_prevchan;
1806 	if (c != NULL && c->ic_ieee == ieee &&
1807 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1808 		return c;
1809 	/* brute force search */
1810 	for (i = 0; i < ic->ic_nchans; i++) {
1811 		c = &ic->ic_channels[i];
1812 		if (c->ic_ieee == ieee &&
1813 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1814 			return c;
1815 	}
1816 	return NULL;
1817 }
1818 
1819 /*
1820  * Lookup a channel suitable for the given rx status.
1821  *
1822  * This is used to find a channel for a frame (eg beacon, probe
1823  * response) based purely on the received PHY information.
1824  *
1825  * For now it tries to do it based on R_FREQ / R_IEEE.
1826  * This is enough for 11bg and 11a (and thus 11ng/11na)
1827  * but it will not be enough for GSM, PSB channels and the
1828  * like.  It also doesn't know about legacy-turbog and
1829  * legacy-turbo modes, which some offload NICs actually
1830  * support in weird ways.
1831  *
1832  * Takes the ic and rxstatus; returns the channel or NULL
1833  * if not found.
1834  *
1835  * XXX TODO: Add support for that when the need arises.
1836  */
1837 struct ieee80211_channel *
1838 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1839     const struct ieee80211_rx_stats *rxs)
1840 {
1841 	struct ieee80211com *ic = vap->iv_ic;
1842 	uint32_t flags;
1843 	struct ieee80211_channel *c;
1844 
1845 	if (rxs == NULL)
1846 		return (NULL);
1847 
1848 	/*
1849 	 * Strictly speaking we only use freq for now,
1850 	 * however later on we may wish to just store
1851 	 * the ieee for verification.
1852 	 */
1853 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1854 		return (NULL);
1855 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1856 		return (NULL);
1857 	if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1858 		return (NULL);
1859 
1860 	/*
1861 	 * If the rx status contains a valid ieee/freq, then
1862 	 * ensure we populate the correct channel information
1863 	 * in rxchan before passing it up to the scan infrastructure.
1864 	 * Offload NICs will pass up beacons from all channels
1865 	 * during background scans.
1866 	 */
1867 
1868 	/* Determine a band */
1869 	switch (rxs->c_band) {
1870 	case IEEE80211_CHAN_2GHZ:
1871 		flags = IEEE80211_CHAN_G;
1872 		break;
1873 	case IEEE80211_CHAN_5GHZ:
1874 		flags = IEEE80211_CHAN_A;
1875 		break;
1876 	default:
1877 		if (rxs->c_freq < 3000) {
1878 			flags = IEEE80211_CHAN_G;
1879 		} else {
1880 			flags = IEEE80211_CHAN_A;
1881 		}
1882 		break;
1883 	}
1884 
1885 	/* Channel lookup */
1886 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1887 
1888 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1889 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1890 	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1891 
1892 	return (c);
1893 }
1894 
1895 static void
1896 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1897 {
1898 #define	ADD(_ic, _s, _o) \
1899 	ifmedia_add(media, \
1900 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1901 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1902 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1903 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1904 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1905 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1906 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1907 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1908 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1909 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1910 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1911 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1912 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1913 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1914 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1915 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1916 	};
1917 	u_int mopt;
1918 
1919 	mopt = mopts[mode];
1920 	if (addsta)
1921 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1922 	if (caps & IEEE80211_C_IBSS)
1923 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1924 	if (caps & IEEE80211_C_HOSTAP)
1925 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1926 	if (caps & IEEE80211_C_AHDEMO)
1927 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1928 	if (caps & IEEE80211_C_MONITOR)
1929 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1930 	if (caps & IEEE80211_C_WDS)
1931 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1932 	if (caps & IEEE80211_C_MBSS)
1933 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1934 #undef ADD
1935 }
1936 
1937 /*
1938  * Setup the media data structures according to the channel and
1939  * rate tables.
1940  */
1941 static int
1942 ieee80211_media_setup(struct ieee80211com *ic,
1943 	struct ifmedia *media, int caps, int addsta,
1944 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1945 {
1946 	int i, j, rate, maxrate, mword, r;
1947 	enum ieee80211_phymode mode;
1948 	const struct ieee80211_rateset *rs;
1949 	struct ieee80211_rateset allrates;
1950 
1951 	/*
1952 	 * Fill in media characteristics.
1953 	 */
1954 	ifmedia_init(media, 0, media_change, media_stat);
1955 	maxrate = 0;
1956 	/*
1957 	 * Add media for legacy operating modes.
1958 	 */
1959 	memset(&allrates, 0, sizeof(allrates));
1960 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1961 		if (isclr(ic->ic_modecaps, mode))
1962 			continue;
1963 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1964 		if (mode == IEEE80211_MODE_AUTO)
1965 			continue;
1966 		rs = &ic->ic_sup_rates[mode];
1967 		for (i = 0; i < rs->rs_nrates; i++) {
1968 			rate = rs->rs_rates[i];
1969 			mword = ieee80211_rate2media(ic, rate, mode);
1970 			if (mword == 0)
1971 				continue;
1972 			addmedia(media, caps, addsta, mode, mword);
1973 			/*
1974 			 * Add legacy rate to the collection of all rates.
1975 			 */
1976 			r = rate & IEEE80211_RATE_VAL;
1977 			for (j = 0; j < allrates.rs_nrates; j++)
1978 				if (allrates.rs_rates[j] == r)
1979 					break;
1980 			if (j == allrates.rs_nrates) {
1981 				/* unique, add to the set */
1982 				allrates.rs_rates[j] = r;
1983 				allrates.rs_nrates++;
1984 			}
1985 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1986 			if (rate > maxrate)
1987 				maxrate = rate;
1988 		}
1989 	}
1990 	for (i = 0; i < allrates.rs_nrates; i++) {
1991 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1992 				IEEE80211_MODE_AUTO);
1993 		if (mword == 0)
1994 			continue;
1995 		/* NB: remove media options from mword */
1996 		addmedia(media, caps, addsta,
1997 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1998 	}
1999 	/*
2000 	 * Add HT/11n media.  Note that we do not have enough
2001 	 * bits in the media subtype to express the MCS so we
2002 	 * use a "placeholder" media subtype and any fixed MCS
2003 	 * must be specified with a different mechanism.
2004 	 */
2005 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
2006 		if (isclr(ic->ic_modecaps, mode))
2007 			continue;
2008 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2009 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
2010 	}
2011 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
2012 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
2013 		addmedia(media, caps, addsta,
2014 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
2015 		i = ic->ic_txstream * 8 - 1;
2016 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2017 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
2018 			rate = ieee80211_htrates[i].ht40_rate_400ns;
2019 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
2020 			rate = ieee80211_htrates[i].ht40_rate_800ns;
2021 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
2022 			rate = ieee80211_htrates[i].ht20_rate_400ns;
2023 		else
2024 			rate = ieee80211_htrates[i].ht20_rate_800ns;
2025 		if (rate > maxrate)
2026 			maxrate = rate;
2027 	}
2028 
2029 	/*
2030 	 * Add VHT media.
2031 	 * XXX-BZ skip "VHT_2GHZ" for now.
2032 	 */
2033 	for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
2034 	    mode++) {
2035 		if (isclr(ic->ic_modecaps, mode))
2036 			continue;
2037 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2038 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2039 	}
2040 	if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2041 	       addmedia(media, caps, addsta,
2042 		   IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2043 
2044 		/* XXX TODO: VHT maxrate */
2045 	}
2046 
2047 	return maxrate;
2048 }
2049 
2050 /* XXX inline or eliminate? */
2051 const struct ieee80211_rateset *
2052 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2053 {
2054 	/* XXX does this work for 11ng basic rates? */
2055 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2056 }
2057 
2058 /* XXX inline or eliminate? */
2059 const struct ieee80211_htrateset *
2060 ieee80211_get_suphtrates(struct ieee80211com *ic,
2061     const struct ieee80211_channel *c)
2062 {
2063 	return &ic->ic_sup_htrates;
2064 }
2065 
2066 void
2067 ieee80211_announce(struct ieee80211com *ic)
2068 {
2069 	int i, rate, mword;
2070 	enum ieee80211_phymode mode;
2071 	const struct ieee80211_rateset *rs;
2072 
2073 	/* NB: skip AUTO since it has no rates */
2074 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2075 		if (isclr(ic->ic_modecaps, mode))
2076 			continue;
2077 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2078 		rs = &ic->ic_sup_rates[mode];
2079 		for (i = 0; i < rs->rs_nrates; i++) {
2080 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
2081 			if (mword == 0)
2082 				continue;
2083 			rate = ieee80211_media2rate(mword);
2084 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
2085 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2086 		}
2087 		printf("\n");
2088 	}
2089 	ieee80211_ht_announce(ic);
2090 	ieee80211_vht_announce(ic);
2091 }
2092 
2093 void
2094 ieee80211_announce_channels(struct ieee80211com *ic)
2095 {
2096 	const struct ieee80211_channel *c;
2097 	char type;
2098 	int i, cw;
2099 
2100 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
2101 	for (i = 0; i < ic->ic_nchans; i++) {
2102 		c = &ic->ic_channels[i];
2103 		if (IEEE80211_IS_CHAN_ST(c))
2104 			type = 'S';
2105 		else if (IEEE80211_IS_CHAN_108A(c))
2106 			type = 'T';
2107 		else if (IEEE80211_IS_CHAN_108G(c))
2108 			type = 'G';
2109 		else if (IEEE80211_IS_CHAN_HT(c))
2110 			type = 'n';
2111 		else if (IEEE80211_IS_CHAN_A(c))
2112 			type = 'a';
2113 		else if (IEEE80211_IS_CHAN_ANYG(c))
2114 			type = 'g';
2115 		else if (IEEE80211_IS_CHAN_B(c))
2116 			type = 'b';
2117 		else
2118 			type = 'f';
2119 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2120 			cw = 40;
2121 		else if (IEEE80211_IS_CHAN_HALF(c))
2122 			cw = 10;
2123 		else if (IEEE80211_IS_CHAN_QUARTER(c))
2124 			cw = 5;
2125 		else
2126 			cw = 20;
2127 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2128 			, c->ic_ieee, c->ic_freq, type
2129 			, cw
2130 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2131 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2132 			, c->ic_maxregpower
2133 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2134 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2135 		);
2136 	}
2137 }
2138 
2139 static int
2140 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2141 {
2142 	switch (IFM_MODE(ime->ifm_media)) {
2143 	case IFM_IEEE80211_11A:
2144 		*mode = IEEE80211_MODE_11A;
2145 		break;
2146 	case IFM_IEEE80211_11B:
2147 		*mode = IEEE80211_MODE_11B;
2148 		break;
2149 	case IFM_IEEE80211_11G:
2150 		*mode = IEEE80211_MODE_11G;
2151 		break;
2152 	case IFM_IEEE80211_FH:
2153 		*mode = IEEE80211_MODE_FH;
2154 		break;
2155 	case IFM_IEEE80211_11NA:
2156 		*mode = IEEE80211_MODE_11NA;
2157 		break;
2158 	case IFM_IEEE80211_11NG:
2159 		*mode = IEEE80211_MODE_11NG;
2160 		break;
2161 	case IFM_IEEE80211_VHT2G:
2162 		*mode = IEEE80211_MODE_VHT_2GHZ;
2163 		break;
2164 	case IFM_IEEE80211_VHT5G:
2165 		*mode = IEEE80211_MODE_VHT_5GHZ;
2166 		break;
2167 	case IFM_AUTO:
2168 		*mode = IEEE80211_MODE_AUTO;
2169 		break;
2170 	default:
2171 		return 0;
2172 	}
2173 	/*
2174 	 * Turbo mode is an ``option''.
2175 	 * XXX does not apply to AUTO
2176 	 */
2177 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2178 		if (*mode == IEEE80211_MODE_11A) {
2179 			if (flags & IEEE80211_F_TURBOP)
2180 				*mode = IEEE80211_MODE_TURBO_A;
2181 			else
2182 				*mode = IEEE80211_MODE_STURBO_A;
2183 		} else if (*mode == IEEE80211_MODE_11G)
2184 			*mode = IEEE80211_MODE_TURBO_G;
2185 		else
2186 			return 0;
2187 	}
2188 	/* XXX HT40 +/- */
2189 	return 1;
2190 }
2191 
2192 /*
2193  * Handle a media change request on the vap interface.
2194  */
2195 int
2196 ieee80211_media_change(struct ifnet *ifp)
2197 {
2198 	struct ieee80211vap *vap = ifp->if_softc;
2199 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2200 	uint16_t newmode;
2201 
2202 	if (!media2mode(ime, vap->iv_flags, &newmode))
2203 		return EINVAL;
2204 	if (vap->iv_des_mode != newmode) {
2205 		vap->iv_des_mode = newmode;
2206 		/* XXX kick state machine if up+running */
2207 	}
2208 	return 0;
2209 }
2210 
2211 /*
2212  * Common code to calculate the media status word
2213  * from the operating mode and channel state.
2214  */
2215 static int
2216 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2217 {
2218 	int status;
2219 
2220 	status = IFM_IEEE80211;
2221 	switch (opmode) {
2222 	case IEEE80211_M_STA:
2223 		break;
2224 	case IEEE80211_M_IBSS:
2225 		status |= IFM_IEEE80211_ADHOC;
2226 		break;
2227 	case IEEE80211_M_HOSTAP:
2228 		status |= IFM_IEEE80211_HOSTAP;
2229 		break;
2230 	case IEEE80211_M_MONITOR:
2231 		status |= IFM_IEEE80211_MONITOR;
2232 		break;
2233 	case IEEE80211_M_AHDEMO:
2234 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2235 		break;
2236 	case IEEE80211_M_WDS:
2237 		status |= IFM_IEEE80211_WDS;
2238 		break;
2239 	case IEEE80211_M_MBSS:
2240 		status |= IFM_IEEE80211_MBSS;
2241 		break;
2242 	}
2243 	if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2244 		status |= IFM_IEEE80211_VHT5G;
2245 	} else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2246 		status |= IFM_IEEE80211_VHT2G;
2247 	} else if (IEEE80211_IS_CHAN_HTA(chan)) {
2248 		status |= IFM_IEEE80211_11NA;
2249 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2250 		status |= IFM_IEEE80211_11NG;
2251 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2252 		status |= IFM_IEEE80211_11A;
2253 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2254 		status |= IFM_IEEE80211_11B;
2255 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2256 		status |= IFM_IEEE80211_11G;
2257 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2258 		status |= IFM_IEEE80211_FH;
2259 	}
2260 	/* XXX else complain? */
2261 
2262 	if (IEEE80211_IS_CHAN_TURBO(chan))
2263 		status |= IFM_IEEE80211_TURBO;
2264 #if 0
2265 	if (IEEE80211_IS_CHAN_HT20(chan))
2266 		status |= IFM_IEEE80211_HT20;
2267 	if (IEEE80211_IS_CHAN_HT40(chan))
2268 		status |= IFM_IEEE80211_HT40;
2269 #endif
2270 	return status;
2271 }
2272 
2273 void
2274 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2275 {
2276 	struct ieee80211vap *vap = ifp->if_softc;
2277 	struct ieee80211com *ic = vap->iv_ic;
2278 	enum ieee80211_phymode mode;
2279 
2280 	imr->ifm_status = IFM_AVALID;
2281 	/*
2282 	 * NB: use the current channel's mode to lock down a xmit
2283 	 * rate only when running; otherwise we may have a mismatch
2284 	 * in which case the rate will not be convertible.
2285 	 */
2286 	if (vap->iv_state == IEEE80211_S_RUN ||
2287 	    vap->iv_state == IEEE80211_S_SLEEP) {
2288 		imr->ifm_status |= IFM_ACTIVE;
2289 		mode = ieee80211_chan2mode(ic->ic_curchan);
2290 	} else
2291 		mode = IEEE80211_MODE_AUTO;
2292 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2293 	/*
2294 	 * Calculate a current rate if possible.
2295 	 */
2296 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2297 		/*
2298 		 * A fixed rate is set, report that.
2299 		 */
2300 		imr->ifm_active |= ieee80211_rate2media(ic,
2301 			vap->iv_txparms[mode].ucastrate, mode);
2302 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2303 		/*
2304 		 * In station mode report the current transmit rate.
2305 		 */
2306 		imr->ifm_active |= ieee80211_rate2media(ic,
2307 			vap->iv_bss->ni_txrate, mode);
2308 	} else
2309 		imr->ifm_active |= IFM_AUTO;
2310 	if (imr->ifm_status & IFM_ACTIVE)
2311 		imr->ifm_current = imr->ifm_active;
2312 }
2313 
2314 /*
2315  * Set the current phy mode and recalculate the active channel
2316  * set based on the available channels for this mode.  Also
2317  * select a new default/current channel if the current one is
2318  * inappropriate for this mode.
2319  */
2320 int
2321 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2322 {
2323 	/*
2324 	 * Adjust basic rates in 11b/11g supported rate set.
2325 	 * Note that if operating on a hal/quarter rate channel
2326 	 * this is a noop as those rates sets are different
2327 	 * and used instead.
2328 	 */
2329 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2330 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2331 
2332 	ic->ic_curmode = mode;
2333 	ieee80211_reset_erp(ic);	/* reset global ERP state */
2334 
2335 	return 0;
2336 }
2337 
2338 /*
2339  * Return the phy mode for with the specified channel.
2340  */
2341 enum ieee80211_phymode
2342 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2343 {
2344 
2345 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2346 		return IEEE80211_MODE_VHT_2GHZ;
2347 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2348 		return IEEE80211_MODE_VHT_5GHZ;
2349 	else if (IEEE80211_IS_CHAN_HTA(chan))
2350 		return IEEE80211_MODE_11NA;
2351 	else if (IEEE80211_IS_CHAN_HTG(chan))
2352 		return IEEE80211_MODE_11NG;
2353 	else if (IEEE80211_IS_CHAN_108G(chan))
2354 		return IEEE80211_MODE_TURBO_G;
2355 	else if (IEEE80211_IS_CHAN_ST(chan))
2356 		return IEEE80211_MODE_STURBO_A;
2357 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2358 		return IEEE80211_MODE_TURBO_A;
2359 	else if (IEEE80211_IS_CHAN_HALF(chan))
2360 		return IEEE80211_MODE_HALF;
2361 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2362 		return IEEE80211_MODE_QUARTER;
2363 	else if (IEEE80211_IS_CHAN_A(chan))
2364 		return IEEE80211_MODE_11A;
2365 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2366 		return IEEE80211_MODE_11G;
2367 	else if (IEEE80211_IS_CHAN_B(chan))
2368 		return IEEE80211_MODE_11B;
2369 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2370 		return IEEE80211_MODE_FH;
2371 
2372 	/* NB: should not get here */
2373 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2374 		__func__, chan->ic_freq, chan->ic_flags);
2375 	return IEEE80211_MODE_11B;
2376 }
2377 
2378 struct ratemedia {
2379 	u_int	match;	/* rate + mode */
2380 	u_int	media;	/* if_media rate */
2381 };
2382 
2383 static int
2384 findmedia(const struct ratemedia rates[], int n, u_int match)
2385 {
2386 	int i;
2387 
2388 	for (i = 0; i < n; i++)
2389 		if (rates[i].match == match)
2390 			return rates[i].media;
2391 	return IFM_AUTO;
2392 }
2393 
2394 /*
2395  * Convert IEEE80211 rate value to ifmedia subtype.
2396  * Rate is either a legacy rate in units of 0.5Mbps
2397  * or an MCS index.
2398  */
2399 int
2400 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2401 {
2402 	static const struct ratemedia rates[] = {
2403 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2404 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2405 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2406 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2407 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2408 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2409 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2410 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2411 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2412 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2413 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2414 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2415 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2416 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2417 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2418 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2419 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2420 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2421 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2422 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2423 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2424 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2425 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2426 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2427 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2428 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2429 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2430 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2431 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2432 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2433 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2434 	};
2435 	static const struct ratemedia htrates[] = {
2436 		{   0, IFM_IEEE80211_MCS },
2437 		{   1, IFM_IEEE80211_MCS },
2438 		{   2, IFM_IEEE80211_MCS },
2439 		{   3, IFM_IEEE80211_MCS },
2440 		{   4, IFM_IEEE80211_MCS },
2441 		{   5, IFM_IEEE80211_MCS },
2442 		{   6, IFM_IEEE80211_MCS },
2443 		{   7, IFM_IEEE80211_MCS },
2444 		{   8, IFM_IEEE80211_MCS },
2445 		{   9, IFM_IEEE80211_MCS },
2446 		{  10, IFM_IEEE80211_MCS },
2447 		{  11, IFM_IEEE80211_MCS },
2448 		{  12, IFM_IEEE80211_MCS },
2449 		{  13, IFM_IEEE80211_MCS },
2450 		{  14, IFM_IEEE80211_MCS },
2451 		{  15, IFM_IEEE80211_MCS },
2452 		{  16, IFM_IEEE80211_MCS },
2453 		{  17, IFM_IEEE80211_MCS },
2454 		{  18, IFM_IEEE80211_MCS },
2455 		{  19, IFM_IEEE80211_MCS },
2456 		{  20, IFM_IEEE80211_MCS },
2457 		{  21, IFM_IEEE80211_MCS },
2458 		{  22, IFM_IEEE80211_MCS },
2459 		{  23, IFM_IEEE80211_MCS },
2460 		{  24, IFM_IEEE80211_MCS },
2461 		{  25, IFM_IEEE80211_MCS },
2462 		{  26, IFM_IEEE80211_MCS },
2463 		{  27, IFM_IEEE80211_MCS },
2464 		{  28, IFM_IEEE80211_MCS },
2465 		{  29, IFM_IEEE80211_MCS },
2466 		{  30, IFM_IEEE80211_MCS },
2467 		{  31, IFM_IEEE80211_MCS },
2468 		{  32, IFM_IEEE80211_MCS },
2469 		{  33, IFM_IEEE80211_MCS },
2470 		{  34, IFM_IEEE80211_MCS },
2471 		{  35, IFM_IEEE80211_MCS },
2472 		{  36, IFM_IEEE80211_MCS },
2473 		{  37, IFM_IEEE80211_MCS },
2474 		{  38, IFM_IEEE80211_MCS },
2475 		{  39, IFM_IEEE80211_MCS },
2476 		{  40, IFM_IEEE80211_MCS },
2477 		{  41, IFM_IEEE80211_MCS },
2478 		{  42, IFM_IEEE80211_MCS },
2479 		{  43, IFM_IEEE80211_MCS },
2480 		{  44, IFM_IEEE80211_MCS },
2481 		{  45, IFM_IEEE80211_MCS },
2482 		{  46, IFM_IEEE80211_MCS },
2483 		{  47, IFM_IEEE80211_MCS },
2484 		{  48, IFM_IEEE80211_MCS },
2485 		{  49, IFM_IEEE80211_MCS },
2486 		{  50, IFM_IEEE80211_MCS },
2487 		{  51, IFM_IEEE80211_MCS },
2488 		{  52, IFM_IEEE80211_MCS },
2489 		{  53, IFM_IEEE80211_MCS },
2490 		{  54, IFM_IEEE80211_MCS },
2491 		{  55, IFM_IEEE80211_MCS },
2492 		{  56, IFM_IEEE80211_MCS },
2493 		{  57, IFM_IEEE80211_MCS },
2494 		{  58, IFM_IEEE80211_MCS },
2495 		{  59, IFM_IEEE80211_MCS },
2496 		{  60, IFM_IEEE80211_MCS },
2497 		{  61, IFM_IEEE80211_MCS },
2498 		{  62, IFM_IEEE80211_MCS },
2499 		{  63, IFM_IEEE80211_MCS },
2500 		{  64, IFM_IEEE80211_MCS },
2501 		{  65, IFM_IEEE80211_MCS },
2502 		{  66, IFM_IEEE80211_MCS },
2503 		{  67, IFM_IEEE80211_MCS },
2504 		{  68, IFM_IEEE80211_MCS },
2505 		{  69, IFM_IEEE80211_MCS },
2506 		{  70, IFM_IEEE80211_MCS },
2507 		{  71, IFM_IEEE80211_MCS },
2508 		{  72, IFM_IEEE80211_MCS },
2509 		{  73, IFM_IEEE80211_MCS },
2510 		{  74, IFM_IEEE80211_MCS },
2511 		{  75, IFM_IEEE80211_MCS },
2512 		{  76, IFM_IEEE80211_MCS },
2513 	};
2514 	static const struct ratemedia vhtrates[] = {
2515 		{   0, IFM_IEEE80211_VHT },
2516 		{   1, IFM_IEEE80211_VHT },
2517 		{   2, IFM_IEEE80211_VHT },
2518 		{   3, IFM_IEEE80211_VHT },
2519 		{   4, IFM_IEEE80211_VHT },
2520 		{   5, IFM_IEEE80211_VHT },
2521 		{   6, IFM_IEEE80211_VHT },
2522 		{   7, IFM_IEEE80211_VHT },
2523 		{   8, IFM_IEEE80211_VHT },	/* Optional. */
2524 		{   9, IFM_IEEE80211_VHT },	/* Optional. */
2525 #if 0
2526 		/* Some QCA and BRCM seem to support this; offspec. */
2527 		{  10, IFM_IEEE80211_VHT },
2528 		{  11, IFM_IEEE80211_VHT },
2529 #endif
2530 	};
2531 	int m;
2532 
2533 	/*
2534 	 * Check 11ac/11n rates first for match as an MCS.
2535 	 */
2536 	if (mode == IEEE80211_MODE_VHT_5GHZ) {
2537 		if (rate & IFM_IEEE80211_VHT) {
2538 			rate &= ~IFM_IEEE80211_VHT;
2539 			m = findmedia(vhtrates, nitems(vhtrates), rate);
2540 			if (m != IFM_AUTO)
2541 				return (m | IFM_IEEE80211_VHT);
2542 		}
2543 	} else if (mode == IEEE80211_MODE_11NA) {
2544 		if (rate & IEEE80211_RATE_MCS) {
2545 			rate &= ~IEEE80211_RATE_MCS;
2546 			m = findmedia(htrates, nitems(htrates), rate);
2547 			if (m != IFM_AUTO)
2548 				return m | IFM_IEEE80211_11NA;
2549 		}
2550 	} else if (mode == IEEE80211_MODE_11NG) {
2551 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2552 		if (rate & IEEE80211_RATE_MCS) {
2553 			rate &= ~IEEE80211_RATE_MCS;
2554 			m = findmedia(htrates, nitems(htrates), rate);
2555 			if (m != IFM_AUTO)
2556 				return m | IFM_IEEE80211_11NG;
2557 		}
2558 	}
2559 	rate &= IEEE80211_RATE_VAL;
2560 	switch (mode) {
2561 	case IEEE80211_MODE_11A:
2562 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2563 	case IEEE80211_MODE_QUARTER:
2564 	case IEEE80211_MODE_11NA:
2565 	case IEEE80211_MODE_TURBO_A:
2566 	case IEEE80211_MODE_STURBO_A:
2567 		return findmedia(rates, nitems(rates),
2568 		    rate | IFM_IEEE80211_11A);
2569 	case IEEE80211_MODE_11B:
2570 		return findmedia(rates, nitems(rates),
2571 		    rate | IFM_IEEE80211_11B);
2572 	case IEEE80211_MODE_FH:
2573 		return findmedia(rates, nitems(rates),
2574 		    rate | IFM_IEEE80211_FH);
2575 	case IEEE80211_MODE_AUTO:
2576 		/* NB: ic may be NULL for some drivers */
2577 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2578 			return findmedia(rates, nitems(rates),
2579 			    rate | IFM_IEEE80211_FH);
2580 		/* NB: hack, 11g matches both 11b+11a rates */
2581 		/* fall thru... */
2582 	case IEEE80211_MODE_11G:
2583 	case IEEE80211_MODE_11NG:
2584 	case IEEE80211_MODE_TURBO_G:
2585 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2586 	case IEEE80211_MODE_VHT_2GHZ:
2587 	case IEEE80211_MODE_VHT_5GHZ:
2588 		/* XXX TODO: need to figure out mapping for VHT rates */
2589 		return IFM_AUTO;
2590 	}
2591 	return IFM_AUTO;
2592 }
2593 
2594 int
2595 ieee80211_media2rate(int mword)
2596 {
2597 	static const int ieeerates[] = {
2598 		-1,		/* IFM_AUTO */
2599 		0,		/* IFM_MANUAL */
2600 		0,		/* IFM_NONE */
2601 		2,		/* IFM_IEEE80211_FH1 */
2602 		4,		/* IFM_IEEE80211_FH2 */
2603 		2,		/* IFM_IEEE80211_DS1 */
2604 		4,		/* IFM_IEEE80211_DS2 */
2605 		11,		/* IFM_IEEE80211_DS5 */
2606 		22,		/* IFM_IEEE80211_DS11 */
2607 		44,		/* IFM_IEEE80211_DS22 */
2608 		12,		/* IFM_IEEE80211_OFDM6 */
2609 		18,		/* IFM_IEEE80211_OFDM9 */
2610 		24,		/* IFM_IEEE80211_OFDM12 */
2611 		36,		/* IFM_IEEE80211_OFDM18 */
2612 		48,		/* IFM_IEEE80211_OFDM24 */
2613 		72,		/* IFM_IEEE80211_OFDM36 */
2614 		96,		/* IFM_IEEE80211_OFDM48 */
2615 		108,		/* IFM_IEEE80211_OFDM54 */
2616 		144,		/* IFM_IEEE80211_OFDM72 */
2617 		0,		/* IFM_IEEE80211_DS354k */
2618 		0,		/* IFM_IEEE80211_DS512k */
2619 		6,		/* IFM_IEEE80211_OFDM3 */
2620 		9,		/* IFM_IEEE80211_OFDM4 */
2621 		54,		/* IFM_IEEE80211_OFDM27 */
2622 		-1,		/* IFM_IEEE80211_MCS */
2623 		-1,		/* IFM_IEEE80211_VHT */
2624 	};
2625 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2626 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2627 }
2628 
2629 /*
2630  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2631  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2632  */
2633 #define	mix(a, b, c)							\
2634 do {									\
2635 	a -= b; a -= c; a ^= (c >> 13);					\
2636 	b -= c; b -= a; b ^= (a << 8);					\
2637 	c -= a; c -= b; c ^= (b >> 13);					\
2638 	a -= b; a -= c; a ^= (c >> 12);					\
2639 	b -= c; b -= a; b ^= (a << 16);					\
2640 	c -= a; c -= b; c ^= (b >> 5);					\
2641 	a -= b; a -= c; a ^= (c >> 3);					\
2642 	b -= c; b -= a; b ^= (a << 10);					\
2643 	c -= a; c -= b; c ^= (b >> 15);					\
2644 } while (/*CONSTCOND*/0)
2645 
2646 uint32_t
2647 ieee80211_mac_hash(const struct ieee80211com *ic,
2648 	const uint8_t addr[IEEE80211_ADDR_LEN])
2649 {
2650 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2651 
2652 	b += addr[5] << 8;
2653 	b += addr[4];
2654 	a += addr[3] << 24;
2655 	a += addr[2] << 16;
2656 	a += addr[1] << 8;
2657 	a += addr[0];
2658 
2659 	mix(a, b, c);
2660 
2661 	return c;
2662 }
2663 #undef mix
2664 
2665 char
2666 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2667 {
2668 	if (IEEE80211_IS_CHAN_ST(c))
2669 		return 'S';
2670 	if (IEEE80211_IS_CHAN_108A(c))
2671 		return 'T';
2672 	if (IEEE80211_IS_CHAN_108G(c))
2673 		return 'G';
2674 	if (IEEE80211_IS_CHAN_VHT(c))
2675 		return 'v';
2676 	if (IEEE80211_IS_CHAN_HT(c))
2677 		return 'n';
2678 	if (IEEE80211_IS_CHAN_A(c))
2679 		return 'a';
2680 	if (IEEE80211_IS_CHAN_ANYG(c))
2681 		return 'g';
2682 	if (IEEE80211_IS_CHAN_B(c))
2683 		return 'b';
2684 	return 'f';
2685 }
2686 
2687 /*
2688  * Determine whether the given key in the given VAP is a global key.
2689  * (key index 0..3, shared between all stations on a VAP.)
2690  *
2691  * This is either a WEP key or a GROUP key.
2692  *
2693  * Note this will NOT return true if it is a IGTK key.
2694  */
2695 bool
2696 ieee80211_is_key_global(const struct ieee80211vap *vap,
2697     const struct ieee80211_key *key)
2698 {
2699 	return (&vap->iv_nw_keys[0] <= key &&
2700 	    key < &vap->iv_nw_keys[IEEE80211_WEP_NKID]);
2701 }
2702 
2703 /*
2704  * Determine whether the given key in the given VAP is a unicast key.
2705  */
2706 bool
2707 ieee80211_is_key_unicast(const struct ieee80211vap *vap,
2708     const struct ieee80211_key *key)
2709 {
2710 	/*
2711 	 * This is a short-cut for now; eventually we will need
2712 	 * to support multiple unicast keys, IGTK, etc) so we
2713 	 * will absolutely need to fix the key flags.
2714 	 */
2715 	return (!ieee80211_is_key_global(vap, key));
2716 }
2717