xref: /freebsd/sys/net80211/ieee80211.c (revision 38f0b757fd84d17d0fc24739a7cda160c4516d81)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_var.h>
43 #include <net/if_dl.h>
44 #include <net/if_media.h>
45 #include <net/if_types.h>
46 #include <net/ethernet.h>
47 
48 #include <net80211/ieee80211_var.h>
49 #include <net80211/ieee80211_regdomain.h>
50 #ifdef IEEE80211_SUPPORT_SUPERG
51 #include <net80211/ieee80211_superg.h>
52 #endif
53 #include <net80211/ieee80211_ratectl.h>
54 
55 #include <net/bpf.h>
56 
57 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
58 	[IEEE80211_MODE_AUTO]	  = "auto",
59 	[IEEE80211_MODE_11A]	  = "11a",
60 	[IEEE80211_MODE_11B]	  = "11b",
61 	[IEEE80211_MODE_11G]	  = "11g",
62 	[IEEE80211_MODE_FH]	  = "FH",
63 	[IEEE80211_MODE_TURBO_A]  = "turboA",
64 	[IEEE80211_MODE_TURBO_G]  = "turboG",
65 	[IEEE80211_MODE_STURBO_A] = "sturboA",
66 	[IEEE80211_MODE_HALF]	  = "half",
67 	[IEEE80211_MODE_QUARTER]  = "quarter",
68 	[IEEE80211_MODE_11NA]	  = "11na",
69 	[IEEE80211_MODE_11NG]	  = "11ng",
70 };
71 /* map ieee80211_opmode to the corresponding capability bit */
72 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
73 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
74 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
75 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
76 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
77 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
78 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
79 #ifdef IEEE80211_SUPPORT_MESH
80 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
81 #endif
82 };
83 
84 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
85 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
86 
87 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
88 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
89 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
90 static	int ieee80211_media_setup(struct ieee80211com *ic,
91 		struct ifmedia *media, int caps, int addsta,
92 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
93 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
94 static	int ieee80211com_media_change(struct ifnet *);
95 static	int media_status(enum ieee80211_opmode,
96 		const struct ieee80211_channel *);
97 
98 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
99 
100 /*
101  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
102  */
103 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
104 static const struct ieee80211_rateset ieee80211_rateset_11a =
105 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
106 static const struct ieee80211_rateset ieee80211_rateset_half =
107 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
108 static const struct ieee80211_rateset ieee80211_rateset_quarter =
109 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
110 static const struct ieee80211_rateset ieee80211_rateset_11b =
111 	{ 4, { B(2), B(4), B(11), B(22) } };
112 /* NB: OFDM rates are handled specially based on mode */
113 static const struct ieee80211_rateset ieee80211_rateset_11g =
114 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
115 #undef B
116 
117 /*
118  * Fill in 802.11 available channel set, mark
119  * all available channels as active, and pick
120  * a default channel if not already specified.
121  */
122 static void
123 ieee80211_chan_init(struct ieee80211com *ic)
124 {
125 #define	DEFAULTRATES(m, def) do { \
126 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
127 		ic->ic_sup_rates[m] = def; \
128 } while (0)
129 	struct ieee80211_channel *c;
130 	int i;
131 
132 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
133 		("invalid number of channels specified: %u", ic->ic_nchans));
134 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
135 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
136 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
137 	for (i = 0; i < ic->ic_nchans; i++) {
138 		c = &ic->ic_channels[i];
139 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
140 		/*
141 		 * Help drivers that work only with frequencies by filling
142 		 * in IEEE channel #'s if not already calculated.  Note this
143 		 * mimics similar work done in ieee80211_setregdomain when
144 		 * changing regulatory state.
145 		 */
146 		if (c->ic_ieee == 0)
147 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
148 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
149 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
150 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
151 			    c->ic_flags);
152 		/* default max tx power to max regulatory */
153 		if (c->ic_maxpower == 0)
154 			c->ic_maxpower = 2*c->ic_maxregpower;
155 		setbit(ic->ic_chan_avail, c->ic_ieee);
156 		/*
157 		 * Identify mode capabilities.
158 		 */
159 		if (IEEE80211_IS_CHAN_A(c))
160 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
161 		if (IEEE80211_IS_CHAN_B(c))
162 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
163 		if (IEEE80211_IS_CHAN_ANYG(c))
164 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
165 		if (IEEE80211_IS_CHAN_FHSS(c))
166 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
167 		if (IEEE80211_IS_CHAN_108A(c))
168 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
169 		if (IEEE80211_IS_CHAN_108G(c))
170 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
171 		if (IEEE80211_IS_CHAN_ST(c))
172 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
173 		if (IEEE80211_IS_CHAN_HALF(c))
174 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
175 		if (IEEE80211_IS_CHAN_QUARTER(c))
176 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
177 		if (IEEE80211_IS_CHAN_HTA(c))
178 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
179 		if (IEEE80211_IS_CHAN_HTG(c))
180 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
181 	}
182 	/* initialize candidate channels to all available */
183 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
184 		sizeof(ic->ic_chan_avail));
185 
186 	/* sort channel table to allow lookup optimizations */
187 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
188 
189 	/* invalidate any previous state */
190 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
191 	ic->ic_prevchan = NULL;
192 	ic->ic_csa_newchan = NULL;
193 	/* arbitrarily pick the first channel */
194 	ic->ic_curchan = &ic->ic_channels[0];
195 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
196 
197 	/* fillin well-known rate sets if driver has not specified */
198 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
199 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
200 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
201 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
202 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
203 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
204 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
205 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
206 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
207 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
208 
209 	/*
210 	 * Setup required information to fill the mcsset field, if driver did
211 	 * not. Assume a 2T2R setup for historic reasons.
212 	 */
213 	if (ic->ic_rxstream == 0)
214 		ic->ic_rxstream = 2;
215 	if (ic->ic_txstream == 0)
216 		ic->ic_txstream = 2;
217 
218 	/*
219 	 * Set auto mode to reset active channel state and any desired channel.
220 	 */
221 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
222 #undef DEFAULTRATES
223 }
224 
225 static void
226 null_update_mcast(struct ifnet *ifp)
227 {
228 	if_printf(ifp, "need multicast update callback\n");
229 }
230 
231 static void
232 null_update_promisc(struct ifnet *ifp)
233 {
234 	if_printf(ifp, "need promiscuous mode update callback\n");
235 }
236 
237 static int
238 null_transmit(struct ifnet *ifp, struct mbuf *m)
239 {
240 	m_freem(m);
241 	ifp->if_oerrors++;
242 	return EACCES;		/* XXX EIO/EPERM? */
243 }
244 
245 #if __FreeBSD_version >= 1000031
246 static int
247 null_output(struct ifnet *ifp, struct mbuf *m,
248 	const struct sockaddr *dst, struct route *ro)
249 #else
250 static int
251 null_output(struct ifnet *ifp, struct mbuf *m,
252 	struct sockaddr *dst, struct route *ro)
253 #endif
254 {
255 	if_printf(ifp, "discard raw packet\n");
256 	return null_transmit(ifp, m);
257 }
258 
259 static void
260 null_input(struct ifnet *ifp, struct mbuf *m)
261 {
262 	if_printf(ifp, "if_input should not be called\n");
263 	m_freem(m);
264 }
265 
266 static void
267 null_update_chw(struct ieee80211com *ic)
268 {
269 
270 	if_printf(ic->ic_ifp, "%s: need callback\n", __func__);
271 }
272 
273 /*
274  * Attach/setup the common net80211 state.  Called by
275  * the driver on attach to prior to creating any vap's.
276  */
277 void
278 ieee80211_ifattach(struct ieee80211com *ic,
279 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
280 {
281 	struct ifnet *ifp = ic->ic_ifp;
282 	struct sockaddr_dl *sdl;
283 	struct ifaddr *ifa;
284 
285 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
286 
287 	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
288 	IEEE80211_TX_LOCK_INIT(ic, ifp->if_xname);
289 	TAILQ_INIT(&ic->ic_vaps);
290 
291 	/* Create a taskqueue for all state changes */
292 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
293 	    taskqueue_thread_enqueue, &ic->ic_tq);
294 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
295 	    ifp->if_xname);
296 	/*
297 	 * Fill in 802.11 available channel set, mark all
298 	 * available channels as active, and pick a default
299 	 * channel if not already specified.
300 	 */
301 	ieee80211_media_init(ic);
302 
303 	ic->ic_update_mcast = null_update_mcast;
304 	ic->ic_update_promisc = null_update_promisc;
305 	ic->ic_update_chw = null_update_chw;
306 
307 	ic->ic_hash_key = arc4random();
308 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
309 	ic->ic_lintval = ic->ic_bintval;
310 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
311 
312 	ieee80211_crypto_attach(ic);
313 	ieee80211_node_attach(ic);
314 	ieee80211_power_attach(ic);
315 	ieee80211_proto_attach(ic);
316 #ifdef IEEE80211_SUPPORT_SUPERG
317 	ieee80211_superg_attach(ic);
318 #endif
319 	ieee80211_ht_attach(ic);
320 	ieee80211_scan_attach(ic);
321 	ieee80211_regdomain_attach(ic);
322 	ieee80211_dfs_attach(ic);
323 
324 	ieee80211_sysctl_attach(ic);
325 
326 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
327 	ifp->if_hdrlen = 0;
328 
329 	CURVNET_SET(vnet0);
330 
331 	if_attach(ifp);
332 
333 	ifp->if_mtu = IEEE80211_MTU_MAX;
334 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
335 	ifp->if_output = null_output;
336 	ifp->if_input = null_input;	/* just in case */
337 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
338 
339 	ifa = ifaddr_byindex(ifp->if_index);
340 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
341 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
342 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
343 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
344 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
345 	ifa_free(ifa);
346 
347 	CURVNET_RESTORE();
348 }
349 
350 /*
351  * Detach net80211 state on device detach.  Tear down
352  * all vap's and reclaim all common state prior to the
353  * device state going away.  Note we may call back into
354  * driver; it must be prepared for this.
355  */
356 void
357 ieee80211_ifdetach(struct ieee80211com *ic)
358 {
359 	struct ifnet *ifp = ic->ic_ifp;
360 	struct ieee80211vap *vap;
361 
362 	/*
363 	 * This detaches the main interface, but not the vaps.
364 	 * Each VAP may be in a separate VIMAGE.
365 	 */
366 	CURVNET_SET(ifp->if_vnet);
367 	if_detach(ifp);
368 	CURVNET_RESTORE();
369 
370 	/*
371 	 * The VAP is responsible for setting and clearing
372 	 * the VIMAGE context.
373 	 */
374 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
375 		ieee80211_vap_destroy(vap);
376 	ieee80211_waitfor_parent(ic);
377 
378 	ieee80211_sysctl_detach(ic);
379 	ieee80211_dfs_detach(ic);
380 	ieee80211_regdomain_detach(ic);
381 	ieee80211_scan_detach(ic);
382 #ifdef IEEE80211_SUPPORT_SUPERG
383 	ieee80211_superg_detach(ic);
384 #endif
385 	ieee80211_ht_detach(ic);
386 	/* NB: must be called before ieee80211_node_detach */
387 	ieee80211_proto_detach(ic);
388 	ieee80211_crypto_detach(ic);
389 	ieee80211_power_detach(ic);
390 	ieee80211_node_detach(ic);
391 
392 	/* XXX VNET needed? */
393 	ifmedia_removeall(&ic->ic_media);
394 
395 	taskqueue_free(ic->ic_tq);
396 	IEEE80211_TX_LOCK_DESTROY(ic);
397 	IEEE80211_LOCK_DESTROY(ic);
398 }
399 
400 /*
401  * Default reset method for use with the ioctl support.  This
402  * method is invoked after any state change in the 802.11
403  * layer that should be propagated to the hardware but not
404  * require re-initialization of the 802.11 state machine (e.g
405  * rescanning for an ap).  We always return ENETRESET which
406  * should cause the driver to re-initialize the device. Drivers
407  * can override this method to implement more optimized support.
408  */
409 static int
410 default_reset(struct ieee80211vap *vap, u_long cmd)
411 {
412 	return ENETRESET;
413 }
414 
415 /*
416  * Prepare a vap for use.  Drivers use this call to
417  * setup net80211 state in new vap's prior attaching
418  * them with ieee80211_vap_attach (below).
419  */
420 int
421 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
422     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
423     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
424     const uint8_t macaddr[IEEE80211_ADDR_LEN])
425 {
426 	struct ifnet *ifp;
427 
428 	ifp = if_alloc(IFT_ETHER);
429 	if (ifp == NULL) {
430 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
431 		    __func__);
432 		return ENOMEM;
433 	}
434 	if_initname(ifp, name, unit);
435 	ifp->if_softc = vap;			/* back pointer */
436 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
437 	ifp->if_transmit = ieee80211_vap_transmit;
438 	ifp->if_qflush = ieee80211_vap_qflush;
439 	ifp->if_ioctl = ieee80211_ioctl;
440 	ifp->if_init = ieee80211_init;
441 
442 	vap->iv_ifp = ifp;
443 	vap->iv_ic = ic;
444 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
445 	vap->iv_flags_ext = ic->ic_flags_ext;
446 	vap->iv_flags_ven = ic->ic_flags_ven;
447 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
448 	vap->iv_htcaps = ic->ic_htcaps;
449 	vap->iv_htextcaps = ic->ic_htextcaps;
450 	vap->iv_opmode = opmode;
451 	vap->iv_caps |= ieee80211_opcap[opmode];
452 	switch (opmode) {
453 	case IEEE80211_M_WDS:
454 		/*
455 		 * WDS links must specify the bssid of the far end.
456 		 * For legacy operation this is a static relationship.
457 		 * For non-legacy operation the station must associate
458 		 * and be authorized to pass traffic.  Plumbing the
459 		 * vap to the proper node happens when the vap
460 		 * transitions to RUN state.
461 		 */
462 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
463 		vap->iv_flags |= IEEE80211_F_DESBSSID;
464 		if (flags & IEEE80211_CLONE_WDSLEGACY)
465 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
466 		break;
467 #ifdef IEEE80211_SUPPORT_TDMA
468 	case IEEE80211_M_AHDEMO:
469 		if (flags & IEEE80211_CLONE_TDMA) {
470 			/* NB: checked before clone operation allowed */
471 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
472 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
473 			/*
474 			 * Propagate TDMA capability to mark vap; this
475 			 * cannot be removed and is used to distinguish
476 			 * regular ahdemo operation from ahdemo+tdma.
477 			 */
478 			vap->iv_caps |= IEEE80211_C_TDMA;
479 		}
480 		break;
481 #endif
482 	default:
483 		break;
484 	}
485 	/* auto-enable s/w beacon miss support */
486 	if (flags & IEEE80211_CLONE_NOBEACONS)
487 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
488 	/* auto-generated or user supplied MAC address */
489 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
490 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
491 	/*
492 	 * Enable various functionality by default if we're
493 	 * capable; the driver can override us if it knows better.
494 	 */
495 	if (vap->iv_caps & IEEE80211_C_WME)
496 		vap->iv_flags |= IEEE80211_F_WME;
497 	if (vap->iv_caps & IEEE80211_C_BURST)
498 		vap->iv_flags |= IEEE80211_F_BURST;
499 	/* NB: bg scanning only makes sense for station mode right now */
500 	if (vap->iv_opmode == IEEE80211_M_STA &&
501 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
502 		vap->iv_flags |= IEEE80211_F_BGSCAN;
503 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
504 	/* NB: DFS support only makes sense for ap mode right now */
505 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
506 	    (vap->iv_caps & IEEE80211_C_DFS))
507 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
508 
509 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
510 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
511 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
512 	/*
513 	 * Install a default reset method for the ioctl support;
514 	 * the driver can override this.
515 	 */
516 	vap->iv_reset = default_reset;
517 
518 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
519 
520 	ieee80211_sysctl_vattach(vap);
521 	ieee80211_crypto_vattach(vap);
522 	ieee80211_node_vattach(vap);
523 	ieee80211_power_vattach(vap);
524 	ieee80211_proto_vattach(vap);
525 #ifdef IEEE80211_SUPPORT_SUPERG
526 	ieee80211_superg_vattach(vap);
527 #endif
528 	ieee80211_ht_vattach(vap);
529 	ieee80211_scan_vattach(vap);
530 	ieee80211_regdomain_vattach(vap);
531 	ieee80211_radiotap_vattach(vap);
532 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
533 
534 	return 0;
535 }
536 
537 /*
538  * Activate a vap.  State should have been prepared with a
539  * call to ieee80211_vap_setup and by the driver.  On return
540  * from this call the vap is ready for use.
541  */
542 int
543 ieee80211_vap_attach(struct ieee80211vap *vap,
544 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
545 {
546 	struct ifnet *ifp = vap->iv_ifp;
547 	struct ieee80211com *ic = vap->iv_ic;
548 	struct ifmediareq imr;
549 	int maxrate;
550 
551 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
552 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
553 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
554 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
555 
556 	/*
557 	 * Do late attach work that cannot happen until after
558 	 * the driver has had a chance to override defaults.
559 	 */
560 	ieee80211_node_latevattach(vap);
561 	ieee80211_power_latevattach(vap);
562 
563 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
564 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
565 	ieee80211_media_status(ifp, &imr);
566 	/* NB: strip explicit mode; we're actually in autoselect */
567 	ifmedia_set(&vap->iv_media,
568 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
569 	if (maxrate)
570 		ifp->if_baudrate = IF_Mbps(maxrate);
571 
572 	ether_ifattach(ifp, vap->iv_myaddr);
573 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
574 		/* NB: disallow transmit */
575 		ifp->if_transmit = null_transmit;
576 		ifp->if_output = null_output;
577 	} else {
578 		/* hook output method setup by ether_ifattach */
579 		vap->iv_output = ifp->if_output;
580 		ifp->if_output = ieee80211_output;
581 	}
582 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
583 
584 	IEEE80211_LOCK(ic);
585 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
586 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
587 #ifdef IEEE80211_SUPPORT_SUPERG
588 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
589 #endif
590 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
591 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
592 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
593 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
594 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
595 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
596 	IEEE80211_UNLOCK(ic);
597 
598 	return 1;
599 }
600 
601 /*
602  * Tear down vap state and reclaim the ifnet.
603  * The driver is assumed to have prepared for
604  * this; e.g. by turning off interrupts for the
605  * underlying device.
606  */
607 void
608 ieee80211_vap_detach(struct ieee80211vap *vap)
609 {
610 	struct ieee80211com *ic = vap->iv_ic;
611 	struct ifnet *ifp = vap->iv_ifp;
612 
613 	CURVNET_SET(ifp->if_vnet);
614 
615 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
616 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
617 	    ic->ic_ifp->if_xname);
618 
619 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
620 	ether_ifdetach(ifp);
621 
622 	ieee80211_stop(vap);
623 
624 	/*
625 	 * Flush any deferred vap tasks.
626 	 */
627 	ieee80211_draintask(ic, &vap->iv_nstate_task);
628 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
629 
630 	/* XXX band-aid until ifnet handles this for us */
631 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
632 
633 	IEEE80211_LOCK(ic);
634 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
635 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
636 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
637 #ifdef IEEE80211_SUPPORT_SUPERG
638 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
639 #endif
640 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
641 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
642 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
643 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
644 	/* NB: this handles the bpfdetach done below */
645 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
646 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
647 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
648 	IEEE80211_UNLOCK(ic);
649 
650 	ifmedia_removeall(&vap->iv_media);
651 
652 	ieee80211_radiotap_vdetach(vap);
653 	ieee80211_regdomain_vdetach(vap);
654 	ieee80211_scan_vdetach(vap);
655 #ifdef IEEE80211_SUPPORT_SUPERG
656 	ieee80211_superg_vdetach(vap);
657 #endif
658 	ieee80211_ht_vdetach(vap);
659 	/* NB: must be before ieee80211_node_vdetach */
660 	ieee80211_proto_vdetach(vap);
661 	ieee80211_crypto_vdetach(vap);
662 	ieee80211_power_vdetach(vap);
663 	ieee80211_node_vdetach(vap);
664 	ieee80211_sysctl_vdetach(vap);
665 
666 	if_free(ifp);
667 
668 	CURVNET_RESTORE();
669 }
670 
671 /*
672  * Synchronize flag bit state in the parent ifnet structure
673  * according to the state of all vap ifnet's.  This is used,
674  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
675  */
676 void
677 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
678 {
679 	struct ifnet *ifp = ic->ic_ifp;
680 	struct ieee80211vap *vap;
681 	int bit, oflags;
682 
683 	IEEE80211_LOCK_ASSERT(ic);
684 
685 	bit = 0;
686 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
687 		if (vap->iv_ifp->if_flags & flag) {
688 			/*
689 			 * XXX the bridge sets PROMISC but we don't want to
690 			 * enable it on the device, discard here so all the
691 			 * drivers don't need to special-case it
692 			 */
693 			if (flag == IFF_PROMISC &&
694 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
695 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
696 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
697 				continue;
698 			bit = 1;
699 			break;
700 		}
701 	oflags = ifp->if_flags;
702 	if (bit)
703 		ifp->if_flags |= flag;
704 	else
705 		ifp->if_flags &= ~flag;
706 	if ((ifp->if_flags ^ oflags) & flag) {
707 		/* XXX should we return 1/0 and let caller do this? */
708 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
709 			if (flag == IFF_PROMISC)
710 				ieee80211_runtask(ic, &ic->ic_promisc_task);
711 			else if (flag == IFF_ALLMULTI)
712 				ieee80211_runtask(ic, &ic->ic_mcast_task);
713 		}
714 	}
715 }
716 
717 /*
718  * Synchronize flag bit state in the com structure
719  * according to the state of all vap's.  This is used,
720  * for example, to handle state changes via ioctls.
721  */
722 static void
723 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
724 {
725 	struct ieee80211vap *vap;
726 	int bit;
727 
728 	IEEE80211_LOCK_ASSERT(ic);
729 
730 	bit = 0;
731 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
732 		if (vap->iv_flags & flag) {
733 			bit = 1;
734 			break;
735 		}
736 	if (bit)
737 		ic->ic_flags |= flag;
738 	else
739 		ic->ic_flags &= ~flag;
740 }
741 
742 void
743 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
744 {
745 	struct ieee80211com *ic = vap->iv_ic;
746 
747 	IEEE80211_LOCK(ic);
748 	if (flag < 0) {
749 		flag = -flag;
750 		vap->iv_flags &= ~flag;
751 	} else
752 		vap->iv_flags |= flag;
753 	ieee80211_syncflag_locked(ic, flag);
754 	IEEE80211_UNLOCK(ic);
755 }
756 
757 /*
758  * Synchronize flags_ht bit state in the com structure
759  * according to the state of all vap's.  This is used,
760  * for example, to handle state changes via ioctls.
761  */
762 static void
763 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
764 {
765 	struct ieee80211vap *vap;
766 	int bit;
767 
768 	IEEE80211_LOCK_ASSERT(ic);
769 
770 	bit = 0;
771 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
772 		if (vap->iv_flags_ht & flag) {
773 			bit = 1;
774 			break;
775 		}
776 	if (bit)
777 		ic->ic_flags_ht |= flag;
778 	else
779 		ic->ic_flags_ht &= ~flag;
780 }
781 
782 void
783 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
784 {
785 	struct ieee80211com *ic = vap->iv_ic;
786 
787 	IEEE80211_LOCK(ic);
788 	if (flag < 0) {
789 		flag = -flag;
790 		vap->iv_flags_ht &= ~flag;
791 	} else
792 		vap->iv_flags_ht |= flag;
793 	ieee80211_syncflag_ht_locked(ic, flag);
794 	IEEE80211_UNLOCK(ic);
795 }
796 
797 /*
798  * Synchronize flags_ext bit state in the com structure
799  * according to the state of all vap's.  This is used,
800  * for example, to handle state changes via ioctls.
801  */
802 static void
803 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
804 {
805 	struct ieee80211vap *vap;
806 	int bit;
807 
808 	IEEE80211_LOCK_ASSERT(ic);
809 
810 	bit = 0;
811 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
812 		if (vap->iv_flags_ext & flag) {
813 			bit = 1;
814 			break;
815 		}
816 	if (bit)
817 		ic->ic_flags_ext |= flag;
818 	else
819 		ic->ic_flags_ext &= ~flag;
820 }
821 
822 void
823 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
824 {
825 	struct ieee80211com *ic = vap->iv_ic;
826 
827 	IEEE80211_LOCK(ic);
828 	if (flag < 0) {
829 		flag = -flag;
830 		vap->iv_flags_ext &= ~flag;
831 	} else
832 		vap->iv_flags_ext |= flag;
833 	ieee80211_syncflag_ext_locked(ic, flag);
834 	IEEE80211_UNLOCK(ic);
835 }
836 
837 static __inline int
838 mapgsm(u_int freq, u_int flags)
839 {
840 	freq *= 10;
841 	if (flags & IEEE80211_CHAN_QUARTER)
842 		freq += 5;
843 	else if (flags & IEEE80211_CHAN_HALF)
844 		freq += 10;
845 	else
846 		freq += 20;
847 	/* NB: there is no 907/20 wide but leave room */
848 	return (freq - 906*10) / 5;
849 }
850 
851 static __inline int
852 mappsb(u_int freq, u_int flags)
853 {
854 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
855 }
856 
857 /*
858  * Convert MHz frequency to IEEE channel number.
859  */
860 int
861 ieee80211_mhz2ieee(u_int freq, u_int flags)
862 {
863 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
864 	if (flags & IEEE80211_CHAN_GSM)
865 		return mapgsm(freq, flags);
866 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
867 		if (freq == 2484)
868 			return 14;
869 		if (freq < 2484)
870 			return ((int) freq - 2407) / 5;
871 		else
872 			return 15 + ((freq - 2512) / 20);
873 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
874 		if (freq <= 5000) {
875 			/* XXX check regdomain? */
876 			if (IS_FREQ_IN_PSB(freq))
877 				return mappsb(freq, flags);
878 			return (freq - 4000) / 5;
879 		} else
880 			return (freq - 5000) / 5;
881 	} else {				/* either, guess */
882 		if (freq == 2484)
883 			return 14;
884 		if (freq < 2484) {
885 			if (907 <= freq && freq <= 922)
886 				return mapgsm(freq, flags);
887 			return ((int) freq - 2407) / 5;
888 		}
889 		if (freq < 5000) {
890 			if (IS_FREQ_IN_PSB(freq))
891 				return mappsb(freq, flags);
892 			else if (freq > 4900)
893 				return (freq - 4000) / 5;
894 			else
895 				return 15 + ((freq - 2512) / 20);
896 		}
897 		return (freq - 5000) / 5;
898 	}
899 #undef IS_FREQ_IN_PSB
900 }
901 
902 /*
903  * Convert channel to IEEE channel number.
904  */
905 int
906 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
907 {
908 	if (c == NULL) {
909 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
910 		return 0;		/* XXX */
911 	}
912 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
913 }
914 
915 /*
916  * Convert IEEE channel number to MHz frequency.
917  */
918 u_int
919 ieee80211_ieee2mhz(u_int chan, u_int flags)
920 {
921 	if (flags & IEEE80211_CHAN_GSM)
922 		return 907 + 5 * (chan / 10);
923 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
924 		if (chan == 14)
925 			return 2484;
926 		if (chan < 14)
927 			return 2407 + chan*5;
928 		else
929 			return 2512 + ((chan-15)*20);
930 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
931 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
932 			chan -= 37;
933 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
934 		}
935 		return 5000 + (chan*5);
936 	} else {				/* either, guess */
937 		/* XXX can't distinguish PSB+GSM channels */
938 		if (chan == 14)
939 			return 2484;
940 		if (chan < 14)			/* 0-13 */
941 			return 2407 + chan*5;
942 		if (chan < 27)			/* 15-26 */
943 			return 2512 + ((chan-15)*20);
944 		return 5000 + (chan*5);
945 	}
946 }
947 
948 /*
949  * Locate a channel given a frequency+flags.  We cache
950  * the previous lookup to optimize switching between two
951  * channels--as happens with dynamic turbo.
952  */
953 struct ieee80211_channel *
954 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
955 {
956 	struct ieee80211_channel *c;
957 	int i;
958 
959 	flags &= IEEE80211_CHAN_ALLTURBO;
960 	c = ic->ic_prevchan;
961 	if (c != NULL && c->ic_freq == freq &&
962 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
963 		return c;
964 	/* brute force search */
965 	for (i = 0; i < ic->ic_nchans; i++) {
966 		c = &ic->ic_channels[i];
967 		if (c->ic_freq == freq &&
968 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
969 			return c;
970 	}
971 	return NULL;
972 }
973 
974 /*
975  * Locate a channel given a channel number+flags.  We cache
976  * the previous lookup to optimize switching between two
977  * channels--as happens with dynamic turbo.
978  */
979 struct ieee80211_channel *
980 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
981 {
982 	struct ieee80211_channel *c;
983 	int i;
984 
985 	flags &= IEEE80211_CHAN_ALLTURBO;
986 	c = ic->ic_prevchan;
987 	if (c != NULL && c->ic_ieee == ieee &&
988 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
989 		return c;
990 	/* brute force search */
991 	for (i = 0; i < ic->ic_nchans; i++) {
992 		c = &ic->ic_channels[i];
993 		if (c->ic_ieee == ieee &&
994 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
995 			return c;
996 	}
997 	return NULL;
998 }
999 
1000 static void
1001 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1002 {
1003 #define	ADD(_ic, _s, _o) \
1004 	ifmedia_add(media, \
1005 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1006 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1007 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1008 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1009 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1010 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1011 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1012 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1013 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1014 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1015 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1016 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1017 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1018 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1019 	};
1020 	u_int mopt;
1021 
1022 	mopt = mopts[mode];
1023 	if (addsta)
1024 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1025 	if (caps & IEEE80211_C_IBSS)
1026 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1027 	if (caps & IEEE80211_C_HOSTAP)
1028 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1029 	if (caps & IEEE80211_C_AHDEMO)
1030 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1031 	if (caps & IEEE80211_C_MONITOR)
1032 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1033 	if (caps & IEEE80211_C_WDS)
1034 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1035 	if (caps & IEEE80211_C_MBSS)
1036 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1037 #undef ADD
1038 }
1039 
1040 /*
1041  * Setup the media data structures according to the channel and
1042  * rate tables.
1043  */
1044 static int
1045 ieee80211_media_setup(struct ieee80211com *ic,
1046 	struct ifmedia *media, int caps, int addsta,
1047 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1048 {
1049 	int i, j, rate, maxrate, mword, r;
1050 	enum ieee80211_phymode mode;
1051 	const struct ieee80211_rateset *rs;
1052 	struct ieee80211_rateset allrates;
1053 
1054 	/*
1055 	 * Fill in media characteristics.
1056 	 */
1057 	ifmedia_init(media, 0, media_change, media_stat);
1058 	maxrate = 0;
1059 	/*
1060 	 * Add media for legacy operating modes.
1061 	 */
1062 	memset(&allrates, 0, sizeof(allrates));
1063 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1064 		if (isclr(ic->ic_modecaps, mode))
1065 			continue;
1066 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1067 		if (mode == IEEE80211_MODE_AUTO)
1068 			continue;
1069 		rs = &ic->ic_sup_rates[mode];
1070 		for (i = 0; i < rs->rs_nrates; i++) {
1071 			rate = rs->rs_rates[i];
1072 			mword = ieee80211_rate2media(ic, rate, mode);
1073 			if (mword == 0)
1074 				continue;
1075 			addmedia(media, caps, addsta, mode, mword);
1076 			/*
1077 			 * Add legacy rate to the collection of all rates.
1078 			 */
1079 			r = rate & IEEE80211_RATE_VAL;
1080 			for (j = 0; j < allrates.rs_nrates; j++)
1081 				if (allrates.rs_rates[j] == r)
1082 					break;
1083 			if (j == allrates.rs_nrates) {
1084 				/* unique, add to the set */
1085 				allrates.rs_rates[j] = r;
1086 				allrates.rs_nrates++;
1087 			}
1088 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1089 			if (rate > maxrate)
1090 				maxrate = rate;
1091 		}
1092 	}
1093 	for (i = 0; i < allrates.rs_nrates; i++) {
1094 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1095 				IEEE80211_MODE_AUTO);
1096 		if (mword == 0)
1097 			continue;
1098 		/* NB: remove media options from mword */
1099 		addmedia(media, caps, addsta,
1100 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1101 	}
1102 	/*
1103 	 * Add HT/11n media.  Note that we do not have enough
1104 	 * bits in the media subtype to express the MCS so we
1105 	 * use a "placeholder" media subtype and any fixed MCS
1106 	 * must be specified with a different mechanism.
1107 	 */
1108 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1109 		if (isclr(ic->ic_modecaps, mode))
1110 			continue;
1111 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1112 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1113 	}
1114 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1115 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1116 		addmedia(media, caps, addsta,
1117 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1118 		i = ic->ic_txstream * 8 - 1;
1119 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1120 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1121 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1122 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1123 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1124 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1125 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1126 		else
1127 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1128 		if (rate > maxrate)
1129 			maxrate = rate;
1130 	}
1131 	return maxrate;
1132 }
1133 
1134 void
1135 ieee80211_media_init(struct ieee80211com *ic)
1136 {
1137 	struct ifnet *ifp = ic->ic_ifp;
1138 	int maxrate;
1139 
1140 	/* NB: this works because the structure is initialized to zero */
1141 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1142 		/*
1143 		 * We are re-initializing the channel list; clear
1144 		 * the existing media state as the media routines
1145 		 * don't suppress duplicates.
1146 		 */
1147 		ifmedia_removeall(&ic->ic_media);
1148 	}
1149 	ieee80211_chan_init(ic);
1150 
1151 	/*
1152 	 * Recalculate media settings in case new channel list changes
1153 	 * the set of available modes.
1154 	 */
1155 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1156 		ieee80211com_media_change, ieee80211com_media_status);
1157 	/* NB: strip explicit mode; we're actually in autoselect */
1158 	ifmedia_set(&ic->ic_media,
1159 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1160 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1161 	if (maxrate)
1162 		ifp->if_baudrate = IF_Mbps(maxrate);
1163 
1164 	/* XXX need to propagate new media settings to vap's */
1165 }
1166 
1167 /* XXX inline or eliminate? */
1168 const struct ieee80211_rateset *
1169 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1170 {
1171 	/* XXX does this work for 11ng basic rates? */
1172 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1173 }
1174 
1175 void
1176 ieee80211_announce(struct ieee80211com *ic)
1177 {
1178 	struct ifnet *ifp = ic->ic_ifp;
1179 	int i, rate, mword;
1180 	enum ieee80211_phymode mode;
1181 	const struct ieee80211_rateset *rs;
1182 
1183 	/* NB: skip AUTO since it has no rates */
1184 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1185 		if (isclr(ic->ic_modecaps, mode))
1186 			continue;
1187 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1188 		rs = &ic->ic_sup_rates[mode];
1189 		for (i = 0; i < rs->rs_nrates; i++) {
1190 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1191 			if (mword == 0)
1192 				continue;
1193 			rate = ieee80211_media2rate(mword);
1194 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1195 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1196 		}
1197 		printf("\n");
1198 	}
1199 	ieee80211_ht_announce(ic);
1200 }
1201 
1202 void
1203 ieee80211_announce_channels(struct ieee80211com *ic)
1204 {
1205 	const struct ieee80211_channel *c;
1206 	char type;
1207 	int i, cw;
1208 
1209 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1210 	for (i = 0; i < ic->ic_nchans; i++) {
1211 		c = &ic->ic_channels[i];
1212 		if (IEEE80211_IS_CHAN_ST(c))
1213 			type = 'S';
1214 		else if (IEEE80211_IS_CHAN_108A(c))
1215 			type = 'T';
1216 		else if (IEEE80211_IS_CHAN_108G(c))
1217 			type = 'G';
1218 		else if (IEEE80211_IS_CHAN_HT(c))
1219 			type = 'n';
1220 		else if (IEEE80211_IS_CHAN_A(c))
1221 			type = 'a';
1222 		else if (IEEE80211_IS_CHAN_ANYG(c))
1223 			type = 'g';
1224 		else if (IEEE80211_IS_CHAN_B(c))
1225 			type = 'b';
1226 		else
1227 			type = 'f';
1228 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1229 			cw = 40;
1230 		else if (IEEE80211_IS_CHAN_HALF(c))
1231 			cw = 10;
1232 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1233 			cw = 5;
1234 		else
1235 			cw = 20;
1236 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1237 			, c->ic_ieee, c->ic_freq, type
1238 			, cw
1239 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1240 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1241 			, c->ic_maxregpower
1242 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1243 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1244 		);
1245 	}
1246 }
1247 
1248 static int
1249 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1250 {
1251 	switch (IFM_MODE(ime->ifm_media)) {
1252 	case IFM_IEEE80211_11A:
1253 		*mode = IEEE80211_MODE_11A;
1254 		break;
1255 	case IFM_IEEE80211_11B:
1256 		*mode = IEEE80211_MODE_11B;
1257 		break;
1258 	case IFM_IEEE80211_11G:
1259 		*mode = IEEE80211_MODE_11G;
1260 		break;
1261 	case IFM_IEEE80211_FH:
1262 		*mode = IEEE80211_MODE_FH;
1263 		break;
1264 	case IFM_IEEE80211_11NA:
1265 		*mode = IEEE80211_MODE_11NA;
1266 		break;
1267 	case IFM_IEEE80211_11NG:
1268 		*mode = IEEE80211_MODE_11NG;
1269 		break;
1270 	case IFM_AUTO:
1271 		*mode = IEEE80211_MODE_AUTO;
1272 		break;
1273 	default:
1274 		return 0;
1275 	}
1276 	/*
1277 	 * Turbo mode is an ``option''.
1278 	 * XXX does not apply to AUTO
1279 	 */
1280 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1281 		if (*mode == IEEE80211_MODE_11A) {
1282 			if (flags & IEEE80211_F_TURBOP)
1283 				*mode = IEEE80211_MODE_TURBO_A;
1284 			else
1285 				*mode = IEEE80211_MODE_STURBO_A;
1286 		} else if (*mode == IEEE80211_MODE_11G)
1287 			*mode = IEEE80211_MODE_TURBO_G;
1288 		else
1289 			return 0;
1290 	}
1291 	/* XXX HT40 +/- */
1292 	return 1;
1293 }
1294 
1295 /*
1296  * Handle a media change request on the underlying interface.
1297  */
1298 int
1299 ieee80211com_media_change(struct ifnet *ifp)
1300 {
1301 	return EINVAL;
1302 }
1303 
1304 /*
1305  * Handle a media change request on the vap interface.
1306  */
1307 int
1308 ieee80211_media_change(struct ifnet *ifp)
1309 {
1310 	struct ieee80211vap *vap = ifp->if_softc;
1311 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1312 	uint16_t newmode;
1313 
1314 	if (!media2mode(ime, vap->iv_flags, &newmode))
1315 		return EINVAL;
1316 	if (vap->iv_des_mode != newmode) {
1317 		vap->iv_des_mode = newmode;
1318 		/* XXX kick state machine if up+running */
1319 	}
1320 	return 0;
1321 }
1322 
1323 /*
1324  * Common code to calculate the media status word
1325  * from the operating mode and channel state.
1326  */
1327 static int
1328 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1329 {
1330 	int status;
1331 
1332 	status = IFM_IEEE80211;
1333 	switch (opmode) {
1334 	case IEEE80211_M_STA:
1335 		break;
1336 	case IEEE80211_M_IBSS:
1337 		status |= IFM_IEEE80211_ADHOC;
1338 		break;
1339 	case IEEE80211_M_HOSTAP:
1340 		status |= IFM_IEEE80211_HOSTAP;
1341 		break;
1342 	case IEEE80211_M_MONITOR:
1343 		status |= IFM_IEEE80211_MONITOR;
1344 		break;
1345 	case IEEE80211_M_AHDEMO:
1346 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1347 		break;
1348 	case IEEE80211_M_WDS:
1349 		status |= IFM_IEEE80211_WDS;
1350 		break;
1351 	case IEEE80211_M_MBSS:
1352 		status |= IFM_IEEE80211_MBSS;
1353 		break;
1354 	}
1355 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1356 		status |= IFM_IEEE80211_11NA;
1357 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1358 		status |= IFM_IEEE80211_11NG;
1359 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1360 		status |= IFM_IEEE80211_11A;
1361 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1362 		status |= IFM_IEEE80211_11B;
1363 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1364 		status |= IFM_IEEE80211_11G;
1365 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1366 		status |= IFM_IEEE80211_FH;
1367 	}
1368 	/* XXX else complain? */
1369 
1370 	if (IEEE80211_IS_CHAN_TURBO(chan))
1371 		status |= IFM_IEEE80211_TURBO;
1372 #if 0
1373 	if (IEEE80211_IS_CHAN_HT20(chan))
1374 		status |= IFM_IEEE80211_HT20;
1375 	if (IEEE80211_IS_CHAN_HT40(chan))
1376 		status |= IFM_IEEE80211_HT40;
1377 #endif
1378 	return status;
1379 }
1380 
1381 static void
1382 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1383 {
1384 	struct ieee80211com *ic = ifp->if_l2com;
1385 	struct ieee80211vap *vap;
1386 
1387 	imr->ifm_status = IFM_AVALID;
1388 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1389 		if (vap->iv_ifp->if_flags & IFF_UP) {
1390 			imr->ifm_status |= IFM_ACTIVE;
1391 			break;
1392 		}
1393 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1394 	if (imr->ifm_status & IFM_ACTIVE)
1395 		imr->ifm_current = imr->ifm_active;
1396 }
1397 
1398 void
1399 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1400 {
1401 	struct ieee80211vap *vap = ifp->if_softc;
1402 	struct ieee80211com *ic = vap->iv_ic;
1403 	enum ieee80211_phymode mode;
1404 
1405 	imr->ifm_status = IFM_AVALID;
1406 	/*
1407 	 * NB: use the current channel's mode to lock down a xmit
1408 	 * rate only when running; otherwise we may have a mismatch
1409 	 * in which case the rate will not be convertible.
1410 	 */
1411 	if (vap->iv_state == IEEE80211_S_RUN) {
1412 		imr->ifm_status |= IFM_ACTIVE;
1413 		mode = ieee80211_chan2mode(ic->ic_curchan);
1414 	} else
1415 		mode = IEEE80211_MODE_AUTO;
1416 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1417 	/*
1418 	 * Calculate a current rate if possible.
1419 	 */
1420 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1421 		/*
1422 		 * A fixed rate is set, report that.
1423 		 */
1424 		imr->ifm_active |= ieee80211_rate2media(ic,
1425 			vap->iv_txparms[mode].ucastrate, mode);
1426 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1427 		/*
1428 		 * In station mode report the current transmit rate.
1429 		 */
1430 		imr->ifm_active |= ieee80211_rate2media(ic,
1431 			vap->iv_bss->ni_txrate, mode);
1432 	} else
1433 		imr->ifm_active |= IFM_AUTO;
1434 	if (imr->ifm_status & IFM_ACTIVE)
1435 		imr->ifm_current = imr->ifm_active;
1436 }
1437 
1438 /*
1439  * Set the current phy mode and recalculate the active channel
1440  * set based on the available channels for this mode.  Also
1441  * select a new default/current channel if the current one is
1442  * inappropriate for this mode.
1443  */
1444 int
1445 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1446 {
1447 	/*
1448 	 * Adjust basic rates in 11b/11g supported rate set.
1449 	 * Note that if operating on a hal/quarter rate channel
1450 	 * this is a noop as those rates sets are different
1451 	 * and used instead.
1452 	 */
1453 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1454 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1455 
1456 	ic->ic_curmode = mode;
1457 	ieee80211_reset_erp(ic);	/* reset ERP state */
1458 
1459 	return 0;
1460 }
1461 
1462 /*
1463  * Return the phy mode for with the specified channel.
1464  */
1465 enum ieee80211_phymode
1466 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1467 {
1468 
1469 	if (IEEE80211_IS_CHAN_HTA(chan))
1470 		return IEEE80211_MODE_11NA;
1471 	else if (IEEE80211_IS_CHAN_HTG(chan))
1472 		return IEEE80211_MODE_11NG;
1473 	else if (IEEE80211_IS_CHAN_108G(chan))
1474 		return IEEE80211_MODE_TURBO_G;
1475 	else if (IEEE80211_IS_CHAN_ST(chan))
1476 		return IEEE80211_MODE_STURBO_A;
1477 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1478 		return IEEE80211_MODE_TURBO_A;
1479 	else if (IEEE80211_IS_CHAN_HALF(chan))
1480 		return IEEE80211_MODE_HALF;
1481 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1482 		return IEEE80211_MODE_QUARTER;
1483 	else if (IEEE80211_IS_CHAN_A(chan))
1484 		return IEEE80211_MODE_11A;
1485 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1486 		return IEEE80211_MODE_11G;
1487 	else if (IEEE80211_IS_CHAN_B(chan))
1488 		return IEEE80211_MODE_11B;
1489 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1490 		return IEEE80211_MODE_FH;
1491 
1492 	/* NB: should not get here */
1493 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1494 		__func__, chan->ic_freq, chan->ic_flags);
1495 	return IEEE80211_MODE_11B;
1496 }
1497 
1498 struct ratemedia {
1499 	u_int	match;	/* rate + mode */
1500 	u_int	media;	/* if_media rate */
1501 };
1502 
1503 static int
1504 findmedia(const struct ratemedia rates[], int n, u_int match)
1505 {
1506 	int i;
1507 
1508 	for (i = 0; i < n; i++)
1509 		if (rates[i].match == match)
1510 			return rates[i].media;
1511 	return IFM_AUTO;
1512 }
1513 
1514 /*
1515  * Convert IEEE80211 rate value to ifmedia subtype.
1516  * Rate is either a legacy rate in units of 0.5Mbps
1517  * or an MCS index.
1518  */
1519 int
1520 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1521 {
1522 	static const struct ratemedia rates[] = {
1523 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1524 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1525 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1526 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1527 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1528 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1529 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1530 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1531 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1532 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1533 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1534 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1535 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1536 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1537 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1538 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1539 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1540 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1541 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1542 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1543 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1544 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1545 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1546 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1547 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1548 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1549 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1550 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1551 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1552 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1553 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1554 	};
1555 	static const struct ratemedia htrates[] = {
1556 		{   0, IFM_IEEE80211_MCS },
1557 		{   1, IFM_IEEE80211_MCS },
1558 		{   2, IFM_IEEE80211_MCS },
1559 		{   3, IFM_IEEE80211_MCS },
1560 		{   4, IFM_IEEE80211_MCS },
1561 		{   5, IFM_IEEE80211_MCS },
1562 		{   6, IFM_IEEE80211_MCS },
1563 		{   7, IFM_IEEE80211_MCS },
1564 		{   8, IFM_IEEE80211_MCS },
1565 		{   9, IFM_IEEE80211_MCS },
1566 		{  10, IFM_IEEE80211_MCS },
1567 		{  11, IFM_IEEE80211_MCS },
1568 		{  12, IFM_IEEE80211_MCS },
1569 		{  13, IFM_IEEE80211_MCS },
1570 		{  14, IFM_IEEE80211_MCS },
1571 		{  15, IFM_IEEE80211_MCS },
1572 		{  16, IFM_IEEE80211_MCS },
1573 		{  17, IFM_IEEE80211_MCS },
1574 		{  18, IFM_IEEE80211_MCS },
1575 		{  19, IFM_IEEE80211_MCS },
1576 		{  20, IFM_IEEE80211_MCS },
1577 		{  21, IFM_IEEE80211_MCS },
1578 		{  22, IFM_IEEE80211_MCS },
1579 		{  23, IFM_IEEE80211_MCS },
1580 		{  24, IFM_IEEE80211_MCS },
1581 		{  25, IFM_IEEE80211_MCS },
1582 		{  26, IFM_IEEE80211_MCS },
1583 		{  27, IFM_IEEE80211_MCS },
1584 		{  28, IFM_IEEE80211_MCS },
1585 		{  29, IFM_IEEE80211_MCS },
1586 		{  30, IFM_IEEE80211_MCS },
1587 		{  31, IFM_IEEE80211_MCS },
1588 		{  32, IFM_IEEE80211_MCS },
1589 		{  33, IFM_IEEE80211_MCS },
1590 		{  34, IFM_IEEE80211_MCS },
1591 		{  35, IFM_IEEE80211_MCS },
1592 		{  36, IFM_IEEE80211_MCS },
1593 		{  37, IFM_IEEE80211_MCS },
1594 		{  38, IFM_IEEE80211_MCS },
1595 		{  39, IFM_IEEE80211_MCS },
1596 		{  40, IFM_IEEE80211_MCS },
1597 		{  41, IFM_IEEE80211_MCS },
1598 		{  42, IFM_IEEE80211_MCS },
1599 		{  43, IFM_IEEE80211_MCS },
1600 		{  44, IFM_IEEE80211_MCS },
1601 		{  45, IFM_IEEE80211_MCS },
1602 		{  46, IFM_IEEE80211_MCS },
1603 		{  47, IFM_IEEE80211_MCS },
1604 		{  48, IFM_IEEE80211_MCS },
1605 		{  49, IFM_IEEE80211_MCS },
1606 		{  50, IFM_IEEE80211_MCS },
1607 		{  51, IFM_IEEE80211_MCS },
1608 		{  52, IFM_IEEE80211_MCS },
1609 		{  53, IFM_IEEE80211_MCS },
1610 		{  54, IFM_IEEE80211_MCS },
1611 		{  55, IFM_IEEE80211_MCS },
1612 		{  56, IFM_IEEE80211_MCS },
1613 		{  57, IFM_IEEE80211_MCS },
1614 		{  58, IFM_IEEE80211_MCS },
1615 		{  59, IFM_IEEE80211_MCS },
1616 		{  60, IFM_IEEE80211_MCS },
1617 		{  61, IFM_IEEE80211_MCS },
1618 		{  62, IFM_IEEE80211_MCS },
1619 		{  63, IFM_IEEE80211_MCS },
1620 		{  64, IFM_IEEE80211_MCS },
1621 		{  65, IFM_IEEE80211_MCS },
1622 		{  66, IFM_IEEE80211_MCS },
1623 		{  67, IFM_IEEE80211_MCS },
1624 		{  68, IFM_IEEE80211_MCS },
1625 		{  69, IFM_IEEE80211_MCS },
1626 		{  70, IFM_IEEE80211_MCS },
1627 		{  71, IFM_IEEE80211_MCS },
1628 		{  72, IFM_IEEE80211_MCS },
1629 		{  73, IFM_IEEE80211_MCS },
1630 		{  74, IFM_IEEE80211_MCS },
1631 		{  75, IFM_IEEE80211_MCS },
1632 		{  76, IFM_IEEE80211_MCS },
1633 	};
1634 	int m;
1635 
1636 	/*
1637 	 * Check 11n rates first for match as an MCS.
1638 	 */
1639 	if (mode == IEEE80211_MODE_11NA) {
1640 		if (rate & IEEE80211_RATE_MCS) {
1641 			rate &= ~IEEE80211_RATE_MCS;
1642 			m = findmedia(htrates, nitems(htrates), rate);
1643 			if (m != IFM_AUTO)
1644 				return m | IFM_IEEE80211_11NA;
1645 		}
1646 	} else if (mode == IEEE80211_MODE_11NG) {
1647 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1648 		if (rate & IEEE80211_RATE_MCS) {
1649 			rate &= ~IEEE80211_RATE_MCS;
1650 			m = findmedia(htrates, nitems(htrates), rate);
1651 			if (m != IFM_AUTO)
1652 				return m | IFM_IEEE80211_11NG;
1653 		}
1654 	}
1655 	rate &= IEEE80211_RATE_VAL;
1656 	switch (mode) {
1657 	case IEEE80211_MODE_11A:
1658 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1659 	case IEEE80211_MODE_QUARTER:
1660 	case IEEE80211_MODE_11NA:
1661 	case IEEE80211_MODE_TURBO_A:
1662 	case IEEE80211_MODE_STURBO_A:
1663 		return findmedia(rates, nitems(rates),
1664 		    rate | IFM_IEEE80211_11A);
1665 	case IEEE80211_MODE_11B:
1666 		return findmedia(rates, nitems(rates),
1667 		    rate | IFM_IEEE80211_11B);
1668 	case IEEE80211_MODE_FH:
1669 		return findmedia(rates, nitems(rates),
1670 		    rate | IFM_IEEE80211_FH);
1671 	case IEEE80211_MODE_AUTO:
1672 		/* NB: ic may be NULL for some drivers */
1673 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1674 			return findmedia(rates, nitems(rates),
1675 			    rate | IFM_IEEE80211_FH);
1676 		/* NB: hack, 11g matches both 11b+11a rates */
1677 		/* fall thru... */
1678 	case IEEE80211_MODE_11G:
1679 	case IEEE80211_MODE_11NG:
1680 	case IEEE80211_MODE_TURBO_G:
1681 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
1682 	}
1683 	return IFM_AUTO;
1684 }
1685 
1686 int
1687 ieee80211_media2rate(int mword)
1688 {
1689 	static const int ieeerates[] = {
1690 		-1,		/* IFM_AUTO */
1691 		0,		/* IFM_MANUAL */
1692 		0,		/* IFM_NONE */
1693 		2,		/* IFM_IEEE80211_FH1 */
1694 		4,		/* IFM_IEEE80211_FH2 */
1695 		2,		/* IFM_IEEE80211_DS1 */
1696 		4,		/* IFM_IEEE80211_DS2 */
1697 		11,		/* IFM_IEEE80211_DS5 */
1698 		22,		/* IFM_IEEE80211_DS11 */
1699 		44,		/* IFM_IEEE80211_DS22 */
1700 		12,		/* IFM_IEEE80211_OFDM6 */
1701 		18,		/* IFM_IEEE80211_OFDM9 */
1702 		24,		/* IFM_IEEE80211_OFDM12 */
1703 		36,		/* IFM_IEEE80211_OFDM18 */
1704 		48,		/* IFM_IEEE80211_OFDM24 */
1705 		72,		/* IFM_IEEE80211_OFDM36 */
1706 		96,		/* IFM_IEEE80211_OFDM48 */
1707 		108,		/* IFM_IEEE80211_OFDM54 */
1708 		144,		/* IFM_IEEE80211_OFDM72 */
1709 		0,		/* IFM_IEEE80211_DS354k */
1710 		0,		/* IFM_IEEE80211_DS512k */
1711 		6,		/* IFM_IEEE80211_OFDM3 */
1712 		9,		/* IFM_IEEE80211_OFDM4 */
1713 		54,		/* IFM_IEEE80211_OFDM27 */
1714 		-1,		/* IFM_IEEE80211_MCS */
1715 	};
1716 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
1717 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1718 }
1719 
1720 /*
1721  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1722  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1723  */
1724 #define	mix(a, b, c)							\
1725 do {									\
1726 	a -= b; a -= c; a ^= (c >> 13);					\
1727 	b -= c; b -= a; b ^= (a << 8);					\
1728 	c -= a; c -= b; c ^= (b >> 13);					\
1729 	a -= b; a -= c; a ^= (c >> 12);					\
1730 	b -= c; b -= a; b ^= (a << 16);					\
1731 	c -= a; c -= b; c ^= (b >> 5);					\
1732 	a -= b; a -= c; a ^= (c >> 3);					\
1733 	b -= c; b -= a; b ^= (a << 10);					\
1734 	c -= a; c -= b; c ^= (b >> 15);					\
1735 } while (/*CONSTCOND*/0)
1736 
1737 uint32_t
1738 ieee80211_mac_hash(const struct ieee80211com *ic,
1739 	const uint8_t addr[IEEE80211_ADDR_LEN])
1740 {
1741 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1742 
1743 	b += addr[5] << 8;
1744 	b += addr[4];
1745 	a += addr[3] << 24;
1746 	a += addr[2] << 16;
1747 	a += addr[1] << 8;
1748 	a += addr[0];
1749 
1750 	mix(a, b, c);
1751 
1752 	return c;
1753 }
1754 #undef mix
1755