xref: /freebsd/sys/net80211/ieee80211.c (revision 361e428888e630eb708c72cf31579a25ba5d4f03)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/sbuf.h>
40 
41 #include <machine/stdarg.h>
42 
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_types.h>
48 #include <net/ethernet.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_regdomain.h>
52 #ifdef IEEE80211_SUPPORT_SUPERG
53 #include <net80211/ieee80211_superg.h>
54 #endif
55 #include <net80211/ieee80211_ratectl.h>
56 
57 #include <net/bpf.h>
58 
59 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
60 	[IEEE80211_MODE_AUTO]	  = "auto",
61 	[IEEE80211_MODE_11A]	  = "11a",
62 	[IEEE80211_MODE_11B]	  = "11b",
63 	[IEEE80211_MODE_11G]	  = "11g",
64 	[IEEE80211_MODE_FH]	  = "FH",
65 	[IEEE80211_MODE_TURBO_A]  = "turboA",
66 	[IEEE80211_MODE_TURBO_G]  = "turboG",
67 	[IEEE80211_MODE_STURBO_A] = "sturboA",
68 	[IEEE80211_MODE_HALF]	  = "half",
69 	[IEEE80211_MODE_QUARTER]  = "quarter",
70 	[IEEE80211_MODE_11NA]	  = "11na",
71 	[IEEE80211_MODE_11NG]	  = "11ng",
72 };
73 /* map ieee80211_opmode to the corresponding capability bit */
74 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
75 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
76 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
77 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
78 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
79 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
80 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
81 #ifdef IEEE80211_SUPPORT_MESH
82 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
83 #endif
84 };
85 
86 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
87 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
88 
89 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
90 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
91 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
92 static	int ieee80211_media_setup(struct ieee80211com *ic,
93 		struct ifmedia *media, int caps, int addsta,
94 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
95 static	int media_status(enum ieee80211_opmode,
96 		const struct ieee80211_channel *);
97 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
98 
99 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
100 
101 /*
102  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
103  */
104 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
105 static const struct ieee80211_rateset ieee80211_rateset_11a =
106 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
107 static const struct ieee80211_rateset ieee80211_rateset_half =
108 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
109 static const struct ieee80211_rateset ieee80211_rateset_quarter =
110 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
111 static const struct ieee80211_rateset ieee80211_rateset_11b =
112 	{ 4, { B(2), B(4), B(11), B(22) } };
113 /* NB: OFDM rates are handled specially based on mode */
114 static const struct ieee80211_rateset ieee80211_rateset_11g =
115 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
116 #undef B
117 
118 /*
119  * Fill in 802.11 available channel set, mark
120  * all available channels as active, and pick
121  * a default channel if not already specified.
122  */
123 void
124 ieee80211_chan_init(struct ieee80211com *ic)
125 {
126 #define	DEFAULTRATES(m, def) do { \
127 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
128 		ic->ic_sup_rates[m] = def; \
129 } while (0)
130 	struct ieee80211_channel *c;
131 	int i;
132 
133 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
134 		("invalid number of channels specified: %u", ic->ic_nchans));
135 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
136 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
137 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
138 	for (i = 0; i < ic->ic_nchans; i++) {
139 		c = &ic->ic_channels[i];
140 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
141 		/*
142 		 * Help drivers that work only with frequencies by filling
143 		 * in IEEE channel #'s if not already calculated.  Note this
144 		 * mimics similar work done in ieee80211_setregdomain when
145 		 * changing regulatory state.
146 		 */
147 		if (c->ic_ieee == 0)
148 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
149 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
150 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
151 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
152 			    c->ic_flags);
153 		/* default max tx power to max regulatory */
154 		if (c->ic_maxpower == 0)
155 			c->ic_maxpower = 2*c->ic_maxregpower;
156 		setbit(ic->ic_chan_avail, c->ic_ieee);
157 		/*
158 		 * Identify mode capabilities.
159 		 */
160 		if (IEEE80211_IS_CHAN_A(c))
161 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
162 		if (IEEE80211_IS_CHAN_B(c))
163 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
164 		if (IEEE80211_IS_CHAN_ANYG(c))
165 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
166 		if (IEEE80211_IS_CHAN_FHSS(c))
167 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
168 		if (IEEE80211_IS_CHAN_108A(c))
169 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
170 		if (IEEE80211_IS_CHAN_108G(c))
171 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
172 		if (IEEE80211_IS_CHAN_ST(c))
173 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
174 		if (IEEE80211_IS_CHAN_HALF(c))
175 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
176 		if (IEEE80211_IS_CHAN_QUARTER(c))
177 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
178 		if (IEEE80211_IS_CHAN_HTA(c))
179 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
180 		if (IEEE80211_IS_CHAN_HTG(c))
181 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
182 	}
183 	/* initialize candidate channels to all available */
184 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
185 		sizeof(ic->ic_chan_avail));
186 
187 	/* sort channel table to allow lookup optimizations */
188 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
189 
190 	/* invalidate any previous state */
191 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
192 	ic->ic_prevchan = NULL;
193 	ic->ic_csa_newchan = NULL;
194 	/* arbitrarily pick the first channel */
195 	ic->ic_curchan = &ic->ic_channels[0];
196 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
197 
198 	/* fillin well-known rate sets if driver has not specified */
199 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
200 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
201 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
202 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
203 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
204 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
205 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
206 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
207 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
208 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
209 
210 	/*
211 	 * Setup required information to fill the mcsset field, if driver did
212 	 * not. Assume a 2T2R setup for historic reasons.
213 	 */
214 	if (ic->ic_rxstream == 0)
215 		ic->ic_rxstream = 2;
216 	if (ic->ic_txstream == 0)
217 		ic->ic_txstream = 2;
218 
219 	/*
220 	 * Set auto mode to reset active channel state and any desired channel.
221 	 */
222 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
223 #undef DEFAULTRATES
224 }
225 
226 static void
227 null_update_mcast(struct ieee80211com *ic)
228 {
229 
230 	ic_printf(ic, "need multicast update callback\n");
231 }
232 
233 static void
234 null_update_promisc(struct ieee80211com *ic)
235 {
236 
237 	ic_printf(ic, "need promiscuous mode update callback\n");
238 }
239 
240 static void
241 null_update_chw(struct ieee80211com *ic)
242 {
243 
244 	ic_printf(ic, "%s: need callback\n", __func__);
245 }
246 
247 int
248 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
249 {
250 	va_list ap;
251 	int retval;
252 
253 	retval = printf("%s: ", ic->ic_name);
254 	va_start(ap, fmt);
255 	retval += vprintf(fmt, ap);
256 	va_end(ap);
257 	return (retval);
258 }
259 
260 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
261 static struct mtx ic_list_mtx;
262 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
263 
264 static int
265 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
266 {
267 	struct ieee80211com *ic;
268 	struct sbuf *sb;
269 	char *sp;
270 	int error;
271 
272 	sb = sbuf_new_auto();
273 	sp = "";
274 	mtx_lock(&ic_list_mtx);
275 	LIST_FOREACH(ic, &ic_head, ic_next) {
276 		sbuf_printf(sb, "%s%s", sp, ic->ic_name);
277 		sp = " ";
278 	}
279 	mtx_unlock(&ic_list_mtx);
280 	sbuf_finish(sb);
281 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
282 	sbuf_delete(sb);
283 	return (error);
284 }
285 
286 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
287     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
288     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
289 
290 /*
291  * Attach/setup the common net80211 state.  Called by
292  * the driver on attach to prior to creating any vap's.
293  */
294 void
295 ieee80211_ifattach(struct ieee80211com *ic)
296 {
297 
298 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
299 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
300 	TAILQ_INIT(&ic->ic_vaps);
301 
302 	/* Create a taskqueue for all state changes */
303 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
304 	    taskqueue_thread_enqueue, &ic->ic_tq);
305 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
306 	    ic->ic_name);
307 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
308 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
309 	/*
310 	 * Fill in 802.11 available channel set, mark all
311 	 * available channels as active, and pick a default
312 	 * channel if not already specified.
313 	 */
314 	ieee80211_chan_init(ic);
315 
316 	ic->ic_update_mcast = null_update_mcast;
317 	ic->ic_update_promisc = null_update_promisc;
318 	ic->ic_update_chw = null_update_chw;
319 
320 	ic->ic_hash_key = arc4random();
321 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
322 	ic->ic_lintval = ic->ic_bintval;
323 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
324 
325 	ieee80211_crypto_attach(ic);
326 	ieee80211_node_attach(ic);
327 	ieee80211_power_attach(ic);
328 	ieee80211_proto_attach(ic);
329 #ifdef IEEE80211_SUPPORT_SUPERG
330 	ieee80211_superg_attach(ic);
331 #endif
332 	ieee80211_ht_attach(ic);
333 	ieee80211_scan_attach(ic);
334 	ieee80211_regdomain_attach(ic);
335 	ieee80211_dfs_attach(ic);
336 
337 	ieee80211_sysctl_attach(ic);
338 
339 	mtx_lock(&ic_list_mtx);
340 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
341 	mtx_unlock(&ic_list_mtx);
342 }
343 
344 /*
345  * Detach net80211 state on device detach.  Tear down
346  * all vap's and reclaim all common state prior to the
347  * device state going away.  Note we may call back into
348  * driver; it must be prepared for this.
349  */
350 void
351 ieee80211_ifdetach(struct ieee80211com *ic)
352 {
353 	struct ieee80211vap *vap;
354 
355 	mtx_lock(&ic_list_mtx);
356 	LIST_REMOVE(ic, ic_next);
357 	mtx_unlock(&ic_list_mtx);
358 
359 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
360 
361 	/*
362 	 * The VAP is responsible for setting and clearing
363 	 * the VIMAGE context.
364 	 */
365 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
366 		ieee80211_vap_destroy(vap);
367 	ieee80211_waitfor_parent(ic);
368 
369 	ieee80211_sysctl_detach(ic);
370 	ieee80211_dfs_detach(ic);
371 	ieee80211_regdomain_detach(ic);
372 	ieee80211_scan_detach(ic);
373 #ifdef IEEE80211_SUPPORT_SUPERG
374 	ieee80211_superg_detach(ic);
375 #endif
376 	ieee80211_ht_detach(ic);
377 	/* NB: must be called before ieee80211_node_detach */
378 	ieee80211_proto_detach(ic);
379 	ieee80211_crypto_detach(ic);
380 	ieee80211_power_detach(ic);
381 	ieee80211_node_detach(ic);
382 
383 	counter_u64_free(ic->ic_ierrors);
384 	counter_u64_free(ic->ic_oerrors);
385 
386 	taskqueue_free(ic->ic_tq);
387 	IEEE80211_TX_LOCK_DESTROY(ic);
388 	IEEE80211_LOCK_DESTROY(ic);
389 }
390 
391 struct ieee80211com *
392 ieee80211_find_com(const char *name)
393 {
394 	struct ieee80211com *ic;
395 
396 	mtx_lock(&ic_list_mtx);
397 	LIST_FOREACH(ic, &ic_head, ic_next)
398 		if (strcmp(ic->ic_name, name) == 0)
399 			break;
400 	mtx_unlock(&ic_list_mtx);
401 
402 	return (ic);
403 }
404 
405 /*
406  * Default reset method for use with the ioctl support.  This
407  * method is invoked after any state change in the 802.11
408  * layer that should be propagated to the hardware but not
409  * require re-initialization of the 802.11 state machine (e.g
410  * rescanning for an ap).  We always return ENETRESET which
411  * should cause the driver to re-initialize the device. Drivers
412  * can override this method to implement more optimized support.
413  */
414 static int
415 default_reset(struct ieee80211vap *vap, u_long cmd)
416 {
417 	return ENETRESET;
418 }
419 
420 /*
421  * Add underlying device errors to vap errors.
422  */
423 static uint64_t
424 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
425 {
426 	struct ieee80211vap *vap = ifp->if_softc;
427 	struct ieee80211com *ic = vap->iv_ic;
428 	uint64_t rv;
429 
430 	rv = if_get_counter_default(ifp, cnt);
431 	switch (cnt) {
432 	case IFCOUNTER_OERRORS:
433 		rv += counter_u64_fetch(ic->ic_oerrors);
434 		break;
435 	case IFCOUNTER_IERRORS:
436 		rv += counter_u64_fetch(ic->ic_ierrors);
437 		break;
438 	default:
439 		break;
440 	}
441 
442 	return (rv);
443 }
444 
445 /*
446  * Prepare a vap for use.  Drivers use this call to
447  * setup net80211 state in new vap's prior attaching
448  * them with ieee80211_vap_attach (below).
449  */
450 int
451 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
452     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
453     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
454 {
455 	struct ifnet *ifp;
456 
457 	ifp = if_alloc(IFT_ETHER);
458 	if (ifp == NULL) {
459 		ic_printf(ic, "%s: unable to allocate ifnet\n",
460 		    __func__);
461 		return ENOMEM;
462 	}
463 	if_initname(ifp, name, unit);
464 	ifp->if_softc = vap;			/* back pointer */
465 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
466 	ifp->if_transmit = ieee80211_vap_transmit;
467 	ifp->if_qflush = ieee80211_vap_qflush;
468 	ifp->if_ioctl = ieee80211_ioctl;
469 	ifp->if_init = ieee80211_init;
470 	ifp->if_get_counter = ieee80211_get_counter;
471 
472 	vap->iv_ifp = ifp;
473 	vap->iv_ic = ic;
474 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
475 	vap->iv_flags_ext = ic->ic_flags_ext;
476 	vap->iv_flags_ven = ic->ic_flags_ven;
477 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
478 	vap->iv_htcaps = ic->ic_htcaps;
479 	vap->iv_htextcaps = ic->ic_htextcaps;
480 	vap->iv_opmode = opmode;
481 	vap->iv_caps |= ieee80211_opcap[opmode];
482 	vap->iv_myaddr = ic->ic_macaddr;
483 	switch (opmode) {
484 	case IEEE80211_M_WDS:
485 		/*
486 		 * WDS links must specify the bssid of the far end.
487 		 * For legacy operation this is a static relationship.
488 		 * For non-legacy operation the station must associate
489 		 * and be authorized to pass traffic.  Plumbing the
490 		 * vap to the proper node happens when the vap
491 		 * transitions to RUN state.
492 		 */
493 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
494 		vap->iv_flags |= IEEE80211_F_DESBSSID;
495 		if (flags & IEEE80211_CLONE_WDSLEGACY)
496 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
497 		break;
498 #ifdef IEEE80211_SUPPORT_TDMA
499 	case IEEE80211_M_AHDEMO:
500 		if (flags & IEEE80211_CLONE_TDMA) {
501 			/* NB: checked before clone operation allowed */
502 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
503 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
504 			/*
505 			 * Propagate TDMA capability to mark vap; this
506 			 * cannot be removed and is used to distinguish
507 			 * regular ahdemo operation from ahdemo+tdma.
508 			 */
509 			vap->iv_caps |= IEEE80211_C_TDMA;
510 		}
511 		break;
512 #endif
513 	default:
514 		break;
515 	}
516 	/* auto-enable s/w beacon miss support */
517 	if (flags & IEEE80211_CLONE_NOBEACONS)
518 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
519 	/* auto-generated or user supplied MAC address */
520 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
521 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
522 	/*
523 	 * Enable various functionality by default if we're
524 	 * capable; the driver can override us if it knows better.
525 	 */
526 	if (vap->iv_caps & IEEE80211_C_WME)
527 		vap->iv_flags |= IEEE80211_F_WME;
528 	if (vap->iv_caps & IEEE80211_C_BURST)
529 		vap->iv_flags |= IEEE80211_F_BURST;
530 	/* NB: bg scanning only makes sense for station mode right now */
531 	if (vap->iv_opmode == IEEE80211_M_STA &&
532 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
533 		vap->iv_flags |= IEEE80211_F_BGSCAN;
534 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
535 	/* NB: DFS support only makes sense for ap mode right now */
536 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
537 	    (vap->iv_caps & IEEE80211_C_DFS))
538 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
539 
540 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
541 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
542 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
543 	/*
544 	 * Install a default reset method for the ioctl support;
545 	 * the driver can override this.
546 	 */
547 	vap->iv_reset = default_reset;
548 
549 	ieee80211_sysctl_vattach(vap);
550 	ieee80211_crypto_vattach(vap);
551 	ieee80211_node_vattach(vap);
552 	ieee80211_power_vattach(vap);
553 	ieee80211_proto_vattach(vap);
554 #ifdef IEEE80211_SUPPORT_SUPERG
555 	ieee80211_superg_vattach(vap);
556 #endif
557 	ieee80211_ht_vattach(vap);
558 	ieee80211_scan_vattach(vap);
559 	ieee80211_regdomain_vattach(vap);
560 	ieee80211_radiotap_vattach(vap);
561 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
562 
563 	return 0;
564 }
565 
566 /*
567  * Activate a vap.  State should have been prepared with a
568  * call to ieee80211_vap_setup and by the driver.  On return
569  * from this call the vap is ready for use.
570  */
571 int
572 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
573     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
574 {
575 	struct ifnet *ifp = vap->iv_ifp;
576 	struct ieee80211com *ic = vap->iv_ic;
577 	struct ifmediareq imr;
578 	int maxrate;
579 
580 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
581 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
582 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
583 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
584 
585 	/*
586 	 * Do late attach work that cannot happen until after
587 	 * the driver has had a chance to override defaults.
588 	 */
589 	ieee80211_node_latevattach(vap);
590 	ieee80211_power_latevattach(vap);
591 
592 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
593 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
594 	ieee80211_media_status(ifp, &imr);
595 	/* NB: strip explicit mode; we're actually in autoselect */
596 	ifmedia_set(&vap->iv_media,
597 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
598 	if (maxrate)
599 		ifp->if_baudrate = IF_Mbps(maxrate);
600 
601 	ether_ifattach(ifp, macaddr);
602 	vap->iv_myaddr = IF_LLADDR(ifp);
603 	/* hook output method setup by ether_ifattach */
604 	vap->iv_output = ifp->if_output;
605 	ifp->if_output = ieee80211_output;
606 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
607 
608 	IEEE80211_LOCK(ic);
609 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
610 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
611 #ifdef IEEE80211_SUPPORT_SUPERG
612 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
613 #endif
614 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
615 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
616 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
617 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
618 	IEEE80211_UNLOCK(ic);
619 
620 	return 1;
621 }
622 
623 /*
624  * Tear down vap state and reclaim the ifnet.
625  * The driver is assumed to have prepared for
626  * this; e.g. by turning off interrupts for the
627  * underlying device.
628  */
629 void
630 ieee80211_vap_detach(struct ieee80211vap *vap)
631 {
632 	struct ieee80211com *ic = vap->iv_ic;
633 	struct ifnet *ifp = vap->iv_ifp;
634 
635 	CURVNET_SET(ifp->if_vnet);
636 
637 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
638 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
639 
640 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
641 	ether_ifdetach(ifp);
642 
643 	ieee80211_stop(vap);
644 
645 	/*
646 	 * Flush any deferred vap tasks.
647 	 */
648 	ieee80211_draintask(ic, &vap->iv_nstate_task);
649 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
650 
651 	/* XXX band-aid until ifnet handles this for us */
652 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
653 
654 	IEEE80211_LOCK(ic);
655 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
656 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
657 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
658 #ifdef IEEE80211_SUPPORT_SUPERG
659 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
660 #endif
661 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
662 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
663 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
664 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
665 	/* NB: this handles the bpfdetach done below */
666 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
667 	if (vap->iv_ifflags & IFF_PROMISC)
668 		ieee80211_promisc(vap, false);
669 	if (vap->iv_ifflags & IFF_ALLMULTI)
670 		ieee80211_allmulti(vap, false);
671 	IEEE80211_UNLOCK(ic);
672 
673 	ifmedia_removeall(&vap->iv_media);
674 
675 	ieee80211_radiotap_vdetach(vap);
676 	ieee80211_regdomain_vdetach(vap);
677 	ieee80211_scan_vdetach(vap);
678 #ifdef IEEE80211_SUPPORT_SUPERG
679 	ieee80211_superg_vdetach(vap);
680 #endif
681 	ieee80211_ht_vdetach(vap);
682 	/* NB: must be before ieee80211_node_vdetach */
683 	ieee80211_proto_vdetach(vap);
684 	ieee80211_crypto_vdetach(vap);
685 	ieee80211_power_vdetach(vap);
686 	ieee80211_node_vdetach(vap);
687 	ieee80211_sysctl_vdetach(vap);
688 
689 	if_free(ifp);
690 
691 	CURVNET_RESTORE();
692 }
693 
694 /*
695  * Count number of vaps in promisc, and issue promisc on
696  * parent respectively.
697  */
698 void
699 ieee80211_promisc(struct ieee80211vap *vap, bool on)
700 {
701 	struct ieee80211com *ic = vap->iv_ic;
702 
703 	/*
704 	 * XXX the bridge sets PROMISC but we don't want to
705 	 * enable it on the device, discard here so all the
706 	 * drivers don't need to special-case it
707 	 */
708 	if (!(vap->iv_opmode == IEEE80211_M_MONITOR ||
709 	      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
710 	       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
711 			return;
712 
713 	IEEE80211_LOCK(ic);
714 	if (on) {
715 		if (++ic->ic_promisc == 1)
716 			ieee80211_runtask(ic, &ic->ic_promisc_task);
717 	} else {
718 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
719 		    __func__, ic));
720 		if (--ic->ic_promisc == 0)
721 			ieee80211_runtask(ic, &ic->ic_promisc_task);
722 	}
723 	IEEE80211_UNLOCK(ic);
724 }
725 
726 /*
727  * Count number of vaps in allmulti, and issue allmulti on
728  * parent respectively.
729  */
730 void
731 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
732 {
733 	struct ieee80211com *ic = vap->iv_ic;
734 
735 	IEEE80211_LOCK(ic);
736 	if (on) {
737 		if (++ic->ic_allmulti == 1)
738 			ieee80211_runtask(ic, &ic->ic_mcast_task);
739 	} else {
740 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
741 		    __func__, ic));
742 		if (--ic->ic_allmulti == 0)
743 			ieee80211_runtask(ic, &ic->ic_mcast_task);
744 	}
745 	IEEE80211_UNLOCK(ic);
746 }
747 
748 /*
749  * Synchronize flag bit state in the com structure
750  * according to the state of all vap's.  This is used,
751  * for example, to handle state changes via ioctls.
752  */
753 static void
754 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
755 {
756 	struct ieee80211vap *vap;
757 	int bit;
758 
759 	IEEE80211_LOCK_ASSERT(ic);
760 
761 	bit = 0;
762 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
763 		if (vap->iv_flags & flag) {
764 			bit = 1;
765 			break;
766 		}
767 	if (bit)
768 		ic->ic_flags |= flag;
769 	else
770 		ic->ic_flags &= ~flag;
771 }
772 
773 void
774 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
775 {
776 	struct ieee80211com *ic = vap->iv_ic;
777 
778 	IEEE80211_LOCK(ic);
779 	if (flag < 0) {
780 		flag = -flag;
781 		vap->iv_flags &= ~flag;
782 	} else
783 		vap->iv_flags |= flag;
784 	ieee80211_syncflag_locked(ic, flag);
785 	IEEE80211_UNLOCK(ic);
786 }
787 
788 /*
789  * Synchronize flags_ht bit state in the com structure
790  * according to the state of all vap's.  This is used,
791  * for example, to handle state changes via ioctls.
792  */
793 static void
794 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
795 {
796 	struct ieee80211vap *vap;
797 	int bit;
798 
799 	IEEE80211_LOCK_ASSERT(ic);
800 
801 	bit = 0;
802 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
803 		if (vap->iv_flags_ht & flag) {
804 			bit = 1;
805 			break;
806 		}
807 	if (bit)
808 		ic->ic_flags_ht |= flag;
809 	else
810 		ic->ic_flags_ht &= ~flag;
811 }
812 
813 void
814 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
815 {
816 	struct ieee80211com *ic = vap->iv_ic;
817 
818 	IEEE80211_LOCK(ic);
819 	if (flag < 0) {
820 		flag = -flag;
821 		vap->iv_flags_ht &= ~flag;
822 	} else
823 		vap->iv_flags_ht |= flag;
824 	ieee80211_syncflag_ht_locked(ic, flag);
825 	IEEE80211_UNLOCK(ic);
826 }
827 
828 /*
829  * Synchronize flags_ext bit state in the com structure
830  * according to the state of all vap's.  This is used,
831  * for example, to handle state changes via ioctls.
832  */
833 static void
834 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
835 {
836 	struct ieee80211vap *vap;
837 	int bit;
838 
839 	IEEE80211_LOCK_ASSERT(ic);
840 
841 	bit = 0;
842 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
843 		if (vap->iv_flags_ext & flag) {
844 			bit = 1;
845 			break;
846 		}
847 	if (bit)
848 		ic->ic_flags_ext |= flag;
849 	else
850 		ic->ic_flags_ext &= ~flag;
851 }
852 
853 void
854 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
855 {
856 	struct ieee80211com *ic = vap->iv_ic;
857 
858 	IEEE80211_LOCK(ic);
859 	if (flag < 0) {
860 		flag = -flag;
861 		vap->iv_flags_ext &= ~flag;
862 	} else
863 		vap->iv_flags_ext |= flag;
864 	ieee80211_syncflag_ext_locked(ic, flag);
865 	IEEE80211_UNLOCK(ic);
866 }
867 
868 static __inline int
869 mapgsm(u_int freq, u_int flags)
870 {
871 	freq *= 10;
872 	if (flags & IEEE80211_CHAN_QUARTER)
873 		freq += 5;
874 	else if (flags & IEEE80211_CHAN_HALF)
875 		freq += 10;
876 	else
877 		freq += 20;
878 	/* NB: there is no 907/20 wide but leave room */
879 	return (freq - 906*10) / 5;
880 }
881 
882 static __inline int
883 mappsb(u_int freq, u_int flags)
884 {
885 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
886 }
887 
888 /*
889  * Convert MHz frequency to IEEE channel number.
890  */
891 int
892 ieee80211_mhz2ieee(u_int freq, u_int flags)
893 {
894 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
895 	if (flags & IEEE80211_CHAN_GSM)
896 		return mapgsm(freq, flags);
897 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
898 		if (freq == 2484)
899 			return 14;
900 		if (freq < 2484)
901 			return ((int) freq - 2407) / 5;
902 		else
903 			return 15 + ((freq - 2512) / 20);
904 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
905 		if (freq <= 5000) {
906 			/* XXX check regdomain? */
907 			if (IS_FREQ_IN_PSB(freq))
908 				return mappsb(freq, flags);
909 			return (freq - 4000) / 5;
910 		} else
911 			return (freq - 5000) / 5;
912 	} else {				/* either, guess */
913 		if (freq == 2484)
914 			return 14;
915 		if (freq < 2484) {
916 			if (907 <= freq && freq <= 922)
917 				return mapgsm(freq, flags);
918 			return ((int) freq - 2407) / 5;
919 		}
920 		if (freq < 5000) {
921 			if (IS_FREQ_IN_PSB(freq))
922 				return mappsb(freq, flags);
923 			else if (freq > 4900)
924 				return (freq - 4000) / 5;
925 			else
926 				return 15 + ((freq - 2512) / 20);
927 		}
928 		return (freq - 5000) / 5;
929 	}
930 #undef IS_FREQ_IN_PSB
931 }
932 
933 /*
934  * Convert channel to IEEE channel number.
935  */
936 int
937 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
938 {
939 	if (c == NULL) {
940 		ic_printf(ic, "invalid channel (NULL)\n");
941 		return 0;		/* XXX */
942 	}
943 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
944 }
945 
946 /*
947  * Convert IEEE channel number to MHz frequency.
948  */
949 u_int
950 ieee80211_ieee2mhz(u_int chan, u_int flags)
951 {
952 	if (flags & IEEE80211_CHAN_GSM)
953 		return 907 + 5 * (chan / 10);
954 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
955 		if (chan == 14)
956 			return 2484;
957 		if (chan < 14)
958 			return 2407 + chan*5;
959 		else
960 			return 2512 + ((chan-15)*20);
961 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
962 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
963 			chan -= 37;
964 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
965 		}
966 		return 5000 + (chan*5);
967 	} else {				/* either, guess */
968 		/* XXX can't distinguish PSB+GSM channels */
969 		if (chan == 14)
970 			return 2484;
971 		if (chan < 14)			/* 0-13 */
972 			return 2407 + chan*5;
973 		if (chan < 27)			/* 15-26 */
974 			return 2512 + ((chan-15)*20);
975 		return 5000 + (chan*5);
976 	}
977 }
978 
979 /*
980  * Locate a channel given a frequency+flags.  We cache
981  * the previous lookup to optimize switching between two
982  * channels--as happens with dynamic turbo.
983  */
984 struct ieee80211_channel *
985 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
986 {
987 	struct ieee80211_channel *c;
988 	int i;
989 
990 	flags &= IEEE80211_CHAN_ALLTURBO;
991 	c = ic->ic_prevchan;
992 	if (c != NULL && c->ic_freq == freq &&
993 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
994 		return c;
995 	/* brute force search */
996 	for (i = 0; i < ic->ic_nchans; i++) {
997 		c = &ic->ic_channels[i];
998 		if (c->ic_freq == freq &&
999 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1000 			return c;
1001 	}
1002 	return NULL;
1003 }
1004 
1005 /*
1006  * Locate a channel given a channel number+flags.  We cache
1007  * the previous lookup to optimize switching between two
1008  * channels--as happens with dynamic turbo.
1009  */
1010 struct ieee80211_channel *
1011 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1012 {
1013 	struct ieee80211_channel *c;
1014 	int i;
1015 
1016 	flags &= IEEE80211_CHAN_ALLTURBO;
1017 	c = ic->ic_prevchan;
1018 	if (c != NULL && c->ic_ieee == ieee &&
1019 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1020 		return c;
1021 	/* brute force search */
1022 	for (i = 0; i < ic->ic_nchans; i++) {
1023 		c = &ic->ic_channels[i];
1024 		if (c->ic_ieee == ieee &&
1025 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1026 			return c;
1027 	}
1028 	return NULL;
1029 }
1030 
1031 /*
1032  * Lookup a channel suitable for the given rx status.
1033  *
1034  * This is used to find a channel for a frame (eg beacon, probe
1035  * response) based purely on the received PHY information.
1036  *
1037  * For now it tries to do it based on R_FREQ / R_IEEE.
1038  * This is enough for 11bg and 11a (and thus 11ng/11na)
1039  * but it will not be enough for GSM, PSB channels and the
1040  * like.  It also doesn't know about legacy-turbog and
1041  * legacy-turbo modes, which some offload NICs actually
1042  * support in weird ways.
1043  *
1044  * Takes the ic and rxstatus; returns the channel or NULL
1045  * if not found.
1046  *
1047  * XXX TODO: Add support for that when the need arises.
1048  */
1049 struct ieee80211_channel *
1050 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1051     const struct ieee80211_rx_stats *rxs)
1052 {
1053 	struct ieee80211com *ic = vap->iv_ic;
1054 	uint32_t flags;
1055 	struct ieee80211_channel *c;
1056 
1057 	if (rxs == NULL)
1058 		return (NULL);
1059 
1060 	/*
1061 	 * Strictly speaking we only use freq for now,
1062 	 * however later on we may wish to just store
1063 	 * the ieee for verification.
1064 	 */
1065 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1066 		return (NULL);
1067 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1068 		return (NULL);
1069 
1070 	/*
1071 	 * If the rx status contains a valid ieee/freq, then
1072 	 * ensure we populate the correct channel information
1073 	 * in rxchan before passing it up to the scan infrastructure.
1074 	 * Offload NICs will pass up beacons from all channels
1075 	 * during background scans.
1076 	 */
1077 
1078 	/* Determine a band */
1079 	/* XXX should be done by the driver? */
1080 	if (rxs->c_freq < 3000) {
1081 		flags = IEEE80211_CHAN_G;
1082 	} else {
1083 		flags = IEEE80211_CHAN_A;
1084 	}
1085 
1086 	/* Channel lookup */
1087 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1088 
1089 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1090 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1091 	    __func__,
1092 	    (int) rxs->c_freq,
1093 	    (int) rxs->c_ieee,
1094 	    flags,
1095 	    c);
1096 
1097 	return (c);
1098 }
1099 
1100 static void
1101 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1102 {
1103 #define	ADD(_ic, _s, _o) \
1104 	ifmedia_add(media, \
1105 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1106 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1107 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1108 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1109 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1110 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1111 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1112 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1113 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1114 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1115 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1116 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1117 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1118 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1119 	};
1120 	u_int mopt;
1121 
1122 	mopt = mopts[mode];
1123 	if (addsta)
1124 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1125 	if (caps & IEEE80211_C_IBSS)
1126 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1127 	if (caps & IEEE80211_C_HOSTAP)
1128 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1129 	if (caps & IEEE80211_C_AHDEMO)
1130 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1131 	if (caps & IEEE80211_C_MONITOR)
1132 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1133 	if (caps & IEEE80211_C_WDS)
1134 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1135 	if (caps & IEEE80211_C_MBSS)
1136 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1137 #undef ADD
1138 }
1139 
1140 /*
1141  * Setup the media data structures according to the channel and
1142  * rate tables.
1143  */
1144 static int
1145 ieee80211_media_setup(struct ieee80211com *ic,
1146 	struct ifmedia *media, int caps, int addsta,
1147 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1148 {
1149 	int i, j, rate, maxrate, mword, r;
1150 	enum ieee80211_phymode mode;
1151 	const struct ieee80211_rateset *rs;
1152 	struct ieee80211_rateset allrates;
1153 
1154 	/*
1155 	 * Fill in media characteristics.
1156 	 */
1157 	ifmedia_init(media, 0, media_change, media_stat);
1158 	maxrate = 0;
1159 	/*
1160 	 * Add media for legacy operating modes.
1161 	 */
1162 	memset(&allrates, 0, sizeof(allrates));
1163 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1164 		if (isclr(ic->ic_modecaps, mode))
1165 			continue;
1166 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1167 		if (mode == IEEE80211_MODE_AUTO)
1168 			continue;
1169 		rs = &ic->ic_sup_rates[mode];
1170 		for (i = 0; i < rs->rs_nrates; i++) {
1171 			rate = rs->rs_rates[i];
1172 			mword = ieee80211_rate2media(ic, rate, mode);
1173 			if (mword == 0)
1174 				continue;
1175 			addmedia(media, caps, addsta, mode, mword);
1176 			/*
1177 			 * Add legacy rate to the collection of all rates.
1178 			 */
1179 			r = rate & IEEE80211_RATE_VAL;
1180 			for (j = 0; j < allrates.rs_nrates; j++)
1181 				if (allrates.rs_rates[j] == r)
1182 					break;
1183 			if (j == allrates.rs_nrates) {
1184 				/* unique, add to the set */
1185 				allrates.rs_rates[j] = r;
1186 				allrates.rs_nrates++;
1187 			}
1188 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1189 			if (rate > maxrate)
1190 				maxrate = rate;
1191 		}
1192 	}
1193 	for (i = 0; i < allrates.rs_nrates; i++) {
1194 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1195 				IEEE80211_MODE_AUTO);
1196 		if (mword == 0)
1197 			continue;
1198 		/* NB: remove media options from mword */
1199 		addmedia(media, caps, addsta,
1200 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1201 	}
1202 	/*
1203 	 * Add HT/11n media.  Note that we do not have enough
1204 	 * bits in the media subtype to express the MCS so we
1205 	 * use a "placeholder" media subtype and any fixed MCS
1206 	 * must be specified with a different mechanism.
1207 	 */
1208 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1209 		if (isclr(ic->ic_modecaps, mode))
1210 			continue;
1211 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1212 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1213 	}
1214 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1215 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1216 		addmedia(media, caps, addsta,
1217 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1218 		i = ic->ic_txstream * 8 - 1;
1219 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1220 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1221 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1222 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1223 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1224 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1225 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1226 		else
1227 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1228 		if (rate > maxrate)
1229 			maxrate = rate;
1230 	}
1231 	return maxrate;
1232 }
1233 
1234 /* XXX inline or eliminate? */
1235 const struct ieee80211_rateset *
1236 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1237 {
1238 	/* XXX does this work for 11ng basic rates? */
1239 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1240 }
1241 
1242 void
1243 ieee80211_announce(struct ieee80211com *ic)
1244 {
1245 	int i, rate, mword;
1246 	enum ieee80211_phymode mode;
1247 	const struct ieee80211_rateset *rs;
1248 
1249 	/* NB: skip AUTO since it has no rates */
1250 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1251 		if (isclr(ic->ic_modecaps, mode))
1252 			continue;
1253 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1254 		rs = &ic->ic_sup_rates[mode];
1255 		for (i = 0; i < rs->rs_nrates; i++) {
1256 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1257 			if (mword == 0)
1258 				continue;
1259 			rate = ieee80211_media2rate(mword);
1260 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1261 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1262 		}
1263 		printf("\n");
1264 	}
1265 	ieee80211_ht_announce(ic);
1266 }
1267 
1268 void
1269 ieee80211_announce_channels(struct ieee80211com *ic)
1270 {
1271 	const struct ieee80211_channel *c;
1272 	char type;
1273 	int i, cw;
1274 
1275 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1276 	for (i = 0; i < ic->ic_nchans; i++) {
1277 		c = &ic->ic_channels[i];
1278 		if (IEEE80211_IS_CHAN_ST(c))
1279 			type = 'S';
1280 		else if (IEEE80211_IS_CHAN_108A(c))
1281 			type = 'T';
1282 		else if (IEEE80211_IS_CHAN_108G(c))
1283 			type = 'G';
1284 		else if (IEEE80211_IS_CHAN_HT(c))
1285 			type = 'n';
1286 		else if (IEEE80211_IS_CHAN_A(c))
1287 			type = 'a';
1288 		else if (IEEE80211_IS_CHAN_ANYG(c))
1289 			type = 'g';
1290 		else if (IEEE80211_IS_CHAN_B(c))
1291 			type = 'b';
1292 		else
1293 			type = 'f';
1294 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1295 			cw = 40;
1296 		else if (IEEE80211_IS_CHAN_HALF(c))
1297 			cw = 10;
1298 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1299 			cw = 5;
1300 		else
1301 			cw = 20;
1302 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1303 			, c->ic_ieee, c->ic_freq, type
1304 			, cw
1305 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1306 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1307 			, c->ic_maxregpower
1308 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1309 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1310 		);
1311 	}
1312 }
1313 
1314 static int
1315 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1316 {
1317 	switch (IFM_MODE(ime->ifm_media)) {
1318 	case IFM_IEEE80211_11A:
1319 		*mode = IEEE80211_MODE_11A;
1320 		break;
1321 	case IFM_IEEE80211_11B:
1322 		*mode = IEEE80211_MODE_11B;
1323 		break;
1324 	case IFM_IEEE80211_11G:
1325 		*mode = IEEE80211_MODE_11G;
1326 		break;
1327 	case IFM_IEEE80211_FH:
1328 		*mode = IEEE80211_MODE_FH;
1329 		break;
1330 	case IFM_IEEE80211_11NA:
1331 		*mode = IEEE80211_MODE_11NA;
1332 		break;
1333 	case IFM_IEEE80211_11NG:
1334 		*mode = IEEE80211_MODE_11NG;
1335 		break;
1336 	case IFM_AUTO:
1337 		*mode = IEEE80211_MODE_AUTO;
1338 		break;
1339 	default:
1340 		return 0;
1341 	}
1342 	/*
1343 	 * Turbo mode is an ``option''.
1344 	 * XXX does not apply to AUTO
1345 	 */
1346 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1347 		if (*mode == IEEE80211_MODE_11A) {
1348 			if (flags & IEEE80211_F_TURBOP)
1349 				*mode = IEEE80211_MODE_TURBO_A;
1350 			else
1351 				*mode = IEEE80211_MODE_STURBO_A;
1352 		} else if (*mode == IEEE80211_MODE_11G)
1353 			*mode = IEEE80211_MODE_TURBO_G;
1354 		else
1355 			return 0;
1356 	}
1357 	/* XXX HT40 +/- */
1358 	return 1;
1359 }
1360 
1361 /*
1362  * Handle a media change request on the vap interface.
1363  */
1364 int
1365 ieee80211_media_change(struct ifnet *ifp)
1366 {
1367 	struct ieee80211vap *vap = ifp->if_softc;
1368 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1369 	uint16_t newmode;
1370 
1371 	if (!media2mode(ime, vap->iv_flags, &newmode))
1372 		return EINVAL;
1373 	if (vap->iv_des_mode != newmode) {
1374 		vap->iv_des_mode = newmode;
1375 		/* XXX kick state machine if up+running */
1376 	}
1377 	return 0;
1378 }
1379 
1380 /*
1381  * Common code to calculate the media status word
1382  * from the operating mode and channel state.
1383  */
1384 static int
1385 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1386 {
1387 	int status;
1388 
1389 	status = IFM_IEEE80211;
1390 	switch (opmode) {
1391 	case IEEE80211_M_STA:
1392 		break;
1393 	case IEEE80211_M_IBSS:
1394 		status |= IFM_IEEE80211_ADHOC;
1395 		break;
1396 	case IEEE80211_M_HOSTAP:
1397 		status |= IFM_IEEE80211_HOSTAP;
1398 		break;
1399 	case IEEE80211_M_MONITOR:
1400 		status |= IFM_IEEE80211_MONITOR;
1401 		break;
1402 	case IEEE80211_M_AHDEMO:
1403 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1404 		break;
1405 	case IEEE80211_M_WDS:
1406 		status |= IFM_IEEE80211_WDS;
1407 		break;
1408 	case IEEE80211_M_MBSS:
1409 		status |= IFM_IEEE80211_MBSS;
1410 		break;
1411 	}
1412 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1413 		status |= IFM_IEEE80211_11NA;
1414 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1415 		status |= IFM_IEEE80211_11NG;
1416 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1417 		status |= IFM_IEEE80211_11A;
1418 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1419 		status |= IFM_IEEE80211_11B;
1420 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1421 		status |= IFM_IEEE80211_11G;
1422 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1423 		status |= IFM_IEEE80211_FH;
1424 	}
1425 	/* XXX else complain? */
1426 
1427 	if (IEEE80211_IS_CHAN_TURBO(chan))
1428 		status |= IFM_IEEE80211_TURBO;
1429 #if 0
1430 	if (IEEE80211_IS_CHAN_HT20(chan))
1431 		status |= IFM_IEEE80211_HT20;
1432 	if (IEEE80211_IS_CHAN_HT40(chan))
1433 		status |= IFM_IEEE80211_HT40;
1434 #endif
1435 	return status;
1436 }
1437 
1438 void
1439 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1440 {
1441 	struct ieee80211vap *vap = ifp->if_softc;
1442 	struct ieee80211com *ic = vap->iv_ic;
1443 	enum ieee80211_phymode mode;
1444 
1445 	imr->ifm_status = IFM_AVALID;
1446 	/*
1447 	 * NB: use the current channel's mode to lock down a xmit
1448 	 * rate only when running; otherwise we may have a mismatch
1449 	 * in which case the rate will not be convertible.
1450 	 */
1451 	if (vap->iv_state == IEEE80211_S_RUN ||
1452 	    vap->iv_state == IEEE80211_S_SLEEP) {
1453 		imr->ifm_status |= IFM_ACTIVE;
1454 		mode = ieee80211_chan2mode(ic->ic_curchan);
1455 	} else
1456 		mode = IEEE80211_MODE_AUTO;
1457 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1458 	/*
1459 	 * Calculate a current rate if possible.
1460 	 */
1461 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1462 		/*
1463 		 * A fixed rate is set, report that.
1464 		 */
1465 		imr->ifm_active |= ieee80211_rate2media(ic,
1466 			vap->iv_txparms[mode].ucastrate, mode);
1467 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1468 		/*
1469 		 * In station mode report the current transmit rate.
1470 		 */
1471 		imr->ifm_active |= ieee80211_rate2media(ic,
1472 			vap->iv_bss->ni_txrate, mode);
1473 	} else
1474 		imr->ifm_active |= IFM_AUTO;
1475 	if (imr->ifm_status & IFM_ACTIVE)
1476 		imr->ifm_current = imr->ifm_active;
1477 }
1478 
1479 /*
1480  * Set the current phy mode and recalculate the active channel
1481  * set based on the available channels for this mode.  Also
1482  * select a new default/current channel if the current one is
1483  * inappropriate for this mode.
1484  */
1485 int
1486 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1487 {
1488 	/*
1489 	 * Adjust basic rates in 11b/11g supported rate set.
1490 	 * Note that if operating on a hal/quarter rate channel
1491 	 * this is a noop as those rates sets are different
1492 	 * and used instead.
1493 	 */
1494 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1495 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1496 
1497 	ic->ic_curmode = mode;
1498 	ieee80211_reset_erp(ic);	/* reset ERP state */
1499 
1500 	return 0;
1501 }
1502 
1503 /*
1504  * Return the phy mode for with the specified channel.
1505  */
1506 enum ieee80211_phymode
1507 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1508 {
1509 
1510 	if (IEEE80211_IS_CHAN_HTA(chan))
1511 		return IEEE80211_MODE_11NA;
1512 	else if (IEEE80211_IS_CHAN_HTG(chan))
1513 		return IEEE80211_MODE_11NG;
1514 	else if (IEEE80211_IS_CHAN_108G(chan))
1515 		return IEEE80211_MODE_TURBO_G;
1516 	else if (IEEE80211_IS_CHAN_ST(chan))
1517 		return IEEE80211_MODE_STURBO_A;
1518 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1519 		return IEEE80211_MODE_TURBO_A;
1520 	else if (IEEE80211_IS_CHAN_HALF(chan))
1521 		return IEEE80211_MODE_HALF;
1522 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1523 		return IEEE80211_MODE_QUARTER;
1524 	else if (IEEE80211_IS_CHAN_A(chan))
1525 		return IEEE80211_MODE_11A;
1526 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1527 		return IEEE80211_MODE_11G;
1528 	else if (IEEE80211_IS_CHAN_B(chan))
1529 		return IEEE80211_MODE_11B;
1530 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1531 		return IEEE80211_MODE_FH;
1532 
1533 	/* NB: should not get here */
1534 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1535 		__func__, chan->ic_freq, chan->ic_flags);
1536 	return IEEE80211_MODE_11B;
1537 }
1538 
1539 struct ratemedia {
1540 	u_int	match;	/* rate + mode */
1541 	u_int	media;	/* if_media rate */
1542 };
1543 
1544 static int
1545 findmedia(const struct ratemedia rates[], int n, u_int match)
1546 {
1547 	int i;
1548 
1549 	for (i = 0; i < n; i++)
1550 		if (rates[i].match == match)
1551 			return rates[i].media;
1552 	return IFM_AUTO;
1553 }
1554 
1555 /*
1556  * Convert IEEE80211 rate value to ifmedia subtype.
1557  * Rate is either a legacy rate in units of 0.5Mbps
1558  * or an MCS index.
1559  */
1560 int
1561 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1562 {
1563 	static const struct ratemedia rates[] = {
1564 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1565 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1566 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1567 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1568 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1569 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1570 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1571 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1572 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1573 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1574 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1575 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1576 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1577 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1578 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1579 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1580 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1581 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1582 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1583 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1584 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1585 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1586 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1587 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1588 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1589 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1590 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1591 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1592 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1593 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1594 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1595 	};
1596 	static const struct ratemedia htrates[] = {
1597 		{   0, IFM_IEEE80211_MCS },
1598 		{   1, IFM_IEEE80211_MCS },
1599 		{   2, IFM_IEEE80211_MCS },
1600 		{   3, IFM_IEEE80211_MCS },
1601 		{   4, IFM_IEEE80211_MCS },
1602 		{   5, IFM_IEEE80211_MCS },
1603 		{   6, IFM_IEEE80211_MCS },
1604 		{   7, IFM_IEEE80211_MCS },
1605 		{   8, IFM_IEEE80211_MCS },
1606 		{   9, IFM_IEEE80211_MCS },
1607 		{  10, IFM_IEEE80211_MCS },
1608 		{  11, IFM_IEEE80211_MCS },
1609 		{  12, IFM_IEEE80211_MCS },
1610 		{  13, IFM_IEEE80211_MCS },
1611 		{  14, IFM_IEEE80211_MCS },
1612 		{  15, IFM_IEEE80211_MCS },
1613 		{  16, IFM_IEEE80211_MCS },
1614 		{  17, IFM_IEEE80211_MCS },
1615 		{  18, IFM_IEEE80211_MCS },
1616 		{  19, IFM_IEEE80211_MCS },
1617 		{  20, IFM_IEEE80211_MCS },
1618 		{  21, IFM_IEEE80211_MCS },
1619 		{  22, IFM_IEEE80211_MCS },
1620 		{  23, IFM_IEEE80211_MCS },
1621 		{  24, IFM_IEEE80211_MCS },
1622 		{  25, IFM_IEEE80211_MCS },
1623 		{  26, IFM_IEEE80211_MCS },
1624 		{  27, IFM_IEEE80211_MCS },
1625 		{  28, IFM_IEEE80211_MCS },
1626 		{  29, IFM_IEEE80211_MCS },
1627 		{  30, IFM_IEEE80211_MCS },
1628 		{  31, IFM_IEEE80211_MCS },
1629 		{  32, IFM_IEEE80211_MCS },
1630 		{  33, IFM_IEEE80211_MCS },
1631 		{  34, IFM_IEEE80211_MCS },
1632 		{  35, IFM_IEEE80211_MCS },
1633 		{  36, IFM_IEEE80211_MCS },
1634 		{  37, IFM_IEEE80211_MCS },
1635 		{  38, IFM_IEEE80211_MCS },
1636 		{  39, IFM_IEEE80211_MCS },
1637 		{  40, IFM_IEEE80211_MCS },
1638 		{  41, IFM_IEEE80211_MCS },
1639 		{  42, IFM_IEEE80211_MCS },
1640 		{  43, IFM_IEEE80211_MCS },
1641 		{  44, IFM_IEEE80211_MCS },
1642 		{  45, IFM_IEEE80211_MCS },
1643 		{  46, IFM_IEEE80211_MCS },
1644 		{  47, IFM_IEEE80211_MCS },
1645 		{  48, IFM_IEEE80211_MCS },
1646 		{  49, IFM_IEEE80211_MCS },
1647 		{  50, IFM_IEEE80211_MCS },
1648 		{  51, IFM_IEEE80211_MCS },
1649 		{  52, IFM_IEEE80211_MCS },
1650 		{  53, IFM_IEEE80211_MCS },
1651 		{  54, IFM_IEEE80211_MCS },
1652 		{  55, IFM_IEEE80211_MCS },
1653 		{  56, IFM_IEEE80211_MCS },
1654 		{  57, IFM_IEEE80211_MCS },
1655 		{  58, IFM_IEEE80211_MCS },
1656 		{  59, IFM_IEEE80211_MCS },
1657 		{  60, IFM_IEEE80211_MCS },
1658 		{  61, IFM_IEEE80211_MCS },
1659 		{  62, IFM_IEEE80211_MCS },
1660 		{  63, IFM_IEEE80211_MCS },
1661 		{  64, IFM_IEEE80211_MCS },
1662 		{  65, IFM_IEEE80211_MCS },
1663 		{  66, IFM_IEEE80211_MCS },
1664 		{  67, IFM_IEEE80211_MCS },
1665 		{  68, IFM_IEEE80211_MCS },
1666 		{  69, IFM_IEEE80211_MCS },
1667 		{  70, IFM_IEEE80211_MCS },
1668 		{  71, IFM_IEEE80211_MCS },
1669 		{  72, IFM_IEEE80211_MCS },
1670 		{  73, IFM_IEEE80211_MCS },
1671 		{  74, IFM_IEEE80211_MCS },
1672 		{  75, IFM_IEEE80211_MCS },
1673 		{  76, IFM_IEEE80211_MCS },
1674 	};
1675 	int m;
1676 
1677 	/*
1678 	 * Check 11n rates first for match as an MCS.
1679 	 */
1680 	if (mode == IEEE80211_MODE_11NA) {
1681 		if (rate & IEEE80211_RATE_MCS) {
1682 			rate &= ~IEEE80211_RATE_MCS;
1683 			m = findmedia(htrates, nitems(htrates), rate);
1684 			if (m != IFM_AUTO)
1685 				return m | IFM_IEEE80211_11NA;
1686 		}
1687 	} else if (mode == IEEE80211_MODE_11NG) {
1688 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1689 		if (rate & IEEE80211_RATE_MCS) {
1690 			rate &= ~IEEE80211_RATE_MCS;
1691 			m = findmedia(htrates, nitems(htrates), rate);
1692 			if (m != IFM_AUTO)
1693 				return m | IFM_IEEE80211_11NG;
1694 		}
1695 	}
1696 	rate &= IEEE80211_RATE_VAL;
1697 	switch (mode) {
1698 	case IEEE80211_MODE_11A:
1699 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1700 	case IEEE80211_MODE_QUARTER:
1701 	case IEEE80211_MODE_11NA:
1702 	case IEEE80211_MODE_TURBO_A:
1703 	case IEEE80211_MODE_STURBO_A:
1704 		return findmedia(rates, nitems(rates),
1705 		    rate | IFM_IEEE80211_11A);
1706 	case IEEE80211_MODE_11B:
1707 		return findmedia(rates, nitems(rates),
1708 		    rate | IFM_IEEE80211_11B);
1709 	case IEEE80211_MODE_FH:
1710 		return findmedia(rates, nitems(rates),
1711 		    rate | IFM_IEEE80211_FH);
1712 	case IEEE80211_MODE_AUTO:
1713 		/* NB: ic may be NULL for some drivers */
1714 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1715 			return findmedia(rates, nitems(rates),
1716 			    rate | IFM_IEEE80211_FH);
1717 		/* NB: hack, 11g matches both 11b+11a rates */
1718 		/* fall thru... */
1719 	case IEEE80211_MODE_11G:
1720 	case IEEE80211_MODE_11NG:
1721 	case IEEE80211_MODE_TURBO_G:
1722 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
1723 	}
1724 	return IFM_AUTO;
1725 }
1726 
1727 int
1728 ieee80211_media2rate(int mword)
1729 {
1730 	static const int ieeerates[] = {
1731 		-1,		/* IFM_AUTO */
1732 		0,		/* IFM_MANUAL */
1733 		0,		/* IFM_NONE */
1734 		2,		/* IFM_IEEE80211_FH1 */
1735 		4,		/* IFM_IEEE80211_FH2 */
1736 		2,		/* IFM_IEEE80211_DS1 */
1737 		4,		/* IFM_IEEE80211_DS2 */
1738 		11,		/* IFM_IEEE80211_DS5 */
1739 		22,		/* IFM_IEEE80211_DS11 */
1740 		44,		/* IFM_IEEE80211_DS22 */
1741 		12,		/* IFM_IEEE80211_OFDM6 */
1742 		18,		/* IFM_IEEE80211_OFDM9 */
1743 		24,		/* IFM_IEEE80211_OFDM12 */
1744 		36,		/* IFM_IEEE80211_OFDM18 */
1745 		48,		/* IFM_IEEE80211_OFDM24 */
1746 		72,		/* IFM_IEEE80211_OFDM36 */
1747 		96,		/* IFM_IEEE80211_OFDM48 */
1748 		108,		/* IFM_IEEE80211_OFDM54 */
1749 		144,		/* IFM_IEEE80211_OFDM72 */
1750 		0,		/* IFM_IEEE80211_DS354k */
1751 		0,		/* IFM_IEEE80211_DS512k */
1752 		6,		/* IFM_IEEE80211_OFDM3 */
1753 		9,		/* IFM_IEEE80211_OFDM4 */
1754 		54,		/* IFM_IEEE80211_OFDM27 */
1755 		-1,		/* IFM_IEEE80211_MCS */
1756 	};
1757 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
1758 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1759 }
1760 
1761 /*
1762  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1763  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1764  */
1765 #define	mix(a, b, c)							\
1766 do {									\
1767 	a -= b; a -= c; a ^= (c >> 13);					\
1768 	b -= c; b -= a; b ^= (a << 8);					\
1769 	c -= a; c -= b; c ^= (b >> 13);					\
1770 	a -= b; a -= c; a ^= (c >> 12);					\
1771 	b -= c; b -= a; b ^= (a << 16);					\
1772 	c -= a; c -= b; c ^= (b >> 5);					\
1773 	a -= b; a -= c; a ^= (c >> 3);					\
1774 	b -= c; b -= a; b ^= (a << 10);					\
1775 	c -= a; c -= b; c ^= (b >> 15);					\
1776 } while (/*CONSTCOND*/0)
1777 
1778 uint32_t
1779 ieee80211_mac_hash(const struct ieee80211com *ic,
1780 	const uint8_t addr[IEEE80211_ADDR_LEN])
1781 {
1782 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1783 
1784 	b += addr[5] << 8;
1785 	b += addr[4];
1786 	a += addr[3] << 24;
1787 	a += addr[2] << 16;
1788 	a += addr[1] << 8;
1789 	a += addr[0];
1790 
1791 	mix(a, b, c);
1792 
1793 	return c;
1794 }
1795 #undef mix
1796 
1797 char
1798 ieee80211_channel_type_char(const struct ieee80211_channel *c)
1799 {
1800 	if (IEEE80211_IS_CHAN_ST(c))
1801 		return 'S';
1802 	if (IEEE80211_IS_CHAN_108A(c))
1803 		return 'T';
1804 	if (IEEE80211_IS_CHAN_108G(c))
1805 		return 'G';
1806 	if (IEEE80211_IS_CHAN_HT(c))
1807 		return 'n';
1808 	if (IEEE80211_IS_CHAN_A(c))
1809 		return 'a';
1810 	if (IEEE80211_IS_CHAN_ANYG(c))
1811 		return 'g';
1812 	if (IEEE80211_IS_CHAN_B(c))
1813 		return 'b';
1814 	return 'f';
1815 }
1816