1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_var.h> 43 #include <net/if_dl.h> 44 #include <net/if_media.h> 45 #include <net/if_types.h> 46 #include <net/ethernet.h> 47 48 #include <net80211/ieee80211_var.h> 49 #include <net80211/ieee80211_regdomain.h> 50 #ifdef IEEE80211_SUPPORT_SUPERG 51 #include <net80211/ieee80211_superg.h> 52 #endif 53 #include <net80211/ieee80211_ratectl.h> 54 55 #include <net/bpf.h> 56 57 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 58 [IEEE80211_MODE_AUTO] = "auto", 59 [IEEE80211_MODE_11A] = "11a", 60 [IEEE80211_MODE_11B] = "11b", 61 [IEEE80211_MODE_11G] = "11g", 62 [IEEE80211_MODE_FH] = "FH", 63 [IEEE80211_MODE_TURBO_A] = "turboA", 64 [IEEE80211_MODE_TURBO_G] = "turboG", 65 [IEEE80211_MODE_STURBO_A] = "sturboA", 66 [IEEE80211_MODE_HALF] = "half", 67 [IEEE80211_MODE_QUARTER] = "quarter", 68 [IEEE80211_MODE_11NA] = "11na", 69 [IEEE80211_MODE_11NG] = "11ng", 70 }; 71 /* map ieee80211_opmode to the corresponding capability bit */ 72 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 73 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 74 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 75 [IEEE80211_M_STA] = IEEE80211_C_STA, 76 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 77 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 78 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 79 #ifdef IEEE80211_SUPPORT_MESH 80 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 81 #endif 82 }; 83 84 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 85 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 86 87 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 88 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 89 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 90 static int ieee80211_media_setup(struct ieee80211com *ic, 91 struct ifmedia *media, int caps, int addsta, 92 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 93 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 94 static int ieee80211com_media_change(struct ifnet *); 95 static int media_status(enum ieee80211_opmode, 96 const struct ieee80211_channel *); 97 98 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 99 100 /* 101 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 102 */ 103 #define B(r) ((r) | IEEE80211_RATE_BASIC) 104 static const struct ieee80211_rateset ieee80211_rateset_11a = 105 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 106 static const struct ieee80211_rateset ieee80211_rateset_half = 107 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 108 static const struct ieee80211_rateset ieee80211_rateset_quarter = 109 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 110 static const struct ieee80211_rateset ieee80211_rateset_11b = 111 { 4, { B(2), B(4), B(11), B(22) } }; 112 /* NB: OFDM rates are handled specially based on mode */ 113 static const struct ieee80211_rateset ieee80211_rateset_11g = 114 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 115 #undef B 116 117 /* 118 * Fill in 802.11 available channel set, mark 119 * all available channels as active, and pick 120 * a default channel if not already specified. 121 */ 122 static void 123 ieee80211_chan_init(struct ieee80211com *ic) 124 { 125 #define DEFAULTRATES(m, def) do { \ 126 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 127 ic->ic_sup_rates[m] = def; \ 128 } while (0) 129 struct ieee80211_channel *c; 130 int i; 131 132 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 133 ("invalid number of channels specified: %u", ic->ic_nchans)); 134 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 135 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 136 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 137 for (i = 0; i < ic->ic_nchans; i++) { 138 c = &ic->ic_channels[i]; 139 KASSERT(c->ic_flags != 0, ("channel with no flags")); 140 /* 141 * Help drivers that work only with frequencies by filling 142 * in IEEE channel #'s if not already calculated. Note this 143 * mimics similar work done in ieee80211_setregdomain when 144 * changing regulatory state. 145 */ 146 if (c->ic_ieee == 0) 147 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 148 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 149 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 150 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 151 c->ic_flags); 152 /* default max tx power to max regulatory */ 153 if (c->ic_maxpower == 0) 154 c->ic_maxpower = 2*c->ic_maxregpower; 155 setbit(ic->ic_chan_avail, c->ic_ieee); 156 /* 157 * Identify mode capabilities. 158 */ 159 if (IEEE80211_IS_CHAN_A(c)) 160 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 161 if (IEEE80211_IS_CHAN_B(c)) 162 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 163 if (IEEE80211_IS_CHAN_ANYG(c)) 164 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 165 if (IEEE80211_IS_CHAN_FHSS(c)) 166 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 167 if (IEEE80211_IS_CHAN_108A(c)) 168 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 169 if (IEEE80211_IS_CHAN_108G(c)) 170 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 171 if (IEEE80211_IS_CHAN_ST(c)) 172 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 173 if (IEEE80211_IS_CHAN_HALF(c)) 174 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 175 if (IEEE80211_IS_CHAN_QUARTER(c)) 176 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 177 if (IEEE80211_IS_CHAN_HTA(c)) 178 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 179 if (IEEE80211_IS_CHAN_HTG(c)) 180 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 181 } 182 /* initialize candidate channels to all available */ 183 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 184 sizeof(ic->ic_chan_avail)); 185 186 /* sort channel table to allow lookup optimizations */ 187 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 188 189 /* invalidate any previous state */ 190 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 191 ic->ic_prevchan = NULL; 192 ic->ic_csa_newchan = NULL; 193 /* arbitrarily pick the first channel */ 194 ic->ic_curchan = &ic->ic_channels[0]; 195 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 196 197 /* fillin well-known rate sets if driver has not specified */ 198 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 199 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 200 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 201 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 202 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 203 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 204 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 205 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 206 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 207 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 208 209 /* 210 * Setup required information to fill the mcsset field, if driver did 211 * not. Assume a 2T2R setup for historic reasons. 212 */ 213 if (ic->ic_rxstream == 0) 214 ic->ic_rxstream = 2; 215 if (ic->ic_txstream == 0) 216 ic->ic_txstream = 2; 217 218 /* 219 * Set auto mode to reset active channel state and any desired channel. 220 */ 221 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 222 #undef DEFAULTRATES 223 } 224 225 static void 226 null_update_mcast(struct ifnet *ifp) 227 { 228 if_printf(ifp, "need multicast update callback\n"); 229 } 230 231 static void 232 null_update_promisc(struct ifnet *ifp) 233 { 234 if_printf(ifp, "need promiscuous mode update callback\n"); 235 } 236 237 static int 238 null_transmit(struct ifnet *ifp, struct mbuf *m) 239 { 240 m_freem(m); 241 ifp->if_oerrors++; 242 return EACCES; /* XXX EIO/EPERM? */ 243 } 244 245 #if __FreeBSD_version >= 1000031 246 static int 247 null_output(struct ifnet *ifp, struct mbuf *m, 248 const struct sockaddr *dst, struct route *ro) 249 #else 250 static int 251 null_output(struct ifnet *ifp, struct mbuf *m, 252 struct sockaddr *dst, struct route *ro) 253 #endif 254 { 255 if_printf(ifp, "discard raw packet\n"); 256 return null_transmit(ifp, m); 257 } 258 259 static void 260 null_input(struct ifnet *ifp, struct mbuf *m) 261 { 262 if_printf(ifp, "if_input should not be called\n"); 263 m_freem(m); 264 } 265 266 static void 267 null_update_chw(struct ieee80211com *ic) 268 { 269 270 if_printf(ic->ic_ifp, "%s: need callback\n", __func__); 271 } 272 273 /* 274 * Attach/setup the common net80211 state. Called by 275 * the driver on attach to prior to creating any vap's. 276 */ 277 void 278 ieee80211_ifattach(struct ieee80211com *ic, 279 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 280 { 281 struct ifnet *ifp = ic->ic_ifp; 282 struct sockaddr_dl *sdl; 283 struct ifaddr *ifa; 284 285 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 286 287 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 288 IEEE80211_TX_LOCK_INIT(ic, ifp->if_xname); 289 TAILQ_INIT(&ic->ic_vaps); 290 291 /* Create a taskqueue for all state changes */ 292 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 293 taskqueue_thread_enqueue, &ic->ic_tq); 294 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 295 ifp->if_xname); 296 /* 297 * Fill in 802.11 available channel set, mark all 298 * available channels as active, and pick a default 299 * channel if not already specified. 300 */ 301 ieee80211_media_init(ic); 302 303 ic->ic_update_mcast = null_update_mcast; 304 ic->ic_update_promisc = null_update_promisc; 305 ic->ic_update_chw = null_update_chw; 306 307 ic->ic_hash_key = arc4random(); 308 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 309 ic->ic_lintval = ic->ic_bintval; 310 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 311 312 ieee80211_crypto_attach(ic); 313 ieee80211_node_attach(ic); 314 ieee80211_power_attach(ic); 315 ieee80211_proto_attach(ic); 316 #ifdef IEEE80211_SUPPORT_SUPERG 317 ieee80211_superg_attach(ic); 318 #endif 319 ieee80211_ht_attach(ic); 320 ieee80211_scan_attach(ic); 321 ieee80211_regdomain_attach(ic); 322 ieee80211_dfs_attach(ic); 323 324 ieee80211_sysctl_attach(ic); 325 326 ifp->if_addrlen = IEEE80211_ADDR_LEN; 327 ifp->if_hdrlen = 0; 328 329 CURVNET_SET(vnet0); 330 331 if_attach(ifp); 332 333 ifp->if_mtu = IEEE80211_MTU_MAX; 334 ifp->if_broadcastaddr = ieee80211broadcastaddr; 335 ifp->if_output = null_output; 336 ifp->if_input = null_input; /* just in case */ 337 ifp->if_resolvemulti = NULL; /* NB: callers check */ 338 339 ifa = ifaddr_byindex(ifp->if_index); 340 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 341 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 342 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 343 sdl->sdl_alen = IEEE80211_ADDR_LEN; 344 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 345 ifa_free(ifa); 346 347 CURVNET_RESTORE(); 348 } 349 350 /* 351 * Detach net80211 state on device detach. Tear down 352 * all vap's and reclaim all common state prior to the 353 * device state going away. Note we may call back into 354 * driver; it must be prepared for this. 355 */ 356 void 357 ieee80211_ifdetach(struct ieee80211com *ic) 358 { 359 struct ifnet *ifp = ic->ic_ifp; 360 struct ieee80211vap *vap; 361 362 /* 363 * This detaches the main interface, but not the vaps. 364 * Each VAP may be in a separate VIMAGE. 365 */ 366 CURVNET_SET(ifp->if_vnet); 367 if_detach(ifp); 368 CURVNET_RESTORE(); 369 370 /* 371 * The VAP is responsible for setting and clearing 372 * the VIMAGE context. 373 */ 374 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 375 ieee80211_vap_destroy(vap); 376 ieee80211_waitfor_parent(ic); 377 378 ieee80211_sysctl_detach(ic); 379 ieee80211_dfs_detach(ic); 380 ieee80211_regdomain_detach(ic); 381 ieee80211_scan_detach(ic); 382 #ifdef IEEE80211_SUPPORT_SUPERG 383 ieee80211_superg_detach(ic); 384 #endif 385 ieee80211_ht_detach(ic); 386 /* NB: must be called before ieee80211_node_detach */ 387 ieee80211_proto_detach(ic); 388 ieee80211_crypto_detach(ic); 389 ieee80211_power_detach(ic); 390 ieee80211_node_detach(ic); 391 392 /* XXX VNET needed? */ 393 ifmedia_removeall(&ic->ic_media); 394 395 taskqueue_free(ic->ic_tq); 396 IEEE80211_TX_LOCK_DESTROY(ic); 397 IEEE80211_LOCK_DESTROY(ic); 398 } 399 400 /* 401 * Default reset method for use with the ioctl support. This 402 * method is invoked after any state change in the 802.11 403 * layer that should be propagated to the hardware but not 404 * require re-initialization of the 802.11 state machine (e.g 405 * rescanning for an ap). We always return ENETRESET which 406 * should cause the driver to re-initialize the device. Drivers 407 * can override this method to implement more optimized support. 408 */ 409 static int 410 default_reset(struct ieee80211vap *vap, u_long cmd) 411 { 412 return ENETRESET; 413 } 414 415 /* 416 * Prepare a vap for use. Drivers use this call to 417 * setup net80211 state in new vap's prior attaching 418 * them with ieee80211_vap_attach (below). 419 */ 420 int 421 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 422 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 423 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 424 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 425 { 426 struct ifnet *ifp; 427 428 ifp = if_alloc(IFT_ETHER); 429 if (ifp == NULL) { 430 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 431 __func__); 432 return ENOMEM; 433 } 434 if_initname(ifp, name, unit); 435 ifp->if_softc = vap; /* back pointer */ 436 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 437 ifp->if_transmit = ieee80211_vap_transmit; 438 ifp->if_qflush = ieee80211_vap_qflush; 439 ifp->if_ioctl = ieee80211_ioctl; 440 ifp->if_init = ieee80211_init; 441 442 vap->iv_ifp = ifp; 443 vap->iv_ic = ic; 444 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 445 vap->iv_flags_ext = ic->ic_flags_ext; 446 vap->iv_flags_ven = ic->ic_flags_ven; 447 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 448 vap->iv_htcaps = ic->ic_htcaps; 449 vap->iv_htextcaps = ic->ic_htextcaps; 450 vap->iv_opmode = opmode; 451 vap->iv_caps |= ieee80211_opcap[opmode]; 452 switch (opmode) { 453 case IEEE80211_M_WDS: 454 /* 455 * WDS links must specify the bssid of the far end. 456 * For legacy operation this is a static relationship. 457 * For non-legacy operation the station must associate 458 * and be authorized to pass traffic. Plumbing the 459 * vap to the proper node happens when the vap 460 * transitions to RUN state. 461 */ 462 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 463 vap->iv_flags |= IEEE80211_F_DESBSSID; 464 if (flags & IEEE80211_CLONE_WDSLEGACY) 465 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 466 break; 467 #ifdef IEEE80211_SUPPORT_TDMA 468 case IEEE80211_M_AHDEMO: 469 if (flags & IEEE80211_CLONE_TDMA) { 470 /* NB: checked before clone operation allowed */ 471 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 472 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 473 /* 474 * Propagate TDMA capability to mark vap; this 475 * cannot be removed and is used to distinguish 476 * regular ahdemo operation from ahdemo+tdma. 477 */ 478 vap->iv_caps |= IEEE80211_C_TDMA; 479 } 480 break; 481 #endif 482 default: 483 break; 484 } 485 /* auto-enable s/w beacon miss support */ 486 if (flags & IEEE80211_CLONE_NOBEACONS) 487 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 488 /* auto-generated or user supplied MAC address */ 489 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 490 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 491 /* 492 * Enable various functionality by default if we're 493 * capable; the driver can override us if it knows better. 494 */ 495 if (vap->iv_caps & IEEE80211_C_WME) 496 vap->iv_flags |= IEEE80211_F_WME; 497 if (vap->iv_caps & IEEE80211_C_BURST) 498 vap->iv_flags |= IEEE80211_F_BURST; 499 /* NB: bg scanning only makes sense for station mode right now */ 500 if (vap->iv_opmode == IEEE80211_M_STA && 501 (vap->iv_caps & IEEE80211_C_BGSCAN)) 502 vap->iv_flags |= IEEE80211_F_BGSCAN; 503 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 504 /* NB: DFS support only makes sense for ap mode right now */ 505 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 506 (vap->iv_caps & IEEE80211_C_DFS)) 507 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 508 509 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 510 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 511 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 512 /* 513 * Install a default reset method for the ioctl support; 514 * the driver can override this. 515 */ 516 vap->iv_reset = default_reset; 517 518 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 519 520 ieee80211_sysctl_vattach(vap); 521 ieee80211_crypto_vattach(vap); 522 ieee80211_node_vattach(vap); 523 ieee80211_power_vattach(vap); 524 ieee80211_proto_vattach(vap); 525 #ifdef IEEE80211_SUPPORT_SUPERG 526 ieee80211_superg_vattach(vap); 527 #endif 528 ieee80211_ht_vattach(vap); 529 ieee80211_scan_vattach(vap); 530 ieee80211_regdomain_vattach(vap); 531 ieee80211_radiotap_vattach(vap); 532 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 533 534 return 0; 535 } 536 537 /* 538 * Activate a vap. State should have been prepared with a 539 * call to ieee80211_vap_setup and by the driver. On return 540 * from this call the vap is ready for use. 541 */ 542 int 543 ieee80211_vap_attach(struct ieee80211vap *vap, 544 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 545 { 546 struct ifnet *ifp = vap->iv_ifp; 547 struct ieee80211com *ic = vap->iv_ic; 548 struct ifmediareq imr; 549 int maxrate; 550 551 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 552 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 553 __func__, ieee80211_opmode_name[vap->iv_opmode], 554 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 555 556 /* 557 * Do late attach work that cannot happen until after 558 * the driver has had a chance to override defaults. 559 */ 560 ieee80211_node_latevattach(vap); 561 ieee80211_power_latevattach(vap); 562 563 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 564 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 565 ieee80211_media_status(ifp, &imr); 566 /* NB: strip explicit mode; we're actually in autoselect */ 567 ifmedia_set(&vap->iv_media, 568 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 569 if (maxrate) 570 ifp->if_baudrate = IF_Mbps(maxrate); 571 572 ether_ifattach(ifp, vap->iv_myaddr); 573 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 574 /* NB: disallow transmit */ 575 ifp->if_transmit = null_transmit; 576 ifp->if_output = null_output; 577 } else { 578 /* hook output method setup by ether_ifattach */ 579 vap->iv_output = ifp->if_output; 580 ifp->if_output = ieee80211_output; 581 } 582 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 583 584 IEEE80211_LOCK(ic); 585 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 586 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 587 #ifdef IEEE80211_SUPPORT_SUPERG 588 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 589 #endif 590 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 591 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 592 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 593 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 594 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 595 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 596 IEEE80211_UNLOCK(ic); 597 598 return 1; 599 } 600 601 /* 602 * Tear down vap state and reclaim the ifnet. 603 * The driver is assumed to have prepared for 604 * this; e.g. by turning off interrupts for the 605 * underlying device. 606 */ 607 void 608 ieee80211_vap_detach(struct ieee80211vap *vap) 609 { 610 struct ieee80211com *ic = vap->iv_ic; 611 struct ifnet *ifp = vap->iv_ifp; 612 613 CURVNET_SET(ifp->if_vnet); 614 615 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 616 __func__, ieee80211_opmode_name[vap->iv_opmode], 617 ic->ic_ifp->if_xname); 618 619 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 620 ether_ifdetach(ifp); 621 622 ieee80211_stop(vap); 623 624 /* 625 * Flush any deferred vap tasks. 626 */ 627 ieee80211_draintask(ic, &vap->iv_nstate_task); 628 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 629 630 /* XXX band-aid until ifnet handles this for us */ 631 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 632 633 IEEE80211_LOCK(ic); 634 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 635 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 636 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 637 #ifdef IEEE80211_SUPPORT_SUPERG 638 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 639 #endif 640 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 641 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 642 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 643 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 644 /* NB: this handles the bpfdetach done below */ 645 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 646 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 647 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 648 IEEE80211_UNLOCK(ic); 649 650 ifmedia_removeall(&vap->iv_media); 651 652 ieee80211_radiotap_vdetach(vap); 653 ieee80211_regdomain_vdetach(vap); 654 ieee80211_scan_vdetach(vap); 655 #ifdef IEEE80211_SUPPORT_SUPERG 656 ieee80211_superg_vdetach(vap); 657 #endif 658 ieee80211_ht_vdetach(vap); 659 /* NB: must be before ieee80211_node_vdetach */ 660 ieee80211_proto_vdetach(vap); 661 ieee80211_crypto_vdetach(vap); 662 ieee80211_power_vdetach(vap); 663 ieee80211_node_vdetach(vap); 664 ieee80211_sysctl_vdetach(vap); 665 666 if_free(ifp); 667 668 CURVNET_RESTORE(); 669 } 670 671 /* 672 * Synchronize flag bit state in the parent ifnet structure 673 * according to the state of all vap ifnet's. This is used, 674 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 675 */ 676 void 677 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 678 { 679 struct ifnet *ifp = ic->ic_ifp; 680 struct ieee80211vap *vap; 681 int bit, oflags; 682 683 IEEE80211_LOCK_ASSERT(ic); 684 685 bit = 0; 686 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 687 if (vap->iv_ifp->if_flags & flag) { 688 /* 689 * XXX the bridge sets PROMISC but we don't want to 690 * enable it on the device, discard here so all the 691 * drivers don't need to special-case it 692 */ 693 if (flag == IFF_PROMISC && 694 !(vap->iv_opmode == IEEE80211_M_MONITOR || 695 (vap->iv_opmode == IEEE80211_M_AHDEMO && 696 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 697 continue; 698 bit = 1; 699 break; 700 } 701 oflags = ifp->if_flags; 702 if (bit) 703 ifp->if_flags |= flag; 704 else 705 ifp->if_flags &= ~flag; 706 if ((ifp->if_flags ^ oflags) & flag) { 707 /* XXX should we return 1/0 and let caller do this? */ 708 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 709 if (flag == IFF_PROMISC) 710 ieee80211_runtask(ic, &ic->ic_promisc_task); 711 else if (flag == IFF_ALLMULTI) 712 ieee80211_runtask(ic, &ic->ic_mcast_task); 713 } 714 } 715 } 716 717 /* 718 * Synchronize flag bit state in the com structure 719 * according to the state of all vap's. This is used, 720 * for example, to handle state changes via ioctls. 721 */ 722 static void 723 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 724 { 725 struct ieee80211vap *vap; 726 int bit; 727 728 IEEE80211_LOCK_ASSERT(ic); 729 730 bit = 0; 731 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 732 if (vap->iv_flags & flag) { 733 bit = 1; 734 break; 735 } 736 if (bit) 737 ic->ic_flags |= flag; 738 else 739 ic->ic_flags &= ~flag; 740 } 741 742 void 743 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 744 { 745 struct ieee80211com *ic = vap->iv_ic; 746 747 IEEE80211_LOCK(ic); 748 if (flag < 0) { 749 flag = -flag; 750 vap->iv_flags &= ~flag; 751 } else 752 vap->iv_flags |= flag; 753 ieee80211_syncflag_locked(ic, flag); 754 IEEE80211_UNLOCK(ic); 755 } 756 757 /* 758 * Synchronize flags_ht bit state in the com structure 759 * according to the state of all vap's. This is used, 760 * for example, to handle state changes via ioctls. 761 */ 762 static void 763 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 764 { 765 struct ieee80211vap *vap; 766 int bit; 767 768 IEEE80211_LOCK_ASSERT(ic); 769 770 bit = 0; 771 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 772 if (vap->iv_flags_ht & flag) { 773 bit = 1; 774 break; 775 } 776 if (bit) 777 ic->ic_flags_ht |= flag; 778 else 779 ic->ic_flags_ht &= ~flag; 780 } 781 782 void 783 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 784 { 785 struct ieee80211com *ic = vap->iv_ic; 786 787 IEEE80211_LOCK(ic); 788 if (flag < 0) { 789 flag = -flag; 790 vap->iv_flags_ht &= ~flag; 791 } else 792 vap->iv_flags_ht |= flag; 793 ieee80211_syncflag_ht_locked(ic, flag); 794 IEEE80211_UNLOCK(ic); 795 } 796 797 /* 798 * Synchronize flags_ext bit state in the com structure 799 * according to the state of all vap's. This is used, 800 * for example, to handle state changes via ioctls. 801 */ 802 static void 803 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 804 { 805 struct ieee80211vap *vap; 806 int bit; 807 808 IEEE80211_LOCK_ASSERT(ic); 809 810 bit = 0; 811 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 812 if (vap->iv_flags_ext & flag) { 813 bit = 1; 814 break; 815 } 816 if (bit) 817 ic->ic_flags_ext |= flag; 818 else 819 ic->ic_flags_ext &= ~flag; 820 } 821 822 void 823 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 824 { 825 struct ieee80211com *ic = vap->iv_ic; 826 827 IEEE80211_LOCK(ic); 828 if (flag < 0) { 829 flag = -flag; 830 vap->iv_flags_ext &= ~flag; 831 } else 832 vap->iv_flags_ext |= flag; 833 ieee80211_syncflag_ext_locked(ic, flag); 834 IEEE80211_UNLOCK(ic); 835 } 836 837 static __inline int 838 mapgsm(u_int freq, u_int flags) 839 { 840 freq *= 10; 841 if (flags & IEEE80211_CHAN_QUARTER) 842 freq += 5; 843 else if (flags & IEEE80211_CHAN_HALF) 844 freq += 10; 845 else 846 freq += 20; 847 /* NB: there is no 907/20 wide but leave room */ 848 return (freq - 906*10) / 5; 849 } 850 851 static __inline int 852 mappsb(u_int freq, u_int flags) 853 { 854 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 855 } 856 857 /* 858 * Convert MHz frequency to IEEE channel number. 859 */ 860 int 861 ieee80211_mhz2ieee(u_int freq, u_int flags) 862 { 863 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 864 if (flags & IEEE80211_CHAN_GSM) 865 return mapgsm(freq, flags); 866 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 867 if (freq == 2484) 868 return 14; 869 if (freq < 2484) 870 return ((int) freq - 2407) / 5; 871 else 872 return 15 + ((freq - 2512) / 20); 873 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 874 if (freq <= 5000) { 875 /* XXX check regdomain? */ 876 if (IS_FREQ_IN_PSB(freq)) 877 return mappsb(freq, flags); 878 return (freq - 4000) / 5; 879 } else 880 return (freq - 5000) / 5; 881 } else { /* either, guess */ 882 if (freq == 2484) 883 return 14; 884 if (freq < 2484) { 885 if (907 <= freq && freq <= 922) 886 return mapgsm(freq, flags); 887 return ((int) freq - 2407) / 5; 888 } 889 if (freq < 5000) { 890 if (IS_FREQ_IN_PSB(freq)) 891 return mappsb(freq, flags); 892 else if (freq > 4900) 893 return (freq - 4000) / 5; 894 else 895 return 15 + ((freq - 2512) / 20); 896 } 897 return (freq - 5000) / 5; 898 } 899 #undef IS_FREQ_IN_PSB 900 } 901 902 /* 903 * Convert channel to IEEE channel number. 904 */ 905 int 906 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 907 { 908 if (c == NULL) { 909 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 910 return 0; /* XXX */ 911 } 912 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 913 } 914 915 /* 916 * Convert IEEE channel number to MHz frequency. 917 */ 918 u_int 919 ieee80211_ieee2mhz(u_int chan, u_int flags) 920 { 921 if (flags & IEEE80211_CHAN_GSM) 922 return 907 + 5 * (chan / 10); 923 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 924 if (chan == 14) 925 return 2484; 926 if (chan < 14) 927 return 2407 + chan*5; 928 else 929 return 2512 + ((chan-15)*20); 930 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 931 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 932 chan -= 37; 933 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 934 } 935 return 5000 + (chan*5); 936 } else { /* either, guess */ 937 /* XXX can't distinguish PSB+GSM channels */ 938 if (chan == 14) 939 return 2484; 940 if (chan < 14) /* 0-13 */ 941 return 2407 + chan*5; 942 if (chan < 27) /* 15-26 */ 943 return 2512 + ((chan-15)*20); 944 return 5000 + (chan*5); 945 } 946 } 947 948 /* 949 * Locate a channel given a frequency+flags. We cache 950 * the previous lookup to optimize switching between two 951 * channels--as happens with dynamic turbo. 952 */ 953 struct ieee80211_channel * 954 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 955 { 956 struct ieee80211_channel *c; 957 int i; 958 959 flags &= IEEE80211_CHAN_ALLTURBO; 960 c = ic->ic_prevchan; 961 if (c != NULL && c->ic_freq == freq && 962 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 963 return c; 964 /* brute force search */ 965 for (i = 0; i < ic->ic_nchans; i++) { 966 c = &ic->ic_channels[i]; 967 if (c->ic_freq == freq && 968 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 969 return c; 970 } 971 return NULL; 972 } 973 974 /* 975 * Locate a channel given a channel number+flags. We cache 976 * the previous lookup to optimize switching between two 977 * channels--as happens with dynamic turbo. 978 */ 979 struct ieee80211_channel * 980 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 981 { 982 struct ieee80211_channel *c; 983 int i; 984 985 flags &= IEEE80211_CHAN_ALLTURBO; 986 c = ic->ic_prevchan; 987 if (c != NULL && c->ic_ieee == ieee && 988 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 989 return c; 990 /* brute force search */ 991 for (i = 0; i < ic->ic_nchans; i++) { 992 c = &ic->ic_channels[i]; 993 if (c->ic_ieee == ieee && 994 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 995 return c; 996 } 997 return NULL; 998 } 999 1000 static void 1001 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1002 { 1003 #define ADD(_ic, _s, _o) \ 1004 ifmedia_add(media, \ 1005 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1006 static const u_int mopts[IEEE80211_MODE_MAX] = { 1007 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1008 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1009 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1010 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1011 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1012 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1013 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1014 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1015 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1016 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1017 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1018 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1019 }; 1020 u_int mopt; 1021 1022 mopt = mopts[mode]; 1023 if (addsta) 1024 ADD(ic, mword, mopt); /* STA mode has no cap */ 1025 if (caps & IEEE80211_C_IBSS) 1026 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1027 if (caps & IEEE80211_C_HOSTAP) 1028 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1029 if (caps & IEEE80211_C_AHDEMO) 1030 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1031 if (caps & IEEE80211_C_MONITOR) 1032 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1033 if (caps & IEEE80211_C_WDS) 1034 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1035 if (caps & IEEE80211_C_MBSS) 1036 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1037 #undef ADD 1038 } 1039 1040 /* 1041 * Setup the media data structures according to the channel and 1042 * rate tables. 1043 */ 1044 static int 1045 ieee80211_media_setup(struct ieee80211com *ic, 1046 struct ifmedia *media, int caps, int addsta, 1047 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1048 { 1049 int i, j, rate, maxrate, mword, r; 1050 enum ieee80211_phymode mode; 1051 const struct ieee80211_rateset *rs; 1052 struct ieee80211_rateset allrates; 1053 1054 /* 1055 * Fill in media characteristics. 1056 */ 1057 ifmedia_init(media, 0, media_change, media_stat); 1058 maxrate = 0; 1059 /* 1060 * Add media for legacy operating modes. 1061 */ 1062 memset(&allrates, 0, sizeof(allrates)); 1063 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1064 if (isclr(ic->ic_modecaps, mode)) 1065 continue; 1066 addmedia(media, caps, addsta, mode, IFM_AUTO); 1067 if (mode == IEEE80211_MODE_AUTO) 1068 continue; 1069 rs = &ic->ic_sup_rates[mode]; 1070 for (i = 0; i < rs->rs_nrates; i++) { 1071 rate = rs->rs_rates[i]; 1072 mword = ieee80211_rate2media(ic, rate, mode); 1073 if (mword == 0) 1074 continue; 1075 addmedia(media, caps, addsta, mode, mword); 1076 /* 1077 * Add legacy rate to the collection of all rates. 1078 */ 1079 r = rate & IEEE80211_RATE_VAL; 1080 for (j = 0; j < allrates.rs_nrates; j++) 1081 if (allrates.rs_rates[j] == r) 1082 break; 1083 if (j == allrates.rs_nrates) { 1084 /* unique, add to the set */ 1085 allrates.rs_rates[j] = r; 1086 allrates.rs_nrates++; 1087 } 1088 rate = (rate & IEEE80211_RATE_VAL) / 2; 1089 if (rate > maxrate) 1090 maxrate = rate; 1091 } 1092 } 1093 for (i = 0; i < allrates.rs_nrates; i++) { 1094 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1095 IEEE80211_MODE_AUTO); 1096 if (mword == 0) 1097 continue; 1098 /* NB: remove media options from mword */ 1099 addmedia(media, caps, addsta, 1100 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1101 } 1102 /* 1103 * Add HT/11n media. Note that we do not have enough 1104 * bits in the media subtype to express the MCS so we 1105 * use a "placeholder" media subtype and any fixed MCS 1106 * must be specified with a different mechanism. 1107 */ 1108 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1109 if (isclr(ic->ic_modecaps, mode)) 1110 continue; 1111 addmedia(media, caps, addsta, mode, IFM_AUTO); 1112 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1113 } 1114 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1115 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1116 addmedia(media, caps, addsta, 1117 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1118 i = ic->ic_txstream * 8 - 1; 1119 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1120 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1121 rate = ieee80211_htrates[i].ht40_rate_400ns; 1122 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1123 rate = ieee80211_htrates[i].ht40_rate_800ns; 1124 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1125 rate = ieee80211_htrates[i].ht20_rate_400ns; 1126 else 1127 rate = ieee80211_htrates[i].ht20_rate_800ns; 1128 if (rate > maxrate) 1129 maxrate = rate; 1130 } 1131 return maxrate; 1132 } 1133 1134 void 1135 ieee80211_media_init(struct ieee80211com *ic) 1136 { 1137 struct ifnet *ifp = ic->ic_ifp; 1138 int maxrate; 1139 1140 /* NB: this works because the structure is initialized to zero */ 1141 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1142 /* 1143 * We are re-initializing the channel list; clear 1144 * the existing media state as the media routines 1145 * don't suppress duplicates. 1146 */ 1147 ifmedia_removeall(&ic->ic_media); 1148 } 1149 ieee80211_chan_init(ic); 1150 1151 /* 1152 * Recalculate media settings in case new channel list changes 1153 * the set of available modes. 1154 */ 1155 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1156 ieee80211com_media_change, ieee80211com_media_status); 1157 /* NB: strip explicit mode; we're actually in autoselect */ 1158 ifmedia_set(&ic->ic_media, 1159 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1160 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1161 if (maxrate) 1162 ifp->if_baudrate = IF_Mbps(maxrate); 1163 1164 /* XXX need to propagate new media settings to vap's */ 1165 } 1166 1167 /* XXX inline or eliminate? */ 1168 const struct ieee80211_rateset * 1169 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1170 { 1171 /* XXX does this work for 11ng basic rates? */ 1172 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1173 } 1174 1175 void 1176 ieee80211_announce(struct ieee80211com *ic) 1177 { 1178 struct ifnet *ifp = ic->ic_ifp; 1179 int i, rate, mword; 1180 enum ieee80211_phymode mode; 1181 const struct ieee80211_rateset *rs; 1182 1183 /* NB: skip AUTO since it has no rates */ 1184 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1185 if (isclr(ic->ic_modecaps, mode)) 1186 continue; 1187 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1188 rs = &ic->ic_sup_rates[mode]; 1189 for (i = 0; i < rs->rs_nrates; i++) { 1190 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1191 if (mword == 0) 1192 continue; 1193 rate = ieee80211_media2rate(mword); 1194 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1195 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1196 } 1197 printf("\n"); 1198 } 1199 ieee80211_ht_announce(ic); 1200 } 1201 1202 void 1203 ieee80211_announce_channels(struct ieee80211com *ic) 1204 { 1205 const struct ieee80211_channel *c; 1206 char type; 1207 int i, cw; 1208 1209 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1210 for (i = 0; i < ic->ic_nchans; i++) { 1211 c = &ic->ic_channels[i]; 1212 if (IEEE80211_IS_CHAN_ST(c)) 1213 type = 'S'; 1214 else if (IEEE80211_IS_CHAN_108A(c)) 1215 type = 'T'; 1216 else if (IEEE80211_IS_CHAN_108G(c)) 1217 type = 'G'; 1218 else if (IEEE80211_IS_CHAN_HT(c)) 1219 type = 'n'; 1220 else if (IEEE80211_IS_CHAN_A(c)) 1221 type = 'a'; 1222 else if (IEEE80211_IS_CHAN_ANYG(c)) 1223 type = 'g'; 1224 else if (IEEE80211_IS_CHAN_B(c)) 1225 type = 'b'; 1226 else 1227 type = 'f'; 1228 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1229 cw = 40; 1230 else if (IEEE80211_IS_CHAN_HALF(c)) 1231 cw = 10; 1232 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1233 cw = 5; 1234 else 1235 cw = 20; 1236 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1237 , c->ic_ieee, c->ic_freq, type 1238 , cw 1239 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1240 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1241 , c->ic_maxregpower 1242 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1243 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1244 ); 1245 } 1246 } 1247 1248 static int 1249 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1250 { 1251 switch (IFM_MODE(ime->ifm_media)) { 1252 case IFM_IEEE80211_11A: 1253 *mode = IEEE80211_MODE_11A; 1254 break; 1255 case IFM_IEEE80211_11B: 1256 *mode = IEEE80211_MODE_11B; 1257 break; 1258 case IFM_IEEE80211_11G: 1259 *mode = IEEE80211_MODE_11G; 1260 break; 1261 case IFM_IEEE80211_FH: 1262 *mode = IEEE80211_MODE_FH; 1263 break; 1264 case IFM_IEEE80211_11NA: 1265 *mode = IEEE80211_MODE_11NA; 1266 break; 1267 case IFM_IEEE80211_11NG: 1268 *mode = IEEE80211_MODE_11NG; 1269 break; 1270 case IFM_AUTO: 1271 *mode = IEEE80211_MODE_AUTO; 1272 break; 1273 default: 1274 return 0; 1275 } 1276 /* 1277 * Turbo mode is an ``option''. 1278 * XXX does not apply to AUTO 1279 */ 1280 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1281 if (*mode == IEEE80211_MODE_11A) { 1282 if (flags & IEEE80211_F_TURBOP) 1283 *mode = IEEE80211_MODE_TURBO_A; 1284 else 1285 *mode = IEEE80211_MODE_STURBO_A; 1286 } else if (*mode == IEEE80211_MODE_11G) 1287 *mode = IEEE80211_MODE_TURBO_G; 1288 else 1289 return 0; 1290 } 1291 /* XXX HT40 +/- */ 1292 return 1; 1293 } 1294 1295 /* 1296 * Handle a media change request on the underlying interface. 1297 */ 1298 int 1299 ieee80211com_media_change(struct ifnet *ifp) 1300 { 1301 return EINVAL; 1302 } 1303 1304 /* 1305 * Handle a media change request on the vap interface. 1306 */ 1307 int 1308 ieee80211_media_change(struct ifnet *ifp) 1309 { 1310 struct ieee80211vap *vap = ifp->if_softc; 1311 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1312 uint16_t newmode; 1313 1314 if (!media2mode(ime, vap->iv_flags, &newmode)) 1315 return EINVAL; 1316 if (vap->iv_des_mode != newmode) { 1317 vap->iv_des_mode = newmode; 1318 /* XXX kick state machine if up+running */ 1319 } 1320 return 0; 1321 } 1322 1323 /* 1324 * Common code to calculate the media status word 1325 * from the operating mode and channel state. 1326 */ 1327 static int 1328 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1329 { 1330 int status; 1331 1332 status = IFM_IEEE80211; 1333 switch (opmode) { 1334 case IEEE80211_M_STA: 1335 break; 1336 case IEEE80211_M_IBSS: 1337 status |= IFM_IEEE80211_ADHOC; 1338 break; 1339 case IEEE80211_M_HOSTAP: 1340 status |= IFM_IEEE80211_HOSTAP; 1341 break; 1342 case IEEE80211_M_MONITOR: 1343 status |= IFM_IEEE80211_MONITOR; 1344 break; 1345 case IEEE80211_M_AHDEMO: 1346 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1347 break; 1348 case IEEE80211_M_WDS: 1349 status |= IFM_IEEE80211_WDS; 1350 break; 1351 case IEEE80211_M_MBSS: 1352 status |= IFM_IEEE80211_MBSS; 1353 break; 1354 } 1355 if (IEEE80211_IS_CHAN_HTA(chan)) { 1356 status |= IFM_IEEE80211_11NA; 1357 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1358 status |= IFM_IEEE80211_11NG; 1359 } else if (IEEE80211_IS_CHAN_A(chan)) { 1360 status |= IFM_IEEE80211_11A; 1361 } else if (IEEE80211_IS_CHAN_B(chan)) { 1362 status |= IFM_IEEE80211_11B; 1363 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1364 status |= IFM_IEEE80211_11G; 1365 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1366 status |= IFM_IEEE80211_FH; 1367 } 1368 /* XXX else complain? */ 1369 1370 if (IEEE80211_IS_CHAN_TURBO(chan)) 1371 status |= IFM_IEEE80211_TURBO; 1372 #if 0 1373 if (IEEE80211_IS_CHAN_HT20(chan)) 1374 status |= IFM_IEEE80211_HT20; 1375 if (IEEE80211_IS_CHAN_HT40(chan)) 1376 status |= IFM_IEEE80211_HT40; 1377 #endif 1378 return status; 1379 } 1380 1381 static void 1382 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1383 { 1384 struct ieee80211com *ic = ifp->if_l2com; 1385 struct ieee80211vap *vap; 1386 1387 imr->ifm_status = IFM_AVALID; 1388 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1389 if (vap->iv_ifp->if_flags & IFF_UP) { 1390 imr->ifm_status |= IFM_ACTIVE; 1391 break; 1392 } 1393 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1394 if (imr->ifm_status & IFM_ACTIVE) 1395 imr->ifm_current = imr->ifm_active; 1396 } 1397 1398 void 1399 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1400 { 1401 struct ieee80211vap *vap = ifp->if_softc; 1402 struct ieee80211com *ic = vap->iv_ic; 1403 enum ieee80211_phymode mode; 1404 1405 imr->ifm_status = IFM_AVALID; 1406 /* 1407 * NB: use the current channel's mode to lock down a xmit 1408 * rate only when running; otherwise we may have a mismatch 1409 * in which case the rate will not be convertible. 1410 */ 1411 if (vap->iv_state == IEEE80211_S_RUN || 1412 vap->iv_state == IEEE80211_S_SLEEP) { 1413 imr->ifm_status |= IFM_ACTIVE; 1414 mode = ieee80211_chan2mode(ic->ic_curchan); 1415 } else 1416 mode = IEEE80211_MODE_AUTO; 1417 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1418 /* 1419 * Calculate a current rate if possible. 1420 */ 1421 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1422 /* 1423 * A fixed rate is set, report that. 1424 */ 1425 imr->ifm_active |= ieee80211_rate2media(ic, 1426 vap->iv_txparms[mode].ucastrate, mode); 1427 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1428 /* 1429 * In station mode report the current transmit rate. 1430 */ 1431 imr->ifm_active |= ieee80211_rate2media(ic, 1432 vap->iv_bss->ni_txrate, mode); 1433 } else 1434 imr->ifm_active |= IFM_AUTO; 1435 if (imr->ifm_status & IFM_ACTIVE) 1436 imr->ifm_current = imr->ifm_active; 1437 } 1438 1439 /* 1440 * Set the current phy mode and recalculate the active channel 1441 * set based on the available channels for this mode. Also 1442 * select a new default/current channel if the current one is 1443 * inappropriate for this mode. 1444 */ 1445 int 1446 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1447 { 1448 /* 1449 * Adjust basic rates in 11b/11g supported rate set. 1450 * Note that if operating on a hal/quarter rate channel 1451 * this is a noop as those rates sets are different 1452 * and used instead. 1453 */ 1454 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1455 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1456 1457 ic->ic_curmode = mode; 1458 ieee80211_reset_erp(ic); /* reset ERP state */ 1459 1460 return 0; 1461 } 1462 1463 /* 1464 * Return the phy mode for with the specified channel. 1465 */ 1466 enum ieee80211_phymode 1467 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1468 { 1469 1470 if (IEEE80211_IS_CHAN_HTA(chan)) 1471 return IEEE80211_MODE_11NA; 1472 else if (IEEE80211_IS_CHAN_HTG(chan)) 1473 return IEEE80211_MODE_11NG; 1474 else if (IEEE80211_IS_CHAN_108G(chan)) 1475 return IEEE80211_MODE_TURBO_G; 1476 else if (IEEE80211_IS_CHAN_ST(chan)) 1477 return IEEE80211_MODE_STURBO_A; 1478 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1479 return IEEE80211_MODE_TURBO_A; 1480 else if (IEEE80211_IS_CHAN_HALF(chan)) 1481 return IEEE80211_MODE_HALF; 1482 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1483 return IEEE80211_MODE_QUARTER; 1484 else if (IEEE80211_IS_CHAN_A(chan)) 1485 return IEEE80211_MODE_11A; 1486 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1487 return IEEE80211_MODE_11G; 1488 else if (IEEE80211_IS_CHAN_B(chan)) 1489 return IEEE80211_MODE_11B; 1490 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1491 return IEEE80211_MODE_FH; 1492 1493 /* NB: should not get here */ 1494 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1495 __func__, chan->ic_freq, chan->ic_flags); 1496 return IEEE80211_MODE_11B; 1497 } 1498 1499 struct ratemedia { 1500 u_int match; /* rate + mode */ 1501 u_int media; /* if_media rate */ 1502 }; 1503 1504 static int 1505 findmedia(const struct ratemedia rates[], int n, u_int match) 1506 { 1507 int i; 1508 1509 for (i = 0; i < n; i++) 1510 if (rates[i].match == match) 1511 return rates[i].media; 1512 return IFM_AUTO; 1513 } 1514 1515 /* 1516 * Convert IEEE80211 rate value to ifmedia subtype. 1517 * Rate is either a legacy rate in units of 0.5Mbps 1518 * or an MCS index. 1519 */ 1520 int 1521 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1522 { 1523 static const struct ratemedia rates[] = { 1524 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1525 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1526 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1527 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1528 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1529 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1530 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1531 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1532 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1533 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1534 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1535 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1536 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1537 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1538 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1539 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1540 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1541 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1542 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1543 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1544 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1545 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1546 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1547 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1548 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1549 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1550 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1551 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1552 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1553 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1554 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1555 }; 1556 static const struct ratemedia htrates[] = { 1557 { 0, IFM_IEEE80211_MCS }, 1558 { 1, IFM_IEEE80211_MCS }, 1559 { 2, IFM_IEEE80211_MCS }, 1560 { 3, IFM_IEEE80211_MCS }, 1561 { 4, IFM_IEEE80211_MCS }, 1562 { 5, IFM_IEEE80211_MCS }, 1563 { 6, IFM_IEEE80211_MCS }, 1564 { 7, IFM_IEEE80211_MCS }, 1565 { 8, IFM_IEEE80211_MCS }, 1566 { 9, IFM_IEEE80211_MCS }, 1567 { 10, IFM_IEEE80211_MCS }, 1568 { 11, IFM_IEEE80211_MCS }, 1569 { 12, IFM_IEEE80211_MCS }, 1570 { 13, IFM_IEEE80211_MCS }, 1571 { 14, IFM_IEEE80211_MCS }, 1572 { 15, IFM_IEEE80211_MCS }, 1573 { 16, IFM_IEEE80211_MCS }, 1574 { 17, IFM_IEEE80211_MCS }, 1575 { 18, IFM_IEEE80211_MCS }, 1576 { 19, IFM_IEEE80211_MCS }, 1577 { 20, IFM_IEEE80211_MCS }, 1578 { 21, IFM_IEEE80211_MCS }, 1579 { 22, IFM_IEEE80211_MCS }, 1580 { 23, IFM_IEEE80211_MCS }, 1581 { 24, IFM_IEEE80211_MCS }, 1582 { 25, IFM_IEEE80211_MCS }, 1583 { 26, IFM_IEEE80211_MCS }, 1584 { 27, IFM_IEEE80211_MCS }, 1585 { 28, IFM_IEEE80211_MCS }, 1586 { 29, IFM_IEEE80211_MCS }, 1587 { 30, IFM_IEEE80211_MCS }, 1588 { 31, IFM_IEEE80211_MCS }, 1589 { 32, IFM_IEEE80211_MCS }, 1590 { 33, IFM_IEEE80211_MCS }, 1591 { 34, IFM_IEEE80211_MCS }, 1592 { 35, IFM_IEEE80211_MCS }, 1593 { 36, IFM_IEEE80211_MCS }, 1594 { 37, IFM_IEEE80211_MCS }, 1595 { 38, IFM_IEEE80211_MCS }, 1596 { 39, IFM_IEEE80211_MCS }, 1597 { 40, IFM_IEEE80211_MCS }, 1598 { 41, IFM_IEEE80211_MCS }, 1599 { 42, IFM_IEEE80211_MCS }, 1600 { 43, IFM_IEEE80211_MCS }, 1601 { 44, IFM_IEEE80211_MCS }, 1602 { 45, IFM_IEEE80211_MCS }, 1603 { 46, IFM_IEEE80211_MCS }, 1604 { 47, IFM_IEEE80211_MCS }, 1605 { 48, IFM_IEEE80211_MCS }, 1606 { 49, IFM_IEEE80211_MCS }, 1607 { 50, IFM_IEEE80211_MCS }, 1608 { 51, IFM_IEEE80211_MCS }, 1609 { 52, IFM_IEEE80211_MCS }, 1610 { 53, IFM_IEEE80211_MCS }, 1611 { 54, IFM_IEEE80211_MCS }, 1612 { 55, IFM_IEEE80211_MCS }, 1613 { 56, IFM_IEEE80211_MCS }, 1614 { 57, IFM_IEEE80211_MCS }, 1615 { 58, IFM_IEEE80211_MCS }, 1616 { 59, IFM_IEEE80211_MCS }, 1617 { 60, IFM_IEEE80211_MCS }, 1618 { 61, IFM_IEEE80211_MCS }, 1619 { 62, IFM_IEEE80211_MCS }, 1620 { 63, IFM_IEEE80211_MCS }, 1621 { 64, IFM_IEEE80211_MCS }, 1622 { 65, IFM_IEEE80211_MCS }, 1623 { 66, IFM_IEEE80211_MCS }, 1624 { 67, IFM_IEEE80211_MCS }, 1625 { 68, IFM_IEEE80211_MCS }, 1626 { 69, IFM_IEEE80211_MCS }, 1627 { 70, IFM_IEEE80211_MCS }, 1628 { 71, IFM_IEEE80211_MCS }, 1629 { 72, IFM_IEEE80211_MCS }, 1630 { 73, IFM_IEEE80211_MCS }, 1631 { 74, IFM_IEEE80211_MCS }, 1632 { 75, IFM_IEEE80211_MCS }, 1633 { 76, IFM_IEEE80211_MCS }, 1634 }; 1635 int m; 1636 1637 /* 1638 * Check 11n rates first for match as an MCS. 1639 */ 1640 if (mode == IEEE80211_MODE_11NA) { 1641 if (rate & IEEE80211_RATE_MCS) { 1642 rate &= ~IEEE80211_RATE_MCS; 1643 m = findmedia(htrates, nitems(htrates), rate); 1644 if (m != IFM_AUTO) 1645 return m | IFM_IEEE80211_11NA; 1646 } 1647 } else if (mode == IEEE80211_MODE_11NG) { 1648 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1649 if (rate & IEEE80211_RATE_MCS) { 1650 rate &= ~IEEE80211_RATE_MCS; 1651 m = findmedia(htrates, nitems(htrates), rate); 1652 if (m != IFM_AUTO) 1653 return m | IFM_IEEE80211_11NG; 1654 } 1655 } 1656 rate &= IEEE80211_RATE_VAL; 1657 switch (mode) { 1658 case IEEE80211_MODE_11A: 1659 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1660 case IEEE80211_MODE_QUARTER: 1661 case IEEE80211_MODE_11NA: 1662 case IEEE80211_MODE_TURBO_A: 1663 case IEEE80211_MODE_STURBO_A: 1664 return findmedia(rates, nitems(rates), 1665 rate | IFM_IEEE80211_11A); 1666 case IEEE80211_MODE_11B: 1667 return findmedia(rates, nitems(rates), 1668 rate | IFM_IEEE80211_11B); 1669 case IEEE80211_MODE_FH: 1670 return findmedia(rates, nitems(rates), 1671 rate | IFM_IEEE80211_FH); 1672 case IEEE80211_MODE_AUTO: 1673 /* NB: ic may be NULL for some drivers */ 1674 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1675 return findmedia(rates, nitems(rates), 1676 rate | IFM_IEEE80211_FH); 1677 /* NB: hack, 11g matches both 11b+11a rates */ 1678 /* fall thru... */ 1679 case IEEE80211_MODE_11G: 1680 case IEEE80211_MODE_11NG: 1681 case IEEE80211_MODE_TURBO_G: 1682 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 1683 } 1684 return IFM_AUTO; 1685 } 1686 1687 int 1688 ieee80211_media2rate(int mword) 1689 { 1690 static const int ieeerates[] = { 1691 -1, /* IFM_AUTO */ 1692 0, /* IFM_MANUAL */ 1693 0, /* IFM_NONE */ 1694 2, /* IFM_IEEE80211_FH1 */ 1695 4, /* IFM_IEEE80211_FH2 */ 1696 2, /* IFM_IEEE80211_DS1 */ 1697 4, /* IFM_IEEE80211_DS2 */ 1698 11, /* IFM_IEEE80211_DS5 */ 1699 22, /* IFM_IEEE80211_DS11 */ 1700 44, /* IFM_IEEE80211_DS22 */ 1701 12, /* IFM_IEEE80211_OFDM6 */ 1702 18, /* IFM_IEEE80211_OFDM9 */ 1703 24, /* IFM_IEEE80211_OFDM12 */ 1704 36, /* IFM_IEEE80211_OFDM18 */ 1705 48, /* IFM_IEEE80211_OFDM24 */ 1706 72, /* IFM_IEEE80211_OFDM36 */ 1707 96, /* IFM_IEEE80211_OFDM48 */ 1708 108, /* IFM_IEEE80211_OFDM54 */ 1709 144, /* IFM_IEEE80211_OFDM72 */ 1710 0, /* IFM_IEEE80211_DS354k */ 1711 0, /* IFM_IEEE80211_DS512k */ 1712 6, /* IFM_IEEE80211_OFDM3 */ 1713 9, /* IFM_IEEE80211_OFDM4 */ 1714 54, /* IFM_IEEE80211_OFDM27 */ 1715 -1, /* IFM_IEEE80211_MCS */ 1716 }; 1717 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 1718 ieeerates[IFM_SUBTYPE(mword)] : 0; 1719 } 1720 1721 /* 1722 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1723 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1724 */ 1725 #define mix(a, b, c) \ 1726 do { \ 1727 a -= b; a -= c; a ^= (c >> 13); \ 1728 b -= c; b -= a; b ^= (a << 8); \ 1729 c -= a; c -= b; c ^= (b >> 13); \ 1730 a -= b; a -= c; a ^= (c >> 12); \ 1731 b -= c; b -= a; b ^= (a << 16); \ 1732 c -= a; c -= b; c ^= (b >> 5); \ 1733 a -= b; a -= c; a ^= (c >> 3); \ 1734 b -= c; b -= a; b ^= (a << 10); \ 1735 c -= a; c -= b; c ^= (b >> 15); \ 1736 } while (/*CONSTCOND*/0) 1737 1738 uint32_t 1739 ieee80211_mac_hash(const struct ieee80211com *ic, 1740 const uint8_t addr[IEEE80211_ADDR_LEN]) 1741 { 1742 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1743 1744 b += addr[5] << 8; 1745 b += addr[4]; 1746 a += addr[3] << 24; 1747 a += addr[2] << 16; 1748 a += addr[1] << 8; 1749 a += addr[0]; 1750 1751 mix(a, b, c); 1752 1753 return c; 1754 } 1755 #undef mix 1756