1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/socket.h> 40 #include <sys/sbuf.h> 41 42 #include <machine/stdarg.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 #include <net/ethernet.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_regdomain.h> 53 #ifdef IEEE80211_SUPPORT_SUPERG 54 #include <net80211/ieee80211_superg.h> 55 #endif 56 #include <net80211/ieee80211_ratectl.h> 57 58 #include <net/bpf.h> 59 60 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 61 [IEEE80211_MODE_AUTO] = "auto", 62 [IEEE80211_MODE_11A] = "11a", 63 [IEEE80211_MODE_11B] = "11b", 64 [IEEE80211_MODE_11G] = "11g", 65 [IEEE80211_MODE_FH] = "FH", 66 [IEEE80211_MODE_TURBO_A] = "turboA", 67 [IEEE80211_MODE_TURBO_G] = "turboG", 68 [IEEE80211_MODE_STURBO_A] = "sturboA", 69 [IEEE80211_MODE_HALF] = "half", 70 [IEEE80211_MODE_QUARTER] = "quarter", 71 [IEEE80211_MODE_11NA] = "11na", 72 [IEEE80211_MODE_11NG] = "11ng", 73 }; 74 /* map ieee80211_opmode to the corresponding capability bit */ 75 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 76 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 77 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 78 [IEEE80211_M_STA] = IEEE80211_C_STA, 79 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 80 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 81 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 82 #ifdef IEEE80211_SUPPORT_MESH 83 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 84 #endif 85 }; 86 87 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 88 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 89 90 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 91 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 92 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 93 static int ieee80211_media_setup(struct ieee80211com *ic, 94 struct ifmedia *media, int caps, int addsta, 95 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 96 static int media_status(enum ieee80211_opmode, 97 const struct ieee80211_channel *); 98 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 99 100 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 101 102 /* 103 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 104 */ 105 #define B(r) ((r) | IEEE80211_RATE_BASIC) 106 static const struct ieee80211_rateset ieee80211_rateset_11a = 107 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 108 static const struct ieee80211_rateset ieee80211_rateset_half = 109 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 110 static const struct ieee80211_rateset ieee80211_rateset_quarter = 111 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 112 static const struct ieee80211_rateset ieee80211_rateset_11b = 113 { 4, { B(2), B(4), B(11), B(22) } }; 114 /* NB: OFDM rates are handled specially based on mode */ 115 static const struct ieee80211_rateset ieee80211_rateset_11g = 116 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 117 #undef B 118 119 /* 120 * Fill in 802.11 available channel set, mark 121 * all available channels as active, and pick 122 * a default channel if not already specified. 123 */ 124 void 125 ieee80211_chan_init(struct ieee80211com *ic) 126 { 127 #define DEFAULTRATES(m, def) do { \ 128 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 129 ic->ic_sup_rates[m] = def; \ 130 } while (0) 131 struct ieee80211_channel *c; 132 int i; 133 134 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 135 ("invalid number of channels specified: %u", ic->ic_nchans)); 136 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 137 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 138 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 139 for (i = 0; i < ic->ic_nchans; i++) { 140 c = &ic->ic_channels[i]; 141 KASSERT(c->ic_flags != 0, ("channel with no flags")); 142 /* 143 * Help drivers that work only with frequencies by filling 144 * in IEEE channel #'s if not already calculated. Note this 145 * mimics similar work done in ieee80211_setregdomain when 146 * changing regulatory state. 147 */ 148 if (c->ic_ieee == 0) 149 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 150 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 151 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 152 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 153 c->ic_flags); 154 /* default max tx power to max regulatory */ 155 if (c->ic_maxpower == 0) 156 c->ic_maxpower = 2*c->ic_maxregpower; 157 setbit(ic->ic_chan_avail, c->ic_ieee); 158 /* 159 * Identify mode capabilities. 160 */ 161 if (IEEE80211_IS_CHAN_A(c)) 162 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 163 if (IEEE80211_IS_CHAN_B(c)) 164 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 165 if (IEEE80211_IS_CHAN_ANYG(c)) 166 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 167 if (IEEE80211_IS_CHAN_FHSS(c)) 168 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 169 if (IEEE80211_IS_CHAN_108A(c)) 170 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 171 if (IEEE80211_IS_CHAN_108G(c)) 172 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 173 if (IEEE80211_IS_CHAN_ST(c)) 174 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 175 if (IEEE80211_IS_CHAN_HALF(c)) 176 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 177 if (IEEE80211_IS_CHAN_QUARTER(c)) 178 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 179 if (IEEE80211_IS_CHAN_HTA(c)) 180 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 181 if (IEEE80211_IS_CHAN_HTG(c)) 182 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 183 } 184 /* initialize candidate channels to all available */ 185 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 186 sizeof(ic->ic_chan_avail)); 187 188 /* sort channel table to allow lookup optimizations */ 189 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 190 191 /* invalidate any previous state */ 192 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 193 ic->ic_prevchan = NULL; 194 ic->ic_csa_newchan = NULL; 195 /* arbitrarily pick the first channel */ 196 ic->ic_curchan = &ic->ic_channels[0]; 197 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 198 199 /* fillin well-known rate sets if driver has not specified */ 200 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 201 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 202 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 203 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 204 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 205 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 206 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 207 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 208 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 209 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 210 211 /* 212 * Setup required information to fill the mcsset field, if driver did 213 * not. Assume a 2T2R setup for historic reasons. 214 */ 215 if (ic->ic_rxstream == 0) 216 ic->ic_rxstream = 2; 217 if (ic->ic_txstream == 0) 218 ic->ic_txstream = 2; 219 220 /* 221 * Set auto mode to reset active channel state and any desired channel. 222 */ 223 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 224 #undef DEFAULTRATES 225 } 226 227 static void 228 null_update_mcast(struct ieee80211com *ic) 229 { 230 231 ic_printf(ic, "need multicast update callback\n"); 232 } 233 234 static void 235 null_update_promisc(struct ieee80211com *ic) 236 { 237 238 ic_printf(ic, "need promiscuous mode update callback\n"); 239 } 240 241 static void 242 null_update_chw(struct ieee80211com *ic) 243 { 244 245 ic_printf(ic, "%s: need callback\n", __func__); 246 } 247 248 int 249 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 250 { 251 va_list ap; 252 int retval; 253 254 retval = printf("%s: ", ic->ic_name); 255 va_start(ap, fmt); 256 retval += vprintf(fmt, ap); 257 va_end(ap); 258 return (retval); 259 } 260 261 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 262 static struct mtx ic_list_mtx; 263 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 264 265 static int 266 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 267 { 268 struct ieee80211com *ic; 269 struct sbuf sb; 270 char *sp; 271 int error; 272 273 error = sysctl_wire_old_buffer(req, 0); 274 if (error) 275 return (error); 276 sbuf_new_for_sysctl(&sb, NULL, 8, req); 277 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 278 sp = ""; 279 mtx_lock(&ic_list_mtx); 280 LIST_FOREACH(ic, &ic_head, ic_next) { 281 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 282 sp = " "; 283 } 284 mtx_unlock(&ic_list_mtx); 285 error = sbuf_finish(&sb); 286 sbuf_delete(&sb); 287 return (error); 288 } 289 290 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 291 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 292 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 293 294 /* 295 * Attach/setup the common net80211 state. Called by 296 * the driver on attach to prior to creating any vap's. 297 */ 298 void 299 ieee80211_ifattach(struct ieee80211com *ic) 300 { 301 302 IEEE80211_LOCK_INIT(ic, ic->ic_name); 303 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 304 TAILQ_INIT(&ic->ic_vaps); 305 306 /* Create a taskqueue for all state changes */ 307 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 308 taskqueue_thread_enqueue, &ic->ic_tq); 309 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 310 ic->ic_name); 311 ic->ic_ierrors = counter_u64_alloc(M_WAITOK); 312 ic->ic_oerrors = counter_u64_alloc(M_WAITOK); 313 /* 314 * Fill in 802.11 available channel set, mark all 315 * available channels as active, and pick a default 316 * channel if not already specified. 317 */ 318 ieee80211_chan_init(ic); 319 320 ic->ic_update_mcast = null_update_mcast; 321 ic->ic_update_promisc = null_update_promisc; 322 ic->ic_update_chw = null_update_chw; 323 324 ic->ic_hash_key = arc4random(); 325 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 326 ic->ic_lintval = ic->ic_bintval; 327 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 328 329 ieee80211_crypto_attach(ic); 330 ieee80211_node_attach(ic); 331 ieee80211_power_attach(ic); 332 ieee80211_proto_attach(ic); 333 #ifdef IEEE80211_SUPPORT_SUPERG 334 ieee80211_superg_attach(ic); 335 #endif 336 ieee80211_ht_attach(ic); 337 ieee80211_scan_attach(ic); 338 ieee80211_regdomain_attach(ic); 339 ieee80211_dfs_attach(ic); 340 341 ieee80211_sysctl_attach(ic); 342 343 mtx_lock(&ic_list_mtx); 344 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 345 mtx_unlock(&ic_list_mtx); 346 } 347 348 /* 349 * Detach net80211 state on device detach. Tear down 350 * all vap's and reclaim all common state prior to the 351 * device state going away. Note we may call back into 352 * driver; it must be prepared for this. 353 */ 354 void 355 ieee80211_ifdetach(struct ieee80211com *ic) 356 { 357 struct ieee80211vap *vap; 358 359 mtx_lock(&ic_list_mtx); 360 LIST_REMOVE(ic, ic_next); 361 mtx_unlock(&ic_list_mtx); 362 363 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 364 365 /* 366 * The VAP is responsible for setting and clearing 367 * the VIMAGE context. 368 */ 369 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 370 ieee80211_vap_destroy(vap); 371 ieee80211_waitfor_parent(ic); 372 373 ieee80211_sysctl_detach(ic); 374 ieee80211_dfs_detach(ic); 375 ieee80211_regdomain_detach(ic); 376 ieee80211_scan_detach(ic); 377 #ifdef IEEE80211_SUPPORT_SUPERG 378 ieee80211_superg_detach(ic); 379 #endif 380 ieee80211_ht_detach(ic); 381 /* NB: must be called before ieee80211_node_detach */ 382 ieee80211_proto_detach(ic); 383 ieee80211_crypto_detach(ic); 384 ieee80211_power_detach(ic); 385 ieee80211_node_detach(ic); 386 387 counter_u64_free(ic->ic_ierrors); 388 counter_u64_free(ic->ic_oerrors); 389 390 taskqueue_free(ic->ic_tq); 391 IEEE80211_TX_LOCK_DESTROY(ic); 392 IEEE80211_LOCK_DESTROY(ic); 393 } 394 395 struct ieee80211com * 396 ieee80211_find_com(const char *name) 397 { 398 struct ieee80211com *ic; 399 400 mtx_lock(&ic_list_mtx); 401 LIST_FOREACH(ic, &ic_head, ic_next) 402 if (strcmp(ic->ic_name, name) == 0) 403 break; 404 mtx_unlock(&ic_list_mtx); 405 406 return (ic); 407 } 408 409 /* 410 * Default reset method for use with the ioctl support. This 411 * method is invoked after any state change in the 802.11 412 * layer that should be propagated to the hardware but not 413 * require re-initialization of the 802.11 state machine (e.g 414 * rescanning for an ap). We always return ENETRESET which 415 * should cause the driver to re-initialize the device. Drivers 416 * can override this method to implement more optimized support. 417 */ 418 static int 419 default_reset(struct ieee80211vap *vap, u_long cmd) 420 { 421 return ENETRESET; 422 } 423 424 /* 425 * Add underlying device errors to vap errors. 426 */ 427 static uint64_t 428 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 429 { 430 struct ieee80211vap *vap = ifp->if_softc; 431 struct ieee80211com *ic = vap->iv_ic; 432 uint64_t rv; 433 434 rv = if_get_counter_default(ifp, cnt); 435 switch (cnt) { 436 case IFCOUNTER_OERRORS: 437 rv += counter_u64_fetch(ic->ic_oerrors); 438 break; 439 case IFCOUNTER_IERRORS: 440 rv += counter_u64_fetch(ic->ic_ierrors); 441 break; 442 default: 443 break; 444 } 445 446 return (rv); 447 } 448 449 /* 450 * Prepare a vap for use. Drivers use this call to 451 * setup net80211 state in new vap's prior attaching 452 * them with ieee80211_vap_attach (below). 453 */ 454 int 455 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 456 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 457 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 458 { 459 struct ifnet *ifp; 460 461 ifp = if_alloc(IFT_ETHER); 462 if (ifp == NULL) { 463 ic_printf(ic, "%s: unable to allocate ifnet\n", 464 __func__); 465 return ENOMEM; 466 } 467 if_initname(ifp, name, unit); 468 ifp->if_softc = vap; /* back pointer */ 469 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 470 ifp->if_transmit = ieee80211_vap_transmit; 471 ifp->if_qflush = ieee80211_vap_qflush; 472 ifp->if_ioctl = ieee80211_ioctl; 473 ifp->if_init = ieee80211_init; 474 ifp->if_get_counter = ieee80211_get_counter; 475 476 vap->iv_ifp = ifp; 477 vap->iv_ic = ic; 478 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 479 vap->iv_flags_ext = ic->ic_flags_ext; 480 vap->iv_flags_ven = ic->ic_flags_ven; 481 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 482 vap->iv_htcaps = ic->ic_htcaps; 483 vap->iv_htextcaps = ic->ic_htextcaps; 484 vap->iv_opmode = opmode; 485 vap->iv_caps |= ieee80211_opcap[opmode]; 486 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 487 switch (opmode) { 488 case IEEE80211_M_WDS: 489 /* 490 * WDS links must specify the bssid of the far end. 491 * For legacy operation this is a static relationship. 492 * For non-legacy operation the station must associate 493 * and be authorized to pass traffic. Plumbing the 494 * vap to the proper node happens when the vap 495 * transitions to RUN state. 496 */ 497 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 498 vap->iv_flags |= IEEE80211_F_DESBSSID; 499 if (flags & IEEE80211_CLONE_WDSLEGACY) 500 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 501 break; 502 #ifdef IEEE80211_SUPPORT_TDMA 503 case IEEE80211_M_AHDEMO: 504 if (flags & IEEE80211_CLONE_TDMA) { 505 /* NB: checked before clone operation allowed */ 506 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 507 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 508 /* 509 * Propagate TDMA capability to mark vap; this 510 * cannot be removed and is used to distinguish 511 * regular ahdemo operation from ahdemo+tdma. 512 */ 513 vap->iv_caps |= IEEE80211_C_TDMA; 514 } 515 break; 516 #endif 517 default: 518 break; 519 } 520 /* auto-enable s/w beacon miss support */ 521 if (flags & IEEE80211_CLONE_NOBEACONS) 522 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 523 /* auto-generated or user supplied MAC address */ 524 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 525 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 526 /* 527 * Enable various functionality by default if we're 528 * capable; the driver can override us if it knows better. 529 */ 530 if (vap->iv_caps & IEEE80211_C_WME) 531 vap->iv_flags |= IEEE80211_F_WME; 532 if (vap->iv_caps & IEEE80211_C_BURST) 533 vap->iv_flags |= IEEE80211_F_BURST; 534 /* NB: bg scanning only makes sense for station mode right now */ 535 if (vap->iv_opmode == IEEE80211_M_STA && 536 (vap->iv_caps & IEEE80211_C_BGSCAN)) 537 vap->iv_flags |= IEEE80211_F_BGSCAN; 538 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 539 /* NB: DFS support only makes sense for ap mode right now */ 540 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 541 (vap->iv_caps & IEEE80211_C_DFS)) 542 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 543 544 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 545 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 546 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 547 /* 548 * Install a default reset method for the ioctl support; 549 * the driver can override this. 550 */ 551 vap->iv_reset = default_reset; 552 553 ieee80211_sysctl_vattach(vap); 554 ieee80211_crypto_vattach(vap); 555 ieee80211_node_vattach(vap); 556 ieee80211_power_vattach(vap); 557 ieee80211_proto_vattach(vap); 558 #ifdef IEEE80211_SUPPORT_SUPERG 559 ieee80211_superg_vattach(vap); 560 #endif 561 ieee80211_ht_vattach(vap); 562 ieee80211_scan_vattach(vap); 563 ieee80211_regdomain_vattach(vap); 564 ieee80211_radiotap_vattach(vap); 565 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 566 567 return 0; 568 } 569 570 /* 571 * Activate a vap. State should have been prepared with a 572 * call to ieee80211_vap_setup and by the driver. On return 573 * from this call the vap is ready for use. 574 */ 575 int 576 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 577 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 578 { 579 struct ifnet *ifp = vap->iv_ifp; 580 struct ieee80211com *ic = vap->iv_ic; 581 struct ifmediareq imr; 582 int maxrate; 583 584 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 585 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 586 __func__, ieee80211_opmode_name[vap->iv_opmode], 587 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 588 589 /* 590 * Do late attach work that cannot happen until after 591 * the driver has had a chance to override defaults. 592 */ 593 ieee80211_node_latevattach(vap); 594 ieee80211_power_latevattach(vap); 595 596 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 597 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 598 ieee80211_media_status(ifp, &imr); 599 /* NB: strip explicit mode; we're actually in autoselect */ 600 ifmedia_set(&vap->iv_media, 601 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 602 if (maxrate) 603 ifp->if_baudrate = IF_Mbps(maxrate); 604 605 ether_ifattach(ifp, macaddr); 606 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 607 /* hook output method setup by ether_ifattach */ 608 vap->iv_output = ifp->if_output; 609 ifp->if_output = ieee80211_output; 610 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 611 612 IEEE80211_LOCK(ic); 613 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 614 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 615 #ifdef IEEE80211_SUPPORT_SUPERG 616 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 617 #endif 618 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 619 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 620 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 621 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 622 IEEE80211_UNLOCK(ic); 623 624 return 1; 625 } 626 627 /* 628 * Tear down vap state and reclaim the ifnet. 629 * The driver is assumed to have prepared for 630 * this; e.g. by turning off interrupts for the 631 * underlying device. 632 */ 633 void 634 ieee80211_vap_detach(struct ieee80211vap *vap) 635 { 636 struct ieee80211com *ic = vap->iv_ic; 637 struct ifnet *ifp = vap->iv_ifp; 638 639 CURVNET_SET(ifp->if_vnet); 640 641 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 642 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 643 644 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 645 ether_ifdetach(ifp); 646 647 ieee80211_stop(vap); 648 649 /* 650 * Flush any deferred vap tasks. 651 */ 652 ieee80211_draintask(ic, &vap->iv_nstate_task); 653 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 654 655 /* XXX band-aid until ifnet handles this for us */ 656 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 657 658 IEEE80211_LOCK(ic); 659 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 660 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 661 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 662 #ifdef IEEE80211_SUPPORT_SUPERG 663 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 664 #endif 665 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 666 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 667 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 668 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 669 /* NB: this handles the bpfdetach done below */ 670 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 671 if (vap->iv_ifflags & IFF_PROMISC) 672 ieee80211_promisc(vap, false); 673 if (vap->iv_ifflags & IFF_ALLMULTI) 674 ieee80211_allmulti(vap, false); 675 IEEE80211_UNLOCK(ic); 676 677 ifmedia_removeall(&vap->iv_media); 678 679 ieee80211_radiotap_vdetach(vap); 680 ieee80211_regdomain_vdetach(vap); 681 ieee80211_scan_vdetach(vap); 682 #ifdef IEEE80211_SUPPORT_SUPERG 683 ieee80211_superg_vdetach(vap); 684 #endif 685 ieee80211_ht_vdetach(vap); 686 /* NB: must be before ieee80211_node_vdetach */ 687 ieee80211_proto_vdetach(vap); 688 ieee80211_crypto_vdetach(vap); 689 ieee80211_power_vdetach(vap); 690 ieee80211_node_vdetach(vap); 691 ieee80211_sysctl_vdetach(vap); 692 693 if_free(ifp); 694 695 CURVNET_RESTORE(); 696 } 697 698 /* 699 * Count number of vaps in promisc, and issue promisc on 700 * parent respectively. 701 */ 702 void 703 ieee80211_promisc(struct ieee80211vap *vap, bool on) 704 { 705 struct ieee80211com *ic = vap->iv_ic; 706 707 /* 708 * XXX the bridge sets PROMISC but we don't want to 709 * enable it on the device, discard here so all the 710 * drivers don't need to special-case it 711 */ 712 if (!(vap->iv_opmode == IEEE80211_M_MONITOR || 713 (vap->iv_opmode == IEEE80211_M_AHDEMO && 714 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 715 return; 716 717 IEEE80211_LOCK_ASSERT(ic); 718 719 if (on) { 720 if (++ic->ic_promisc == 1) 721 ieee80211_runtask(ic, &ic->ic_promisc_task); 722 } else { 723 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 724 __func__, ic)); 725 if (--ic->ic_promisc == 0) 726 ieee80211_runtask(ic, &ic->ic_promisc_task); 727 } 728 } 729 730 /* 731 * Count number of vaps in allmulti, and issue allmulti on 732 * parent respectively. 733 */ 734 void 735 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 736 { 737 struct ieee80211com *ic = vap->iv_ic; 738 739 IEEE80211_LOCK_ASSERT(ic); 740 741 if (on) { 742 if (++ic->ic_allmulti == 1) 743 ieee80211_runtask(ic, &ic->ic_mcast_task); 744 } else { 745 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 746 __func__, ic)); 747 if (--ic->ic_allmulti == 0) 748 ieee80211_runtask(ic, &ic->ic_mcast_task); 749 } 750 } 751 752 /* 753 * Synchronize flag bit state in the com structure 754 * according to the state of all vap's. This is used, 755 * for example, to handle state changes via ioctls. 756 */ 757 static void 758 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 759 { 760 struct ieee80211vap *vap; 761 int bit; 762 763 IEEE80211_LOCK_ASSERT(ic); 764 765 bit = 0; 766 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 767 if (vap->iv_flags & flag) { 768 bit = 1; 769 break; 770 } 771 if (bit) 772 ic->ic_flags |= flag; 773 else 774 ic->ic_flags &= ~flag; 775 } 776 777 void 778 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 779 { 780 struct ieee80211com *ic = vap->iv_ic; 781 782 IEEE80211_LOCK(ic); 783 if (flag < 0) { 784 flag = -flag; 785 vap->iv_flags &= ~flag; 786 } else 787 vap->iv_flags |= flag; 788 ieee80211_syncflag_locked(ic, flag); 789 IEEE80211_UNLOCK(ic); 790 } 791 792 /* 793 * Synchronize flags_ht bit state in the com structure 794 * according to the state of all vap's. This is used, 795 * for example, to handle state changes via ioctls. 796 */ 797 static void 798 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 799 { 800 struct ieee80211vap *vap; 801 int bit; 802 803 IEEE80211_LOCK_ASSERT(ic); 804 805 bit = 0; 806 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 807 if (vap->iv_flags_ht & flag) { 808 bit = 1; 809 break; 810 } 811 if (bit) 812 ic->ic_flags_ht |= flag; 813 else 814 ic->ic_flags_ht &= ~flag; 815 } 816 817 void 818 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 819 { 820 struct ieee80211com *ic = vap->iv_ic; 821 822 IEEE80211_LOCK(ic); 823 if (flag < 0) { 824 flag = -flag; 825 vap->iv_flags_ht &= ~flag; 826 } else 827 vap->iv_flags_ht |= flag; 828 ieee80211_syncflag_ht_locked(ic, flag); 829 IEEE80211_UNLOCK(ic); 830 } 831 832 /* 833 * Synchronize flags_ext bit state in the com structure 834 * according to the state of all vap's. This is used, 835 * for example, to handle state changes via ioctls. 836 */ 837 static void 838 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 839 { 840 struct ieee80211vap *vap; 841 int bit; 842 843 IEEE80211_LOCK_ASSERT(ic); 844 845 bit = 0; 846 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 847 if (vap->iv_flags_ext & flag) { 848 bit = 1; 849 break; 850 } 851 if (bit) 852 ic->ic_flags_ext |= flag; 853 else 854 ic->ic_flags_ext &= ~flag; 855 } 856 857 void 858 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 859 { 860 struct ieee80211com *ic = vap->iv_ic; 861 862 IEEE80211_LOCK(ic); 863 if (flag < 0) { 864 flag = -flag; 865 vap->iv_flags_ext &= ~flag; 866 } else 867 vap->iv_flags_ext |= flag; 868 ieee80211_syncflag_ext_locked(ic, flag); 869 IEEE80211_UNLOCK(ic); 870 } 871 872 static __inline int 873 mapgsm(u_int freq, u_int flags) 874 { 875 freq *= 10; 876 if (flags & IEEE80211_CHAN_QUARTER) 877 freq += 5; 878 else if (flags & IEEE80211_CHAN_HALF) 879 freq += 10; 880 else 881 freq += 20; 882 /* NB: there is no 907/20 wide but leave room */ 883 return (freq - 906*10) / 5; 884 } 885 886 static __inline int 887 mappsb(u_int freq, u_int flags) 888 { 889 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 890 } 891 892 /* 893 * Convert MHz frequency to IEEE channel number. 894 */ 895 int 896 ieee80211_mhz2ieee(u_int freq, u_int flags) 897 { 898 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 899 if (flags & IEEE80211_CHAN_GSM) 900 return mapgsm(freq, flags); 901 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 902 if (freq == 2484) 903 return 14; 904 if (freq < 2484) 905 return ((int) freq - 2407) / 5; 906 else 907 return 15 + ((freq - 2512) / 20); 908 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 909 if (freq <= 5000) { 910 /* XXX check regdomain? */ 911 if (IS_FREQ_IN_PSB(freq)) 912 return mappsb(freq, flags); 913 return (freq - 4000) / 5; 914 } else 915 return (freq - 5000) / 5; 916 } else { /* either, guess */ 917 if (freq == 2484) 918 return 14; 919 if (freq < 2484) { 920 if (907 <= freq && freq <= 922) 921 return mapgsm(freq, flags); 922 return ((int) freq - 2407) / 5; 923 } 924 if (freq < 5000) { 925 if (IS_FREQ_IN_PSB(freq)) 926 return mappsb(freq, flags); 927 else if (freq > 4900) 928 return (freq - 4000) / 5; 929 else 930 return 15 + ((freq - 2512) / 20); 931 } 932 return (freq - 5000) / 5; 933 } 934 #undef IS_FREQ_IN_PSB 935 } 936 937 /* 938 * Convert channel to IEEE channel number. 939 */ 940 int 941 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 942 { 943 if (c == NULL) { 944 ic_printf(ic, "invalid channel (NULL)\n"); 945 return 0; /* XXX */ 946 } 947 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 948 } 949 950 /* 951 * Convert IEEE channel number to MHz frequency. 952 */ 953 u_int 954 ieee80211_ieee2mhz(u_int chan, u_int flags) 955 { 956 if (flags & IEEE80211_CHAN_GSM) 957 return 907 + 5 * (chan / 10); 958 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 959 if (chan == 14) 960 return 2484; 961 if (chan < 14) 962 return 2407 + chan*5; 963 else 964 return 2512 + ((chan-15)*20); 965 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 966 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 967 chan -= 37; 968 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 969 } 970 return 5000 + (chan*5); 971 } else { /* either, guess */ 972 /* XXX can't distinguish PSB+GSM channels */ 973 if (chan == 14) 974 return 2484; 975 if (chan < 14) /* 0-13 */ 976 return 2407 + chan*5; 977 if (chan < 27) /* 15-26 */ 978 return 2512 + ((chan-15)*20); 979 return 5000 + (chan*5); 980 } 981 } 982 983 /* 984 * Locate a channel given a frequency+flags. We cache 985 * the previous lookup to optimize switching between two 986 * channels--as happens with dynamic turbo. 987 */ 988 struct ieee80211_channel * 989 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 990 { 991 struct ieee80211_channel *c; 992 int i; 993 994 flags &= IEEE80211_CHAN_ALLTURBO; 995 c = ic->ic_prevchan; 996 if (c != NULL && c->ic_freq == freq && 997 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 998 return c; 999 /* brute force search */ 1000 for (i = 0; i < ic->ic_nchans; i++) { 1001 c = &ic->ic_channels[i]; 1002 if (c->ic_freq == freq && 1003 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1004 return c; 1005 } 1006 return NULL; 1007 } 1008 1009 /* 1010 * Locate a channel given a channel number+flags. We cache 1011 * the previous lookup to optimize switching between two 1012 * channels--as happens with dynamic turbo. 1013 */ 1014 struct ieee80211_channel * 1015 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1016 { 1017 struct ieee80211_channel *c; 1018 int i; 1019 1020 flags &= IEEE80211_CHAN_ALLTURBO; 1021 c = ic->ic_prevchan; 1022 if (c != NULL && c->ic_ieee == ieee && 1023 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1024 return c; 1025 /* brute force search */ 1026 for (i = 0; i < ic->ic_nchans; i++) { 1027 c = &ic->ic_channels[i]; 1028 if (c->ic_ieee == ieee && 1029 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1030 return c; 1031 } 1032 return NULL; 1033 } 1034 1035 /* 1036 * Lookup a channel suitable for the given rx status. 1037 * 1038 * This is used to find a channel for a frame (eg beacon, probe 1039 * response) based purely on the received PHY information. 1040 * 1041 * For now it tries to do it based on R_FREQ / R_IEEE. 1042 * This is enough for 11bg and 11a (and thus 11ng/11na) 1043 * but it will not be enough for GSM, PSB channels and the 1044 * like. It also doesn't know about legacy-turbog and 1045 * legacy-turbo modes, which some offload NICs actually 1046 * support in weird ways. 1047 * 1048 * Takes the ic and rxstatus; returns the channel or NULL 1049 * if not found. 1050 * 1051 * XXX TODO: Add support for that when the need arises. 1052 */ 1053 struct ieee80211_channel * 1054 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1055 const struct ieee80211_rx_stats *rxs) 1056 { 1057 struct ieee80211com *ic = vap->iv_ic; 1058 uint32_t flags; 1059 struct ieee80211_channel *c; 1060 1061 if (rxs == NULL) 1062 return (NULL); 1063 1064 /* 1065 * Strictly speaking we only use freq for now, 1066 * however later on we may wish to just store 1067 * the ieee for verification. 1068 */ 1069 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1070 return (NULL); 1071 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1072 return (NULL); 1073 1074 /* 1075 * If the rx status contains a valid ieee/freq, then 1076 * ensure we populate the correct channel information 1077 * in rxchan before passing it up to the scan infrastructure. 1078 * Offload NICs will pass up beacons from all channels 1079 * during background scans. 1080 */ 1081 1082 /* Determine a band */ 1083 /* XXX should be done by the driver? */ 1084 if (rxs->c_freq < 3000) { 1085 flags = IEEE80211_CHAN_G; 1086 } else { 1087 flags = IEEE80211_CHAN_A; 1088 } 1089 1090 /* Channel lookup */ 1091 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1092 1093 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1094 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1095 __func__, 1096 (int) rxs->c_freq, 1097 (int) rxs->c_ieee, 1098 flags, 1099 c); 1100 1101 return (c); 1102 } 1103 1104 static void 1105 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1106 { 1107 #define ADD(_ic, _s, _o) \ 1108 ifmedia_add(media, \ 1109 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1110 static const u_int mopts[IEEE80211_MODE_MAX] = { 1111 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1112 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1113 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1114 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1115 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1116 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1117 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1118 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1119 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1120 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1121 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1122 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1123 }; 1124 u_int mopt; 1125 1126 mopt = mopts[mode]; 1127 if (addsta) 1128 ADD(ic, mword, mopt); /* STA mode has no cap */ 1129 if (caps & IEEE80211_C_IBSS) 1130 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1131 if (caps & IEEE80211_C_HOSTAP) 1132 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1133 if (caps & IEEE80211_C_AHDEMO) 1134 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1135 if (caps & IEEE80211_C_MONITOR) 1136 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1137 if (caps & IEEE80211_C_WDS) 1138 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1139 if (caps & IEEE80211_C_MBSS) 1140 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1141 #undef ADD 1142 } 1143 1144 /* 1145 * Setup the media data structures according to the channel and 1146 * rate tables. 1147 */ 1148 static int 1149 ieee80211_media_setup(struct ieee80211com *ic, 1150 struct ifmedia *media, int caps, int addsta, 1151 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1152 { 1153 int i, j, rate, maxrate, mword, r; 1154 enum ieee80211_phymode mode; 1155 const struct ieee80211_rateset *rs; 1156 struct ieee80211_rateset allrates; 1157 1158 /* 1159 * Fill in media characteristics. 1160 */ 1161 ifmedia_init(media, 0, media_change, media_stat); 1162 maxrate = 0; 1163 /* 1164 * Add media for legacy operating modes. 1165 */ 1166 memset(&allrates, 0, sizeof(allrates)); 1167 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1168 if (isclr(ic->ic_modecaps, mode)) 1169 continue; 1170 addmedia(media, caps, addsta, mode, IFM_AUTO); 1171 if (mode == IEEE80211_MODE_AUTO) 1172 continue; 1173 rs = &ic->ic_sup_rates[mode]; 1174 for (i = 0; i < rs->rs_nrates; i++) { 1175 rate = rs->rs_rates[i]; 1176 mword = ieee80211_rate2media(ic, rate, mode); 1177 if (mword == 0) 1178 continue; 1179 addmedia(media, caps, addsta, mode, mword); 1180 /* 1181 * Add legacy rate to the collection of all rates. 1182 */ 1183 r = rate & IEEE80211_RATE_VAL; 1184 for (j = 0; j < allrates.rs_nrates; j++) 1185 if (allrates.rs_rates[j] == r) 1186 break; 1187 if (j == allrates.rs_nrates) { 1188 /* unique, add to the set */ 1189 allrates.rs_rates[j] = r; 1190 allrates.rs_nrates++; 1191 } 1192 rate = (rate & IEEE80211_RATE_VAL) / 2; 1193 if (rate > maxrate) 1194 maxrate = rate; 1195 } 1196 } 1197 for (i = 0; i < allrates.rs_nrates; i++) { 1198 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1199 IEEE80211_MODE_AUTO); 1200 if (mword == 0) 1201 continue; 1202 /* NB: remove media options from mword */ 1203 addmedia(media, caps, addsta, 1204 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1205 } 1206 /* 1207 * Add HT/11n media. Note that we do not have enough 1208 * bits in the media subtype to express the MCS so we 1209 * use a "placeholder" media subtype and any fixed MCS 1210 * must be specified with a different mechanism. 1211 */ 1212 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1213 if (isclr(ic->ic_modecaps, mode)) 1214 continue; 1215 addmedia(media, caps, addsta, mode, IFM_AUTO); 1216 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1217 } 1218 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1219 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1220 addmedia(media, caps, addsta, 1221 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1222 i = ic->ic_txstream * 8 - 1; 1223 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1224 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1225 rate = ieee80211_htrates[i].ht40_rate_400ns; 1226 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1227 rate = ieee80211_htrates[i].ht40_rate_800ns; 1228 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1229 rate = ieee80211_htrates[i].ht20_rate_400ns; 1230 else 1231 rate = ieee80211_htrates[i].ht20_rate_800ns; 1232 if (rate > maxrate) 1233 maxrate = rate; 1234 } 1235 return maxrate; 1236 } 1237 1238 /* XXX inline or eliminate? */ 1239 const struct ieee80211_rateset * 1240 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1241 { 1242 /* XXX does this work for 11ng basic rates? */ 1243 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1244 } 1245 1246 void 1247 ieee80211_announce(struct ieee80211com *ic) 1248 { 1249 int i, rate, mword; 1250 enum ieee80211_phymode mode; 1251 const struct ieee80211_rateset *rs; 1252 1253 /* NB: skip AUTO since it has no rates */ 1254 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1255 if (isclr(ic->ic_modecaps, mode)) 1256 continue; 1257 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 1258 rs = &ic->ic_sup_rates[mode]; 1259 for (i = 0; i < rs->rs_nrates; i++) { 1260 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1261 if (mword == 0) 1262 continue; 1263 rate = ieee80211_media2rate(mword); 1264 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1265 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1266 } 1267 printf("\n"); 1268 } 1269 ieee80211_ht_announce(ic); 1270 } 1271 1272 void 1273 ieee80211_announce_channels(struct ieee80211com *ic) 1274 { 1275 const struct ieee80211_channel *c; 1276 char type; 1277 int i, cw; 1278 1279 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1280 for (i = 0; i < ic->ic_nchans; i++) { 1281 c = &ic->ic_channels[i]; 1282 if (IEEE80211_IS_CHAN_ST(c)) 1283 type = 'S'; 1284 else if (IEEE80211_IS_CHAN_108A(c)) 1285 type = 'T'; 1286 else if (IEEE80211_IS_CHAN_108G(c)) 1287 type = 'G'; 1288 else if (IEEE80211_IS_CHAN_HT(c)) 1289 type = 'n'; 1290 else if (IEEE80211_IS_CHAN_A(c)) 1291 type = 'a'; 1292 else if (IEEE80211_IS_CHAN_ANYG(c)) 1293 type = 'g'; 1294 else if (IEEE80211_IS_CHAN_B(c)) 1295 type = 'b'; 1296 else 1297 type = 'f'; 1298 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1299 cw = 40; 1300 else if (IEEE80211_IS_CHAN_HALF(c)) 1301 cw = 10; 1302 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1303 cw = 5; 1304 else 1305 cw = 20; 1306 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1307 , c->ic_ieee, c->ic_freq, type 1308 , cw 1309 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1310 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1311 , c->ic_maxregpower 1312 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1313 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1314 ); 1315 } 1316 } 1317 1318 static int 1319 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1320 { 1321 switch (IFM_MODE(ime->ifm_media)) { 1322 case IFM_IEEE80211_11A: 1323 *mode = IEEE80211_MODE_11A; 1324 break; 1325 case IFM_IEEE80211_11B: 1326 *mode = IEEE80211_MODE_11B; 1327 break; 1328 case IFM_IEEE80211_11G: 1329 *mode = IEEE80211_MODE_11G; 1330 break; 1331 case IFM_IEEE80211_FH: 1332 *mode = IEEE80211_MODE_FH; 1333 break; 1334 case IFM_IEEE80211_11NA: 1335 *mode = IEEE80211_MODE_11NA; 1336 break; 1337 case IFM_IEEE80211_11NG: 1338 *mode = IEEE80211_MODE_11NG; 1339 break; 1340 case IFM_AUTO: 1341 *mode = IEEE80211_MODE_AUTO; 1342 break; 1343 default: 1344 return 0; 1345 } 1346 /* 1347 * Turbo mode is an ``option''. 1348 * XXX does not apply to AUTO 1349 */ 1350 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1351 if (*mode == IEEE80211_MODE_11A) { 1352 if (flags & IEEE80211_F_TURBOP) 1353 *mode = IEEE80211_MODE_TURBO_A; 1354 else 1355 *mode = IEEE80211_MODE_STURBO_A; 1356 } else if (*mode == IEEE80211_MODE_11G) 1357 *mode = IEEE80211_MODE_TURBO_G; 1358 else 1359 return 0; 1360 } 1361 /* XXX HT40 +/- */ 1362 return 1; 1363 } 1364 1365 /* 1366 * Handle a media change request on the vap interface. 1367 */ 1368 int 1369 ieee80211_media_change(struct ifnet *ifp) 1370 { 1371 struct ieee80211vap *vap = ifp->if_softc; 1372 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1373 uint16_t newmode; 1374 1375 if (!media2mode(ime, vap->iv_flags, &newmode)) 1376 return EINVAL; 1377 if (vap->iv_des_mode != newmode) { 1378 vap->iv_des_mode = newmode; 1379 /* XXX kick state machine if up+running */ 1380 } 1381 return 0; 1382 } 1383 1384 /* 1385 * Common code to calculate the media status word 1386 * from the operating mode and channel state. 1387 */ 1388 static int 1389 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1390 { 1391 int status; 1392 1393 status = IFM_IEEE80211; 1394 switch (opmode) { 1395 case IEEE80211_M_STA: 1396 break; 1397 case IEEE80211_M_IBSS: 1398 status |= IFM_IEEE80211_ADHOC; 1399 break; 1400 case IEEE80211_M_HOSTAP: 1401 status |= IFM_IEEE80211_HOSTAP; 1402 break; 1403 case IEEE80211_M_MONITOR: 1404 status |= IFM_IEEE80211_MONITOR; 1405 break; 1406 case IEEE80211_M_AHDEMO: 1407 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1408 break; 1409 case IEEE80211_M_WDS: 1410 status |= IFM_IEEE80211_WDS; 1411 break; 1412 case IEEE80211_M_MBSS: 1413 status |= IFM_IEEE80211_MBSS; 1414 break; 1415 } 1416 if (IEEE80211_IS_CHAN_HTA(chan)) { 1417 status |= IFM_IEEE80211_11NA; 1418 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1419 status |= IFM_IEEE80211_11NG; 1420 } else if (IEEE80211_IS_CHAN_A(chan)) { 1421 status |= IFM_IEEE80211_11A; 1422 } else if (IEEE80211_IS_CHAN_B(chan)) { 1423 status |= IFM_IEEE80211_11B; 1424 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1425 status |= IFM_IEEE80211_11G; 1426 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1427 status |= IFM_IEEE80211_FH; 1428 } 1429 /* XXX else complain? */ 1430 1431 if (IEEE80211_IS_CHAN_TURBO(chan)) 1432 status |= IFM_IEEE80211_TURBO; 1433 #if 0 1434 if (IEEE80211_IS_CHAN_HT20(chan)) 1435 status |= IFM_IEEE80211_HT20; 1436 if (IEEE80211_IS_CHAN_HT40(chan)) 1437 status |= IFM_IEEE80211_HT40; 1438 #endif 1439 return status; 1440 } 1441 1442 void 1443 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1444 { 1445 struct ieee80211vap *vap = ifp->if_softc; 1446 struct ieee80211com *ic = vap->iv_ic; 1447 enum ieee80211_phymode mode; 1448 1449 imr->ifm_status = IFM_AVALID; 1450 /* 1451 * NB: use the current channel's mode to lock down a xmit 1452 * rate only when running; otherwise we may have a mismatch 1453 * in which case the rate will not be convertible. 1454 */ 1455 if (vap->iv_state == IEEE80211_S_RUN || 1456 vap->iv_state == IEEE80211_S_SLEEP) { 1457 imr->ifm_status |= IFM_ACTIVE; 1458 mode = ieee80211_chan2mode(ic->ic_curchan); 1459 } else 1460 mode = IEEE80211_MODE_AUTO; 1461 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1462 /* 1463 * Calculate a current rate if possible. 1464 */ 1465 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1466 /* 1467 * A fixed rate is set, report that. 1468 */ 1469 imr->ifm_active |= ieee80211_rate2media(ic, 1470 vap->iv_txparms[mode].ucastrate, mode); 1471 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1472 /* 1473 * In station mode report the current transmit rate. 1474 */ 1475 imr->ifm_active |= ieee80211_rate2media(ic, 1476 vap->iv_bss->ni_txrate, mode); 1477 } else 1478 imr->ifm_active |= IFM_AUTO; 1479 if (imr->ifm_status & IFM_ACTIVE) 1480 imr->ifm_current = imr->ifm_active; 1481 } 1482 1483 /* 1484 * Set the current phy mode and recalculate the active channel 1485 * set based on the available channels for this mode. Also 1486 * select a new default/current channel if the current one is 1487 * inappropriate for this mode. 1488 */ 1489 int 1490 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1491 { 1492 /* 1493 * Adjust basic rates in 11b/11g supported rate set. 1494 * Note that if operating on a hal/quarter rate channel 1495 * this is a noop as those rates sets are different 1496 * and used instead. 1497 */ 1498 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1499 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1500 1501 ic->ic_curmode = mode; 1502 ieee80211_reset_erp(ic); /* reset ERP state */ 1503 1504 return 0; 1505 } 1506 1507 /* 1508 * Return the phy mode for with the specified channel. 1509 */ 1510 enum ieee80211_phymode 1511 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1512 { 1513 1514 if (IEEE80211_IS_CHAN_HTA(chan)) 1515 return IEEE80211_MODE_11NA; 1516 else if (IEEE80211_IS_CHAN_HTG(chan)) 1517 return IEEE80211_MODE_11NG; 1518 else if (IEEE80211_IS_CHAN_108G(chan)) 1519 return IEEE80211_MODE_TURBO_G; 1520 else if (IEEE80211_IS_CHAN_ST(chan)) 1521 return IEEE80211_MODE_STURBO_A; 1522 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1523 return IEEE80211_MODE_TURBO_A; 1524 else if (IEEE80211_IS_CHAN_HALF(chan)) 1525 return IEEE80211_MODE_HALF; 1526 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1527 return IEEE80211_MODE_QUARTER; 1528 else if (IEEE80211_IS_CHAN_A(chan)) 1529 return IEEE80211_MODE_11A; 1530 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1531 return IEEE80211_MODE_11G; 1532 else if (IEEE80211_IS_CHAN_B(chan)) 1533 return IEEE80211_MODE_11B; 1534 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1535 return IEEE80211_MODE_FH; 1536 1537 /* NB: should not get here */ 1538 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1539 __func__, chan->ic_freq, chan->ic_flags); 1540 return IEEE80211_MODE_11B; 1541 } 1542 1543 struct ratemedia { 1544 u_int match; /* rate + mode */ 1545 u_int media; /* if_media rate */ 1546 }; 1547 1548 static int 1549 findmedia(const struct ratemedia rates[], int n, u_int match) 1550 { 1551 int i; 1552 1553 for (i = 0; i < n; i++) 1554 if (rates[i].match == match) 1555 return rates[i].media; 1556 return IFM_AUTO; 1557 } 1558 1559 /* 1560 * Convert IEEE80211 rate value to ifmedia subtype. 1561 * Rate is either a legacy rate in units of 0.5Mbps 1562 * or an MCS index. 1563 */ 1564 int 1565 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1566 { 1567 static const struct ratemedia rates[] = { 1568 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1569 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1570 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1571 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1572 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1573 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1574 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1575 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1576 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1577 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1578 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1579 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1580 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1581 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1582 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1583 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1584 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1585 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1586 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1587 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1588 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1589 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1590 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1591 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1592 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1593 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1594 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1595 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1596 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1597 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1598 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1599 }; 1600 static const struct ratemedia htrates[] = { 1601 { 0, IFM_IEEE80211_MCS }, 1602 { 1, IFM_IEEE80211_MCS }, 1603 { 2, IFM_IEEE80211_MCS }, 1604 { 3, IFM_IEEE80211_MCS }, 1605 { 4, IFM_IEEE80211_MCS }, 1606 { 5, IFM_IEEE80211_MCS }, 1607 { 6, IFM_IEEE80211_MCS }, 1608 { 7, IFM_IEEE80211_MCS }, 1609 { 8, IFM_IEEE80211_MCS }, 1610 { 9, IFM_IEEE80211_MCS }, 1611 { 10, IFM_IEEE80211_MCS }, 1612 { 11, IFM_IEEE80211_MCS }, 1613 { 12, IFM_IEEE80211_MCS }, 1614 { 13, IFM_IEEE80211_MCS }, 1615 { 14, IFM_IEEE80211_MCS }, 1616 { 15, IFM_IEEE80211_MCS }, 1617 { 16, IFM_IEEE80211_MCS }, 1618 { 17, IFM_IEEE80211_MCS }, 1619 { 18, IFM_IEEE80211_MCS }, 1620 { 19, IFM_IEEE80211_MCS }, 1621 { 20, IFM_IEEE80211_MCS }, 1622 { 21, IFM_IEEE80211_MCS }, 1623 { 22, IFM_IEEE80211_MCS }, 1624 { 23, IFM_IEEE80211_MCS }, 1625 { 24, IFM_IEEE80211_MCS }, 1626 { 25, IFM_IEEE80211_MCS }, 1627 { 26, IFM_IEEE80211_MCS }, 1628 { 27, IFM_IEEE80211_MCS }, 1629 { 28, IFM_IEEE80211_MCS }, 1630 { 29, IFM_IEEE80211_MCS }, 1631 { 30, IFM_IEEE80211_MCS }, 1632 { 31, IFM_IEEE80211_MCS }, 1633 { 32, IFM_IEEE80211_MCS }, 1634 { 33, IFM_IEEE80211_MCS }, 1635 { 34, IFM_IEEE80211_MCS }, 1636 { 35, IFM_IEEE80211_MCS }, 1637 { 36, IFM_IEEE80211_MCS }, 1638 { 37, IFM_IEEE80211_MCS }, 1639 { 38, IFM_IEEE80211_MCS }, 1640 { 39, IFM_IEEE80211_MCS }, 1641 { 40, IFM_IEEE80211_MCS }, 1642 { 41, IFM_IEEE80211_MCS }, 1643 { 42, IFM_IEEE80211_MCS }, 1644 { 43, IFM_IEEE80211_MCS }, 1645 { 44, IFM_IEEE80211_MCS }, 1646 { 45, IFM_IEEE80211_MCS }, 1647 { 46, IFM_IEEE80211_MCS }, 1648 { 47, IFM_IEEE80211_MCS }, 1649 { 48, IFM_IEEE80211_MCS }, 1650 { 49, IFM_IEEE80211_MCS }, 1651 { 50, IFM_IEEE80211_MCS }, 1652 { 51, IFM_IEEE80211_MCS }, 1653 { 52, IFM_IEEE80211_MCS }, 1654 { 53, IFM_IEEE80211_MCS }, 1655 { 54, IFM_IEEE80211_MCS }, 1656 { 55, IFM_IEEE80211_MCS }, 1657 { 56, IFM_IEEE80211_MCS }, 1658 { 57, IFM_IEEE80211_MCS }, 1659 { 58, IFM_IEEE80211_MCS }, 1660 { 59, IFM_IEEE80211_MCS }, 1661 { 60, IFM_IEEE80211_MCS }, 1662 { 61, IFM_IEEE80211_MCS }, 1663 { 62, IFM_IEEE80211_MCS }, 1664 { 63, IFM_IEEE80211_MCS }, 1665 { 64, IFM_IEEE80211_MCS }, 1666 { 65, IFM_IEEE80211_MCS }, 1667 { 66, IFM_IEEE80211_MCS }, 1668 { 67, IFM_IEEE80211_MCS }, 1669 { 68, IFM_IEEE80211_MCS }, 1670 { 69, IFM_IEEE80211_MCS }, 1671 { 70, IFM_IEEE80211_MCS }, 1672 { 71, IFM_IEEE80211_MCS }, 1673 { 72, IFM_IEEE80211_MCS }, 1674 { 73, IFM_IEEE80211_MCS }, 1675 { 74, IFM_IEEE80211_MCS }, 1676 { 75, IFM_IEEE80211_MCS }, 1677 { 76, IFM_IEEE80211_MCS }, 1678 }; 1679 int m; 1680 1681 /* 1682 * Check 11n rates first for match as an MCS. 1683 */ 1684 if (mode == IEEE80211_MODE_11NA) { 1685 if (rate & IEEE80211_RATE_MCS) { 1686 rate &= ~IEEE80211_RATE_MCS; 1687 m = findmedia(htrates, nitems(htrates), rate); 1688 if (m != IFM_AUTO) 1689 return m | IFM_IEEE80211_11NA; 1690 } 1691 } else if (mode == IEEE80211_MODE_11NG) { 1692 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1693 if (rate & IEEE80211_RATE_MCS) { 1694 rate &= ~IEEE80211_RATE_MCS; 1695 m = findmedia(htrates, nitems(htrates), rate); 1696 if (m != IFM_AUTO) 1697 return m | IFM_IEEE80211_11NG; 1698 } 1699 } 1700 rate &= IEEE80211_RATE_VAL; 1701 switch (mode) { 1702 case IEEE80211_MODE_11A: 1703 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1704 case IEEE80211_MODE_QUARTER: 1705 case IEEE80211_MODE_11NA: 1706 case IEEE80211_MODE_TURBO_A: 1707 case IEEE80211_MODE_STURBO_A: 1708 return findmedia(rates, nitems(rates), 1709 rate | IFM_IEEE80211_11A); 1710 case IEEE80211_MODE_11B: 1711 return findmedia(rates, nitems(rates), 1712 rate | IFM_IEEE80211_11B); 1713 case IEEE80211_MODE_FH: 1714 return findmedia(rates, nitems(rates), 1715 rate | IFM_IEEE80211_FH); 1716 case IEEE80211_MODE_AUTO: 1717 /* NB: ic may be NULL for some drivers */ 1718 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1719 return findmedia(rates, nitems(rates), 1720 rate | IFM_IEEE80211_FH); 1721 /* NB: hack, 11g matches both 11b+11a rates */ 1722 /* fall thru... */ 1723 case IEEE80211_MODE_11G: 1724 case IEEE80211_MODE_11NG: 1725 case IEEE80211_MODE_TURBO_G: 1726 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 1727 } 1728 return IFM_AUTO; 1729 } 1730 1731 int 1732 ieee80211_media2rate(int mword) 1733 { 1734 static const int ieeerates[] = { 1735 -1, /* IFM_AUTO */ 1736 0, /* IFM_MANUAL */ 1737 0, /* IFM_NONE */ 1738 2, /* IFM_IEEE80211_FH1 */ 1739 4, /* IFM_IEEE80211_FH2 */ 1740 2, /* IFM_IEEE80211_DS1 */ 1741 4, /* IFM_IEEE80211_DS2 */ 1742 11, /* IFM_IEEE80211_DS5 */ 1743 22, /* IFM_IEEE80211_DS11 */ 1744 44, /* IFM_IEEE80211_DS22 */ 1745 12, /* IFM_IEEE80211_OFDM6 */ 1746 18, /* IFM_IEEE80211_OFDM9 */ 1747 24, /* IFM_IEEE80211_OFDM12 */ 1748 36, /* IFM_IEEE80211_OFDM18 */ 1749 48, /* IFM_IEEE80211_OFDM24 */ 1750 72, /* IFM_IEEE80211_OFDM36 */ 1751 96, /* IFM_IEEE80211_OFDM48 */ 1752 108, /* IFM_IEEE80211_OFDM54 */ 1753 144, /* IFM_IEEE80211_OFDM72 */ 1754 0, /* IFM_IEEE80211_DS354k */ 1755 0, /* IFM_IEEE80211_DS512k */ 1756 6, /* IFM_IEEE80211_OFDM3 */ 1757 9, /* IFM_IEEE80211_OFDM4 */ 1758 54, /* IFM_IEEE80211_OFDM27 */ 1759 -1, /* IFM_IEEE80211_MCS */ 1760 }; 1761 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 1762 ieeerates[IFM_SUBTYPE(mword)] : 0; 1763 } 1764 1765 /* 1766 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1767 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1768 */ 1769 #define mix(a, b, c) \ 1770 do { \ 1771 a -= b; a -= c; a ^= (c >> 13); \ 1772 b -= c; b -= a; b ^= (a << 8); \ 1773 c -= a; c -= b; c ^= (b >> 13); \ 1774 a -= b; a -= c; a ^= (c >> 12); \ 1775 b -= c; b -= a; b ^= (a << 16); \ 1776 c -= a; c -= b; c ^= (b >> 5); \ 1777 a -= b; a -= c; a ^= (c >> 3); \ 1778 b -= c; b -= a; b ^= (a << 10); \ 1779 c -= a; c -= b; c ^= (b >> 15); \ 1780 } while (/*CONSTCOND*/0) 1781 1782 uint32_t 1783 ieee80211_mac_hash(const struct ieee80211com *ic, 1784 const uint8_t addr[IEEE80211_ADDR_LEN]) 1785 { 1786 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1787 1788 b += addr[5] << 8; 1789 b += addr[4]; 1790 a += addr[3] << 24; 1791 a += addr[2] << 16; 1792 a += addr[1] << 8; 1793 a += addr[0]; 1794 1795 mix(a, b, c); 1796 1797 return c; 1798 } 1799 #undef mix 1800 1801 char 1802 ieee80211_channel_type_char(const struct ieee80211_channel *c) 1803 { 1804 if (IEEE80211_IS_CHAN_ST(c)) 1805 return 'S'; 1806 if (IEEE80211_IS_CHAN_108A(c)) 1807 return 'T'; 1808 if (IEEE80211_IS_CHAN_108G(c)) 1809 return 'G'; 1810 if (IEEE80211_IS_CHAN_HT(c)) 1811 return 'n'; 1812 if (IEEE80211_IS_CHAN_A(c)) 1813 return 'a'; 1814 if (IEEE80211_IS_CHAN_ANYG(c)) 1815 return 'g'; 1816 if (IEEE80211_IS_CHAN_B(c)) 1817 return 'b'; 1818 return 'f'; 1819 } 1820