xref: /freebsd/sys/net80211/ieee80211.c (revision 20f8619da05e2775ef7b381c5df080d621fa8332)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 #include <net/ethernet.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #include <net80211/ieee80211_ratectl.h>
57 
58 #include <net/bpf.h>
59 
60 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
61 	[IEEE80211_MODE_AUTO]	  = "auto",
62 	[IEEE80211_MODE_11A]	  = "11a",
63 	[IEEE80211_MODE_11B]	  = "11b",
64 	[IEEE80211_MODE_11G]	  = "11g",
65 	[IEEE80211_MODE_FH]	  = "FH",
66 	[IEEE80211_MODE_TURBO_A]  = "turboA",
67 	[IEEE80211_MODE_TURBO_G]  = "turboG",
68 	[IEEE80211_MODE_STURBO_A] = "sturboA",
69 	[IEEE80211_MODE_HALF]	  = "half",
70 	[IEEE80211_MODE_QUARTER]  = "quarter",
71 	[IEEE80211_MODE_11NA]	  = "11na",
72 	[IEEE80211_MODE_11NG]	  = "11ng",
73 };
74 /* map ieee80211_opmode to the corresponding capability bit */
75 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
76 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
77 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
78 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
79 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
80 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
81 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
82 #ifdef IEEE80211_SUPPORT_MESH
83 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
84 #endif
85 };
86 
87 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
88 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
89 
90 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
91 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
92 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
93 static	int ieee80211_media_setup(struct ieee80211com *ic,
94 		struct ifmedia *media, int caps, int addsta,
95 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
96 static	int media_status(enum ieee80211_opmode,
97 		const struct ieee80211_channel *);
98 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
99 
100 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
101 
102 /*
103  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
104  */
105 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
106 static const struct ieee80211_rateset ieee80211_rateset_11a =
107 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
108 static const struct ieee80211_rateset ieee80211_rateset_half =
109 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
110 static const struct ieee80211_rateset ieee80211_rateset_quarter =
111 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
112 static const struct ieee80211_rateset ieee80211_rateset_11b =
113 	{ 4, { B(2), B(4), B(11), B(22) } };
114 /* NB: OFDM rates are handled specially based on mode */
115 static const struct ieee80211_rateset ieee80211_rateset_11g =
116 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
117 #undef B
118 
119 /*
120  * Fill in 802.11 available channel set, mark
121  * all available channels as active, and pick
122  * a default channel if not already specified.
123  */
124 void
125 ieee80211_chan_init(struct ieee80211com *ic)
126 {
127 #define	DEFAULTRATES(m, def) do { \
128 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
129 		ic->ic_sup_rates[m] = def; \
130 } while (0)
131 	struct ieee80211_channel *c;
132 	int i;
133 
134 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
135 		("invalid number of channels specified: %u", ic->ic_nchans));
136 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
137 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
138 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
139 	for (i = 0; i < ic->ic_nchans; i++) {
140 		c = &ic->ic_channels[i];
141 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
142 		/*
143 		 * Help drivers that work only with frequencies by filling
144 		 * in IEEE channel #'s if not already calculated.  Note this
145 		 * mimics similar work done in ieee80211_setregdomain when
146 		 * changing regulatory state.
147 		 */
148 		if (c->ic_ieee == 0)
149 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
150 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
151 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
152 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
153 			    c->ic_flags);
154 		/* default max tx power to max regulatory */
155 		if (c->ic_maxpower == 0)
156 			c->ic_maxpower = 2*c->ic_maxregpower;
157 		setbit(ic->ic_chan_avail, c->ic_ieee);
158 		/*
159 		 * Identify mode capabilities.
160 		 */
161 		if (IEEE80211_IS_CHAN_A(c))
162 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
163 		if (IEEE80211_IS_CHAN_B(c))
164 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
165 		if (IEEE80211_IS_CHAN_ANYG(c))
166 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
167 		if (IEEE80211_IS_CHAN_FHSS(c))
168 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
169 		if (IEEE80211_IS_CHAN_108A(c))
170 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
171 		if (IEEE80211_IS_CHAN_108G(c))
172 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
173 		if (IEEE80211_IS_CHAN_ST(c))
174 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
175 		if (IEEE80211_IS_CHAN_HALF(c))
176 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
177 		if (IEEE80211_IS_CHAN_QUARTER(c))
178 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
179 		if (IEEE80211_IS_CHAN_HTA(c))
180 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
181 		if (IEEE80211_IS_CHAN_HTG(c))
182 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
183 	}
184 	/* initialize candidate channels to all available */
185 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
186 		sizeof(ic->ic_chan_avail));
187 
188 	/* sort channel table to allow lookup optimizations */
189 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
190 
191 	/* invalidate any previous state */
192 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
193 	ic->ic_prevchan = NULL;
194 	ic->ic_csa_newchan = NULL;
195 	/* arbitrarily pick the first channel */
196 	ic->ic_curchan = &ic->ic_channels[0];
197 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
198 
199 	/* fillin well-known rate sets if driver has not specified */
200 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
201 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
202 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
203 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
204 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
205 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
207 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
208 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
209 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
210 
211 	/*
212 	 * Setup required information to fill the mcsset field, if driver did
213 	 * not. Assume a 2T2R setup for historic reasons.
214 	 */
215 	if (ic->ic_rxstream == 0)
216 		ic->ic_rxstream = 2;
217 	if (ic->ic_txstream == 0)
218 		ic->ic_txstream = 2;
219 
220 	/*
221 	 * Set auto mode to reset active channel state and any desired channel.
222 	 */
223 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
224 #undef DEFAULTRATES
225 }
226 
227 static void
228 null_update_mcast(struct ieee80211com *ic)
229 {
230 
231 	ic_printf(ic, "need multicast update callback\n");
232 }
233 
234 static void
235 null_update_promisc(struct ieee80211com *ic)
236 {
237 
238 	ic_printf(ic, "need promiscuous mode update callback\n");
239 }
240 
241 static void
242 null_update_chw(struct ieee80211com *ic)
243 {
244 
245 	ic_printf(ic, "%s: need callback\n", __func__);
246 }
247 
248 int
249 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
250 {
251 	va_list ap;
252 	int retval;
253 
254 	retval = printf("%s: ", ic->ic_name);
255 	va_start(ap, fmt);
256 	retval += vprintf(fmt, ap);
257 	va_end(ap);
258 	return (retval);
259 }
260 
261 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
262 static struct mtx ic_list_mtx;
263 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
264 
265 static int
266 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
267 {
268 	struct ieee80211com *ic;
269 	struct sbuf sb;
270 	char *sp;
271 	int error;
272 
273 	error = sysctl_wire_old_buffer(req, 0);
274 	if (error)
275 		return (error);
276 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
277 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
278 	sp = "";
279 	mtx_lock(&ic_list_mtx);
280 	LIST_FOREACH(ic, &ic_head, ic_next) {
281 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
282 		sp = " ";
283 	}
284 	mtx_unlock(&ic_list_mtx);
285 	error = sbuf_finish(&sb);
286 	sbuf_delete(&sb);
287 	return (error);
288 }
289 
290 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
291     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
292     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
293 
294 /*
295  * Attach/setup the common net80211 state.  Called by
296  * the driver on attach to prior to creating any vap's.
297  */
298 void
299 ieee80211_ifattach(struct ieee80211com *ic)
300 {
301 
302 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
303 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
304 	TAILQ_INIT(&ic->ic_vaps);
305 
306 	/* Create a taskqueue for all state changes */
307 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
308 	    taskqueue_thread_enqueue, &ic->ic_tq);
309 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
310 	    ic->ic_name);
311 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
312 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
313 	/*
314 	 * Fill in 802.11 available channel set, mark all
315 	 * available channels as active, and pick a default
316 	 * channel if not already specified.
317 	 */
318 	ieee80211_chan_init(ic);
319 
320 	ic->ic_update_mcast = null_update_mcast;
321 	ic->ic_update_promisc = null_update_promisc;
322 	ic->ic_update_chw = null_update_chw;
323 
324 	ic->ic_hash_key = arc4random();
325 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
326 	ic->ic_lintval = ic->ic_bintval;
327 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
328 
329 	ieee80211_crypto_attach(ic);
330 	ieee80211_node_attach(ic);
331 	ieee80211_power_attach(ic);
332 	ieee80211_proto_attach(ic);
333 #ifdef IEEE80211_SUPPORT_SUPERG
334 	ieee80211_superg_attach(ic);
335 #endif
336 	ieee80211_ht_attach(ic);
337 	ieee80211_scan_attach(ic);
338 	ieee80211_regdomain_attach(ic);
339 	ieee80211_dfs_attach(ic);
340 
341 	ieee80211_sysctl_attach(ic);
342 
343 	mtx_lock(&ic_list_mtx);
344 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
345 	mtx_unlock(&ic_list_mtx);
346 }
347 
348 /*
349  * Detach net80211 state on device detach.  Tear down
350  * all vap's and reclaim all common state prior to the
351  * device state going away.  Note we may call back into
352  * driver; it must be prepared for this.
353  */
354 void
355 ieee80211_ifdetach(struct ieee80211com *ic)
356 {
357 	struct ieee80211vap *vap;
358 
359 	mtx_lock(&ic_list_mtx);
360 	LIST_REMOVE(ic, ic_next);
361 	mtx_unlock(&ic_list_mtx);
362 
363 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
364 
365 	/*
366 	 * The VAP is responsible for setting and clearing
367 	 * the VIMAGE context.
368 	 */
369 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
370 		ieee80211_vap_destroy(vap);
371 	ieee80211_waitfor_parent(ic);
372 
373 	ieee80211_sysctl_detach(ic);
374 	ieee80211_dfs_detach(ic);
375 	ieee80211_regdomain_detach(ic);
376 	ieee80211_scan_detach(ic);
377 #ifdef IEEE80211_SUPPORT_SUPERG
378 	ieee80211_superg_detach(ic);
379 #endif
380 	ieee80211_ht_detach(ic);
381 	/* NB: must be called before ieee80211_node_detach */
382 	ieee80211_proto_detach(ic);
383 	ieee80211_crypto_detach(ic);
384 	ieee80211_power_detach(ic);
385 	ieee80211_node_detach(ic);
386 
387 	counter_u64_free(ic->ic_ierrors);
388 	counter_u64_free(ic->ic_oerrors);
389 
390 	taskqueue_free(ic->ic_tq);
391 	IEEE80211_TX_LOCK_DESTROY(ic);
392 	IEEE80211_LOCK_DESTROY(ic);
393 }
394 
395 struct ieee80211com *
396 ieee80211_find_com(const char *name)
397 {
398 	struct ieee80211com *ic;
399 
400 	mtx_lock(&ic_list_mtx);
401 	LIST_FOREACH(ic, &ic_head, ic_next)
402 		if (strcmp(ic->ic_name, name) == 0)
403 			break;
404 	mtx_unlock(&ic_list_mtx);
405 
406 	return (ic);
407 }
408 
409 /*
410  * Default reset method for use with the ioctl support.  This
411  * method is invoked after any state change in the 802.11
412  * layer that should be propagated to the hardware but not
413  * require re-initialization of the 802.11 state machine (e.g
414  * rescanning for an ap).  We always return ENETRESET which
415  * should cause the driver to re-initialize the device. Drivers
416  * can override this method to implement more optimized support.
417  */
418 static int
419 default_reset(struct ieee80211vap *vap, u_long cmd)
420 {
421 	return ENETRESET;
422 }
423 
424 /*
425  * Add underlying device errors to vap errors.
426  */
427 static uint64_t
428 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
429 {
430 	struct ieee80211vap *vap = ifp->if_softc;
431 	struct ieee80211com *ic = vap->iv_ic;
432 	uint64_t rv;
433 
434 	rv = if_get_counter_default(ifp, cnt);
435 	switch (cnt) {
436 	case IFCOUNTER_OERRORS:
437 		rv += counter_u64_fetch(ic->ic_oerrors);
438 		break;
439 	case IFCOUNTER_IERRORS:
440 		rv += counter_u64_fetch(ic->ic_ierrors);
441 		break;
442 	default:
443 		break;
444 	}
445 
446 	return (rv);
447 }
448 
449 /*
450  * Prepare a vap for use.  Drivers use this call to
451  * setup net80211 state in new vap's prior attaching
452  * them with ieee80211_vap_attach (below).
453  */
454 int
455 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
456     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
457     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
458 {
459 	struct ifnet *ifp;
460 
461 	ifp = if_alloc(IFT_ETHER);
462 	if (ifp == NULL) {
463 		ic_printf(ic, "%s: unable to allocate ifnet\n",
464 		    __func__);
465 		return ENOMEM;
466 	}
467 	if_initname(ifp, name, unit);
468 	ifp->if_softc = vap;			/* back pointer */
469 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
470 	ifp->if_transmit = ieee80211_vap_transmit;
471 	ifp->if_qflush = ieee80211_vap_qflush;
472 	ifp->if_ioctl = ieee80211_ioctl;
473 	ifp->if_init = ieee80211_init;
474 	ifp->if_get_counter = ieee80211_get_counter;
475 
476 	vap->iv_ifp = ifp;
477 	vap->iv_ic = ic;
478 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
479 	vap->iv_flags_ext = ic->ic_flags_ext;
480 	vap->iv_flags_ven = ic->ic_flags_ven;
481 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
482 	vap->iv_htcaps = ic->ic_htcaps;
483 	vap->iv_htextcaps = ic->ic_htextcaps;
484 	vap->iv_opmode = opmode;
485 	vap->iv_caps |= ieee80211_opcap[opmode];
486 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
487 	switch (opmode) {
488 	case IEEE80211_M_WDS:
489 		/*
490 		 * WDS links must specify the bssid of the far end.
491 		 * For legacy operation this is a static relationship.
492 		 * For non-legacy operation the station must associate
493 		 * and be authorized to pass traffic.  Plumbing the
494 		 * vap to the proper node happens when the vap
495 		 * transitions to RUN state.
496 		 */
497 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
498 		vap->iv_flags |= IEEE80211_F_DESBSSID;
499 		if (flags & IEEE80211_CLONE_WDSLEGACY)
500 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
501 		break;
502 #ifdef IEEE80211_SUPPORT_TDMA
503 	case IEEE80211_M_AHDEMO:
504 		if (flags & IEEE80211_CLONE_TDMA) {
505 			/* NB: checked before clone operation allowed */
506 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
507 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
508 			/*
509 			 * Propagate TDMA capability to mark vap; this
510 			 * cannot be removed and is used to distinguish
511 			 * regular ahdemo operation from ahdemo+tdma.
512 			 */
513 			vap->iv_caps |= IEEE80211_C_TDMA;
514 		}
515 		break;
516 #endif
517 	default:
518 		break;
519 	}
520 	/* auto-enable s/w beacon miss support */
521 	if (flags & IEEE80211_CLONE_NOBEACONS)
522 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
523 	/* auto-generated or user supplied MAC address */
524 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
525 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
526 	/*
527 	 * Enable various functionality by default if we're
528 	 * capable; the driver can override us if it knows better.
529 	 */
530 	if (vap->iv_caps & IEEE80211_C_WME)
531 		vap->iv_flags |= IEEE80211_F_WME;
532 	if (vap->iv_caps & IEEE80211_C_BURST)
533 		vap->iv_flags |= IEEE80211_F_BURST;
534 	/* NB: bg scanning only makes sense for station mode right now */
535 	if (vap->iv_opmode == IEEE80211_M_STA &&
536 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
537 		vap->iv_flags |= IEEE80211_F_BGSCAN;
538 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
539 	/* NB: DFS support only makes sense for ap mode right now */
540 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
541 	    (vap->iv_caps & IEEE80211_C_DFS))
542 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
543 
544 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
545 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
546 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
547 	/*
548 	 * Install a default reset method for the ioctl support;
549 	 * the driver can override this.
550 	 */
551 	vap->iv_reset = default_reset;
552 
553 	ieee80211_sysctl_vattach(vap);
554 	ieee80211_crypto_vattach(vap);
555 	ieee80211_node_vattach(vap);
556 	ieee80211_power_vattach(vap);
557 	ieee80211_proto_vattach(vap);
558 #ifdef IEEE80211_SUPPORT_SUPERG
559 	ieee80211_superg_vattach(vap);
560 #endif
561 	ieee80211_ht_vattach(vap);
562 	ieee80211_scan_vattach(vap);
563 	ieee80211_regdomain_vattach(vap);
564 	ieee80211_radiotap_vattach(vap);
565 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
566 
567 	return 0;
568 }
569 
570 /*
571  * Activate a vap.  State should have been prepared with a
572  * call to ieee80211_vap_setup and by the driver.  On return
573  * from this call the vap is ready for use.
574  */
575 int
576 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
577     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
578 {
579 	struct ifnet *ifp = vap->iv_ifp;
580 	struct ieee80211com *ic = vap->iv_ic;
581 	struct ifmediareq imr;
582 	int maxrate;
583 
584 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
585 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
586 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
587 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
588 
589 	/*
590 	 * Do late attach work that cannot happen until after
591 	 * the driver has had a chance to override defaults.
592 	 */
593 	ieee80211_node_latevattach(vap);
594 	ieee80211_power_latevattach(vap);
595 
596 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
597 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
598 	ieee80211_media_status(ifp, &imr);
599 	/* NB: strip explicit mode; we're actually in autoselect */
600 	ifmedia_set(&vap->iv_media,
601 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
602 	if (maxrate)
603 		ifp->if_baudrate = IF_Mbps(maxrate);
604 
605 	ether_ifattach(ifp, macaddr);
606 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
607 	/* hook output method setup by ether_ifattach */
608 	vap->iv_output = ifp->if_output;
609 	ifp->if_output = ieee80211_output;
610 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
611 
612 	IEEE80211_LOCK(ic);
613 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
614 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
615 #ifdef IEEE80211_SUPPORT_SUPERG
616 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
617 #endif
618 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
619 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
620 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
621 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
622 	IEEE80211_UNLOCK(ic);
623 
624 	return 1;
625 }
626 
627 /*
628  * Tear down vap state and reclaim the ifnet.
629  * The driver is assumed to have prepared for
630  * this; e.g. by turning off interrupts for the
631  * underlying device.
632  */
633 void
634 ieee80211_vap_detach(struct ieee80211vap *vap)
635 {
636 	struct ieee80211com *ic = vap->iv_ic;
637 	struct ifnet *ifp = vap->iv_ifp;
638 
639 	CURVNET_SET(ifp->if_vnet);
640 
641 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
642 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
643 
644 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
645 	ether_ifdetach(ifp);
646 
647 	ieee80211_stop(vap);
648 
649 	/*
650 	 * Flush any deferred vap tasks.
651 	 */
652 	ieee80211_draintask(ic, &vap->iv_nstate_task);
653 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
654 
655 	/* XXX band-aid until ifnet handles this for us */
656 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
657 
658 	IEEE80211_LOCK(ic);
659 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
660 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
661 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
662 #ifdef IEEE80211_SUPPORT_SUPERG
663 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
664 #endif
665 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
666 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
667 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
668 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
669 	/* NB: this handles the bpfdetach done below */
670 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
671 	if (vap->iv_ifflags & IFF_PROMISC)
672 		ieee80211_promisc(vap, false);
673 	if (vap->iv_ifflags & IFF_ALLMULTI)
674 		ieee80211_allmulti(vap, false);
675 	IEEE80211_UNLOCK(ic);
676 
677 	ifmedia_removeall(&vap->iv_media);
678 
679 	ieee80211_radiotap_vdetach(vap);
680 	ieee80211_regdomain_vdetach(vap);
681 	ieee80211_scan_vdetach(vap);
682 #ifdef IEEE80211_SUPPORT_SUPERG
683 	ieee80211_superg_vdetach(vap);
684 #endif
685 	ieee80211_ht_vdetach(vap);
686 	/* NB: must be before ieee80211_node_vdetach */
687 	ieee80211_proto_vdetach(vap);
688 	ieee80211_crypto_vdetach(vap);
689 	ieee80211_power_vdetach(vap);
690 	ieee80211_node_vdetach(vap);
691 	ieee80211_sysctl_vdetach(vap);
692 
693 	if_free(ifp);
694 
695 	CURVNET_RESTORE();
696 }
697 
698 /*
699  * Count number of vaps in promisc, and issue promisc on
700  * parent respectively.
701  */
702 void
703 ieee80211_promisc(struct ieee80211vap *vap, bool on)
704 {
705 	struct ieee80211com *ic = vap->iv_ic;
706 
707 	IEEE80211_LOCK_ASSERT(ic);
708 
709 	if (on) {
710 		if (++ic->ic_promisc == 1)
711 			ieee80211_runtask(ic, &ic->ic_promisc_task);
712 	} else {
713 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
714 		    __func__, ic));
715 		if (--ic->ic_promisc == 0)
716 			ieee80211_runtask(ic, &ic->ic_promisc_task);
717 	}
718 }
719 
720 /*
721  * Count number of vaps in allmulti, and issue allmulti on
722  * parent respectively.
723  */
724 void
725 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
726 {
727 	struct ieee80211com *ic = vap->iv_ic;
728 
729 	IEEE80211_LOCK_ASSERT(ic);
730 
731 	if (on) {
732 		if (++ic->ic_allmulti == 1)
733 			ieee80211_runtask(ic, &ic->ic_mcast_task);
734 	} else {
735 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
736 		    __func__, ic));
737 		if (--ic->ic_allmulti == 0)
738 			ieee80211_runtask(ic, &ic->ic_mcast_task);
739 	}
740 }
741 
742 /*
743  * Synchronize flag bit state in the com structure
744  * according to the state of all vap's.  This is used,
745  * for example, to handle state changes via ioctls.
746  */
747 static void
748 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
749 {
750 	struct ieee80211vap *vap;
751 	int bit;
752 
753 	IEEE80211_LOCK_ASSERT(ic);
754 
755 	bit = 0;
756 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
757 		if (vap->iv_flags & flag) {
758 			bit = 1;
759 			break;
760 		}
761 	if (bit)
762 		ic->ic_flags |= flag;
763 	else
764 		ic->ic_flags &= ~flag;
765 }
766 
767 void
768 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
769 {
770 	struct ieee80211com *ic = vap->iv_ic;
771 
772 	IEEE80211_LOCK(ic);
773 	if (flag < 0) {
774 		flag = -flag;
775 		vap->iv_flags &= ~flag;
776 	} else
777 		vap->iv_flags |= flag;
778 	ieee80211_syncflag_locked(ic, flag);
779 	IEEE80211_UNLOCK(ic);
780 }
781 
782 /*
783  * Synchronize flags_ht bit state in the com structure
784  * according to the state of all vap's.  This is used,
785  * for example, to handle state changes via ioctls.
786  */
787 static void
788 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
789 {
790 	struct ieee80211vap *vap;
791 	int bit;
792 
793 	IEEE80211_LOCK_ASSERT(ic);
794 
795 	bit = 0;
796 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
797 		if (vap->iv_flags_ht & flag) {
798 			bit = 1;
799 			break;
800 		}
801 	if (bit)
802 		ic->ic_flags_ht |= flag;
803 	else
804 		ic->ic_flags_ht &= ~flag;
805 }
806 
807 void
808 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
809 {
810 	struct ieee80211com *ic = vap->iv_ic;
811 
812 	IEEE80211_LOCK(ic);
813 	if (flag < 0) {
814 		flag = -flag;
815 		vap->iv_flags_ht &= ~flag;
816 	} else
817 		vap->iv_flags_ht |= flag;
818 	ieee80211_syncflag_ht_locked(ic, flag);
819 	IEEE80211_UNLOCK(ic);
820 }
821 
822 /*
823  * Synchronize flags_ext bit state in the com structure
824  * according to the state of all vap's.  This is used,
825  * for example, to handle state changes via ioctls.
826  */
827 static void
828 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
829 {
830 	struct ieee80211vap *vap;
831 	int bit;
832 
833 	IEEE80211_LOCK_ASSERT(ic);
834 
835 	bit = 0;
836 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
837 		if (vap->iv_flags_ext & flag) {
838 			bit = 1;
839 			break;
840 		}
841 	if (bit)
842 		ic->ic_flags_ext |= flag;
843 	else
844 		ic->ic_flags_ext &= ~flag;
845 }
846 
847 void
848 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
849 {
850 	struct ieee80211com *ic = vap->iv_ic;
851 
852 	IEEE80211_LOCK(ic);
853 	if (flag < 0) {
854 		flag = -flag;
855 		vap->iv_flags_ext &= ~flag;
856 	} else
857 		vap->iv_flags_ext |= flag;
858 	ieee80211_syncflag_ext_locked(ic, flag);
859 	IEEE80211_UNLOCK(ic);
860 }
861 
862 static __inline int
863 mapgsm(u_int freq, u_int flags)
864 {
865 	freq *= 10;
866 	if (flags & IEEE80211_CHAN_QUARTER)
867 		freq += 5;
868 	else if (flags & IEEE80211_CHAN_HALF)
869 		freq += 10;
870 	else
871 		freq += 20;
872 	/* NB: there is no 907/20 wide but leave room */
873 	return (freq - 906*10) / 5;
874 }
875 
876 static __inline int
877 mappsb(u_int freq, u_int flags)
878 {
879 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
880 }
881 
882 /*
883  * Convert MHz frequency to IEEE channel number.
884  */
885 int
886 ieee80211_mhz2ieee(u_int freq, u_int flags)
887 {
888 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
889 	if (flags & IEEE80211_CHAN_GSM)
890 		return mapgsm(freq, flags);
891 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
892 		if (freq == 2484)
893 			return 14;
894 		if (freq < 2484)
895 			return ((int) freq - 2407) / 5;
896 		else
897 			return 15 + ((freq - 2512) / 20);
898 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
899 		if (freq <= 5000) {
900 			/* XXX check regdomain? */
901 			if (IS_FREQ_IN_PSB(freq))
902 				return mappsb(freq, flags);
903 			return (freq - 4000) / 5;
904 		} else
905 			return (freq - 5000) / 5;
906 	} else {				/* either, guess */
907 		if (freq == 2484)
908 			return 14;
909 		if (freq < 2484) {
910 			if (907 <= freq && freq <= 922)
911 				return mapgsm(freq, flags);
912 			return ((int) freq - 2407) / 5;
913 		}
914 		if (freq < 5000) {
915 			if (IS_FREQ_IN_PSB(freq))
916 				return mappsb(freq, flags);
917 			else if (freq > 4900)
918 				return (freq - 4000) / 5;
919 			else
920 				return 15 + ((freq - 2512) / 20);
921 		}
922 		return (freq - 5000) / 5;
923 	}
924 #undef IS_FREQ_IN_PSB
925 }
926 
927 /*
928  * Convert channel to IEEE channel number.
929  */
930 int
931 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
932 {
933 	if (c == NULL) {
934 		ic_printf(ic, "invalid channel (NULL)\n");
935 		return 0;		/* XXX */
936 	}
937 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
938 }
939 
940 /*
941  * Convert IEEE channel number to MHz frequency.
942  */
943 u_int
944 ieee80211_ieee2mhz(u_int chan, u_int flags)
945 {
946 	if (flags & IEEE80211_CHAN_GSM)
947 		return 907 + 5 * (chan / 10);
948 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
949 		if (chan == 14)
950 			return 2484;
951 		if (chan < 14)
952 			return 2407 + chan*5;
953 		else
954 			return 2512 + ((chan-15)*20);
955 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
956 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
957 			chan -= 37;
958 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
959 		}
960 		return 5000 + (chan*5);
961 	} else {				/* either, guess */
962 		/* XXX can't distinguish PSB+GSM channels */
963 		if (chan == 14)
964 			return 2484;
965 		if (chan < 14)			/* 0-13 */
966 			return 2407 + chan*5;
967 		if (chan < 27)			/* 15-26 */
968 			return 2512 + ((chan-15)*20);
969 		return 5000 + (chan*5);
970 	}
971 }
972 
973 static __inline void
974 set_extchan(struct ieee80211_channel *c)
975 {
976 
977 	/*
978 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
979 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
980 	 */
981 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
982 		c->ic_extieee = c->ic_ieee + 4;
983 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
984 		c->ic_extieee = c->ic_ieee - 4;
985 	else
986 		c->ic_extieee = 0;
987 }
988 
989 static int
990 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
991     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
992 {
993 	struct ieee80211_channel *c;
994 
995 	if (*nchans >= maxchans)
996 		return (ENOBUFS);
997 
998 	c = &chans[(*nchans)++];
999 	c->ic_ieee = ieee;
1000 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1001 	c->ic_maxregpower = maxregpower;
1002 	c->ic_maxpower = 2 * maxregpower;
1003 	c->ic_flags = flags;
1004 	set_extchan(c);
1005 
1006 	return (0);
1007 }
1008 
1009 static int
1010 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1011     uint32_t flags)
1012 {
1013 	struct ieee80211_channel *c;
1014 
1015 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1016 
1017 	if (*nchans >= maxchans)
1018 		return (ENOBUFS);
1019 
1020 	c = &chans[(*nchans)++];
1021 	c[0] = c[-1];
1022 	c->ic_flags = flags;
1023 	set_extchan(c);
1024 
1025 	return (0);
1026 }
1027 
1028 static void
1029 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1030 {
1031 	int nmodes;
1032 
1033 	nmodes = 0;
1034 	if (isset(bands, IEEE80211_MODE_11B))
1035 		flags[nmodes++] = IEEE80211_CHAN_B;
1036 	if (isset(bands, IEEE80211_MODE_11G))
1037 		flags[nmodes++] = IEEE80211_CHAN_G;
1038 	if (isset(bands, IEEE80211_MODE_11NG))
1039 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1040 	if (ht40) {
1041 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1042 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1043 	}
1044 	flags[nmodes] = 0;
1045 }
1046 
1047 static void
1048 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1049 {
1050 	int nmodes;
1051 
1052 	nmodes = 0;
1053 	if (isset(bands, IEEE80211_MODE_11A))
1054 		flags[nmodes++] = IEEE80211_CHAN_A;
1055 	if (isset(bands, IEEE80211_MODE_11NA))
1056 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1057 	if (ht40) {
1058 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1059 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1060 	}
1061 	flags[nmodes] = 0;
1062 }
1063 
1064 static void
1065 getflags(const uint8_t bands[], uint32_t flags[], int ht40)
1066 {
1067 
1068 	flags[0] = 0;
1069 	if (isset(bands, IEEE80211_MODE_11A) ||
1070 	    isset(bands, IEEE80211_MODE_11NA)) {
1071 		if (isset(bands, IEEE80211_MODE_11B) ||
1072 		    isset(bands, IEEE80211_MODE_11G) ||
1073 		    isset(bands, IEEE80211_MODE_11NG))
1074 			return;
1075 
1076 		getflags_5ghz(bands, flags, ht40);
1077 	} else
1078 		getflags_2ghz(bands, flags, ht40);
1079 }
1080 
1081 /*
1082  * Add one 20 MHz channel into specified channel list.
1083  */
1084 int
1085 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1086     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1087     uint32_t chan_flags, const uint8_t bands[])
1088 {
1089 	uint32_t flags[IEEE80211_MODE_MAX];
1090 	int i, error;
1091 
1092 	getflags(bands, flags, 0);
1093 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1094 
1095 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1096 	    flags[0] | chan_flags);
1097 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1098 		error = copychan_prev(chans, maxchans, nchans,
1099 		    flags[i] | chan_flags);
1100 	}
1101 
1102 	return (error);
1103 }
1104 
1105 static struct ieee80211_channel *
1106 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1107     uint32_t flags)
1108 {
1109 	struct ieee80211_channel *c;
1110 	int i;
1111 
1112 	flags &= IEEE80211_CHAN_ALLTURBO;
1113 	/* brute force search */
1114 	for (i = 0; i < nchans; i++) {
1115 		c = &chans[i];
1116 		if (c->ic_freq == freq &&
1117 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1118 			return c;
1119 	}
1120 	return NULL;
1121 }
1122 
1123 /*
1124  * Add 40 MHz channel pair into specified channel list.
1125  */
1126 int
1127 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1128     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1129 {
1130 	struct ieee80211_channel *cent, *extc;
1131 	uint16_t freq;
1132 	int error;
1133 
1134 	freq = ieee80211_ieee2mhz(ieee, flags);
1135 
1136 	/*
1137 	 * Each entry defines an HT40 channel pair; find the
1138 	 * center channel, then the extension channel above.
1139 	 */
1140 	flags |= IEEE80211_CHAN_HT20;
1141 	cent = findchannel(chans, *nchans, freq, flags);
1142 	if (cent == NULL)
1143 		return (EINVAL);
1144 
1145 	extc = findchannel(chans, *nchans, freq + 20, flags);
1146 	if (extc == NULL)
1147 		return (ENOENT);
1148 
1149 	flags &= ~IEEE80211_CHAN_HT;
1150 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1151 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1152 	if (error != 0)
1153 		return (error);
1154 
1155 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1156 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1157 
1158 	return (error);
1159 }
1160 
1161 /*
1162  * Adds channels into specified channel list (ieee[] array must be sorted).
1163  * Channels are already sorted.
1164  */
1165 static int
1166 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1167     const uint8_t ieee[], int nieee, uint32_t flags[])
1168 {
1169 	uint16_t freq;
1170 	int i, j, error;
1171 
1172 	for (i = 0; i < nieee; i++) {
1173 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1174 		for (j = 0; flags[j] != 0; j++) {
1175 			if (flags[j] & IEEE80211_CHAN_HT40D)
1176 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1177 				    freq - 20 !=
1178 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1179 					continue;
1180 			if (flags[j] & IEEE80211_CHAN_HT40U)
1181 				if (i == nieee - 1 ||
1182 				    ieee[i] + 4 > ieee[nieee - 1] ||
1183 				    freq + 20 !=
1184 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1185 					continue;
1186 
1187 			if (j == 0) {
1188 				error = addchan(chans, maxchans, nchans,
1189 				    ieee[i], freq, 0, flags[j]);
1190 			} else {
1191 				error = copychan_prev(chans, maxchans, nchans,
1192 				    flags[j]);
1193 			}
1194 			if (error != 0)
1195 				return (error);
1196 		}
1197 	}
1198 
1199 	return (error);
1200 }
1201 
1202 int
1203 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1204     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1205     int ht40)
1206 {
1207 	uint32_t flags[IEEE80211_MODE_MAX];
1208 
1209 	getflags_2ghz(bands, flags, ht40);
1210 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1211 
1212 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1213 }
1214 
1215 int
1216 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1217     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1218     int ht40)
1219 {
1220 	uint32_t flags[IEEE80211_MODE_MAX];
1221 
1222 	getflags_5ghz(bands, flags, ht40);
1223 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1224 
1225 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1226 }
1227 
1228 /*
1229  * Locate a channel given a frequency+flags.  We cache
1230  * the previous lookup to optimize switching between two
1231  * channels--as happens with dynamic turbo.
1232  */
1233 struct ieee80211_channel *
1234 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1235 {
1236 	struct ieee80211_channel *c;
1237 
1238 	flags &= IEEE80211_CHAN_ALLTURBO;
1239 	c = ic->ic_prevchan;
1240 	if (c != NULL && c->ic_freq == freq &&
1241 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1242 		return c;
1243 	/* brute force search */
1244 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1245 }
1246 
1247 /*
1248  * Locate a channel given a channel number+flags.  We cache
1249  * the previous lookup to optimize switching between two
1250  * channels--as happens with dynamic turbo.
1251  */
1252 struct ieee80211_channel *
1253 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1254 {
1255 	struct ieee80211_channel *c;
1256 	int i;
1257 
1258 	flags &= IEEE80211_CHAN_ALLTURBO;
1259 	c = ic->ic_prevchan;
1260 	if (c != NULL && c->ic_ieee == ieee &&
1261 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1262 		return c;
1263 	/* brute force search */
1264 	for (i = 0; i < ic->ic_nchans; i++) {
1265 		c = &ic->ic_channels[i];
1266 		if (c->ic_ieee == ieee &&
1267 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1268 			return c;
1269 	}
1270 	return NULL;
1271 }
1272 
1273 /*
1274  * Lookup a channel suitable for the given rx status.
1275  *
1276  * This is used to find a channel for a frame (eg beacon, probe
1277  * response) based purely on the received PHY information.
1278  *
1279  * For now it tries to do it based on R_FREQ / R_IEEE.
1280  * This is enough for 11bg and 11a (and thus 11ng/11na)
1281  * but it will not be enough for GSM, PSB channels and the
1282  * like.  It also doesn't know about legacy-turbog and
1283  * legacy-turbo modes, which some offload NICs actually
1284  * support in weird ways.
1285  *
1286  * Takes the ic and rxstatus; returns the channel or NULL
1287  * if not found.
1288  *
1289  * XXX TODO: Add support for that when the need arises.
1290  */
1291 struct ieee80211_channel *
1292 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1293     const struct ieee80211_rx_stats *rxs)
1294 {
1295 	struct ieee80211com *ic = vap->iv_ic;
1296 	uint32_t flags;
1297 	struct ieee80211_channel *c;
1298 
1299 	if (rxs == NULL)
1300 		return (NULL);
1301 
1302 	/*
1303 	 * Strictly speaking we only use freq for now,
1304 	 * however later on we may wish to just store
1305 	 * the ieee for verification.
1306 	 */
1307 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1308 		return (NULL);
1309 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1310 		return (NULL);
1311 
1312 	/*
1313 	 * If the rx status contains a valid ieee/freq, then
1314 	 * ensure we populate the correct channel information
1315 	 * in rxchan before passing it up to the scan infrastructure.
1316 	 * Offload NICs will pass up beacons from all channels
1317 	 * during background scans.
1318 	 */
1319 
1320 	/* Determine a band */
1321 	/* XXX should be done by the driver? */
1322 	if (rxs->c_freq < 3000) {
1323 		flags = IEEE80211_CHAN_G;
1324 	} else {
1325 		flags = IEEE80211_CHAN_A;
1326 	}
1327 
1328 	/* Channel lookup */
1329 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1330 
1331 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1332 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1333 	    __func__,
1334 	    (int) rxs->c_freq,
1335 	    (int) rxs->c_ieee,
1336 	    flags,
1337 	    c);
1338 
1339 	return (c);
1340 }
1341 
1342 static void
1343 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1344 {
1345 #define	ADD(_ic, _s, _o) \
1346 	ifmedia_add(media, \
1347 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1348 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1349 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1350 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1351 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1352 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1353 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1354 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1355 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1356 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1357 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1358 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1359 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1360 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1361 	};
1362 	u_int mopt;
1363 
1364 	mopt = mopts[mode];
1365 	if (addsta)
1366 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1367 	if (caps & IEEE80211_C_IBSS)
1368 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1369 	if (caps & IEEE80211_C_HOSTAP)
1370 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1371 	if (caps & IEEE80211_C_AHDEMO)
1372 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1373 	if (caps & IEEE80211_C_MONITOR)
1374 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1375 	if (caps & IEEE80211_C_WDS)
1376 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1377 	if (caps & IEEE80211_C_MBSS)
1378 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1379 #undef ADD
1380 }
1381 
1382 /*
1383  * Setup the media data structures according to the channel and
1384  * rate tables.
1385  */
1386 static int
1387 ieee80211_media_setup(struct ieee80211com *ic,
1388 	struct ifmedia *media, int caps, int addsta,
1389 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1390 {
1391 	int i, j, rate, maxrate, mword, r;
1392 	enum ieee80211_phymode mode;
1393 	const struct ieee80211_rateset *rs;
1394 	struct ieee80211_rateset allrates;
1395 
1396 	/*
1397 	 * Fill in media characteristics.
1398 	 */
1399 	ifmedia_init(media, 0, media_change, media_stat);
1400 	maxrate = 0;
1401 	/*
1402 	 * Add media for legacy operating modes.
1403 	 */
1404 	memset(&allrates, 0, sizeof(allrates));
1405 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1406 		if (isclr(ic->ic_modecaps, mode))
1407 			continue;
1408 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1409 		if (mode == IEEE80211_MODE_AUTO)
1410 			continue;
1411 		rs = &ic->ic_sup_rates[mode];
1412 		for (i = 0; i < rs->rs_nrates; i++) {
1413 			rate = rs->rs_rates[i];
1414 			mword = ieee80211_rate2media(ic, rate, mode);
1415 			if (mword == 0)
1416 				continue;
1417 			addmedia(media, caps, addsta, mode, mword);
1418 			/*
1419 			 * Add legacy rate to the collection of all rates.
1420 			 */
1421 			r = rate & IEEE80211_RATE_VAL;
1422 			for (j = 0; j < allrates.rs_nrates; j++)
1423 				if (allrates.rs_rates[j] == r)
1424 					break;
1425 			if (j == allrates.rs_nrates) {
1426 				/* unique, add to the set */
1427 				allrates.rs_rates[j] = r;
1428 				allrates.rs_nrates++;
1429 			}
1430 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1431 			if (rate > maxrate)
1432 				maxrate = rate;
1433 		}
1434 	}
1435 	for (i = 0; i < allrates.rs_nrates; i++) {
1436 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1437 				IEEE80211_MODE_AUTO);
1438 		if (mword == 0)
1439 			continue;
1440 		/* NB: remove media options from mword */
1441 		addmedia(media, caps, addsta,
1442 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1443 	}
1444 	/*
1445 	 * Add HT/11n media.  Note that we do not have enough
1446 	 * bits in the media subtype to express the MCS so we
1447 	 * use a "placeholder" media subtype and any fixed MCS
1448 	 * must be specified with a different mechanism.
1449 	 */
1450 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1451 		if (isclr(ic->ic_modecaps, mode))
1452 			continue;
1453 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1454 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1455 	}
1456 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1457 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1458 		addmedia(media, caps, addsta,
1459 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1460 		i = ic->ic_txstream * 8 - 1;
1461 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1462 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1463 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1464 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1465 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1466 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1467 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1468 		else
1469 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1470 		if (rate > maxrate)
1471 			maxrate = rate;
1472 	}
1473 	return maxrate;
1474 }
1475 
1476 /* XXX inline or eliminate? */
1477 const struct ieee80211_rateset *
1478 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1479 {
1480 	/* XXX does this work for 11ng basic rates? */
1481 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1482 }
1483 
1484 void
1485 ieee80211_announce(struct ieee80211com *ic)
1486 {
1487 	int i, rate, mword;
1488 	enum ieee80211_phymode mode;
1489 	const struct ieee80211_rateset *rs;
1490 
1491 	/* NB: skip AUTO since it has no rates */
1492 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1493 		if (isclr(ic->ic_modecaps, mode))
1494 			continue;
1495 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1496 		rs = &ic->ic_sup_rates[mode];
1497 		for (i = 0; i < rs->rs_nrates; i++) {
1498 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1499 			if (mword == 0)
1500 				continue;
1501 			rate = ieee80211_media2rate(mword);
1502 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1503 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1504 		}
1505 		printf("\n");
1506 	}
1507 	ieee80211_ht_announce(ic);
1508 }
1509 
1510 void
1511 ieee80211_announce_channels(struct ieee80211com *ic)
1512 {
1513 	const struct ieee80211_channel *c;
1514 	char type;
1515 	int i, cw;
1516 
1517 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1518 	for (i = 0; i < ic->ic_nchans; i++) {
1519 		c = &ic->ic_channels[i];
1520 		if (IEEE80211_IS_CHAN_ST(c))
1521 			type = 'S';
1522 		else if (IEEE80211_IS_CHAN_108A(c))
1523 			type = 'T';
1524 		else if (IEEE80211_IS_CHAN_108G(c))
1525 			type = 'G';
1526 		else if (IEEE80211_IS_CHAN_HT(c))
1527 			type = 'n';
1528 		else if (IEEE80211_IS_CHAN_A(c))
1529 			type = 'a';
1530 		else if (IEEE80211_IS_CHAN_ANYG(c))
1531 			type = 'g';
1532 		else if (IEEE80211_IS_CHAN_B(c))
1533 			type = 'b';
1534 		else
1535 			type = 'f';
1536 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1537 			cw = 40;
1538 		else if (IEEE80211_IS_CHAN_HALF(c))
1539 			cw = 10;
1540 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1541 			cw = 5;
1542 		else
1543 			cw = 20;
1544 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1545 			, c->ic_ieee, c->ic_freq, type
1546 			, cw
1547 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1548 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1549 			, c->ic_maxregpower
1550 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1551 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1552 		);
1553 	}
1554 }
1555 
1556 static int
1557 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1558 {
1559 	switch (IFM_MODE(ime->ifm_media)) {
1560 	case IFM_IEEE80211_11A:
1561 		*mode = IEEE80211_MODE_11A;
1562 		break;
1563 	case IFM_IEEE80211_11B:
1564 		*mode = IEEE80211_MODE_11B;
1565 		break;
1566 	case IFM_IEEE80211_11G:
1567 		*mode = IEEE80211_MODE_11G;
1568 		break;
1569 	case IFM_IEEE80211_FH:
1570 		*mode = IEEE80211_MODE_FH;
1571 		break;
1572 	case IFM_IEEE80211_11NA:
1573 		*mode = IEEE80211_MODE_11NA;
1574 		break;
1575 	case IFM_IEEE80211_11NG:
1576 		*mode = IEEE80211_MODE_11NG;
1577 		break;
1578 	case IFM_AUTO:
1579 		*mode = IEEE80211_MODE_AUTO;
1580 		break;
1581 	default:
1582 		return 0;
1583 	}
1584 	/*
1585 	 * Turbo mode is an ``option''.
1586 	 * XXX does not apply to AUTO
1587 	 */
1588 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1589 		if (*mode == IEEE80211_MODE_11A) {
1590 			if (flags & IEEE80211_F_TURBOP)
1591 				*mode = IEEE80211_MODE_TURBO_A;
1592 			else
1593 				*mode = IEEE80211_MODE_STURBO_A;
1594 		} else if (*mode == IEEE80211_MODE_11G)
1595 			*mode = IEEE80211_MODE_TURBO_G;
1596 		else
1597 			return 0;
1598 	}
1599 	/* XXX HT40 +/- */
1600 	return 1;
1601 }
1602 
1603 /*
1604  * Handle a media change request on the vap interface.
1605  */
1606 int
1607 ieee80211_media_change(struct ifnet *ifp)
1608 {
1609 	struct ieee80211vap *vap = ifp->if_softc;
1610 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1611 	uint16_t newmode;
1612 
1613 	if (!media2mode(ime, vap->iv_flags, &newmode))
1614 		return EINVAL;
1615 	if (vap->iv_des_mode != newmode) {
1616 		vap->iv_des_mode = newmode;
1617 		/* XXX kick state machine if up+running */
1618 	}
1619 	return 0;
1620 }
1621 
1622 /*
1623  * Common code to calculate the media status word
1624  * from the operating mode and channel state.
1625  */
1626 static int
1627 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1628 {
1629 	int status;
1630 
1631 	status = IFM_IEEE80211;
1632 	switch (opmode) {
1633 	case IEEE80211_M_STA:
1634 		break;
1635 	case IEEE80211_M_IBSS:
1636 		status |= IFM_IEEE80211_ADHOC;
1637 		break;
1638 	case IEEE80211_M_HOSTAP:
1639 		status |= IFM_IEEE80211_HOSTAP;
1640 		break;
1641 	case IEEE80211_M_MONITOR:
1642 		status |= IFM_IEEE80211_MONITOR;
1643 		break;
1644 	case IEEE80211_M_AHDEMO:
1645 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1646 		break;
1647 	case IEEE80211_M_WDS:
1648 		status |= IFM_IEEE80211_WDS;
1649 		break;
1650 	case IEEE80211_M_MBSS:
1651 		status |= IFM_IEEE80211_MBSS;
1652 		break;
1653 	}
1654 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1655 		status |= IFM_IEEE80211_11NA;
1656 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1657 		status |= IFM_IEEE80211_11NG;
1658 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1659 		status |= IFM_IEEE80211_11A;
1660 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1661 		status |= IFM_IEEE80211_11B;
1662 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1663 		status |= IFM_IEEE80211_11G;
1664 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1665 		status |= IFM_IEEE80211_FH;
1666 	}
1667 	/* XXX else complain? */
1668 
1669 	if (IEEE80211_IS_CHAN_TURBO(chan))
1670 		status |= IFM_IEEE80211_TURBO;
1671 #if 0
1672 	if (IEEE80211_IS_CHAN_HT20(chan))
1673 		status |= IFM_IEEE80211_HT20;
1674 	if (IEEE80211_IS_CHAN_HT40(chan))
1675 		status |= IFM_IEEE80211_HT40;
1676 #endif
1677 	return status;
1678 }
1679 
1680 void
1681 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1682 {
1683 	struct ieee80211vap *vap = ifp->if_softc;
1684 	struct ieee80211com *ic = vap->iv_ic;
1685 	enum ieee80211_phymode mode;
1686 
1687 	imr->ifm_status = IFM_AVALID;
1688 	/*
1689 	 * NB: use the current channel's mode to lock down a xmit
1690 	 * rate only when running; otherwise we may have a mismatch
1691 	 * in which case the rate will not be convertible.
1692 	 */
1693 	if (vap->iv_state == IEEE80211_S_RUN ||
1694 	    vap->iv_state == IEEE80211_S_SLEEP) {
1695 		imr->ifm_status |= IFM_ACTIVE;
1696 		mode = ieee80211_chan2mode(ic->ic_curchan);
1697 	} else
1698 		mode = IEEE80211_MODE_AUTO;
1699 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1700 	/*
1701 	 * Calculate a current rate if possible.
1702 	 */
1703 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1704 		/*
1705 		 * A fixed rate is set, report that.
1706 		 */
1707 		imr->ifm_active |= ieee80211_rate2media(ic,
1708 			vap->iv_txparms[mode].ucastrate, mode);
1709 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1710 		/*
1711 		 * In station mode report the current transmit rate.
1712 		 */
1713 		imr->ifm_active |= ieee80211_rate2media(ic,
1714 			vap->iv_bss->ni_txrate, mode);
1715 	} else
1716 		imr->ifm_active |= IFM_AUTO;
1717 	if (imr->ifm_status & IFM_ACTIVE)
1718 		imr->ifm_current = imr->ifm_active;
1719 }
1720 
1721 /*
1722  * Set the current phy mode and recalculate the active channel
1723  * set based on the available channels for this mode.  Also
1724  * select a new default/current channel if the current one is
1725  * inappropriate for this mode.
1726  */
1727 int
1728 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1729 {
1730 	/*
1731 	 * Adjust basic rates in 11b/11g supported rate set.
1732 	 * Note that if operating on a hal/quarter rate channel
1733 	 * this is a noop as those rates sets are different
1734 	 * and used instead.
1735 	 */
1736 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1737 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1738 
1739 	ic->ic_curmode = mode;
1740 	ieee80211_reset_erp(ic);	/* reset ERP state */
1741 
1742 	return 0;
1743 }
1744 
1745 /*
1746  * Return the phy mode for with the specified channel.
1747  */
1748 enum ieee80211_phymode
1749 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1750 {
1751 
1752 	if (IEEE80211_IS_CHAN_HTA(chan))
1753 		return IEEE80211_MODE_11NA;
1754 	else if (IEEE80211_IS_CHAN_HTG(chan))
1755 		return IEEE80211_MODE_11NG;
1756 	else if (IEEE80211_IS_CHAN_108G(chan))
1757 		return IEEE80211_MODE_TURBO_G;
1758 	else if (IEEE80211_IS_CHAN_ST(chan))
1759 		return IEEE80211_MODE_STURBO_A;
1760 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1761 		return IEEE80211_MODE_TURBO_A;
1762 	else if (IEEE80211_IS_CHAN_HALF(chan))
1763 		return IEEE80211_MODE_HALF;
1764 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1765 		return IEEE80211_MODE_QUARTER;
1766 	else if (IEEE80211_IS_CHAN_A(chan))
1767 		return IEEE80211_MODE_11A;
1768 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1769 		return IEEE80211_MODE_11G;
1770 	else if (IEEE80211_IS_CHAN_B(chan))
1771 		return IEEE80211_MODE_11B;
1772 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1773 		return IEEE80211_MODE_FH;
1774 
1775 	/* NB: should not get here */
1776 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1777 		__func__, chan->ic_freq, chan->ic_flags);
1778 	return IEEE80211_MODE_11B;
1779 }
1780 
1781 struct ratemedia {
1782 	u_int	match;	/* rate + mode */
1783 	u_int	media;	/* if_media rate */
1784 };
1785 
1786 static int
1787 findmedia(const struct ratemedia rates[], int n, u_int match)
1788 {
1789 	int i;
1790 
1791 	for (i = 0; i < n; i++)
1792 		if (rates[i].match == match)
1793 			return rates[i].media;
1794 	return IFM_AUTO;
1795 }
1796 
1797 /*
1798  * Convert IEEE80211 rate value to ifmedia subtype.
1799  * Rate is either a legacy rate in units of 0.5Mbps
1800  * or an MCS index.
1801  */
1802 int
1803 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1804 {
1805 	static const struct ratemedia rates[] = {
1806 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1807 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1808 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1809 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1810 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1811 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1812 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1813 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1814 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1815 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1816 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1817 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1818 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1819 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1820 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1821 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1822 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1823 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1824 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1825 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1826 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1827 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1828 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1829 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1830 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1831 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1832 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1833 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1834 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1835 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1836 		/* NB: OFDM72 doesn't really exist so we don't handle it */
1837 	};
1838 	static const struct ratemedia htrates[] = {
1839 		{   0, IFM_IEEE80211_MCS },
1840 		{   1, IFM_IEEE80211_MCS },
1841 		{   2, IFM_IEEE80211_MCS },
1842 		{   3, IFM_IEEE80211_MCS },
1843 		{   4, IFM_IEEE80211_MCS },
1844 		{   5, IFM_IEEE80211_MCS },
1845 		{   6, IFM_IEEE80211_MCS },
1846 		{   7, IFM_IEEE80211_MCS },
1847 		{   8, IFM_IEEE80211_MCS },
1848 		{   9, IFM_IEEE80211_MCS },
1849 		{  10, IFM_IEEE80211_MCS },
1850 		{  11, IFM_IEEE80211_MCS },
1851 		{  12, IFM_IEEE80211_MCS },
1852 		{  13, IFM_IEEE80211_MCS },
1853 		{  14, IFM_IEEE80211_MCS },
1854 		{  15, IFM_IEEE80211_MCS },
1855 		{  16, IFM_IEEE80211_MCS },
1856 		{  17, IFM_IEEE80211_MCS },
1857 		{  18, IFM_IEEE80211_MCS },
1858 		{  19, IFM_IEEE80211_MCS },
1859 		{  20, IFM_IEEE80211_MCS },
1860 		{  21, IFM_IEEE80211_MCS },
1861 		{  22, IFM_IEEE80211_MCS },
1862 		{  23, IFM_IEEE80211_MCS },
1863 		{  24, IFM_IEEE80211_MCS },
1864 		{  25, IFM_IEEE80211_MCS },
1865 		{  26, IFM_IEEE80211_MCS },
1866 		{  27, IFM_IEEE80211_MCS },
1867 		{  28, IFM_IEEE80211_MCS },
1868 		{  29, IFM_IEEE80211_MCS },
1869 		{  30, IFM_IEEE80211_MCS },
1870 		{  31, IFM_IEEE80211_MCS },
1871 		{  32, IFM_IEEE80211_MCS },
1872 		{  33, IFM_IEEE80211_MCS },
1873 		{  34, IFM_IEEE80211_MCS },
1874 		{  35, IFM_IEEE80211_MCS },
1875 		{  36, IFM_IEEE80211_MCS },
1876 		{  37, IFM_IEEE80211_MCS },
1877 		{  38, IFM_IEEE80211_MCS },
1878 		{  39, IFM_IEEE80211_MCS },
1879 		{  40, IFM_IEEE80211_MCS },
1880 		{  41, IFM_IEEE80211_MCS },
1881 		{  42, IFM_IEEE80211_MCS },
1882 		{  43, IFM_IEEE80211_MCS },
1883 		{  44, IFM_IEEE80211_MCS },
1884 		{  45, IFM_IEEE80211_MCS },
1885 		{  46, IFM_IEEE80211_MCS },
1886 		{  47, IFM_IEEE80211_MCS },
1887 		{  48, IFM_IEEE80211_MCS },
1888 		{  49, IFM_IEEE80211_MCS },
1889 		{  50, IFM_IEEE80211_MCS },
1890 		{  51, IFM_IEEE80211_MCS },
1891 		{  52, IFM_IEEE80211_MCS },
1892 		{  53, IFM_IEEE80211_MCS },
1893 		{  54, IFM_IEEE80211_MCS },
1894 		{  55, IFM_IEEE80211_MCS },
1895 		{  56, IFM_IEEE80211_MCS },
1896 		{  57, IFM_IEEE80211_MCS },
1897 		{  58, IFM_IEEE80211_MCS },
1898 		{  59, IFM_IEEE80211_MCS },
1899 		{  60, IFM_IEEE80211_MCS },
1900 		{  61, IFM_IEEE80211_MCS },
1901 		{  62, IFM_IEEE80211_MCS },
1902 		{  63, IFM_IEEE80211_MCS },
1903 		{  64, IFM_IEEE80211_MCS },
1904 		{  65, IFM_IEEE80211_MCS },
1905 		{  66, IFM_IEEE80211_MCS },
1906 		{  67, IFM_IEEE80211_MCS },
1907 		{  68, IFM_IEEE80211_MCS },
1908 		{  69, IFM_IEEE80211_MCS },
1909 		{  70, IFM_IEEE80211_MCS },
1910 		{  71, IFM_IEEE80211_MCS },
1911 		{  72, IFM_IEEE80211_MCS },
1912 		{  73, IFM_IEEE80211_MCS },
1913 		{  74, IFM_IEEE80211_MCS },
1914 		{  75, IFM_IEEE80211_MCS },
1915 		{  76, IFM_IEEE80211_MCS },
1916 	};
1917 	int m;
1918 
1919 	/*
1920 	 * Check 11n rates first for match as an MCS.
1921 	 */
1922 	if (mode == IEEE80211_MODE_11NA) {
1923 		if (rate & IEEE80211_RATE_MCS) {
1924 			rate &= ~IEEE80211_RATE_MCS;
1925 			m = findmedia(htrates, nitems(htrates), rate);
1926 			if (m != IFM_AUTO)
1927 				return m | IFM_IEEE80211_11NA;
1928 		}
1929 	} else if (mode == IEEE80211_MODE_11NG) {
1930 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1931 		if (rate & IEEE80211_RATE_MCS) {
1932 			rate &= ~IEEE80211_RATE_MCS;
1933 			m = findmedia(htrates, nitems(htrates), rate);
1934 			if (m != IFM_AUTO)
1935 				return m | IFM_IEEE80211_11NG;
1936 		}
1937 	}
1938 	rate &= IEEE80211_RATE_VAL;
1939 	switch (mode) {
1940 	case IEEE80211_MODE_11A:
1941 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1942 	case IEEE80211_MODE_QUARTER:
1943 	case IEEE80211_MODE_11NA:
1944 	case IEEE80211_MODE_TURBO_A:
1945 	case IEEE80211_MODE_STURBO_A:
1946 		return findmedia(rates, nitems(rates),
1947 		    rate | IFM_IEEE80211_11A);
1948 	case IEEE80211_MODE_11B:
1949 		return findmedia(rates, nitems(rates),
1950 		    rate | IFM_IEEE80211_11B);
1951 	case IEEE80211_MODE_FH:
1952 		return findmedia(rates, nitems(rates),
1953 		    rate | IFM_IEEE80211_FH);
1954 	case IEEE80211_MODE_AUTO:
1955 		/* NB: ic may be NULL for some drivers */
1956 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1957 			return findmedia(rates, nitems(rates),
1958 			    rate | IFM_IEEE80211_FH);
1959 		/* NB: hack, 11g matches both 11b+11a rates */
1960 		/* fall thru... */
1961 	case IEEE80211_MODE_11G:
1962 	case IEEE80211_MODE_11NG:
1963 	case IEEE80211_MODE_TURBO_G:
1964 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
1965 	}
1966 	return IFM_AUTO;
1967 }
1968 
1969 int
1970 ieee80211_media2rate(int mword)
1971 {
1972 	static const int ieeerates[] = {
1973 		-1,		/* IFM_AUTO */
1974 		0,		/* IFM_MANUAL */
1975 		0,		/* IFM_NONE */
1976 		2,		/* IFM_IEEE80211_FH1 */
1977 		4,		/* IFM_IEEE80211_FH2 */
1978 		2,		/* IFM_IEEE80211_DS1 */
1979 		4,		/* IFM_IEEE80211_DS2 */
1980 		11,		/* IFM_IEEE80211_DS5 */
1981 		22,		/* IFM_IEEE80211_DS11 */
1982 		44,		/* IFM_IEEE80211_DS22 */
1983 		12,		/* IFM_IEEE80211_OFDM6 */
1984 		18,		/* IFM_IEEE80211_OFDM9 */
1985 		24,		/* IFM_IEEE80211_OFDM12 */
1986 		36,		/* IFM_IEEE80211_OFDM18 */
1987 		48,		/* IFM_IEEE80211_OFDM24 */
1988 		72,		/* IFM_IEEE80211_OFDM36 */
1989 		96,		/* IFM_IEEE80211_OFDM48 */
1990 		108,		/* IFM_IEEE80211_OFDM54 */
1991 		144,		/* IFM_IEEE80211_OFDM72 */
1992 		0,		/* IFM_IEEE80211_DS354k */
1993 		0,		/* IFM_IEEE80211_DS512k */
1994 		6,		/* IFM_IEEE80211_OFDM3 */
1995 		9,		/* IFM_IEEE80211_OFDM4 */
1996 		54,		/* IFM_IEEE80211_OFDM27 */
1997 		-1,		/* IFM_IEEE80211_MCS */
1998 	};
1999 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2000 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2001 }
2002 
2003 /*
2004  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2005  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2006  */
2007 #define	mix(a, b, c)							\
2008 do {									\
2009 	a -= b; a -= c; a ^= (c >> 13);					\
2010 	b -= c; b -= a; b ^= (a << 8);					\
2011 	c -= a; c -= b; c ^= (b >> 13);					\
2012 	a -= b; a -= c; a ^= (c >> 12);					\
2013 	b -= c; b -= a; b ^= (a << 16);					\
2014 	c -= a; c -= b; c ^= (b >> 5);					\
2015 	a -= b; a -= c; a ^= (c >> 3);					\
2016 	b -= c; b -= a; b ^= (a << 10);					\
2017 	c -= a; c -= b; c ^= (b >> 15);					\
2018 } while (/*CONSTCOND*/0)
2019 
2020 uint32_t
2021 ieee80211_mac_hash(const struct ieee80211com *ic,
2022 	const uint8_t addr[IEEE80211_ADDR_LEN])
2023 {
2024 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2025 
2026 	b += addr[5] << 8;
2027 	b += addr[4];
2028 	a += addr[3] << 24;
2029 	a += addr[2] << 16;
2030 	a += addr[1] << 8;
2031 	a += addr[0];
2032 
2033 	mix(a, b, c);
2034 
2035 	return c;
2036 }
2037 #undef mix
2038 
2039 char
2040 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2041 {
2042 	if (IEEE80211_IS_CHAN_ST(c))
2043 		return 'S';
2044 	if (IEEE80211_IS_CHAN_108A(c))
2045 		return 'T';
2046 	if (IEEE80211_IS_CHAN_108G(c))
2047 		return 'G';
2048 	if (IEEE80211_IS_CHAN_HT(c))
2049 		return 'n';
2050 	if (IEEE80211_IS_CHAN_A(c))
2051 		return 'a';
2052 	if (IEEE80211_IS_CHAN_ANYG(c))
2053 		return 'g';
2054 	if (IEEE80211_IS_CHAN_B(c))
2055 		return 'b';
2056 	return 'f';
2057 }
2058