1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/socket.h> 40 #include <sys/sbuf.h> 41 42 #include <machine/stdarg.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 #include <net/ethernet.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_regdomain.h> 53 #ifdef IEEE80211_SUPPORT_SUPERG 54 #include <net80211/ieee80211_superg.h> 55 #endif 56 #include <net80211/ieee80211_ratectl.h> 57 58 #include <net/bpf.h> 59 60 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 61 [IEEE80211_MODE_AUTO] = "auto", 62 [IEEE80211_MODE_11A] = "11a", 63 [IEEE80211_MODE_11B] = "11b", 64 [IEEE80211_MODE_11G] = "11g", 65 [IEEE80211_MODE_FH] = "FH", 66 [IEEE80211_MODE_TURBO_A] = "turboA", 67 [IEEE80211_MODE_TURBO_G] = "turboG", 68 [IEEE80211_MODE_STURBO_A] = "sturboA", 69 [IEEE80211_MODE_HALF] = "half", 70 [IEEE80211_MODE_QUARTER] = "quarter", 71 [IEEE80211_MODE_11NA] = "11na", 72 [IEEE80211_MODE_11NG] = "11ng", 73 }; 74 /* map ieee80211_opmode to the corresponding capability bit */ 75 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 76 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 77 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 78 [IEEE80211_M_STA] = IEEE80211_C_STA, 79 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 80 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 81 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 82 #ifdef IEEE80211_SUPPORT_MESH 83 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 84 #endif 85 }; 86 87 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 88 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 89 90 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 91 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 92 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 93 static int ieee80211_media_setup(struct ieee80211com *ic, 94 struct ifmedia *media, int caps, int addsta, 95 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 96 static int media_status(enum ieee80211_opmode, 97 const struct ieee80211_channel *); 98 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 99 100 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 101 102 /* 103 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 104 */ 105 #define B(r) ((r) | IEEE80211_RATE_BASIC) 106 static const struct ieee80211_rateset ieee80211_rateset_11a = 107 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 108 static const struct ieee80211_rateset ieee80211_rateset_half = 109 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 110 static const struct ieee80211_rateset ieee80211_rateset_quarter = 111 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 112 static const struct ieee80211_rateset ieee80211_rateset_11b = 113 { 4, { B(2), B(4), B(11), B(22) } }; 114 /* NB: OFDM rates are handled specially based on mode */ 115 static const struct ieee80211_rateset ieee80211_rateset_11g = 116 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 117 #undef B 118 119 /* 120 * Fill in 802.11 available channel set, mark 121 * all available channels as active, and pick 122 * a default channel if not already specified. 123 */ 124 void 125 ieee80211_chan_init(struct ieee80211com *ic) 126 { 127 #define DEFAULTRATES(m, def) do { \ 128 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 129 ic->ic_sup_rates[m] = def; \ 130 } while (0) 131 struct ieee80211_channel *c; 132 int i; 133 134 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 135 ("invalid number of channels specified: %u", ic->ic_nchans)); 136 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 137 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 138 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 139 for (i = 0; i < ic->ic_nchans; i++) { 140 c = &ic->ic_channels[i]; 141 KASSERT(c->ic_flags != 0, ("channel with no flags")); 142 /* 143 * Help drivers that work only with frequencies by filling 144 * in IEEE channel #'s if not already calculated. Note this 145 * mimics similar work done in ieee80211_setregdomain when 146 * changing regulatory state. 147 */ 148 if (c->ic_ieee == 0) 149 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 150 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 151 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 152 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 153 c->ic_flags); 154 /* default max tx power to max regulatory */ 155 if (c->ic_maxpower == 0) 156 c->ic_maxpower = 2*c->ic_maxregpower; 157 setbit(ic->ic_chan_avail, c->ic_ieee); 158 /* 159 * Identify mode capabilities. 160 */ 161 if (IEEE80211_IS_CHAN_A(c)) 162 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 163 if (IEEE80211_IS_CHAN_B(c)) 164 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 165 if (IEEE80211_IS_CHAN_ANYG(c)) 166 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 167 if (IEEE80211_IS_CHAN_FHSS(c)) 168 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 169 if (IEEE80211_IS_CHAN_108A(c)) 170 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 171 if (IEEE80211_IS_CHAN_108G(c)) 172 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 173 if (IEEE80211_IS_CHAN_ST(c)) 174 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 175 if (IEEE80211_IS_CHAN_HALF(c)) 176 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 177 if (IEEE80211_IS_CHAN_QUARTER(c)) 178 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 179 if (IEEE80211_IS_CHAN_HTA(c)) 180 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 181 if (IEEE80211_IS_CHAN_HTG(c)) 182 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 183 } 184 /* initialize candidate channels to all available */ 185 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 186 sizeof(ic->ic_chan_avail)); 187 188 /* sort channel table to allow lookup optimizations */ 189 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 190 191 /* invalidate any previous state */ 192 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 193 ic->ic_prevchan = NULL; 194 ic->ic_csa_newchan = NULL; 195 /* arbitrarily pick the first channel */ 196 ic->ic_curchan = &ic->ic_channels[0]; 197 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 198 199 /* fillin well-known rate sets if driver has not specified */ 200 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 201 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 202 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 203 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 204 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 205 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 206 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 207 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 208 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 209 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 210 211 /* 212 * Setup required information to fill the mcsset field, if driver did 213 * not. Assume a 2T2R setup for historic reasons. 214 */ 215 if (ic->ic_rxstream == 0) 216 ic->ic_rxstream = 2; 217 if (ic->ic_txstream == 0) 218 ic->ic_txstream = 2; 219 220 /* 221 * Set auto mode to reset active channel state and any desired channel. 222 */ 223 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 224 #undef DEFAULTRATES 225 } 226 227 static void 228 null_update_mcast(struct ieee80211com *ic) 229 { 230 231 ic_printf(ic, "need multicast update callback\n"); 232 } 233 234 static void 235 null_update_promisc(struct ieee80211com *ic) 236 { 237 238 ic_printf(ic, "need promiscuous mode update callback\n"); 239 } 240 241 static void 242 null_update_chw(struct ieee80211com *ic) 243 { 244 245 ic_printf(ic, "%s: need callback\n", __func__); 246 } 247 248 int 249 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 250 { 251 va_list ap; 252 int retval; 253 254 retval = printf("%s: ", ic->ic_name); 255 va_start(ap, fmt); 256 retval += vprintf(fmt, ap); 257 va_end(ap); 258 return (retval); 259 } 260 261 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 262 static struct mtx ic_list_mtx; 263 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 264 265 static int 266 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 267 { 268 struct ieee80211com *ic; 269 struct sbuf sb; 270 char *sp; 271 int error; 272 273 error = sysctl_wire_old_buffer(req, 0); 274 if (error) 275 return (error); 276 sbuf_new_for_sysctl(&sb, NULL, 8, req); 277 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 278 sp = ""; 279 mtx_lock(&ic_list_mtx); 280 LIST_FOREACH(ic, &ic_head, ic_next) { 281 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 282 sp = " "; 283 } 284 mtx_unlock(&ic_list_mtx); 285 error = sbuf_finish(&sb); 286 sbuf_delete(&sb); 287 return (error); 288 } 289 290 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 291 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 292 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 293 294 /* 295 * Attach/setup the common net80211 state. Called by 296 * the driver on attach to prior to creating any vap's. 297 */ 298 void 299 ieee80211_ifattach(struct ieee80211com *ic) 300 { 301 302 IEEE80211_LOCK_INIT(ic, ic->ic_name); 303 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 304 TAILQ_INIT(&ic->ic_vaps); 305 306 /* Create a taskqueue for all state changes */ 307 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 308 taskqueue_thread_enqueue, &ic->ic_tq); 309 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 310 ic->ic_name); 311 ic->ic_ierrors = counter_u64_alloc(M_WAITOK); 312 ic->ic_oerrors = counter_u64_alloc(M_WAITOK); 313 /* 314 * Fill in 802.11 available channel set, mark all 315 * available channels as active, and pick a default 316 * channel if not already specified. 317 */ 318 ieee80211_chan_init(ic); 319 320 ic->ic_update_mcast = null_update_mcast; 321 ic->ic_update_promisc = null_update_promisc; 322 ic->ic_update_chw = null_update_chw; 323 324 ic->ic_hash_key = arc4random(); 325 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 326 ic->ic_lintval = ic->ic_bintval; 327 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 328 329 ieee80211_crypto_attach(ic); 330 ieee80211_node_attach(ic); 331 ieee80211_power_attach(ic); 332 ieee80211_proto_attach(ic); 333 #ifdef IEEE80211_SUPPORT_SUPERG 334 ieee80211_superg_attach(ic); 335 #endif 336 ieee80211_ht_attach(ic); 337 ieee80211_scan_attach(ic); 338 ieee80211_regdomain_attach(ic); 339 ieee80211_dfs_attach(ic); 340 341 ieee80211_sysctl_attach(ic); 342 343 mtx_lock(&ic_list_mtx); 344 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 345 mtx_unlock(&ic_list_mtx); 346 } 347 348 /* 349 * Detach net80211 state on device detach. Tear down 350 * all vap's and reclaim all common state prior to the 351 * device state going away. Note we may call back into 352 * driver; it must be prepared for this. 353 */ 354 void 355 ieee80211_ifdetach(struct ieee80211com *ic) 356 { 357 struct ieee80211vap *vap; 358 359 mtx_lock(&ic_list_mtx); 360 LIST_REMOVE(ic, ic_next); 361 mtx_unlock(&ic_list_mtx); 362 363 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 364 365 /* 366 * The VAP is responsible for setting and clearing 367 * the VIMAGE context. 368 */ 369 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 370 ieee80211_vap_destroy(vap); 371 ieee80211_waitfor_parent(ic); 372 373 ieee80211_sysctl_detach(ic); 374 ieee80211_dfs_detach(ic); 375 ieee80211_regdomain_detach(ic); 376 ieee80211_scan_detach(ic); 377 #ifdef IEEE80211_SUPPORT_SUPERG 378 ieee80211_superg_detach(ic); 379 #endif 380 ieee80211_ht_detach(ic); 381 /* NB: must be called before ieee80211_node_detach */ 382 ieee80211_proto_detach(ic); 383 ieee80211_crypto_detach(ic); 384 ieee80211_power_detach(ic); 385 ieee80211_node_detach(ic); 386 387 counter_u64_free(ic->ic_ierrors); 388 counter_u64_free(ic->ic_oerrors); 389 390 taskqueue_free(ic->ic_tq); 391 IEEE80211_TX_LOCK_DESTROY(ic); 392 IEEE80211_LOCK_DESTROY(ic); 393 } 394 395 struct ieee80211com * 396 ieee80211_find_com(const char *name) 397 { 398 struct ieee80211com *ic; 399 400 mtx_lock(&ic_list_mtx); 401 LIST_FOREACH(ic, &ic_head, ic_next) 402 if (strcmp(ic->ic_name, name) == 0) 403 break; 404 mtx_unlock(&ic_list_mtx); 405 406 return (ic); 407 } 408 409 /* 410 * Default reset method for use with the ioctl support. This 411 * method is invoked after any state change in the 802.11 412 * layer that should be propagated to the hardware but not 413 * require re-initialization of the 802.11 state machine (e.g 414 * rescanning for an ap). We always return ENETRESET which 415 * should cause the driver to re-initialize the device. Drivers 416 * can override this method to implement more optimized support. 417 */ 418 static int 419 default_reset(struct ieee80211vap *vap, u_long cmd) 420 { 421 return ENETRESET; 422 } 423 424 /* 425 * Add underlying device errors to vap errors. 426 */ 427 static uint64_t 428 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 429 { 430 struct ieee80211vap *vap = ifp->if_softc; 431 struct ieee80211com *ic = vap->iv_ic; 432 uint64_t rv; 433 434 rv = if_get_counter_default(ifp, cnt); 435 switch (cnt) { 436 case IFCOUNTER_OERRORS: 437 rv += counter_u64_fetch(ic->ic_oerrors); 438 break; 439 case IFCOUNTER_IERRORS: 440 rv += counter_u64_fetch(ic->ic_ierrors); 441 break; 442 default: 443 break; 444 } 445 446 return (rv); 447 } 448 449 /* 450 * Prepare a vap for use. Drivers use this call to 451 * setup net80211 state in new vap's prior attaching 452 * them with ieee80211_vap_attach (below). 453 */ 454 int 455 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 456 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 457 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 458 { 459 struct ifnet *ifp; 460 461 ifp = if_alloc(IFT_ETHER); 462 if (ifp == NULL) { 463 ic_printf(ic, "%s: unable to allocate ifnet\n", 464 __func__); 465 return ENOMEM; 466 } 467 if_initname(ifp, name, unit); 468 ifp->if_softc = vap; /* back pointer */ 469 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 470 ifp->if_transmit = ieee80211_vap_transmit; 471 ifp->if_qflush = ieee80211_vap_qflush; 472 ifp->if_ioctl = ieee80211_ioctl; 473 ifp->if_init = ieee80211_init; 474 ifp->if_get_counter = ieee80211_get_counter; 475 476 vap->iv_ifp = ifp; 477 vap->iv_ic = ic; 478 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 479 vap->iv_flags_ext = ic->ic_flags_ext; 480 vap->iv_flags_ven = ic->ic_flags_ven; 481 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 482 vap->iv_htcaps = ic->ic_htcaps; 483 vap->iv_htextcaps = ic->ic_htextcaps; 484 vap->iv_opmode = opmode; 485 vap->iv_caps |= ieee80211_opcap[opmode]; 486 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 487 switch (opmode) { 488 case IEEE80211_M_WDS: 489 /* 490 * WDS links must specify the bssid of the far end. 491 * For legacy operation this is a static relationship. 492 * For non-legacy operation the station must associate 493 * and be authorized to pass traffic. Plumbing the 494 * vap to the proper node happens when the vap 495 * transitions to RUN state. 496 */ 497 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 498 vap->iv_flags |= IEEE80211_F_DESBSSID; 499 if (flags & IEEE80211_CLONE_WDSLEGACY) 500 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 501 break; 502 #ifdef IEEE80211_SUPPORT_TDMA 503 case IEEE80211_M_AHDEMO: 504 if (flags & IEEE80211_CLONE_TDMA) { 505 /* NB: checked before clone operation allowed */ 506 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 507 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 508 /* 509 * Propagate TDMA capability to mark vap; this 510 * cannot be removed and is used to distinguish 511 * regular ahdemo operation from ahdemo+tdma. 512 */ 513 vap->iv_caps |= IEEE80211_C_TDMA; 514 } 515 break; 516 #endif 517 default: 518 break; 519 } 520 /* auto-enable s/w beacon miss support */ 521 if (flags & IEEE80211_CLONE_NOBEACONS) 522 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 523 /* auto-generated or user supplied MAC address */ 524 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 525 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 526 /* 527 * Enable various functionality by default if we're 528 * capable; the driver can override us if it knows better. 529 */ 530 if (vap->iv_caps & IEEE80211_C_WME) 531 vap->iv_flags |= IEEE80211_F_WME; 532 if (vap->iv_caps & IEEE80211_C_BURST) 533 vap->iv_flags |= IEEE80211_F_BURST; 534 /* NB: bg scanning only makes sense for station mode right now */ 535 if (vap->iv_opmode == IEEE80211_M_STA && 536 (vap->iv_caps & IEEE80211_C_BGSCAN)) 537 vap->iv_flags |= IEEE80211_F_BGSCAN; 538 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 539 /* NB: DFS support only makes sense for ap mode right now */ 540 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 541 (vap->iv_caps & IEEE80211_C_DFS)) 542 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 543 544 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 545 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 546 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 547 /* 548 * Install a default reset method for the ioctl support; 549 * the driver can override this. 550 */ 551 vap->iv_reset = default_reset; 552 553 ieee80211_sysctl_vattach(vap); 554 ieee80211_crypto_vattach(vap); 555 ieee80211_node_vattach(vap); 556 ieee80211_power_vattach(vap); 557 ieee80211_proto_vattach(vap); 558 #ifdef IEEE80211_SUPPORT_SUPERG 559 ieee80211_superg_vattach(vap); 560 #endif 561 ieee80211_ht_vattach(vap); 562 ieee80211_scan_vattach(vap); 563 ieee80211_regdomain_vattach(vap); 564 ieee80211_radiotap_vattach(vap); 565 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 566 567 return 0; 568 } 569 570 /* 571 * Activate a vap. State should have been prepared with a 572 * call to ieee80211_vap_setup and by the driver. On return 573 * from this call the vap is ready for use. 574 */ 575 int 576 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 577 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 578 { 579 struct ifnet *ifp = vap->iv_ifp; 580 struct ieee80211com *ic = vap->iv_ic; 581 struct ifmediareq imr; 582 int maxrate; 583 584 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 585 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 586 __func__, ieee80211_opmode_name[vap->iv_opmode], 587 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 588 589 /* 590 * Do late attach work that cannot happen until after 591 * the driver has had a chance to override defaults. 592 */ 593 ieee80211_node_latevattach(vap); 594 ieee80211_power_latevattach(vap); 595 596 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 597 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 598 ieee80211_media_status(ifp, &imr); 599 /* NB: strip explicit mode; we're actually in autoselect */ 600 ifmedia_set(&vap->iv_media, 601 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 602 if (maxrate) 603 ifp->if_baudrate = IF_Mbps(maxrate); 604 605 ether_ifattach(ifp, macaddr); 606 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 607 /* hook output method setup by ether_ifattach */ 608 vap->iv_output = ifp->if_output; 609 ifp->if_output = ieee80211_output; 610 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 611 612 IEEE80211_LOCK(ic); 613 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 614 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 615 #ifdef IEEE80211_SUPPORT_SUPERG 616 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 617 #endif 618 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 619 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 620 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 621 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 622 IEEE80211_UNLOCK(ic); 623 624 return 1; 625 } 626 627 /* 628 * Tear down vap state and reclaim the ifnet. 629 * The driver is assumed to have prepared for 630 * this; e.g. by turning off interrupts for the 631 * underlying device. 632 */ 633 void 634 ieee80211_vap_detach(struct ieee80211vap *vap) 635 { 636 struct ieee80211com *ic = vap->iv_ic; 637 struct ifnet *ifp = vap->iv_ifp; 638 639 CURVNET_SET(ifp->if_vnet); 640 641 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 642 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 643 644 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 645 ether_ifdetach(ifp); 646 647 ieee80211_stop(vap); 648 649 /* 650 * Flush any deferred vap tasks. 651 */ 652 ieee80211_draintask(ic, &vap->iv_nstate_task); 653 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 654 655 /* XXX band-aid until ifnet handles this for us */ 656 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 657 658 IEEE80211_LOCK(ic); 659 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 660 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 661 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 662 #ifdef IEEE80211_SUPPORT_SUPERG 663 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 664 #endif 665 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 666 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 667 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 668 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 669 /* NB: this handles the bpfdetach done below */ 670 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 671 if (vap->iv_ifflags & IFF_PROMISC) 672 ieee80211_promisc(vap, false); 673 if (vap->iv_ifflags & IFF_ALLMULTI) 674 ieee80211_allmulti(vap, false); 675 IEEE80211_UNLOCK(ic); 676 677 ifmedia_removeall(&vap->iv_media); 678 679 ieee80211_radiotap_vdetach(vap); 680 ieee80211_regdomain_vdetach(vap); 681 ieee80211_scan_vdetach(vap); 682 #ifdef IEEE80211_SUPPORT_SUPERG 683 ieee80211_superg_vdetach(vap); 684 #endif 685 ieee80211_ht_vdetach(vap); 686 /* NB: must be before ieee80211_node_vdetach */ 687 ieee80211_proto_vdetach(vap); 688 ieee80211_crypto_vdetach(vap); 689 ieee80211_power_vdetach(vap); 690 ieee80211_node_vdetach(vap); 691 ieee80211_sysctl_vdetach(vap); 692 693 if_free(ifp); 694 695 CURVNET_RESTORE(); 696 } 697 698 /* 699 * Count number of vaps in promisc, and issue promisc on 700 * parent respectively. 701 */ 702 void 703 ieee80211_promisc(struct ieee80211vap *vap, bool on) 704 { 705 struct ieee80211com *ic = vap->iv_ic; 706 707 IEEE80211_LOCK_ASSERT(ic); 708 709 if (on) { 710 if (++ic->ic_promisc == 1) 711 ieee80211_runtask(ic, &ic->ic_promisc_task); 712 } else { 713 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 714 __func__, ic)); 715 if (--ic->ic_promisc == 0) 716 ieee80211_runtask(ic, &ic->ic_promisc_task); 717 } 718 } 719 720 /* 721 * Count number of vaps in allmulti, and issue allmulti on 722 * parent respectively. 723 */ 724 void 725 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 726 { 727 struct ieee80211com *ic = vap->iv_ic; 728 729 IEEE80211_LOCK_ASSERT(ic); 730 731 if (on) { 732 if (++ic->ic_allmulti == 1) 733 ieee80211_runtask(ic, &ic->ic_mcast_task); 734 } else { 735 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 736 __func__, ic)); 737 if (--ic->ic_allmulti == 0) 738 ieee80211_runtask(ic, &ic->ic_mcast_task); 739 } 740 } 741 742 /* 743 * Synchronize flag bit state in the com structure 744 * according to the state of all vap's. This is used, 745 * for example, to handle state changes via ioctls. 746 */ 747 static void 748 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 749 { 750 struct ieee80211vap *vap; 751 int bit; 752 753 IEEE80211_LOCK_ASSERT(ic); 754 755 bit = 0; 756 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 757 if (vap->iv_flags & flag) { 758 bit = 1; 759 break; 760 } 761 if (bit) 762 ic->ic_flags |= flag; 763 else 764 ic->ic_flags &= ~flag; 765 } 766 767 void 768 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 769 { 770 struct ieee80211com *ic = vap->iv_ic; 771 772 IEEE80211_LOCK(ic); 773 if (flag < 0) { 774 flag = -flag; 775 vap->iv_flags &= ~flag; 776 } else 777 vap->iv_flags |= flag; 778 ieee80211_syncflag_locked(ic, flag); 779 IEEE80211_UNLOCK(ic); 780 } 781 782 /* 783 * Synchronize flags_ht bit state in the com structure 784 * according to the state of all vap's. This is used, 785 * for example, to handle state changes via ioctls. 786 */ 787 static void 788 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 789 { 790 struct ieee80211vap *vap; 791 int bit; 792 793 IEEE80211_LOCK_ASSERT(ic); 794 795 bit = 0; 796 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 797 if (vap->iv_flags_ht & flag) { 798 bit = 1; 799 break; 800 } 801 if (bit) 802 ic->ic_flags_ht |= flag; 803 else 804 ic->ic_flags_ht &= ~flag; 805 } 806 807 void 808 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 809 { 810 struct ieee80211com *ic = vap->iv_ic; 811 812 IEEE80211_LOCK(ic); 813 if (flag < 0) { 814 flag = -flag; 815 vap->iv_flags_ht &= ~flag; 816 } else 817 vap->iv_flags_ht |= flag; 818 ieee80211_syncflag_ht_locked(ic, flag); 819 IEEE80211_UNLOCK(ic); 820 } 821 822 /* 823 * Synchronize flags_ext bit state in the com structure 824 * according to the state of all vap's. This is used, 825 * for example, to handle state changes via ioctls. 826 */ 827 static void 828 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 829 { 830 struct ieee80211vap *vap; 831 int bit; 832 833 IEEE80211_LOCK_ASSERT(ic); 834 835 bit = 0; 836 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 837 if (vap->iv_flags_ext & flag) { 838 bit = 1; 839 break; 840 } 841 if (bit) 842 ic->ic_flags_ext |= flag; 843 else 844 ic->ic_flags_ext &= ~flag; 845 } 846 847 void 848 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 849 { 850 struct ieee80211com *ic = vap->iv_ic; 851 852 IEEE80211_LOCK(ic); 853 if (flag < 0) { 854 flag = -flag; 855 vap->iv_flags_ext &= ~flag; 856 } else 857 vap->iv_flags_ext |= flag; 858 ieee80211_syncflag_ext_locked(ic, flag); 859 IEEE80211_UNLOCK(ic); 860 } 861 862 static __inline int 863 mapgsm(u_int freq, u_int flags) 864 { 865 freq *= 10; 866 if (flags & IEEE80211_CHAN_QUARTER) 867 freq += 5; 868 else if (flags & IEEE80211_CHAN_HALF) 869 freq += 10; 870 else 871 freq += 20; 872 /* NB: there is no 907/20 wide but leave room */ 873 return (freq - 906*10) / 5; 874 } 875 876 static __inline int 877 mappsb(u_int freq, u_int flags) 878 { 879 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 880 } 881 882 /* 883 * Convert MHz frequency to IEEE channel number. 884 */ 885 int 886 ieee80211_mhz2ieee(u_int freq, u_int flags) 887 { 888 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 889 if (flags & IEEE80211_CHAN_GSM) 890 return mapgsm(freq, flags); 891 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 892 if (freq == 2484) 893 return 14; 894 if (freq < 2484) 895 return ((int) freq - 2407) / 5; 896 else 897 return 15 + ((freq - 2512) / 20); 898 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 899 if (freq <= 5000) { 900 /* XXX check regdomain? */ 901 if (IS_FREQ_IN_PSB(freq)) 902 return mappsb(freq, flags); 903 return (freq - 4000) / 5; 904 } else 905 return (freq - 5000) / 5; 906 } else { /* either, guess */ 907 if (freq == 2484) 908 return 14; 909 if (freq < 2484) { 910 if (907 <= freq && freq <= 922) 911 return mapgsm(freq, flags); 912 return ((int) freq - 2407) / 5; 913 } 914 if (freq < 5000) { 915 if (IS_FREQ_IN_PSB(freq)) 916 return mappsb(freq, flags); 917 else if (freq > 4900) 918 return (freq - 4000) / 5; 919 else 920 return 15 + ((freq - 2512) / 20); 921 } 922 return (freq - 5000) / 5; 923 } 924 #undef IS_FREQ_IN_PSB 925 } 926 927 /* 928 * Convert channel to IEEE channel number. 929 */ 930 int 931 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 932 { 933 if (c == NULL) { 934 ic_printf(ic, "invalid channel (NULL)\n"); 935 return 0; /* XXX */ 936 } 937 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 938 } 939 940 /* 941 * Convert IEEE channel number to MHz frequency. 942 */ 943 u_int 944 ieee80211_ieee2mhz(u_int chan, u_int flags) 945 { 946 if (flags & IEEE80211_CHAN_GSM) 947 return 907 + 5 * (chan / 10); 948 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 949 if (chan == 14) 950 return 2484; 951 if (chan < 14) 952 return 2407 + chan*5; 953 else 954 return 2512 + ((chan-15)*20); 955 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 956 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 957 chan -= 37; 958 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 959 } 960 return 5000 + (chan*5); 961 } else { /* either, guess */ 962 /* XXX can't distinguish PSB+GSM channels */ 963 if (chan == 14) 964 return 2484; 965 if (chan < 14) /* 0-13 */ 966 return 2407 + chan*5; 967 if (chan < 27) /* 15-26 */ 968 return 2512 + ((chan-15)*20); 969 return 5000 + (chan*5); 970 } 971 } 972 973 static __inline void 974 set_extchan(struct ieee80211_channel *c) 975 { 976 977 /* 978 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 979 * "the secondary channel number shall be 'N + [1,-1] * 4' 980 */ 981 if (c->ic_flags & IEEE80211_CHAN_HT40U) 982 c->ic_extieee = c->ic_ieee + 4; 983 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 984 c->ic_extieee = c->ic_ieee - 4; 985 else 986 c->ic_extieee = 0; 987 } 988 989 static int 990 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 991 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 992 { 993 struct ieee80211_channel *c; 994 995 if (*nchans >= maxchans) 996 return (ENOBUFS); 997 998 c = &chans[(*nchans)++]; 999 c->ic_ieee = ieee; 1000 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1001 c->ic_maxregpower = maxregpower; 1002 c->ic_maxpower = 2 * maxregpower; 1003 c->ic_flags = flags; 1004 set_extchan(c); 1005 1006 return (0); 1007 } 1008 1009 static int 1010 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1011 uint32_t flags) 1012 { 1013 struct ieee80211_channel *c; 1014 1015 KASSERT(*nchans > 0, ("channel list is empty\n")); 1016 1017 if (*nchans >= maxchans) 1018 return (ENOBUFS); 1019 1020 c = &chans[(*nchans)++]; 1021 c[0] = c[-1]; 1022 c->ic_flags = flags; 1023 set_extchan(c); 1024 1025 return (0); 1026 } 1027 1028 static void 1029 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40) 1030 { 1031 int nmodes; 1032 1033 nmodes = 0; 1034 if (isset(bands, IEEE80211_MODE_11B)) 1035 flags[nmodes++] = IEEE80211_CHAN_B; 1036 if (isset(bands, IEEE80211_MODE_11G)) 1037 flags[nmodes++] = IEEE80211_CHAN_G; 1038 if (isset(bands, IEEE80211_MODE_11NG)) 1039 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1040 if (ht40) { 1041 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1042 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1043 } 1044 flags[nmodes] = 0; 1045 } 1046 1047 static void 1048 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40) 1049 { 1050 int nmodes; 1051 1052 nmodes = 0; 1053 if (isset(bands, IEEE80211_MODE_11A)) 1054 flags[nmodes++] = IEEE80211_CHAN_A; 1055 if (isset(bands, IEEE80211_MODE_11NA)) 1056 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1057 if (ht40) { 1058 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1059 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1060 } 1061 flags[nmodes] = 0; 1062 } 1063 1064 static void 1065 getflags(const uint8_t bands[], uint32_t flags[], int ht40) 1066 { 1067 1068 flags[0] = 0; 1069 if (isset(bands, IEEE80211_MODE_11A) || 1070 isset(bands, IEEE80211_MODE_11NA)) { 1071 if (isset(bands, IEEE80211_MODE_11B) || 1072 isset(bands, IEEE80211_MODE_11G) || 1073 isset(bands, IEEE80211_MODE_11NG)) 1074 return; 1075 1076 getflags_5ghz(bands, flags, ht40); 1077 } else 1078 getflags_2ghz(bands, flags, ht40); 1079 } 1080 1081 /* 1082 * Add one 20 MHz channel into specified channel list. 1083 */ 1084 int 1085 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1086 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1087 uint32_t chan_flags, const uint8_t bands[]) 1088 { 1089 uint32_t flags[IEEE80211_MODE_MAX]; 1090 int i, error; 1091 1092 getflags(bands, flags, 0); 1093 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1094 1095 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1096 flags[0] | chan_flags); 1097 for (i = 1; flags[i] != 0 && error == 0; i++) { 1098 error = copychan_prev(chans, maxchans, nchans, 1099 flags[i] | chan_flags); 1100 } 1101 1102 return (error); 1103 } 1104 1105 static struct ieee80211_channel * 1106 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1107 uint32_t flags) 1108 { 1109 struct ieee80211_channel *c; 1110 int i; 1111 1112 flags &= IEEE80211_CHAN_ALLTURBO; 1113 /* brute force search */ 1114 for (i = 0; i < nchans; i++) { 1115 c = &chans[i]; 1116 if (c->ic_freq == freq && 1117 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1118 return c; 1119 } 1120 return NULL; 1121 } 1122 1123 /* 1124 * Add 40 MHz channel pair into specified channel list. 1125 */ 1126 int 1127 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1128 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1129 { 1130 struct ieee80211_channel *cent, *extc; 1131 uint16_t freq; 1132 int error; 1133 1134 freq = ieee80211_ieee2mhz(ieee, flags); 1135 1136 /* 1137 * Each entry defines an HT40 channel pair; find the 1138 * center channel, then the extension channel above. 1139 */ 1140 flags |= IEEE80211_CHAN_HT20; 1141 cent = findchannel(chans, *nchans, freq, flags); 1142 if (cent == NULL) 1143 return (EINVAL); 1144 1145 extc = findchannel(chans, *nchans, freq + 20, flags); 1146 if (extc == NULL) 1147 return (ENOENT); 1148 1149 flags &= ~IEEE80211_CHAN_HT; 1150 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1151 maxregpower, flags | IEEE80211_CHAN_HT40U); 1152 if (error != 0) 1153 return (error); 1154 1155 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1156 maxregpower, flags | IEEE80211_CHAN_HT40D); 1157 1158 return (error); 1159 } 1160 1161 /* 1162 * Adds channels into specified channel list (ieee[] array must be sorted). 1163 * Channels are already sorted. 1164 */ 1165 static int 1166 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1167 const uint8_t ieee[], int nieee, uint32_t flags[]) 1168 { 1169 uint16_t freq; 1170 int i, j, error; 1171 1172 for (i = 0; i < nieee; i++) { 1173 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1174 for (j = 0; flags[j] != 0; j++) { 1175 if (flags[j] & IEEE80211_CHAN_HT40D) 1176 if (i == 0 || ieee[i] < ieee[0] + 4 || 1177 freq - 20 != 1178 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1179 continue; 1180 if (flags[j] & IEEE80211_CHAN_HT40U) 1181 if (i == nieee - 1 || 1182 ieee[i] + 4 > ieee[nieee - 1] || 1183 freq + 20 != 1184 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1185 continue; 1186 1187 if (j == 0) { 1188 error = addchan(chans, maxchans, nchans, 1189 ieee[i], freq, 0, flags[j]); 1190 } else { 1191 error = copychan_prev(chans, maxchans, nchans, 1192 flags[j]); 1193 } 1194 if (error != 0) 1195 return (error); 1196 } 1197 } 1198 1199 return (error); 1200 } 1201 1202 int 1203 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1204 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1205 int ht40) 1206 { 1207 uint32_t flags[IEEE80211_MODE_MAX]; 1208 1209 getflags_2ghz(bands, flags, ht40); 1210 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1211 1212 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1213 } 1214 1215 int 1216 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1217 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1218 int ht40) 1219 { 1220 uint32_t flags[IEEE80211_MODE_MAX]; 1221 1222 getflags_5ghz(bands, flags, ht40); 1223 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1224 1225 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1226 } 1227 1228 /* 1229 * Locate a channel given a frequency+flags. We cache 1230 * the previous lookup to optimize switching between two 1231 * channels--as happens with dynamic turbo. 1232 */ 1233 struct ieee80211_channel * 1234 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1235 { 1236 struct ieee80211_channel *c; 1237 1238 flags &= IEEE80211_CHAN_ALLTURBO; 1239 c = ic->ic_prevchan; 1240 if (c != NULL && c->ic_freq == freq && 1241 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1242 return c; 1243 /* brute force search */ 1244 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1245 } 1246 1247 /* 1248 * Locate a channel given a channel number+flags. We cache 1249 * the previous lookup to optimize switching between two 1250 * channels--as happens with dynamic turbo. 1251 */ 1252 struct ieee80211_channel * 1253 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1254 { 1255 struct ieee80211_channel *c; 1256 int i; 1257 1258 flags &= IEEE80211_CHAN_ALLTURBO; 1259 c = ic->ic_prevchan; 1260 if (c != NULL && c->ic_ieee == ieee && 1261 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1262 return c; 1263 /* brute force search */ 1264 for (i = 0; i < ic->ic_nchans; i++) { 1265 c = &ic->ic_channels[i]; 1266 if (c->ic_ieee == ieee && 1267 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1268 return c; 1269 } 1270 return NULL; 1271 } 1272 1273 /* 1274 * Lookup a channel suitable for the given rx status. 1275 * 1276 * This is used to find a channel for a frame (eg beacon, probe 1277 * response) based purely on the received PHY information. 1278 * 1279 * For now it tries to do it based on R_FREQ / R_IEEE. 1280 * This is enough for 11bg and 11a (and thus 11ng/11na) 1281 * but it will not be enough for GSM, PSB channels and the 1282 * like. It also doesn't know about legacy-turbog and 1283 * legacy-turbo modes, which some offload NICs actually 1284 * support in weird ways. 1285 * 1286 * Takes the ic and rxstatus; returns the channel or NULL 1287 * if not found. 1288 * 1289 * XXX TODO: Add support for that when the need arises. 1290 */ 1291 struct ieee80211_channel * 1292 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1293 const struct ieee80211_rx_stats *rxs) 1294 { 1295 struct ieee80211com *ic = vap->iv_ic; 1296 uint32_t flags; 1297 struct ieee80211_channel *c; 1298 1299 if (rxs == NULL) 1300 return (NULL); 1301 1302 /* 1303 * Strictly speaking we only use freq for now, 1304 * however later on we may wish to just store 1305 * the ieee for verification. 1306 */ 1307 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1308 return (NULL); 1309 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1310 return (NULL); 1311 1312 /* 1313 * If the rx status contains a valid ieee/freq, then 1314 * ensure we populate the correct channel information 1315 * in rxchan before passing it up to the scan infrastructure. 1316 * Offload NICs will pass up beacons from all channels 1317 * during background scans. 1318 */ 1319 1320 /* Determine a band */ 1321 /* XXX should be done by the driver? */ 1322 if (rxs->c_freq < 3000) { 1323 flags = IEEE80211_CHAN_G; 1324 } else { 1325 flags = IEEE80211_CHAN_A; 1326 } 1327 1328 /* Channel lookup */ 1329 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1330 1331 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1332 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1333 __func__, 1334 (int) rxs->c_freq, 1335 (int) rxs->c_ieee, 1336 flags, 1337 c); 1338 1339 return (c); 1340 } 1341 1342 static void 1343 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1344 { 1345 #define ADD(_ic, _s, _o) \ 1346 ifmedia_add(media, \ 1347 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1348 static const u_int mopts[IEEE80211_MODE_MAX] = { 1349 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1350 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1351 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1352 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1353 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1354 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1355 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1356 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1357 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1358 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1359 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1360 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1361 }; 1362 u_int mopt; 1363 1364 mopt = mopts[mode]; 1365 if (addsta) 1366 ADD(ic, mword, mopt); /* STA mode has no cap */ 1367 if (caps & IEEE80211_C_IBSS) 1368 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1369 if (caps & IEEE80211_C_HOSTAP) 1370 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1371 if (caps & IEEE80211_C_AHDEMO) 1372 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1373 if (caps & IEEE80211_C_MONITOR) 1374 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1375 if (caps & IEEE80211_C_WDS) 1376 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1377 if (caps & IEEE80211_C_MBSS) 1378 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1379 #undef ADD 1380 } 1381 1382 /* 1383 * Setup the media data structures according to the channel and 1384 * rate tables. 1385 */ 1386 static int 1387 ieee80211_media_setup(struct ieee80211com *ic, 1388 struct ifmedia *media, int caps, int addsta, 1389 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1390 { 1391 int i, j, rate, maxrate, mword, r; 1392 enum ieee80211_phymode mode; 1393 const struct ieee80211_rateset *rs; 1394 struct ieee80211_rateset allrates; 1395 1396 /* 1397 * Fill in media characteristics. 1398 */ 1399 ifmedia_init(media, 0, media_change, media_stat); 1400 maxrate = 0; 1401 /* 1402 * Add media for legacy operating modes. 1403 */ 1404 memset(&allrates, 0, sizeof(allrates)); 1405 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1406 if (isclr(ic->ic_modecaps, mode)) 1407 continue; 1408 addmedia(media, caps, addsta, mode, IFM_AUTO); 1409 if (mode == IEEE80211_MODE_AUTO) 1410 continue; 1411 rs = &ic->ic_sup_rates[mode]; 1412 for (i = 0; i < rs->rs_nrates; i++) { 1413 rate = rs->rs_rates[i]; 1414 mword = ieee80211_rate2media(ic, rate, mode); 1415 if (mword == 0) 1416 continue; 1417 addmedia(media, caps, addsta, mode, mword); 1418 /* 1419 * Add legacy rate to the collection of all rates. 1420 */ 1421 r = rate & IEEE80211_RATE_VAL; 1422 for (j = 0; j < allrates.rs_nrates; j++) 1423 if (allrates.rs_rates[j] == r) 1424 break; 1425 if (j == allrates.rs_nrates) { 1426 /* unique, add to the set */ 1427 allrates.rs_rates[j] = r; 1428 allrates.rs_nrates++; 1429 } 1430 rate = (rate & IEEE80211_RATE_VAL) / 2; 1431 if (rate > maxrate) 1432 maxrate = rate; 1433 } 1434 } 1435 for (i = 0; i < allrates.rs_nrates; i++) { 1436 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1437 IEEE80211_MODE_AUTO); 1438 if (mword == 0) 1439 continue; 1440 /* NB: remove media options from mword */ 1441 addmedia(media, caps, addsta, 1442 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1443 } 1444 /* 1445 * Add HT/11n media. Note that we do not have enough 1446 * bits in the media subtype to express the MCS so we 1447 * use a "placeholder" media subtype and any fixed MCS 1448 * must be specified with a different mechanism. 1449 */ 1450 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1451 if (isclr(ic->ic_modecaps, mode)) 1452 continue; 1453 addmedia(media, caps, addsta, mode, IFM_AUTO); 1454 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1455 } 1456 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1457 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1458 addmedia(media, caps, addsta, 1459 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1460 i = ic->ic_txstream * 8 - 1; 1461 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1462 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1463 rate = ieee80211_htrates[i].ht40_rate_400ns; 1464 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1465 rate = ieee80211_htrates[i].ht40_rate_800ns; 1466 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1467 rate = ieee80211_htrates[i].ht20_rate_400ns; 1468 else 1469 rate = ieee80211_htrates[i].ht20_rate_800ns; 1470 if (rate > maxrate) 1471 maxrate = rate; 1472 } 1473 return maxrate; 1474 } 1475 1476 /* XXX inline or eliminate? */ 1477 const struct ieee80211_rateset * 1478 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1479 { 1480 /* XXX does this work for 11ng basic rates? */ 1481 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1482 } 1483 1484 void 1485 ieee80211_announce(struct ieee80211com *ic) 1486 { 1487 int i, rate, mword; 1488 enum ieee80211_phymode mode; 1489 const struct ieee80211_rateset *rs; 1490 1491 /* NB: skip AUTO since it has no rates */ 1492 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1493 if (isclr(ic->ic_modecaps, mode)) 1494 continue; 1495 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 1496 rs = &ic->ic_sup_rates[mode]; 1497 for (i = 0; i < rs->rs_nrates; i++) { 1498 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1499 if (mword == 0) 1500 continue; 1501 rate = ieee80211_media2rate(mword); 1502 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1503 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1504 } 1505 printf("\n"); 1506 } 1507 ieee80211_ht_announce(ic); 1508 } 1509 1510 void 1511 ieee80211_announce_channels(struct ieee80211com *ic) 1512 { 1513 const struct ieee80211_channel *c; 1514 char type; 1515 int i, cw; 1516 1517 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1518 for (i = 0; i < ic->ic_nchans; i++) { 1519 c = &ic->ic_channels[i]; 1520 if (IEEE80211_IS_CHAN_ST(c)) 1521 type = 'S'; 1522 else if (IEEE80211_IS_CHAN_108A(c)) 1523 type = 'T'; 1524 else if (IEEE80211_IS_CHAN_108G(c)) 1525 type = 'G'; 1526 else if (IEEE80211_IS_CHAN_HT(c)) 1527 type = 'n'; 1528 else if (IEEE80211_IS_CHAN_A(c)) 1529 type = 'a'; 1530 else if (IEEE80211_IS_CHAN_ANYG(c)) 1531 type = 'g'; 1532 else if (IEEE80211_IS_CHAN_B(c)) 1533 type = 'b'; 1534 else 1535 type = 'f'; 1536 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1537 cw = 40; 1538 else if (IEEE80211_IS_CHAN_HALF(c)) 1539 cw = 10; 1540 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1541 cw = 5; 1542 else 1543 cw = 20; 1544 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1545 , c->ic_ieee, c->ic_freq, type 1546 , cw 1547 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1548 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1549 , c->ic_maxregpower 1550 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1551 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1552 ); 1553 } 1554 } 1555 1556 static int 1557 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1558 { 1559 switch (IFM_MODE(ime->ifm_media)) { 1560 case IFM_IEEE80211_11A: 1561 *mode = IEEE80211_MODE_11A; 1562 break; 1563 case IFM_IEEE80211_11B: 1564 *mode = IEEE80211_MODE_11B; 1565 break; 1566 case IFM_IEEE80211_11G: 1567 *mode = IEEE80211_MODE_11G; 1568 break; 1569 case IFM_IEEE80211_FH: 1570 *mode = IEEE80211_MODE_FH; 1571 break; 1572 case IFM_IEEE80211_11NA: 1573 *mode = IEEE80211_MODE_11NA; 1574 break; 1575 case IFM_IEEE80211_11NG: 1576 *mode = IEEE80211_MODE_11NG; 1577 break; 1578 case IFM_AUTO: 1579 *mode = IEEE80211_MODE_AUTO; 1580 break; 1581 default: 1582 return 0; 1583 } 1584 /* 1585 * Turbo mode is an ``option''. 1586 * XXX does not apply to AUTO 1587 */ 1588 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1589 if (*mode == IEEE80211_MODE_11A) { 1590 if (flags & IEEE80211_F_TURBOP) 1591 *mode = IEEE80211_MODE_TURBO_A; 1592 else 1593 *mode = IEEE80211_MODE_STURBO_A; 1594 } else if (*mode == IEEE80211_MODE_11G) 1595 *mode = IEEE80211_MODE_TURBO_G; 1596 else 1597 return 0; 1598 } 1599 /* XXX HT40 +/- */ 1600 return 1; 1601 } 1602 1603 /* 1604 * Handle a media change request on the vap interface. 1605 */ 1606 int 1607 ieee80211_media_change(struct ifnet *ifp) 1608 { 1609 struct ieee80211vap *vap = ifp->if_softc; 1610 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1611 uint16_t newmode; 1612 1613 if (!media2mode(ime, vap->iv_flags, &newmode)) 1614 return EINVAL; 1615 if (vap->iv_des_mode != newmode) { 1616 vap->iv_des_mode = newmode; 1617 /* XXX kick state machine if up+running */ 1618 } 1619 return 0; 1620 } 1621 1622 /* 1623 * Common code to calculate the media status word 1624 * from the operating mode and channel state. 1625 */ 1626 static int 1627 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1628 { 1629 int status; 1630 1631 status = IFM_IEEE80211; 1632 switch (opmode) { 1633 case IEEE80211_M_STA: 1634 break; 1635 case IEEE80211_M_IBSS: 1636 status |= IFM_IEEE80211_ADHOC; 1637 break; 1638 case IEEE80211_M_HOSTAP: 1639 status |= IFM_IEEE80211_HOSTAP; 1640 break; 1641 case IEEE80211_M_MONITOR: 1642 status |= IFM_IEEE80211_MONITOR; 1643 break; 1644 case IEEE80211_M_AHDEMO: 1645 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1646 break; 1647 case IEEE80211_M_WDS: 1648 status |= IFM_IEEE80211_WDS; 1649 break; 1650 case IEEE80211_M_MBSS: 1651 status |= IFM_IEEE80211_MBSS; 1652 break; 1653 } 1654 if (IEEE80211_IS_CHAN_HTA(chan)) { 1655 status |= IFM_IEEE80211_11NA; 1656 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1657 status |= IFM_IEEE80211_11NG; 1658 } else if (IEEE80211_IS_CHAN_A(chan)) { 1659 status |= IFM_IEEE80211_11A; 1660 } else if (IEEE80211_IS_CHAN_B(chan)) { 1661 status |= IFM_IEEE80211_11B; 1662 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1663 status |= IFM_IEEE80211_11G; 1664 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1665 status |= IFM_IEEE80211_FH; 1666 } 1667 /* XXX else complain? */ 1668 1669 if (IEEE80211_IS_CHAN_TURBO(chan)) 1670 status |= IFM_IEEE80211_TURBO; 1671 #if 0 1672 if (IEEE80211_IS_CHAN_HT20(chan)) 1673 status |= IFM_IEEE80211_HT20; 1674 if (IEEE80211_IS_CHAN_HT40(chan)) 1675 status |= IFM_IEEE80211_HT40; 1676 #endif 1677 return status; 1678 } 1679 1680 void 1681 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1682 { 1683 struct ieee80211vap *vap = ifp->if_softc; 1684 struct ieee80211com *ic = vap->iv_ic; 1685 enum ieee80211_phymode mode; 1686 1687 imr->ifm_status = IFM_AVALID; 1688 /* 1689 * NB: use the current channel's mode to lock down a xmit 1690 * rate only when running; otherwise we may have a mismatch 1691 * in which case the rate will not be convertible. 1692 */ 1693 if (vap->iv_state == IEEE80211_S_RUN || 1694 vap->iv_state == IEEE80211_S_SLEEP) { 1695 imr->ifm_status |= IFM_ACTIVE; 1696 mode = ieee80211_chan2mode(ic->ic_curchan); 1697 } else 1698 mode = IEEE80211_MODE_AUTO; 1699 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1700 /* 1701 * Calculate a current rate if possible. 1702 */ 1703 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1704 /* 1705 * A fixed rate is set, report that. 1706 */ 1707 imr->ifm_active |= ieee80211_rate2media(ic, 1708 vap->iv_txparms[mode].ucastrate, mode); 1709 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1710 /* 1711 * In station mode report the current transmit rate. 1712 */ 1713 imr->ifm_active |= ieee80211_rate2media(ic, 1714 vap->iv_bss->ni_txrate, mode); 1715 } else 1716 imr->ifm_active |= IFM_AUTO; 1717 if (imr->ifm_status & IFM_ACTIVE) 1718 imr->ifm_current = imr->ifm_active; 1719 } 1720 1721 /* 1722 * Set the current phy mode and recalculate the active channel 1723 * set based on the available channels for this mode. Also 1724 * select a new default/current channel if the current one is 1725 * inappropriate for this mode. 1726 */ 1727 int 1728 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1729 { 1730 /* 1731 * Adjust basic rates in 11b/11g supported rate set. 1732 * Note that if operating on a hal/quarter rate channel 1733 * this is a noop as those rates sets are different 1734 * and used instead. 1735 */ 1736 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1737 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1738 1739 ic->ic_curmode = mode; 1740 ieee80211_reset_erp(ic); /* reset ERP state */ 1741 1742 return 0; 1743 } 1744 1745 /* 1746 * Return the phy mode for with the specified channel. 1747 */ 1748 enum ieee80211_phymode 1749 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1750 { 1751 1752 if (IEEE80211_IS_CHAN_HTA(chan)) 1753 return IEEE80211_MODE_11NA; 1754 else if (IEEE80211_IS_CHAN_HTG(chan)) 1755 return IEEE80211_MODE_11NG; 1756 else if (IEEE80211_IS_CHAN_108G(chan)) 1757 return IEEE80211_MODE_TURBO_G; 1758 else if (IEEE80211_IS_CHAN_ST(chan)) 1759 return IEEE80211_MODE_STURBO_A; 1760 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1761 return IEEE80211_MODE_TURBO_A; 1762 else if (IEEE80211_IS_CHAN_HALF(chan)) 1763 return IEEE80211_MODE_HALF; 1764 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1765 return IEEE80211_MODE_QUARTER; 1766 else if (IEEE80211_IS_CHAN_A(chan)) 1767 return IEEE80211_MODE_11A; 1768 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1769 return IEEE80211_MODE_11G; 1770 else if (IEEE80211_IS_CHAN_B(chan)) 1771 return IEEE80211_MODE_11B; 1772 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1773 return IEEE80211_MODE_FH; 1774 1775 /* NB: should not get here */ 1776 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1777 __func__, chan->ic_freq, chan->ic_flags); 1778 return IEEE80211_MODE_11B; 1779 } 1780 1781 struct ratemedia { 1782 u_int match; /* rate + mode */ 1783 u_int media; /* if_media rate */ 1784 }; 1785 1786 static int 1787 findmedia(const struct ratemedia rates[], int n, u_int match) 1788 { 1789 int i; 1790 1791 for (i = 0; i < n; i++) 1792 if (rates[i].match == match) 1793 return rates[i].media; 1794 return IFM_AUTO; 1795 } 1796 1797 /* 1798 * Convert IEEE80211 rate value to ifmedia subtype. 1799 * Rate is either a legacy rate in units of 0.5Mbps 1800 * or an MCS index. 1801 */ 1802 int 1803 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1804 { 1805 static const struct ratemedia rates[] = { 1806 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1807 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1808 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1809 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1810 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1811 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1812 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1813 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1814 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1815 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1816 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1817 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1818 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1819 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1820 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1821 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1822 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1823 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1824 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1825 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1826 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1827 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1828 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1829 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1830 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1831 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1832 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1833 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1834 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1835 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1836 /* NB: OFDM72 doesn't really exist so we don't handle it */ 1837 }; 1838 static const struct ratemedia htrates[] = { 1839 { 0, IFM_IEEE80211_MCS }, 1840 { 1, IFM_IEEE80211_MCS }, 1841 { 2, IFM_IEEE80211_MCS }, 1842 { 3, IFM_IEEE80211_MCS }, 1843 { 4, IFM_IEEE80211_MCS }, 1844 { 5, IFM_IEEE80211_MCS }, 1845 { 6, IFM_IEEE80211_MCS }, 1846 { 7, IFM_IEEE80211_MCS }, 1847 { 8, IFM_IEEE80211_MCS }, 1848 { 9, IFM_IEEE80211_MCS }, 1849 { 10, IFM_IEEE80211_MCS }, 1850 { 11, IFM_IEEE80211_MCS }, 1851 { 12, IFM_IEEE80211_MCS }, 1852 { 13, IFM_IEEE80211_MCS }, 1853 { 14, IFM_IEEE80211_MCS }, 1854 { 15, IFM_IEEE80211_MCS }, 1855 { 16, IFM_IEEE80211_MCS }, 1856 { 17, IFM_IEEE80211_MCS }, 1857 { 18, IFM_IEEE80211_MCS }, 1858 { 19, IFM_IEEE80211_MCS }, 1859 { 20, IFM_IEEE80211_MCS }, 1860 { 21, IFM_IEEE80211_MCS }, 1861 { 22, IFM_IEEE80211_MCS }, 1862 { 23, IFM_IEEE80211_MCS }, 1863 { 24, IFM_IEEE80211_MCS }, 1864 { 25, IFM_IEEE80211_MCS }, 1865 { 26, IFM_IEEE80211_MCS }, 1866 { 27, IFM_IEEE80211_MCS }, 1867 { 28, IFM_IEEE80211_MCS }, 1868 { 29, IFM_IEEE80211_MCS }, 1869 { 30, IFM_IEEE80211_MCS }, 1870 { 31, IFM_IEEE80211_MCS }, 1871 { 32, IFM_IEEE80211_MCS }, 1872 { 33, IFM_IEEE80211_MCS }, 1873 { 34, IFM_IEEE80211_MCS }, 1874 { 35, IFM_IEEE80211_MCS }, 1875 { 36, IFM_IEEE80211_MCS }, 1876 { 37, IFM_IEEE80211_MCS }, 1877 { 38, IFM_IEEE80211_MCS }, 1878 { 39, IFM_IEEE80211_MCS }, 1879 { 40, IFM_IEEE80211_MCS }, 1880 { 41, IFM_IEEE80211_MCS }, 1881 { 42, IFM_IEEE80211_MCS }, 1882 { 43, IFM_IEEE80211_MCS }, 1883 { 44, IFM_IEEE80211_MCS }, 1884 { 45, IFM_IEEE80211_MCS }, 1885 { 46, IFM_IEEE80211_MCS }, 1886 { 47, IFM_IEEE80211_MCS }, 1887 { 48, IFM_IEEE80211_MCS }, 1888 { 49, IFM_IEEE80211_MCS }, 1889 { 50, IFM_IEEE80211_MCS }, 1890 { 51, IFM_IEEE80211_MCS }, 1891 { 52, IFM_IEEE80211_MCS }, 1892 { 53, IFM_IEEE80211_MCS }, 1893 { 54, IFM_IEEE80211_MCS }, 1894 { 55, IFM_IEEE80211_MCS }, 1895 { 56, IFM_IEEE80211_MCS }, 1896 { 57, IFM_IEEE80211_MCS }, 1897 { 58, IFM_IEEE80211_MCS }, 1898 { 59, IFM_IEEE80211_MCS }, 1899 { 60, IFM_IEEE80211_MCS }, 1900 { 61, IFM_IEEE80211_MCS }, 1901 { 62, IFM_IEEE80211_MCS }, 1902 { 63, IFM_IEEE80211_MCS }, 1903 { 64, IFM_IEEE80211_MCS }, 1904 { 65, IFM_IEEE80211_MCS }, 1905 { 66, IFM_IEEE80211_MCS }, 1906 { 67, IFM_IEEE80211_MCS }, 1907 { 68, IFM_IEEE80211_MCS }, 1908 { 69, IFM_IEEE80211_MCS }, 1909 { 70, IFM_IEEE80211_MCS }, 1910 { 71, IFM_IEEE80211_MCS }, 1911 { 72, IFM_IEEE80211_MCS }, 1912 { 73, IFM_IEEE80211_MCS }, 1913 { 74, IFM_IEEE80211_MCS }, 1914 { 75, IFM_IEEE80211_MCS }, 1915 { 76, IFM_IEEE80211_MCS }, 1916 }; 1917 int m; 1918 1919 /* 1920 * Check 11n rates first for match as an MCS. 1921 */ 1922 if (mode == IEEE80211_MODE_11NA) { 1923 if (rate & IEEE80211_RATE_MCS) { 1924 rate &= ~IEEE80211_RATE_MCS; 1925 m = findmedia(htrates, nitems(htrates), rate); 1926 if (m != IFM_AUTO) 1927 return m | IFM_IEEE80211_11NA; 1928 } 1929 } else if (mode == IEEE80211_MODE_11NG) { 1930 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1931 if (rate & IEEE80211_RATE_MCS) { 1932 rate &= ~IEEE80211_RATE_MCS; 1933 m = findmedia(htrates, nitems(htrates), rate); 1934 if (m != IFM_AUTO) 1935 return m | IFM_IEEE80211_11NG; 1936 } 1937 } 1938 rate &= IEEE80211_RATE_VAL; 1939 switch (mode) { 1940 case IEEE80211_MODE_11A: 1941 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1942 case IEEE80211_MODE_QUARTER: 1943 case IEEE80211_MODE_11NA: 1944 case IEEE80211_MODE_TURBO_A: 1945 case IEEE80211_MODE_STURBO_A: 1946 return findmedia(rates, nitems(rates), 1947 rate | IFM_IEEE80211_11A); 1948 case IEEE80211_MODE_11B: 1949 return findmedia(rates, nitems(rates), 1950 rate | IFM_IEEE80211_11B); 1951 case IEEE80211_MODE_FH: 1952 return findmedia(rates, nitems(rates), 1953 rate | IFM_IEEE80211_FH); 1954 case IEEE80211_MODE_AUTO: 1955 /* NB: ic may be NULL for some drivers */ 1956 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1957 return findmedia(rates, nitems(rates), 1958 rate | IFM_IEEE80211_FH); 1959 /* NB: hack, 11g matches both 11b+11a rates */ 1960 /* fall thru... */ 1961 case IEEE80211_MODE_11G: 1962 case IEEE80211_MODE_11NG: 1963 case IEEE80211_MODE_TURBO_G: 1964 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 1965 } 1966 return IFM_AUTO; 1967 } 1968 1969 int 1970 ieee80211_media2rate(int mword) 1971 { 1972 static const int ieeerates[] = { 1973 -1, /* IFM_AUTO */ 1974 0, /* IFM_MANUAL */ 1975 0, /* IFM_NONE */ 1976 2, /* IFM_IEEE80211_FH1 */ 1977 4, /* IFM_IEEE80211_FH2 */ 1978 2, /* IFM_IEEE80211_DS1 */ 1979 4, /* IFM_IEEE80211_DS2 */ 1980 11, /* IFM_IEEE80211_DS5 */ 1981 22, /* IFM_IEEE80211_DS11 */ 1982 44, /* IFM_IEEE80211_DS22 */ 1983 12, /* IFM_IEEE80211_OFDM6 */ 1984 18, /* IFM_IEEE80211_OFDM9 */ 1985 24, /* IFM_IEEE80211_OFDM12 */ 1986 36, /* IFM_IEEE80211_OFDM18 */ 1987 48, /* IFM_IEEE80211_OFDM24 */ 1988 72, /* IFM_IEEE80211_OFDM36 */ 1989 96, /* IFM_IEEE80211_OFDM48 */ 1990 108, /* IFM_IEEE80211_OFDM54 */ 1991 144, /* IFM_IEEE80211_OFDM72 */ 1992 0, /* IFM_IEEE80211_DS354k */ 1993 0, /* IFM_IEEE80211_DS512k */ 1994 6, /* IFM_IEEE80211_OFDM3 */ 1995 9, /* IFM_IEEE80211_OFDM4 */ 1996 54, /* IFM_IEEE80211_OFDM27 */ 1997 -1, /* IFM_IEEE80211_MCS */ 1998 }; 1999 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2000 ieeerates[IFM_SUBTYPE(mword)] : 0; 2001 } 2002 2003 /* 2004 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2005 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2006 */ 2007 #define mix(a, b, c) \ 2008 do { \ 2009 a -= b; a -= c; a ^= (c >> 13); \ 2010 b -= c; b -= a; b ^= (a << 8); \ 2011 c -= a; c -= b; c ^= (b >> 13); \ 2012 a -= b; a -= c; a ^= (c >> 12); \ 2013 b -= c; b -= a; b ^= (a << 16); \ 2014 c -= a; c -= b; c ^= (b >> 5); \ 2015 a -= b; a -= c; a ^= (c >> 3); \ 2016 b -= c; b -= a; b ^= (a << 10); \ 2017 c -= a; c -= b; c ^= (b >> 15); \ 2018 } while (/*CONSTCOND*/0) 2019 2020 uint32_t 2021 ieee80211_mac_hash(const struct ieee80211com *ic, 2022 const uint8_t addr[IEEE80211_ADDR_LEN]) 2023 { 2024 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2025 2026 b += addr[5] << 8; 2027 b += addr[4]; 2028 a += addr[3] << 24; 2029 a += addr[2] << 16; 2030 a += addr[1] << 8; 2031 a += addr[0]; 2032 2033 mix(a, b, c); 2034 2035 return c; 2036 } 2037 #undef mix 2038 2039 char 2040 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2041 { 2042 if (IEEE80211_IS_CHAN_ST(c)) 2043 return 'S'; 2044 if (IEEE80211_IS_CHAN_108A(c)) 2045 return 'T'; 2046 if (IEEE80211_IS_CHAN_108G(c)) 2047 return 'G'; 2048 if (IEEE80211_IS_CHAN_HT(c)) 2049 return 'n'; 2050 if (IEEE80211_IS_CHAN_A(c)) 2051 return 'a'; 2052 if (IEEE80211_IS_CHAN_ANYG(c)) 2053 return 'g'; 2054 if (IEEE80211_IS_CHAN_B(c)) 2055 return 'b'; 2056 return 'f'; 2057 } 2058