1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/socket.h> 40 #include <sys/sbuf.h> 41 42 #include <machine/stdarg.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 #include <net/ethernet.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_regdomain.h> 53 #ifdef IEEE80211_SUPPORT_SUPERG 54 #include <net80211/ieee80211_superg.h> 55 #endif 56 #include <net80211/ieee80211_ratectl.h> 57 58 #include <net/bpf.h> 59 60 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 61 [IEEE80211_MODE_AUTO] = "auto", 62 [IEEE80211_MODE_11A] = "11a", 63 [IEEE80211_MODE_11B] = "11b", 64 [IEEE80211_MODE_11G] = "11g", 65 [IEEE80211_MODE_FH] = "FH", 66 [IEEE80211_MODE_TURBO_A] = "turboA", 67 [IEEE80211_MODE_TURBO_G] = "turboG", 68 [IEEE80211_MODE_STURBO_A] = "sturboA", 69 [IEEE80211_MODE_HALF] = "half", 70 [IEEE80211_MODE_QUARTER] = "quarter", 71 [IEEE80211_MODE_11NA] = "11na", 72 [IEEE80211_MODE_11NG] = "11ng", 73 }; 74 /* map ieee80211_opmode to the corresponding capability bit */ 75 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 76 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 77 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 78 [IEEE80211_M_STA] = IEEE80211_C_STA, 79 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 80 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 81 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 82 #ifdef IEEE80211_SUPPORT_MESH 83 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 84 #endif 85 }; 86 87 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 88 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 89 90 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 91 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 92 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 93 static int ieee80211_media_setup(struct ieee80211com *ic, 94 struct ifmedia *media, int caps, int addsta, 95 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 96 static int media_status(enum ieee80211_opmode, 97 const struct ieee80211_channel *); 98 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 99 100 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 101 102 /* 103 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 104 */ 105 #define B(r) ((r) | IEEE80211_RATE_BASIC) 106 static const struct ieee80211_rateset ieee80211_rateset_11a = 107 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 108 static const struct ieee80211_rateset ieee80211_rateset_half = 109 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 110 static const struct ieee80211_rateset ieee80211_rateset_quarter = 111 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 112 static const struct ieee80211_rateset ieee80211_rateset_11b = 113 { 4, { B(2), B(4), B(11), B(22) } }; 114 /* NB: OFDM rates are handled specially based on mode */ 115 static const struct ieee80211_rateset ieee80211_rateset_11g = 116 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 117 #undef B 118 119 /* 120 * Fill in 802.11 available channel set, mark 121 * all available channels as active, and pick 122 * a default channel if not already specified. 123 */ 124 void 125 ieee80211_chan_init(struct ieee80211com *ic) 126 { 127 #define DEFAULTRATES(m, def) do { \ 128 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 129 ic->ic_sup_rates[m] = def; \ 130 } while (0) 131 struct ieee80211_channel *c; 132 int i; 133 134 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 135 ("invalid number of channels specified: %u", ic->ic_nchans)); 136 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 137 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 138 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 139 for (i = 0; i < ic->ic_nchans; i++) { 140 c = &ic->ic_channels[i]; 141 KASSERT(c->ic_flags != 0, ("channel with no flags")); 142 /* 143 * Help drivers that work only with frequencies by filling 144 * in IEEE channel #'s if not already calculated. Note this 145 * mimics similar work done in ieee80211_setregdomain when 146 * changing regulatory state. 147 */ 148 if (c->ic_ieee == 0) 149 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 150 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 151 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 152 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 153 c->ic_flags); 154 /* default max tx power to max regulatory */ 155 if (c->ic_maxpower == 0) 156 c->ic_maxpower = 2*c->ic_maxregpower; 157 setbit(ic->ic_chan_avail, c->ic_ieee); 158 /* 159 * Identify mode capabilities. 160 */ 161 if (IEEE80211_IS_CHAN_A(c)) 162 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 163 if (IEEE80211_IS_CHAN_B(c)) 164 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 165 if (IEEE80211_IS_CHAN_ANYG(c)) 166 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 167 if (IEEE80211_IS_CHAN_FHSS(c)) 168 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 169 if (IEEE80211_IS_CHAN_108A(c)) 170 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 171 if (IEEE80211_IS_CHAN_108G(c)) 172 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 173 if (IEEE80211_IS_CHAN_ST(c)) 174 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 175 if (IEEE80211_IS_CHAN_HALF(c)) 176 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 177 if (IEEE80211_IS_CHAN_QUARTER(c)) 178 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 179 if (IEEE80211_IS_CHAN_HTA(c)) 180 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 181 if (IEEE80211_IS_CHAN_HTG(c)) 182 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 183 } 184 /* initialize candidate channels to all available */ 185 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 186 sizeof(ic->ic_chan_avail)); 187 188 /* sort channel table to allow lookup optimizations */ 189 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 190 191 /* invalidate any previous state */ 192 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 193 ic->ic_prevchan = NULL; 194 ic->ic_csa_newchan = NULL; 195 /* arbitrarily pick the first channel */ 196 ic->ic_curchan = &ic->ic_channels[0]; 197 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 198 199 /* fillin well-known rate sets if driver has not specified */ 200 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 201 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 202 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 203 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 204 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 205 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 206 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 207 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 208 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 209 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 210 211 /* 212 * Setup required information to fill the mcsset field, if driver did 213 * not. Assume a 2T2R setup for historic reasons. 214 */ 215 if (ic->ic_rxstream == 0) 216 ic->ic_rxstream = 2; 217 if (ic->ic_txstream == 0) 218 ic->ic_txstream = 2; 219 220 /* 221 * Set auto mode to reset active channel state and any desired channel. 222 */ 223 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 224 #undef DEFAULTRATES 225 } 226 227 static void 228 null_update_mcast(struct ieee80211com *ic) 229 { 230 231 ic_printf(ic, "need multicast update callback\n"); 232 } 233 234 static void 235 null_update_promisc(struct ieee80211com *ic) 236 { 237 238 ic_printf(ic, "need promiscuous mode update callback\n"); 239 } 240 241 static void 242 null_update_chw(struct ieee80211com *ic) 243 { 244 245 ic_printf(ic, "%s: need callback\n", __func__); 246 } 247 248 int 249 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 250 { 251 va_list ap; 252 int retval; 253 254 retval = printf("%s: ", ic->ic_name); 255 va_start(ap, fmt); 256 retval += vprintf(fmt, ap); 257 va_end(ap); 258 return (retval); 259 } 260 261 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 262 static struct mtx ic_list_mtx; 263 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 264 265 static int 266 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 267 { 268 struct ieee80211com *ic; 269 struct sbuf *sb; 270 char *sp; 271 int error; 272 273 sb = sbuf_new_auto(); 274 sp = ""; 275 mtx_lock(&ic_list_mtx); 276 LIST_FOREACH(ic, &ic_head, ic_next) { 277 sbuf_printf(sb, "%s%s", sp, ic->ic_name); 278 sp = " "; 279 } 280 mtx_unlock(&ic_list_mtx); 281 sbuf_finish(sb); 282 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 283 sbuf_delete(sb); 284 return (error); 285 } 286 287 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 288 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 289 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 290 291 /* 292 * Attach/setup the common net80211 state. Called by 293 * the driver on attach to prior to creating any vap's. 294 */ 295 void 296 ieee80211_ifattach(struct ieee80211com *ic) 297 { 298 299 IEEE80211_LOCK_INIT(ic, ic->ic_name); 300 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 301 TAILQ_INIT(&ic->ic_vaps); 302 303 /* Create a taskqueue for all state changes */ 304 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 305 taskqueue_thread_enqueue, &ic->ic_tq); 306 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 307 ic->ic_name); 308 ic->ic_ierrors = counter_u64_alloc(M_WAITOK); 309 ic->ic_oerrors = counter_u64_alloc(M_WAITOK); 310 /* 311 * Fill in 802.11 available channel set, mark all 312 * available channels as active, and pick a default 313 * channel if not already specified. 314 */ 315 ieee80211_chan_init(ic); 316 317 ic->ic_update_mcast = null_update_mcast; 318 ic->ic_update_promisc = null_update_promisc; 319 ic->ic_update_chw = null_update_chw; 320 321 ic->ic_hash_key = arc4random(); 322 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 323 ic->ic_lintval = ic->ic_bintval; 324 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 325 326 ieee80211_crypto_attach(ic); 327 ieee80211_node_attach(ic); 328 ieee80211_power_attach(ic); 329 ieee80211_proto_attach(ic); 330 #ifdef IEEE80211_SUPPORT_SUPERG 331 ieee80211_superg_attach(ic); 332 #endif 333 ieee80211_ht_attach(ic); 334 ieee80211_scan_attach(ic); 335 ieee80211_regdomain_attach(ic); 336 ieee80211_dfs_attach(ic); 337 338 ieee80211_sysctl_attach(ic); 339 340 mtx_lock(&ic_list_mtx); 341 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 342 mtx_unlock(&ic_list_mtx); 343 } 344 345 /* 346 * Detach net80211 state on device detach. Tear down 347 * all vap's and reclaim all common state prior to the 348 * device state going away. Note we may call back into 349 * driver; it must be prepared for this. 350 */ 351 void 352 ieee80211_ifdetach(struct ieee80211com *ic) 353 { 354 struct ieee80211vap *vap; 355 356 mtx_lock(&ic_list_mtx); 357 LIST_REMOVE(ic, ic_next); 358 mtx_unlock(&ic_list_mtx); 359 360 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 361 362 /* 363 * The VAP is responsible for setting and clearing 364 * the VIMAGE context. 365 */ 366 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 367 ieee80211_vap_destroy(vap); 368 ieee80211_waitfor_parent(ic); 369 370 ieee80211_sysctl_detach(ic); 371 ieee80211_dfs_detach(ic); 372 ieee80211_regdomain_detach(ic); 373 ieee80211_scan_detach(ic); 374 #ifdef IEEE80211_SUPPORT_SUPERG 375 ieee80211_superg_detach(ic); 376 #endif 377 ieee80211_ht_detach(ic); 378 /* NB: must be called before ieee80211_node_detach */ 379 ieee80211_proto_detach(ic); 380 ieee80211_crypto_detach(ic); 381 ieee80211_power_detach(ic); 382 ieee80211_node_detach(ic); 383 384 counter_u64_free(ic->ic_ierrors); 385 counter_u64_free(ic->ic_oerrors); 386 387 taskqueue_free(ic->ic_tq); 388 IEEE80211_TX_LOCK_DESTROY(ic); 389 IEEE80211_LOCK_DESTROY(ic); 390 } 391 392 struct ieee80211com * 393 ieee80211_find_com(const char *name) 394 { 395 struct ieee80211com *ic; 396 397 mtx_lock(&ic_list_mtx); 398 LIST_FOREACH(ic, &ic_head, ic_next) 399 if (strcmp(ic->ic_name, name) == 0) 400 break; 401 mtx_unlock(&ic_list_mtx); 402 403 return (ic); 404 } 405 406 /* 407 * Default reset method for use with the ioctl support. This 408 * method is invoked after any state change in the 802.11 409 * layer that should be propagated to the hardware but not 410 * require re-initialization of the 802.11 state machine (e.g 411 * rescanning for an ap). We always return ENETRESET which 412 * should cause the driver to re-initialize the device. Drivers 413 * can override this method to implement more optimized support. 414 */ 415 static int 416 default_reset(struct ieee80211vap *vap, u_long cmd) 417 { 418 return ENETRESET; 419 } 420 421 /* 422 * Add underlying device errors to vap errors. 423 */ 424 static uint64_t 425 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 426 { 427 struct ieee80211vap *vap = ifp->if_softc; 428 struct ieee80211com *ic = vap->iv_ic; 429 uint64_t rv; 430 431 rv = if_get_counter_default(ifp, cnt); 432 switch (cnt) { 433 case IFCOUNTER_OERRORS: 434 rv += counter_u64_fetch(ic->ic_oerrors); 435 break; 436 case IFCOUNTER_IERRORS: 437 rv += counter_u64_fetch(ic->ic_ierrors); 438 break; 439 default: 440 break; 441 } 442 443 return (rv); 444 } 445 446 /* 447 * Prepare a vap for use. Drivers use this call to 448 * setup net80211 state in new vap's prior attaching 449 * them with ieee80211_vap_attach (below). 450 */ 451 int 452 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 453 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 454 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 455 { 456 struct ifnet *ifp; 457 458 ifp = if_alloc(IFT_ETHER); 459 if (ifp == NULL) { 460 ic_printf(ic, "%s: unable to allocate ifnet\n", 461 __func__); 462 return ENOMEM; 463 } 464 if_initname(ifp, name, unit); 465 ifp->if_softc = vap; /* back pointer */ 466 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 467 ifp->if_transmit = ieee80211_vap_transmit; 468 ifp->if_qflush = ieee80211_vap_qflush; 469 ifp->if_ioctl = ieee80211_ioctl; 470 ifp->if_init = ieee80211_init; 471 ifp->if_get_counter = ieee80211_get_counter; 472 473 vap->iv_ifp = ifp; 474 vap->iv_ic = ic; 475 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 476 vap->iv_flags_ext = ic->ic_flags_ext; 477 vap->iv_flags_ven = ic->ic_flags_ven; 478 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 479 vap->iv_htcaps = ic->ic_htcaps; 480 vap->iv_htextcaps = ic->ic_htextcaps; 481 vap->iv_opmode = opmode; 482 vap->iv_caps |= ieee80211_opcap[opmode]; 483 vap->iv_myaddr = ic->ic_macaddr; 484 switch (opmode) { 485 case IEEE80211_M_WDS: 486 /* 487 * WDS links must specify the bssid of the far end. 488 * For legacy operation this is a static relationship. 489 * For non-legacy operation the station must associate 490 * and be authorized to pass traffic. Plumbing the 491 * vap to the proper node happens when the vap 492 * transitions to RUN state. 493 */ 494 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 495 vap->iv_flags |= IEEE80211_F_DESBSSID; 496 if (flags & IEEE80211_CLONE_WDSLEGACY) 497 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 498 break; 499 #ifdef IEEE80211_SUPPORT_TDMA 500 case IEEE80211_M_AHDEMO: 501 if (flags & IEEE80211_CLONE_TDMA) { 502 /* NB: checked before clone operation allowed */ 503 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 504 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 505 /* 506 * Propagate TDMA capability to mark vap; this 507 * cannot be removed and is used to distinguish 508 * regular ahdemo operation from ahdemo+tdma. 509 */ 510 vap->iv_caps |= IEEE80211_C_TDMA; 511 } 512 break; 513 #endif 514 default: 515 break; 516 } 517 /* auto-enable s/w beacon miss support */ 518 if (flags & IEEE80211_CLONE_NOBEACONS) 519 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 520 /* auto-generated or user supplied MAC address */ 521 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 522 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 523 /* 524 * Enable various functionality by default if we're 525 * capable; the driver can override us if it knows better. 526 */ 527 if (vap->iv_caps & IEEE80211_C_WME) 528 vap->iv_flags |= IEEE80211_F_WME; 529 if (vap->iv_caps & IEEE80211_C_BURST) 530 vap->iv_flags |= IEEE80211_F_BURST; 531 /* NB: bg scanning only makes sense for station mode right now */ 532 if (vap->iv_opmode == IEEE80211_M_STA && 533 (vap->iv_caps & IEEE80211_C_BGSCAN)) 534 vap->iv_flags |= IEEE80211_F_BGSCAN; 535 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 536 /* NB: DFS support only makes sense for ap mode right now */ 537 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 538 (vap->iv_caps & IEEE80211_C_DFS)) 539 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 540 541 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 542 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 543 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 544 /* 545 * Install a default reset method for the ioctl support; 546 * the driver can override this. 547 */ 548 vap->iv_reset = default_reset; 549 550 ieee80211_sysctl_vattach(vap); 551 ieee80211_crypto_vattach(vap); 552 ieee80211_node_vattach(vap); 553 ieee80211_power_vattach(vap); 554 ieee80211_proto_vattach(vap); 555 #ifdef IEEE80211_SUPPORT_SUPERG 556 ieee80211_superg_vattach(vap); 557 #endif 558 ieee80211_ht_vattach(vap); 559 ieee80211_scan_vattach(vap); 560 ieee80211_regdomain_vattach(vap); 561 ieee80211_radiotap_vattach(vap); 562 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 563 564 return 0; 565 } 566 567 /* 568 * Activate a vap. State should have been prepared with a 569 * call to ieee80211_vap_setup and by the driver. On return 570 * from this call the vap is ready for use. 571 */ 572 int 573 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 574 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 575 { 576 struct ifnet *ifp = vap->iv_ifp; 577 struct ieee80211com *ic = vap->iv_ic; 578 struct ifmediareq imr; 579 int maxrate; 580 581 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 582 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 583 __func__, ieee80211_opmode_name[vap->iv_opmode], 584 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 585 586 /* 587 * Do late attach work that cannot happen until after 588 * the driver has had a chance to override defaults. 589 */ 590 ieee80211_node_latevattach(vap); 591 ieee80211_power_latevattach(vap); 592 593 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 594 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 595 ieee80211_media_status(ifp, &imr); 596 /* NB: strip explicit mode; we're actually in autoselect */ 597 ifmedia_set(&vap->iv_media, 598 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 599 if (maxrate) 600 ifp->if_baudrate = IF_Mbps(maxrate); 601 602 ether_ifattach(ifp, macaddr); 603 vap->iv_myaddr = IF_LLADDR(ifp); 604 /* hook output method setup by ether_ifattach */ 605 vap->iv_output = ifp->if_output; 606 ifp->if_output = ieee80211_output; 607 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 608 609 IEEE80211_LOCK(ic); 610 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 611 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 612 #ifdef IEEE80211_SUPPORT_SUPERG 613 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 614 #endif 615 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 616 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 617 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 618 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 619 IEEE80211_UNLOCK(ic); 620 621 return 1; 622 } 623 624 /* 625 * Tear down vap state and reclaim the ifnet. 626 * The driver is assumed to have prepared for 627 * this; e.g. by turning off interrupts for the 628 * underlying device. 629 */ 630 void 631 ieee80211_vap_detach(struct ieee80211vap *vap) 632 { 633 struct ieee80211com *ic = vap->iv_ic; 634 struct ifnet *ifp = vap->iv_ifp; 635 636 CURVNET_SET(ifp->if_vnet); 637 638 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 639 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 640 641 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 642 ether_ifdetach(ifp); 643 644 ieee80211_stop(vap); 645 646 /* 647 * Flush any deferred vap tasks. 648 */ 649 ieee80211_draintask(ic, &vap->iv_nstate_task); 650 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 651 652 /* XXX band-aid until ifnet handles this for us */ 653 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 654 655 IEEE80211_LOCK(ic); 656 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 657 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 658 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 659 #ifdef IEEE80211_SUPPORT_SUPERG 660 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 661 #endif 662 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 663 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 664 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 665 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 666 /* NB: this handles the bpfdetach done below */ 667 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 668 if (vap->iv_ifflags & IFF_PROMISC) 669 ieee80211_promisc(vap, false); 670 if (vap->iv_ifflags & IFF_ALLMULTI) 671 ieee80211_allmulti(vap, false); 672 IEEE80211_UNLOCK(ic); 673 674 ifmedia_removeall(&vap->iv_media); 675 676 ieee80211_radiotap_vdetach(vap); 677 ieee80211_regdomain_vdetach(vap); 678 ieee80211_scan_vdetach(vap); 679 #ifdef IEEE80211_SUPPORT_SUPERG 680 ieee80211_superg_vdetach(vap); 681 #endif 682 ieee80211_ht_vdetach(vap); 683 /* NB: must be before ieee80211_node_vdetach */ 684 ieee80211_proto_vdetach(vap); 685 ieee80211_crypto_vdetach(vap); 686 ieee80211_power_vdetach(vap); 687 ieee80211_node_vdetach(vap); 688 ieee80211_sysctl_vdetach(vap); 689 690 if_free(ifp); 691 692 CURVNET_RESTORE(); 693 } 694 695 /* 696 * Count number of vaps in promisc, and issue promisc on 697 * parent respectively. 698 */ 699 void 700 ieee80211_promisc(struct ieee80211vap *vap, bool on) 701 { 702 struct ieee80211com *ic = vap->iv_ic; 703 704 /* 705 * XXX the bridge sets PROMISC but we don't want to 706 * enable it on the device, discard here so all the 707 * drivers don't need to special-case it 708 */ 709 if (!(vap->iv_opmode == IEEE80211_M_MONITOR || 710 (vap->iv_opmode == IEEE80211_M_AHDEMO && 711 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 712 return; 713 714 IEEE80211_LOCK(ic); 715 if (on) { 716 if (++ic->ic_promisc == 1) 717 ieee80211_runtask(ic, &ic->ic_promisc_task); 718 } else { 719 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 720 __func__, ic)); 721 if (--ic->ic_promisc == 0) 722 ieee80211_runtask(ic, &ic->ic_promisc_task); 723 } 724 IEEE80211_UNLOCK(ic); 725 } 726 727 /* 728 * Count number of vaps in allmulti, and issue allmulti on 729 * parent respectively. 730 */ 731 void 732 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 733 { 734 struct ieee80211com *ic = vap->iv_ic; 735 736 IEEE80211_LOCK(ic); 737 if (on) { 738 if (++ic->ic_allmulti == 1) 739 ieee80211_runtask(ic, &ic->ic_mcast_task); 740 } else { 741 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 742 __func__, ic)); 743 if (--ic->ic_allmulti == 0) 744 ieee80211_runtask(ic, &ic->ic_mcast_task); 745 } 746 IEEE80211_UNLOCK(ic); 747 } 748 749 /* 750 * Synchronize flag bit state in the com structure 751 * according to the state of all vap's. This is used, 752 * for example, to handle state changes via ioctls. 753 */ 754 static void 755 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 756 { 757 struct ieee80211vap *vap; 758 int bit; 759 760 IEEE80211_LOCK_ASSERT(ic); 761 762 bit = 0; 763 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 764 if (vap->iv_flags & flag) { 765 bit = 1; 766 break; 767 } 768 if (bit) 769 ic->ic_flags |= flag; 770 else 771 ic->ic_flags &= ~flag; 772 } 773 774 void 775 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 776 { 777 struct ieee80211com *ic = vap->iv_ic; 778 779 IEEE80211_LOCK(ic); 780 if (flag < 0) { 781 flag = -flag; 782 vap->iv_flags &= ~flag; 783 } else 784 vap->iv_flags |= flag; 785 ieee80211_syncflag_locked(ic, flag); 786 IEEE80211_UNLOCK(ic); 787 } 788 789 /* 790 * Synchronize flags_ht bit state in the com structure 791 * according to the state of all vap's. This is used, 792 * for example, to handle state changes via ioctls. 793 */ 794 static void 795 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 796 { 797 struct ieee80211vap *vap; 798 int bit; 799 800 IEEE80211_LOCK_ASSERT(ic); 801 802 bit = 0; 803 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 804 if (vap->iv_flags_ht & flag) { 805 bit = 1; 806 break; 807 } 808 if (bit) 809 ic->ic_flags_ht |= flag; 810 else 811 ic->ic_flags_ht &= ~flag; 812 } 813 814 void 815 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 816 { 817 struct ieee80211com *ic = vap->iv_ic; 818 819 IEEE80211_LOCK(ic); 820 if (flag < 0) { 821 flag = -flag; 822 vap->iv_flags_ht &= ~flag; 823 } else 824 vap->iv_flags_ht |= flag; 825 ieee80211_syncflag_ht_locked(ic, flag); 826 IEEE80211_UNLOCK(ic); 827 } 828 829 /* 830 * Synchronize flags_ext bit state in the com structure 831 * according to the state of all vap's. This is used, 832 * for example, to handle state changes via ioctls. 833 */ 834 static void 835 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 836 { 837 struct ieee80211vap *vap; 838 int bit; 839 840 IEEE80211_LOCK_ASSERT(ic); 841 842 bit = 0; 843 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 844 if (vap->iv_flags_ext & flag) { 845 bit = 1; 846 break; 847 } 848 if (bit) 849 ic->ic_flags_ext |= flag; 850 else 851 ic->ic_flags_ext &= ~flag; 852 } 853 854 void 855 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 856 { 857 struct ieee80211com *ic = vap->iv_ic; 858 859 IEEE80211_LOCK(ic); 860 if (flag < 0) { 861 flag = -flag; 862 vap->iv_flags_ext &= ~flag; 863 } else 864 vap->iv_flags_ext |= flag; 865 ieee80211_syncflag_ext_locked(ic, flag); 866 IEEE80211_UNLOCK(ic); 867 } 868 869 static __inline int 870 mapgsm(u_int freq, u_int flags) 871 { 872 freq *= 10; 873 if (flags & IEEE80211_CHAN_QUARTER) 874 freq += 5; 875 else if (flags & IEEE80211_CHAN_HALF) 876 freq += 10; 877 else 878 freq += 20; 879 /* NB: there is no 907/20 wide but leave room */ 880 return (freq - 906*10) / 5; 881 } 882 883 static __inline int 884 mappsb(u_int freq, u_int flags) 885 { 886 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 887 } 888 889 /* 890 * Convert MHz frequency to IEEE channel number. 891 */ 892 int 893 ieee80211_mhz2ieee(u_int freq, u_int flags) 894 { 895 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 896 if (flags & IEEE80211_CHAN_GSM) 897 return mapgsm(freq, flags); 898 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 899 if (freq == 2484) 900 return 14; 901 if (freq < 2484) 902 return ((int) freq - 2407) / 5; 903 else 904 return 15 + ((freq - 2512) / 20); 905 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 906 if (freq <= 5000) { 907 /* XXX check regdomain? */ 908 if (IS_FREQ_IN_PSB(freq)) 909 return mappsb(freq, flags); 910 return (freq - 4000) / 5; 911 } else 912 return (freq - 5000) / 5; 913 } else { /* either, guess */ 914 if (freq == 2484) 915 return 14; 916 if (freq < 2484) { 917 if (907 <= freq && freq <= 922) 918 return mapgsm(freq, flags); 919 return ((int) freq - 2407) / 5; 920 } 921 if (freq < 5000) { 922 if (IS_FREQ_IN_PSB(freq)) 923 return mappsb(freq, flags); 924 else if (freq > 4900) 925 return (freq - 4000) / 5; 926 else 927 return 15 + ((freq - 2512) / 20); 928 } 929 return (freq - 5000) / 5; 930 } 931 #undef IS_FREQ_IN_PSB 932 } 933 934 /* 935 * Convert channel to IEEE channel number. 936 */ 937 int 938 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 939 { 940 if (c == NULL) { 941 ic_printf(ic, "invalid channel (NULL)\n"); 942 return 0; /* XXX */ 943 } 944 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 945 } 946 947 /* 948 * Convert IEEE channel number to MHz frequency. 949 */ 950 u_int 951 ieee80211_ieee2mhz(u_int chan, u_int flags) 952 { 953 if (flags & IEEE80211_CHAN_GSM) 954 return 907 + 5 * (chan / 10); 955 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 956 if (chan == 14) 957 return 2484; 958 if (chan < 14) 959 return 2407 + chan*5; 960 else 961 return 2512 + ((chan-15)*20); 962 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 963 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 964 chan -= 37; 965 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 966 } 967 return 5000 + (chan*5); 968 } else { /* either, guess */ 969 /* XXX can't distinguish PSB+GSM channels */ 970 if (chan == 14) 971 return 2484; 972 if (chan < 14) /* 0-13 */ 973 return 2407 + chan*5; 974 if (chan < 27) /* 15-26 */ 975 return 2512 + ((chan-15)*20); 976 return 5000 + (chan*5); 977 } 978 } 979 980 /* 981 * Locate a channel given a frequency+flags. We cache 982 * the previous lookup to optimize switching between two 983 * channels--as happens with dynamic turbo. 984 */ 985 struct ieee80211_channel * 986 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 987 { 988 struct ieee80211_channel *c; 989 int i; 990 991 flags &= IEEE80211_CHAN_ALLTURBO; 992 c = ic->ic_prevchan; 993 if (c != NULL && c->ic_freq == freq && 994 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 995 return c; 996 /* brute force search */ 997 for (i = 0; i < ic->ic_nchans; i++) { 998 c = &ic->ic_channels[i]; 999 if (c->ic_freq == freq && 1000 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1001 return c; 1002 } 1003 return NULL; 1004 } 1005 1006 /* 1007 * Locate a channel given a channel number+flags. We cache 1008 * the previous lookup to optimize switching between two 1009 * channels--as happens with dynamic turbo. 1010 */ 1011 struct ieee80211_channel * 1012 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1013 { 1014 struct ieee80211_channel *c; 1015 int i; 1016 1017 flags &= IEEE80211_CHAN_ALLTURBO; 1018 c = ic->ic_prevchan; 1019 if (c != NULL && c->ic_ieee == ieee && 1020 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1021 return c; 1022 /* brute force search */ 1023 for (i = 0; i < ic->ic_nchans; i++) { 1024 c = &ic->ic_channels[i]; 1025 if (c->ic_ieee == ieee && 1026 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1027 return c; 1028 } 1029 return NULL; 1030 } 1031 1032 /* 1033 * Lookup a channel suitable for the given rx status. 1034 * 1035 * This is used to find a channel for a frame (eg beacon, probe 1036 * response) based purely on the received PHY information. 1037 * 1038 * For now it tries to do it based on R_FREQ / R_IEEE. 1039 * This is enough for 11bg and 11a (and thus 11ng/11na) 1040 * but it will not be enough for GSM, PSB channels and the 1041 * like. It also doesn't know about legacy-turbog and 1042 * legacy-turbo modes, which some offload NICs actually 1043 * support in weird ways. 1044 * 1045 * Takes the ic and rxstatus; returns the channel or NULL 1046 * if not found. 1047 * 1048 * XXX TODO: Add support for that when the need arises. 1049 */ 1050 struct ieee80211_channel * 1051 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1052 const struct ieee80211_rx_stats *rxs) 1053 { 1054 struct ieee80211com *ic = vap->iv_ic; 1055 uint32_t flags; 1056 struct ieee80211_channel *c; 1057 1058 if (rxs == NULL) 1059 return (NULL); 1060 1061 /* 1062 * Strictly speaking we only use freq for now, 1063 * however later on we may wish to just store 1064 * the ieee for verification. 1065 */ 1066 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1067 return (NULL); 1068 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1069 return (NULL); 1070 1071 /* 1072 * If the rx status contains a valid ieee/freq, then 1073 * ensure we populate the correct channel information 1074 * in rxchan before passing it up to the scan infrastructure. 1075 * Offload NICs will pass up beacons from all channels 1076 * during background scans. 1077 */ 1078 1079 /* Determine a band */ 1080 /* XXX should be done by the driver? */ 1081 if (rxs->c_freq < 3000) { 1082 flags = IEEE80211_CHAN_G; 1083 } else { 1084 flags = IEEE80211_CHAN_A; 1085 } 1086 1087 /* Channel lookup */ 1088 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1089 1090 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1091 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1092 __func__, 1093 (int) rxs->c_freq, 1094 (int) rxs->c_ieee, 1095 flags, 1096 c); 1097 1098 return (c); 1099 } 1100 1101 static void 1102 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1103 { 1104 #define ADD(_ic, _s, _o) \ 1105 ifmedia_add(media, \ 1106 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1107 static const u_int mopts[IEEE80211_MODE_MAX] = { 1108 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1109 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1110 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1111 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1112 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1113 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1114 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1115 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1116 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1117 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1118 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1119 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1120 }; 1121 u_int mopt; 1122 1123 mopt = mopts[mode]; 1124 if (addsta) 1125 ADD(ic, mword, mopt); /* STA mode has no cap */ 1126 if (caps & IEEE80211_C_IBSS) 1127 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1128 if (caps & IEEE80211_C_HOSTAP) 1129 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1130 if (caps & IEEE80211_C_AHDEMO) 1131 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1132 if (caps & IEEE80211_C_MONITOR) 1133 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1134 if (caps & IEEE80211_C_WDS) 1135 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1136 if (caps & IEEE80211_C_MBSS) 1137 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1138 #undef ADD 1139 } 1140 1141 /* 1142 * Setup the media data structures according to the channel and 1143 * rate tables. 1144 */ 1145 static int 1146 ieee80211_media_setup(struct ieee80211com *ic, 1147 struct ifmedia *media, int caps, int addsta, 1148 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1149 { 1150 int i, j, rate, maxrate, mword, r; 1151 enum ieee80211_phymode mode; 1152 const struct ieee80211_rateset *rs; 1153 struct ieee80211_rateset allrates; 1154 1155 /* 1156 * Fill in media characteristics. 1157 */ 1158 ifmedia_init(media, 0, media_change, media_stat); 1159 maxrate = 0; 1160 /* 1161 * Add media for legacy operating modes. 1162 */ 1163 memset(&allrates, 0, sizeof(allrates)); 1164 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1165 if (isclr(ic->ic_modecaps, mode)) 1166 continue; 1167 addmedia(media, caps, addsta, mode, IFM_AUTO); 1168 if (mode == IEEE80211_MODE_AUTO) 1169 continue; 1170 rs = &ic->ic_sup_rates[mode]; 1171 for (i = 0; i < rs->rs_nrates; i++) { 1172 rate = rs->rs_rates[i]; 1173 mword = ieee80211_rate2media(ic, rate, mode); 1174 if (mword == 0) 1175 continue; 1176 addmedia(media, caps, addsta, mode, mword); 1177 /* 1178 * Add legacy rate to the collection of all rates. 1179 */ 1180 r = rate & IEEE80211_RATE_VAL; 1181 for (j = 0; j < allrates.rs_nrates; j++) 1182 if (allrates.rs_rates[j] == r) 1183 break; 1184 if (j == allrates.rs_nrates) { 1185 /* unique, add to the set */ 1186 allrates.rs_rates[j] = r; 1187 allrates.rs_nrates++; 1188 } 1189 rate = (rate & IEEE80211_RATE_VAL) / 2; 1190 if (rate > maxrate) 1191 maxrate = rate; 1192 } 1193 } 1194 for (i = 0; i < allrates.rs_nrates; i++) { 1195 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1196 IEEE80211_MODE_AUTO); 1197 if (mword == 0) 1198 continue; 1199 /* NB: remove media options from mword */ 1200 addmedia(media, caps, addsta, 1201 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1202 } 1203 /* 1204 * Add HT/11n media. Note that we do not have enough 1205 * bits in the media subtype to express the MCS so we 1206 * use a "placeholder" media subtype and any fixed MCS 1207 * must be specified with a different mechanism. 1208 */ 1209 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1210 if (isclr(ic->ic_modecaps, mode)) 1211 continue; 1212 addmedia(media, caps, addsta, mode, IFM_AUTO); 1213 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1214 } 1215 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1216 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1217 addmedia(media, caps, addsta, 1218 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1219 i = ic->ic_txstream * 8 - 1; 1220 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1221 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1222 rate = ieee80211_htrates[i].ht40_rate_400ns; 1223 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1224 rate = ieee80211_htrates[i].ht40_rate_800ns; 1225 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1226 rate = ieee80211_htrates[i].ht20_rate_400ns; 1227 else 1228 rate = ieee80211_htrates[i].ht20_rate_800ns; 1229 if (rate > maxrate) 1230 maxrate = rate; 1231 } 1232 return maxrate; 1233 } 1234 1235 /* XXX inline or eliminate? */ 1236 const struct ieee80211_rateset * 1237 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1238 { 1239 /* XXX does this work for 11ng basic rates? */ 1240 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1241 } 1242 1243 void 1244 ieee80211_announce(struct ieee80211com *ic) 1245 { 1246 int i, rate, mword; 1247 enum ieee80211_phymode mode; 1248 const struct ieee80211_rateset *rs; 1249 1250 /* NB: skip AUTO since it has no rates */ 1251 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1252 if (isclr(ic->ic_modecaps, mode)) 1253 continue; 1254 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 1255 rs = &ic->ic_sup_rates[mode]; 1256 for (i = 0; i < rs->rs_nrates; i++) { 1257 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1258 if (mword == 0) 1259 continue; 1260 rate = ieee80211_media2rate(mword); 1261 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1262 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1263 } 1264 printf("\n"); 1265 } 1266 ieee80211_ht_announce(ic); 1267 } 1268 1269 void 1270 ieee80211_announce_channels(struct ieee80211com *ic) 1271 { 1272 const struct ieee80211_channel *c; 1273 char type; 1274 int i, cw; 1275 1276 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1277 for (i = 0; i < ic->ic_nchans; i++) { 1278 c = &ic->ic_channels[i]; 1279 if (IEEE80211_IS_CHAN_ST(c)) 1280 type = 'S'; 1281 else if (IEEE80211_IS_CHAN_108A(c)) 1282 type = 'T'; 1283 else if (IEEE80211_IS_CHAN_108G(c)) 1284 type = 'G'; 1285 else if (IEEE80211_IS_CHAN_HT(c)) 1286 type = 'n'; 1287 else if (IEEE80211_IS_CHAN_A(c)) 1288 type = 'a'; 1289 else if (IEEE80211_IS_CHAN_ANYG(c)) 1290 type = 'g'; 1291 else if (IEEE80211_IS_CHAN_B(c)) 1292 type = 'b'; 1293 else 1294 type = 'f'; 1295 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1296 cw = 40; 1297 else if (IEEE80211_IS_CHAN_HALF(c)) 1298 cw = 10; 1299 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1300 cw = 5; 1301 else 1302 cw = 20; 1303 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1304 , c->ic_ieee, c->ic_freq, type 1305 , cw 1306 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1307 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1308 , c->ic_maxregpower 1309 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1310 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1311 ); 1312 } 1313 } 1314 1315 static int 1316 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1317 { 1318 switch (IFM_MODE(ime->ifm_media)) { 1319 case IFM_IEEE80211_11A: 1320 *mode = IEEE80211_MODE_11A; 1321 break; 1322 case IFM_IEEE80211_11B: 1323 *mode = IEEE80211_MODE_11B; 1324 break; 1325 case IFM_IEEE80211_11G: 1326 *mode = IEEE80211_MODE_11G; 1327 break; 1328 case IFM_IEEE80211_FH: 1329 *mode = IEEE80211_MODE_FH; 1330 break; 1331 case IFM_IEEE80211_11NA: 1332 *mode = IEEE80211_MODE_11NA; 1333 break; 1334 case IFM_IEEE80211_11NG: 1335 *mode = IEEE80211_MODE_11NG; 1336 break; 1337 case IFM_AUTO: 1338 *mode = IEEE80211_MODE_AUTO; 1339 break; 1340 default: 1341 return 0; 1342 } 1343 /* 1344 * Turbo mode is an ``option''. 1345 * XXX does not apply to AUTO 1346 */ 1347 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1348 if (*mode == IEEE80211_MODE_11A) { 1349 if (flags & IEEE80211_F_TURBOP) 1350 *mode = IEEE80211_MODE_TURBO_A; 1351 else 1352 *mode = IEEE80211_MODE_STURBO_A; 1353 } else if (*mode == IEEE80211_MODE_11G) 1354 *mode = IEEE80211_MODE_TURBO_G; 1355 else 1356 return 0; 1357 } 1358 /* XXX HT40 +/- */ 1359 return 1; 1360 } 1361 1362 /* 1363 * Handle a media change request on the vap interface. 1364 */ 1365 int 1366 ieee80211_media_change(struct ifnet *ifp) 1367 { 1368 struct ieee80211vap *vap = ifp->if_softc; 1369 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1370 uint16_t newmode; 1371 1372 if (!media2mode(ime, vap->iv_flags, &newmode)) 1373 return EINVAL; 1374 if (vap->iv_des_mode != newmode) { 1375 vap->iv_des_mode = newmode; 1376 /* XXX kick state machine if up+running */ 1377 } 1378 return 0; 1379 } 1380 1381 /* 1382 * Common code to calculate the media status word 1383 * from the operating mode and channel state. 1384 */ 1385 static int 1386 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1387 { 1388 int status; 1389 1390 status = IFM_IEEE80211; 1391 switch (opmode) { 1392 case IEEE80211_M_STA: 1393 break; 1394 case IEEE80211_M_IBSS: 1395 status |= IFM_IEEE80211_ADHOC; 1396 break; 1397 case IEEE80211_M_HOSTAP: 1398 status |= IFM_IEEE80211_HOSTAP; 1399 break; 1400 case IEEE80211_M_MONITOR: 1401 status |= IFM_IEEE80211_MONITOR; 1402 break; 1403 case IEEE80211_M_AHDEMO: 1404 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1405 break; 1406 case IEEE80211_M_WDS: 1407 status |= IFM_IEEE80211_WDS; 1408 break; 1409 case IEEE80211_M_MBSS: 1410 status |= IFM_IEEE80211_MBSS; 1411 break; 1412 } 1413 if (IEEE80211_IS_CHAN_HTA(chan)) { 1414 status |= IFM_IEEE80211_11NA; 1415 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1416 status |= IFM_IEEE80211_11NG; 1417 } else if (IEEE80211_IS_CHAN_A(chan)) { 1418 status |= IFM_IEEE80211_11A; 1419 } else if (IEEE80211_IS_CHAN_B(chan)) { 1420 status |= IFM_IEEE80211_11B; 1421 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1422 status |= IFM_IEEE80211_11G; 1423 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1424 status |= IFM_IEEE80211_FH; 1425 } 1426 /* XXX else complain? */ 1427 1428 if (IEEE80211_IS_CHAN_TURBO(chan)) 1429 status |= IFM_IEEE80211_TURBO; 1430 #if 0 1431 if (IEEE80211_IS_CHAN_HT20(chan)) 1432 status |= IFM_IEEE80211_HT20; 1433 if (IEEE80211_IS_CHAN_HT40(chan)) 1434 status |= IFM_IEEE80211_HT40; 1435 #endif 1436 return status; 1437 } 1438 1439 void 1440 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1441 { 1442 struct ieee80211vap *vap = ifp->if_softc; 1443 struct ieee80211com *ic = vap->iv_ic; 1444 enum ieee80211_phymode mode; 1445 1446 imr->ifm_status = IFM_AVALID; 1447 /* 1448 * NB: use the current channel's mode to lock down a xmit 1449 * rate only when running; otherwise we may have a mismatch 1450 * in which case the rate will not be convertible. 1451 */ 1452 if (vap->iv_state == IEEE80211_S_RUN || 1453 vap->iv_state == IEEE80211_S_SLEEP) { 1454 imr->ifm_status |= IFM_ACTIVE; 1455 mode = ieee80211_chan2mode(ic->ic_curchan); 1456 } else 1457 mode = IEEE80211_MODE_AUTO; 1458 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1459 /* 1460 * Calculate a current rate if possible. 1461 */ 1462 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1463 /* 1464 * A fixed rate is set, report that. 1465 */ 1466 imr->ifm_active |= ieee80211_rate2media(ic, 1467 vap->iv_txparms[mode].ucastrate, mode); 1468 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1469 /* 1470 * In station mode report the current transmit rate. 1471 */ 1472 imr->ifm_active |= ieee80211_rate2media(ic, 1473 vap->iv_bss->ni_txrate, mode); 1474 } else 1475 imr->ifm_active |= IFM_AUTO; 1476 if (imr->ifm_status & IFM_ACTIVE) 1477 imr->ifm_current = imr->ifm_active; 1478 } 1479 1480 /* 1481 * Set the current phy mode and recalculate the active channel 1482 * set based on the available channels for this mode. Also 1483 * select a new default/current channel if the current one is 1484 * inappropriate for this mode. 1485 */ 1486 int 1487 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1488 { 1489 /* 1490 * Adjust basic rates in 11b/11g supported rate set. 1491 * Note that if operating on a hal/quarter rate channel 1492 * this is a noop as those rates sets are different 1493 * and used instead. 1494 */ 1495 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1496 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1497 1498 ic->ic_curmode = mode; 1499 ieee80211_reset_erp(ic); /* reset ERP state */ 1500 1501 return 0; 1502 } 1503 1504 /* 1505 * Return the phy mode for with the specified channel. 1506 */ 1507 enum ieee80211_phymode 1508 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1509 { 1510 1511 if (IEEE80211_IS_CHAN_HTA(chan)) 1512 return IEEE80211_MODE_11NA; 1513 else if (IEEE80211_IS_CHAN_HTG(chan)) 1514 return IEEE80211_MODE_11NG; 1515 else if (IEEE80211_IS_CHAN_108G(chan)) 1516 return IEEE80211_MODE_TURBO_G; 1517 else if (IEEE80211_IS_CHAN_ST(chan)) 1518 return IEEE80211_MODE_STURBO_A; 1519 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1520 return IEEE80211_MODE_TURBO_A; 1521 else if (IEEE80211_IS_CHAN_HALF(chan)) 1522 return IEEE80211_MODE_HALF; 1523 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1524 return IEEE80211_MODE_QUARTER; 1525 else if (IEEE80211_IS_CHAN_A(chan)) 1526 return IEEE80211_MODE_11A; 1527 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1528 return IEEE80211_MODE_11G; 1529 else if (IEEE80211_IS_CHAN_B(chan)) 1530 return IEEE80211_MODE_11B; 1531 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1532 return IEEE80211_MODE_FH; 1533 1534 /* NB: should not get here */ 1535 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1536 __func__, chan->ic_freq, chan->ic_flags); 1537 return IEEE80211_MODE_11B; 1538 } 1539 1540 struct ratemedia { 1541 u_int match; /* rate + mode */ 1542 u_int media; /* if_media rate */ 1543 }; 1544 1545 static int 1546 findmedia(const struct ratemedia rates[], int n, u_int match) 1547 { 1548 int i; 1549 1550 for (i = 0; i < n; i++) 1551 if (rates[i].match == match) 1552 return rates[i].media; 1553 return IFM_AUTO; 1554 } 1555 1556 /* 1557 * Convert IEEE80211 rate value to ifmedia subtype. 1558 * Rate is either a legacy rate in units of 0.5Mbps 1559 * or an MCS index. 1560 */ 1561 int 1562 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1563 { 1564 static const struct ratemedia rates[] = { 1565 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1566 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1567 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1568 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1569 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1570 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1571 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1572 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1573 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1574 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1575 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1576 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1577 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1578 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1579 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1580 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1581 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1582 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1583 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1584 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1585 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1586 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1587 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1588 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1589 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1590 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1591 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1592 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1593 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1594 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1595 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1596 }; 1597 static const struct ratemedia htrates[] = { 1598 { 0, IFM_IEEE80211_MCS }, 1599 { 1, IFM_IEEE80211_MCS }, 1600 { 2, IFM_IEEE80211_MCS }, 1601 { 3, IFM_IEEE80211_MCS }, 1602 { 4, IFM_IEEE80211_MCS }, 1603 { 5, IFM_IEEE80211_MCS }, 1604 { 6, IFM_IEEE80211_MCS }, 1605 { 7, IFM_IEEE80211_MCS }, 1606 { 8, IFM_IEEE80211_MCS }, 1607 { 9, IFM_IEEE80211_MCS }, 1608 { 10, IFM_IEEE80211_MCS }, 1609 { 11, IFM_IEEE80211_MCS }, 1610 { 12, IFM_IEEE80211_MCS }, 1611 { 13, IFM_IEEE80211_MCS }, 1612 { 14, IFM_IEEE80211_MCS }, 1613 { 15, IFM_IEEE80211_MCS }, 1614 { 16, IFM_IEEE80211_MCS }, 1615 { 17, IFM_IEEE80211_MCS }, 1616 { 18, IFM_IEEE80211_MCS }, 1617 { 19, IFM_IEEE80211_MCS }, 1618 { 20, IFM_IEEE80211_MCS }, 1619 { 21, IFM_IEEE80211_MCS }, 1620 { 22, IFM_IEEE80211_MCS }, 1621 { 23, IFM_IEEE80211_MCS }, 1622 { 24, IFM_IEEE80211_MCS }, 1623 { 25, IFM_IEEE80211_MCS }, 1624 { 26, IFM_IEEE80211_MCS }, 1625 { 27, IFM_IEEE80211_MCS }, 1626 { 28, IFM_IEEE80211_MCS }, 1627 { 29, IFM_IEEE80211_MCS }, 1628 { 30, IFM_IEEE80211_MCS }, 1629 { 31, IFM_IEEE80211_MCS }, 1630 { 32, IFM_IEEE80211_MCS }, 1631 { 33, IFM_IEEE80211_MCS }, 1632 { 34, IFM_IEEE80211_MCS }, 1633 { 35, IFM_IEEE80211_MCS }, 1634 { 36, IFM_IEEE80211_MCS }, 1635 { 37, IFM_IEEE80211_MCS }, 1636 { 38, IFM_IEEE80211_MCS }, 1637 { 39, IFM_IEEE80211_MCS }, 1638 { 40, IFM_IEEE80211_MCS }, 1639 { 41, IFM_IEEE80211_MCS }, 1640 { 42, IFM_IEEE80211_MCS }, 1641 { 43, IFM_IEEE80211_MCS }, 1642 { 44, IFM_IEEE80211_MCS }, 1643 { 45, IFM_IEEE80211_MCS }, 1644 { 46, IFM_IEEE80211_MCS }, 1645 { 47, IFM_IEEE80211_MCS }, 1646 { 48, IFM_IEEE80211_MCS }, 1647 { 49, IFM_IEEE80211_MCS }, 1648 { 50, IFM_IEEE80211_MCS }, 1649 { 51, IFM_IEEE80211_MCS }, 1650 { 52, IFM_IEEE80211_MCS }, 1651 { 53, IFM_IEEE80211_MCS }, 1652 { 54, IFM_IEEE80211_MCS }, 1653 { 55, IFM_IEEE80211_MCS }, 1654 { 56, IFM_IEEE80211_MCS }, 1655 { 57, IFM_IEEE80211_MCS }, 1656 { 58, IFM_IEEE80211_MCS }, 1657 { 59, IFM_IEEE80211_MCS }, 1658 { 60, IFM_IEEE80211_MCS }, 1659 { 61, IFM_IEEE80211_MCS }, 1660 { 62, IFM_IEEE80211_MCS }, 1661 { 63, IFM_IEEE80211_MCS }, 1662 { 64, IFM_IEEE80211_MCS }, 1663 { 65, IFM_IEEE80211_MCS }, 1664 { 66, IFM_IEEE80211_MCS }, 1665 { 67, IFM_IEEE80211_MCS }, 1666 { 68, IFM_IEEE80211_MCS }, 1667 { 69, IFM_IEEE80211_MCS }, 1668 { 70, IFM_IEEE80211_MCS }, 1669 { 71, IFM_IEEE80211_MCS }, 1670 { 72, IFM_IEEE80211_MCS }, 1671 { 73, IFM_IEEE80211_MCS }, 1672 { 74, IFM_IEEE80211_MCS }, 1673 { 75, IFM_IEEE80211_MCS }, 1674 { 76, IFM_IEEE80211_MCS }, 1675 }; 1676 int m; 1677 1678 /* 1679 * Check 11n rates first for match as an MCS. 1680 */ 1681 if (mode == IEEE80211_MODE_11NA) { 1682 if (rate & IEEE80211_RATE_MCS) { 1683 rate &= ~IEEE80211_RATE_MCS; 1684 m = findmedia(htrates, nitems(htrates), rate); 1685 if (m != IFM_AUTO) 1686 return m | IFM_IEEE80211_11NA; 1687 } 1688 } else if (mode == IEEE80211_MODE_11NG) { 1689 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1690 if (rate & IEEE80211_RATE_MCS) { 1691 rate &= ~IEEE80211_RATE_MCS; 1692 m = findmedia(htrates, nitems(htrates), rate); 1693 if (m != IFM_AUTO) 1694 return m | IFM_IEEE80211_11NG; 1695 } 1696 } 1697 rate &= IEEE80211_RATE_VAL; 1698 switch (mode) { 1699 case IEEE80211_MODE_11A: 1700 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1701 case IEEE80211_MODE_QUARTER: 1702 case IEEE80211_MODE_11NA: 1703 case IEEE80211_MODE_TURBO_A: 1704 case IEEE80211_MODE_STURBO_A: 1705 return findmedia(rates, nitems(rates), 1706 rate | IFM_IEEE80211_11A); 1707 case IEEE80211_MODE_11B: 1708 return findmedia(rates, nitems(rates), 1709 rate | IFM_IEEE80211_11B); 1710 case IEEE80211_MODE_FH: 1711 return findmedia(rates, nitems(rates), 1712 rate | IFM_IEEE80211_FH); 1713 case IEEE80211_MODE_AUTO: 1714 /* NB: ic may be NULL for some drivers */ 1715 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1716 return findmedia(rates, nitems(rates), 1717 rate | IFM_IEEE80211_FH); 1718 /* NB: hack, 11g matches both 11b+11a rates */ 1719 /* fall thru... */ 1720 case IEEE80211_MODE_11G: 1721 case IEEE80211_MODE_11NG: 1722 case IEEE80211_MODE_TURBO_G: 1723 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 1724 } 1725 return IFM_AUTO; 1726 } 1727 1728 int 1729 ieee80211_media2rate(int mword) 1730 { 1731 static const int ieeerates[] = { 1732 -1, /* IFM_AUTO */ 1733 0, /* IFM_MANUAL */ 1734 0, /* IFM_NONE */ 1735 2, /* IFM_IEEE80211_FH1 */ 1736 4, /* IFM_IEEE80211_FH2 */ 1737 2, /* IFM_IEEE80211_DS1 */ 1738 4, /* IFM_IEEE80211_DS2 */ 1739 11, /* IFM_IEEE80211_DS5 */ 1740 22, /* IFM_IEEE80211_DS11 */ 1741 44, /* IFM_IEEE80211_DS22 */ 1742 12, /* IFM_IEEE80211_OFDM6 */ 1743 18, /* IFM_IEEE80211_OFDM9 */ 1744 24, /* IFM_IEEE80211_OFDM12 */ 1745 36, /* IFM_IEEE80211_OFDM18 */ 1746 48, /* IFM_IEEE80211_OFDM24 */ 1747 72, /* IFM_IEEE80211_OFDM36 */ 1748 96, /* IFM_IEEE80211_OFDM48 */ 1749 108, /* IFM_IEEE80211_OFDM54 */ 1750 144, /* IFM_IEEE80211_OFDM72 */ 1751 0, /* IFM_IEEE80211_DS354k */ 1752 0, /* IFM_IEEE80211_DS512k */ 1753 6, /* IFM_IEEE80211_OFDM3 */ 1754 9, /* IFM_IEEE80211_OFDM4 */ 1755 54, /* IFM_IEEE80211_OFDM27 */ 1756 -1, /* IFM_IEEE80211_MCS */ 1757 }; 1758 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 1759 ieeerates[IFM_SUBTYPE(mword)] : 0; 1760 } 1761 1762 /* 1763 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1764 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1765 */ 1766 #define mix(a, b, c) \ 1767 do { \ 1768 a -= b; a -= c; a ^= (c >> 13); \ 1769 b -= c; b -= a; b ^= (a << 8); \ 1770 c -= a; c -= b; c ^= (b >> 13); \ 1771 a -= b; a -= c; a ^= (c >> 12); \ 1772 b -= c; b -= a; b ^= (a << 16); \ 1773 c -= a; c -= b; c ^= (b >> 5); \ 1774 a -= b; a -= c; a ^= (c >> 3); \ 1775 b -= c; b -= a; b ^= (a << 10); \ 1776 c -= a; c -= b; c ^= (b >> 15); \ 1777 } while (/*CONSTCOND*/0) 1778 1779 uint32_t 1780 ieee80211_mac_hash(const struct ieee80211com *ic, 1781 const uint8_t addr[IEEE80211_ADDR_LEN]) 1782 { 1783 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1784 1785 b += addr[5] << 8; 1786 b += addr[4]; 1787 a += addr[3] << 24; 1788 a += addr[2] << 16; 1789 a += addr[1] << 8; 1790 a += addr[0]; 1791 1792 mix(a, b, c); 1793 1794 return c; 1795 } 1796 #undef mix 1797 1798 char 1799 ieee80211_channel_type_char(const struct ieee80211_channel *c) 1800 { 1801 if (IEEE80211_IS_CHAN_ST(c)) 1802 return 'S'; 1803 if (IEEE80211_IS_CHAN_108A(c)) 1804 return 'T'; 1805 if (IEEE80211_IS_CHAN_108G(c)) 1806 return 'G'; 1807 if (IEEE80211_IS_CHAN_HT(c)) 1808 return 'n'; 1809 if (IEEE80211_IS_CHAN_A(c)) 1810 return 'a'; 1811 if (IEEE80211_IS_CHAN_ANYG(c)) 1812 return 'g'; 1813 if (IEEE80211_IS_CHAN_B(c)) 1814 return 'b'; 1815 return 'f'; 1816 } 1817