1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ethernet.h> 46 47 #include <net80211/ieee80211_var.h> 48 #include <net80211/ieee80211_regdomain.h> 49 #ifdef IEEE80211_SUPPORT_SUPERG 50 #include <net80211/ieee80211_superg.h> 51 #endif 52 53 #include <net/bpf.h> 54 55 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 56 [IEEE80211_MODE_AUTO] = "auto", 57 [IEEE80211_MODE_11A] = "11a", 58 [IEEE80211_MODE_11B] = "11b", 59 [IEEE80211_MODE_11G] = "11g", 60 [IEEE80211_MODE_FH] = "FH", 61 [IEEE80211_MODE_TURBO_A] = "turboA", 62 [IEEE80211_MODE_TURBO_G] = "turboG", 63 [IEEE80211_MODE_STURBO_A] = "sturboA", 64 [IEEE80211_MODE_HALF] = "half", 65 [IEEE80211_MODE_QUARTER] = "quarter", 66 [IEEE80211_MODE_11NA] = "11na", 67 [IEEE80211_MODE_11NG] = "11ng", 68 }; 69 /* map ieee80211_opmode to the corresponding capability bit */ 70 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 71 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 72 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 73 [IEEE80211_M_STA] = IEEE80211_C_STA, 74 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 75 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 76 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 77 }; 78 79 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 80 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 81 82 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 83 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 84 static int ieee80211_media_setup(struct ieee80211com *ic, 85 struct ifmedia *media, int caps, int addsta, 86 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 87 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 88 static int ieee80211com_media_change(struct ifnet *); 89 static int media_status(enum ieee80211_opmode, 90 const struct ieee80211_channel *); 91 92 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 93 94 /* 95 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 96 */ 97 #define B(r) ((r) | IEEE80211_RATE_BASIC) 98 static const struct ieee80211_rateset ieee80211_rateset_11a = 99 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 100 static const struct ieee80211_rateset ieee80211_rateset_half = 101 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 102 static const struct ieee80211_rateset ieee80211_rateset_quarter = 103 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 104 static const struct ieee80211_rateset ieee80211_rateset_11b = 105 { 4, { B(2), B(4), B(11), B(22) } }; 106 /* NB: OFDM rates are handled specially based on mode */ 107 static const struct ieee80211_rateset ieee80211_rateset_11g = 108 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 109 #undef B 110 111 /* 112 * Fill in 802.11 available channel set, mark 113 * all available channels as active, and pick 114 * a default channel if not already specified. 115 */ 116 static void 117 ieee80211_chan_init(struct ieee80211com *ic) 118 { 119 #define DEFAULTRATES(m, def) do { \ 120 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 121 ic->ic_sup_rates[m] = def; \ 122 } while (0) 123 struct ieee80211_channel *c; 124 int i; 125 126 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 127 ("invalid number of channels specified: %u", ic->ic_nchans)); 128 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 129 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 130 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 131 for (i = 0; i < ic->ic_nchans; i++) { 132 c = &ic->ic_channels[i]; 133 KASSERT(c->ic_flags != 0, ("channel with no flags")); 134 /* 135 * Help drivers that work only with frequencies by filling 136 * in IEEE channel #'s if not already calculated. Note this 137 * mimics similar work done in ieee80211_setregdomain when 138 * changing regulatory state. 139 */ 140 if (c->ic_ieee == 0) 141 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 142 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 143 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 144 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 145 c->ic_flags); 146 /* default max tx power to max regulatory */ 147 if (c->ic_maxpower == 0) 148 c->ic_maxpower = 2*c->ic_maxregpower; 149 setbit(ic->ic_chan_avail, c->ic_ieee); 150 /* 151 * Identify mode capabilities. 152 */ 153 if (IEEE80211_IS_CHAN_A(c)) 154 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 155 if (IEEE80211_IS_CHAN_B(c)) 156 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 157 if (IEEE80211_IS_CHAN_ANYG(c)) 158 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 159 if (IEEE80211_IS_CHAN_FHSS(c)) 160 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 161 if (IEEE80211_IS_CHAN_108A(c)) 162 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 163 if (IEEE80211_IS_CHAN_108G(c)) 164 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 165 if (IEEE80211_IS_CHAN_ST(c)) 166 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 167 if (IEEE80211_IS_CHAN_HALF(c)) 168 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 169 if (IEEE80211_IS_CHAN_QUARTER(c)) 170 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 171 if (IEEE80211_IS_CHAN_HTA(c)) 172 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 173 if (IEEE80211_IS_CHAN_HTG(c)) 174 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 175 } 176 /* initialize candidate channels to all available */ 177 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 178 sizeof(ic->ic_chan_avail)); 179 180 /* sort channel table to allow lookup optimizations */ 181 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 182 183 /* invalidate any previous state */ 184 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 185 ic->ic_prevchan = NULL; 186 ic->ic_csa_newchan = NULL; 187 /* arbitrarily pick the first channel */ 188 ic->ic_curchan = &ic->ic_channels[0]; 189 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 190 191 /* fillin well-known rate sets if driver has not specified */ 192 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 193 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 194 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 195 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 196 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 197 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 198 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 199 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 200 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 201 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 202 203 /* 204 * Set auto mode to reset active channel state and any desired channel. 205 */ 206 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 207 #undef DEFAULTRATES 208 } 209 210 static void 211 null_update_mcast(struct ifnet *ifp) 212 { 213 if_printf(ifp, "need multicast update callback\n"); 214 } 215 216 static void 217 null_update_promisc(struct ifnet *ifp) 218 { 219 if_printf(ifp, "need promiscuous mode update callback\n"); 220 } 221 222 static int 223 null_output(struct ifnet *ifp, struct mbuf *m, 224 struct sockaddr *dst, struct route *ro) 225 { 226 if_printf(ifp, "discard raw packet\n"); 227 m_freem(m); 228 return EIO; 229 } 230 231 static void 232 null_input(struct ifnet *ifp, struct mbuf *m) 233 { 234 if_printf(ifp, "if_input should not be called\n"); 235 m_freem(m); 236 } 237 238 /* 239 * Attach/setup the common net80211 state. Called by 240 * the driver on attach to prior to creating any vap's. 241 */ 242 void 243 ieee80211_ifattach(struct ieee80211com *ic, 244 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 245 { 246 struct ifnet *ifp = ic->ic_ifp; 247 struct sockaddr_dl *sdl; 248 struct ifaddr *ifa; 249 250 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 251 252 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 253 TAILQ_INIT(&ic->ic_vaps); 254 255 /* Create a taskqueue for all state changes */ 256 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 257 taskqueue_thread_enqueue, &ic->ic_tq); 258 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq", 259 ifp->if_xname); 260 /* 261 * Fill in 802.11 available channel set, mark all 262 * available channels as active, and pick a default 263 * channel if not already specified. 264 */ 265 ieee80211_media_init(ic); 266 267 ic->ic_update_mcast = null_update_mcast; 268 ic->ic_update_promisc = null_update_promisc; 269 270 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 271 ic->ic_lintval = ic->ic_bintval; 272 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 273 274 ieee80211_crypto_attach(ic); 275 ieee80211_node_attach(ic); 276 ieee80211_power_attach(ic); 277 ieee80211_proto_attach(ic); 278 #ifdef IEEE80211_SUPPORT_SUPERG 279 ieee80211_superg_attach(ic); 280 #endif 281 ieee80211_ht_attach(ic); 282 ieee80211_scan_attach(ic); 283 ieee80211_regdomain_attach(ic); 284 285 ieee80211_sysctl_attach(ic); 286 287 ifp->if_addrlen = IEEE80211_ADDR_LEN; 288 ifp->if_hdrlen = 0; 289 if_attach(ifp); 290 ifp->if_mtu = IEEE80211_MTU_MAX; 291 ifp->if_broadcastaddr = ieee80211broadcastaddr; 292 ifp->if_output = null_output; 293 ifp->if_input = null_input; /* just in case */ 294 ifp->if_resolvemulti = NULL; /* NB: callers check */ 295 296 ifa = ifaddr_byindex(ifp->if_index); 297 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 298 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 299 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 300 sdl->sdl_alen = IEEE80211_ADDR_LEN; 301 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 302 } 303 304 /* 305 * Detach net80211 state on device detach. Tear down 306 * all vap's and reclaim all common state prior to the 307 * device state going away. Note we may call back into 308 * driver; it must be prepared for this. 309 */ 310 void 311 ieee80211_ifdetach(struct ieee80211com *ic) 312 { 313 struct ifnet *ifp = ic->ic_ifp; 314 struct ieee80211vap *vap; 315 316 if_detach(ifp); 317 318 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 319 ieee80211_vap_destroy(vap); 320 ieee80211_waitfor_parent(ic); 321 322 ieee80211_sysctl_detach(ic); 323 ieee80211_regdomain_detach(ic); 324 ieee80211_scan_detach(ic); 325 #ifdef IEEE80211_SUPPORT_SUPERG 326 ieee80211_superg_detach(ic); 327 #endif 328 ieee80211_ht_detach(ic); 329 /* NB: must be called before ieee80211_node_detach */ 330 ieee80211_proto_detach(ic); 331 ieee80211_crypto_detach(ic); 332 ieee80211_power_detach(ic); 333 ieee80211_node_detach(ic); 334 335 ifmedia_removeall(&ic->ic_media); 336 taskqueue_free(ic->ic_tq); 337 IEEE80211_LOCK_DESTROY(ic); 338 } 339 340 /* 341 * Default reset method for use with the ioctl support. This 342 * method is invoked after any state change in the 802.11 343 * layer that should be propagated to the hardware but not 344 * require re-initialization of the 802.11 state machine (e.g 345 * rescanning for an ap). We always return ENETRESET which 346 * should cause the driver to re-initialize the device. Drivers 347 * can override this method to implement more optimized support. 348 */ 349 static int 350 default_reset(struct ieee80211vap *vap, u_long cmd) 351 { 352 return ENETRESET; 353 } 354 355 /* 356 * Prepare a vap for use. Drivers use this call to 357 * setup net80211 state in new vap's prior attaching 358 * them with ieee80211_vap_attach (below). 359 */ 360 int 361 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 362 const char name[IFNAMSIZ], int unit, int opmode, int flags, 363 const uint8_t bssid[IEEE80211_ADDR_LEN], 364 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 365 { 366 struct ifnet *ifp; 367 368 ifp = if_alloc(IFT_ETHER); 369 if (ifp == NULL) { 370 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 371 __func__); 372 return ENOMEM; 373 } 374 if_initname(ifp, name, unit); 375 ifp->if_softc = vap; /* back pointer */ 376 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 377 ifp->if_start = ieee80211_start; 378 ifp->if_ioctl = ieee80211_ioctl; 379 ifp->if_watchdog = NULL; /* NB: no watchdog routine */ 380 ifp->if_init = ieee80211_init; 381 /* NB: input+output filled in by ether_ifattach */ 382 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 383 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 384 IFQ_SET_READY(&ifp->if_snd); 385 386 vap->iv_ifp = ifp; 387 vap->iv_ic = ic; 388 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 389 vap->iv_flags_ext = ic->ic_flags_ext; 390 vap->iv_flags_ven = ic->ic_flags_ven; 391 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 392 vap->iv_htcaps = ic->ic_htcaps; 393 vap->iv_opmode = opmode; 394 vap->iv_caps |= ieee80211_opcap[opmode]; 395 switch (opmode) { 396 case IEEE80211_M_WDS: 397 /* 398 * WDS links must specify the bssid of the far end. 399 * For legacy operation this is a static relationship. 400 * For non-legacy operation the station must associate 401 * and be authorized to pass traffic. Plumbing the 402 * vap to the proper node happens when the vap 403 * transitions to RUN state. 404 */ 405 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 406 vap->iv_flags |= IEEE80211_F_DESBSSID; 407 if (flags & IEEE80211_CLONE_WDSLEGACY) 408 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 409 break; 410 #ifdef IEEE80211_SUPPORT_TDMA 411 case IEEE80211_M_AHDEMO: 412 if (flags & IEEE80211_CLONE_TDMA) { 413 /* NB: checked before clone operation allowed */ 414 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 415 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 416 /* 417 * Propagate TDMA capability to mark vap; this 418 * cannot be removed and is used to distinguish 419 * regular ahdemo operation from ahdemo+tdma. 420 */ 421 vap->iv_caps |= IEEE80211_C_TDMA; 422 } 423 break; 424 #endif 425 } 426 /* auto-enable s/w beacon miss support */ 427 if (flags & IEEE80211_CLONE_NOBEACONS) 428 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 429 /* 430 * Enable various functionality by default if we're 431 * capable; the driver can override us if it knows better. 432 */ 433 if (vap->iv_caps & IEEE80211_C_WME) 434 vap->iv_flags |= IEEE80211_F_WME; 435 if (vap->iv_caps & IEEE80211_C_BURST) 436 vap->iv_flags |= IEEE80211_F_BURST; 437 /* NB: bg scanning only makes sense for station mode right now */ 438 if (vap->iv_opmode == IEEE80211_M_STA && 439 (vap->iv_caps & IEEE80211_C_BGSCAN)) 440 vap->iv_flags |= IEEE80211_F_BGSCAN; 441 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 442 /* NB: DFS support only makes sense for ap mode right now */ 443 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 444 (vap->iv_caps & IEEE80211_C_DFS)) 445 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 446 447 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 448 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 449 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 450 /* 451 * Install a default reset method for the ioctl support; 452 * the driver can override this. 453 */ 454 vap->iv_reset = default_reset; 455 456 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 457 458 ieee80211_sysctl_vattach(vap); 459 ieee80211_crypto_vattach(vap); 460 ieee80211_node_vattach(vap); 461 ieee80211_power_vattach(vap); 462 ieee80211_proto_vattach(vap); 463 #ifdef IEEE80211_SUPPORT_SUPERG 464 ieee80211_superg_vattach(vap); 465 #endif 466 ieee80211_ht_vattach(vap); 467 ieee80211_scan_vattach(vap); 468 ieee80211_regdomain_vattach(vap); 469 ieee80211_radiotap_vattach(vap); 470 471 return 0; 472 } 473 474 /* 475 * Activate a vap. State should have been prepared with a 476 * call to ieee80211_vap_setup and by the driver. On return 477 * from this call the vap is ready for use. 478 */ 479 int 480 ieee80211_vap_attach(struct ieee80211vap *vap, 481 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 482 { 483 struct ifnet *ifp = vap->iv_ifp; 484 struct ieee80211com *ic = vap->iv_ic; 485 struct ifmediareq imr; 486 int maxrate; 487 488 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 489 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 490 __func__, ieee80211_opmode_name[vap->iv_opmode], 491 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 492 493 /* 494 * Do late attach work that cannot happen until after 495 * the driver has had a chance to override defaults. 496 */ 497 ieee80211_node_latevattach(vap); 498 ieee80211_power_latevattach(vap); 499 500 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 501 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 502 ieee80211_media_status(ifp, &imr); 503 /* NB: strip explicit mode; we're actually in autoselect */ 504 ifmedia_set(&vap->iv_media, 505 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 506 if (maxrate) 507 ifp->if_baudrate = IF_Mbps(maxrate); 508 509 ether_ifattach(ifp, vap->iv_myaddr); 510 /* hook output method setup by ether_ifattach */ 511 vap->iv_output = ifp->if_output; 512 ifp->if_output = ieee80211_output; 513 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 514 515 IEEE80211_LOCK(ic); 516 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 517 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 518 #ifdef IEEE80211_SUPPORT_SUPERG 519 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 520 #endif 521 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 522 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 523 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_HT); 524 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_USEHT40); 525 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 526 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 527 IEEE80211_UNLOCK(ic); 528 529 return 1; 530 } 531 532 /* 533 * Tear down vap state and reclaim the ifnet. 534 * The driver is assumed to have prepared for 535 * this; e.g. by turning off interrupts for the 536 * underlying device. 537 */ 538 void 539 ieee80211_vap_detach(struct ieee80211vap *vap) 540 { 541 struct ieee80211com *ic = vap->iv_ic; 542 struct ifnet *ifp = vap->iv_ifp; 543 544 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 545 __func__, ieee80211_opmode_name[vap->iv_opmode], 546 ic->ic_ifp->if_xname); 547 548 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 549 ether_ifdetach(ifp); 550 551 ieee80211_stop(vap); 552 553 /* 554 * Flush any deferred vap tasks. 555 * NB: must be before ether_ifdetach() and removal from ic_vaps list 556 */ 557 ieee80211_draintask(ic, &vap->iv_nstate_task); 558 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 559 560 IEEE80211_LOCK(ic); 561 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 562 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 563 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 564 #ifdef IEEE80211_SUPPORT_SUPERG 565 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 566 #endif 567 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 568 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 569 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_HT); 570 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_USEHT40); 571 /* NB: this handles the bpfdetach done below */ 572 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 573 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 574 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 575 IEEE80211_UNLOCK(ic); 576 577 ifmedia_removeall(&vap->iv_media); 578 579 ieee80211_radiotap_vdetach(vap); 580 ieee80211_regdomain_vdetach(vap); 581 ieee80211_scan_vdetach(vap); 582 #ifdef IEEE80211_SUPPORT_SUPERG 583 ieee80211_superg_vdetach(vap); 584 #endif 585 ieee80211_ht_vdetach(vap); 586 /* NB: must be before ieee80211_node_vdetach */ 587 ieee80211_proto_vdetach(vap); 588 ieee80211_crypto_vdetach(vap); 589 ieee80211_power_vdetach(vap); 590 ieee80211_node_vdetach(vap); 591 ieee80211_sysctl_vdetach(vap); 592 593 if_free(ifp); 594 } 595 596 /* 597 * Synchronize flag bit state in the parent ifnet structure 598 * according to the state of all vap ifnet's. This is used, 599 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 600 */ 601 void 602 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 603 { 604 struct ifnet *ifp = ic->ic_ifp; 605 struct ieee80211vap *vap; 606 int bit, oflags; 607 608 IEEE80211_LOCK_ASSERT(ic); 609 610 bit = 0; 611 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 612 if (vap->iv_ifp->if_flags & flag) { 613 /* 614 * XXX the bridge sets PROMISC but we don't want to 615 * enable it on the device, discard here so all the 616 * drivers don't need to special-case it 617 */ 618 if (flag == IFF_PROMISC && 619 vap->iv_opmode == IEEE80211_M_HOSTAP) 620 continue; 621 bit = 1; 622 break; 623 } 624 oflags = ifp->if_flags; 625 if (bit) 626 ifp->if_flags |= flag; 627 else 628 ifp->if_flags &= ~flag; 629 if ((ifp->if_flags ^ oflags) & flag) { 630 /* XXX should we return 1/0 and let caller do this? */ 631 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 632 if (flag == IFF_PROMISC) 633 ieee80211_runtask(ic, &ic->ic_promisc_task); 634 else if (flag == IFF_ALLMULTI) 635 ieee80211_runtask(ic, &ic->ic_mcast_task); 636 } 637 } 638 } 639 640 /* 641 * Synchronize flag bit state in the com structure 642 * according to the state of all vap's. This is used, 643 * for example, to handle state changes via ioctls. 644 */ 645 static void 646 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 647 { 648 struct ieee80211vap *vap; 649 int bit; 650 651 IEEE80211_LOCK_ASSERT(ic); 652 653 bit = 0; 654 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 655 if (vap->iv_flags & flag) { 656 bit = 1; 657 break; 658 } 659 if (bit) 660 ic->ic_flags |= flag; 661 else 662 ic->ic_flags &= ~flag; 663 } 664 665 void 666 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 667 { 668 struct ieee80211com *ic = vap->iv_ic; 669 670 IEEE80211_LOCK(ic); 671 if (flag < 0) { 672 flag = -flag; 673 vap->iv_flags &= ~flag; 674 } else 675 vap->iv_flags |= flag; 676 ieee80211_syncflag_locked(ic, flag); 677 IEEE80211_UNLOCK(ic); 678 } 679 680 /* 681 * Synchronize flag bit state in the com structure 682 * according to the state of all vap's. This is used, 683 * for example, to handle state changes via ioctls. 684 */ 685 static void 686 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 687 { 688 struct ieee80211vap *vap; 689 int bit; 690 691 IEEE80211_LOCK_ASSERT(ic); 692 693 bit = 0; 694 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 695 if (vap->iv_flags_ext & flag) { 696 bit = 1; 697 break; 698 } 699 if (bit) 700 ic->ic_flags_ext |= flag; 701 else 702 ic->ic_flags_ext &= ~flag; 703 } 704 705 void 706 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 707 { 708 struct ieee80211com *ic = vap->iv_ic; 709 710 IEEE80211_LOCK(ic); 711 if (flag < 0) { 712 flag = -flag; 713 vap->iv_flags_ext &= ~flag; 714 } else 715 vap->iv_flags_ext |= flag; 716 ieee80211_syncflag_ext_locked(ic, flag); 717 IEEE80211_UNLOCK(ic); 718 } 719 720 static __inline int 721 mapgsm(u_int freq, u_int flags) 722 { 723 freq *= 10; 724 if (flags & IEEE80211_CHAN_QUARTER) 725 freq += 5; 726 else if (flags & IEEE80211_CHAN_HALF) 727 freq += 10; 728 else 729 freq += 20; 730 /* NB: there is no 907/20 wide but leave room */ 731 return (freq - 906*10) / 5; 732 } 733 734 static __inline int 735 mappsb(u_int freq, u_int flags) 736 { 737 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 738 } 739 740 /* 741 * Convert MHz frequency to IEEE channel number. 742 */ 743 int 744 ieee80211_mhz2ieee(u_int freq, u_int flags) 745 { 746 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 747 if (flags & IEEE80211_CHAN_GSM) 748 return mapgsm(freq, flags); 749 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 750 if (freq == 2484) 751 return 14; 752 if (freq < 2484) 753 return ((int) freq - 2407) / 5; 754 else 755 return 15 + ((freq - 2512) / 20); 756 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 757 if (freq <= 5000) { 758 /* XXX check regdomain? */ 759 if (IS_FREQ_IN_PSB(freq)) 760 return mappsb(freq, flags); 761 return (freq - 4000) / 5; 762 } else 763 return (freq - 5000) / 5; 764 } else { /* either, guess */ 765 if (freq == 2484) 766 return 14; 767 if (freq < 2484) { 768 if (907 <= freq && freq <= 922) 769 return mapgsm(freq, flags); 770 return ((int) freq - 2407) / 5; 771 } 772 if (freq < 5000) { 773 if (IS_FREQ_IN_PSB(freq)) 774 return mappsb(freq, flags); 775 else if (freq > 4900) 776 return (freq - 4000) / 5; 777 else 778 return 15 + ((freq - 2512) / 20); 779 } 780 return (freq - 5000) / 5; 781 } 782 #undef IS_FREQ_IN_PSB 783 } 784 785 /* 786 * Convert channel to IEEE channel number. 787 */ 788 int 789 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 790 { 791 if (c == NULL) { 792 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 793 return 0; /* XXX */ 794 } 795 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 796 } 797 798 /* 799 * Convert IEEE channel number to MHz frequency. 800 */ 801 u_int 802 ieee80211_ieee2mhz(u_int chan, u_int flags) 803 { 804 if (flags & IEEE80211_CHAN_GSM) 805 return 907 + 5 * (chan / 10); 806 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 807 if (chan == 14) 808 return 2484; 809 if (chan < 14) 810 return 2407 + chan*5; 811 else 812 return 2512 + ((chan-15)*20); 813 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 814 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 815 chan -= 37; 816 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 817 } 818 return 5000 + (chan*5); 819 } else { /* either, guess */ 820 /* XXX can't distinguish PSB+GSM channels */ 821 if (chan == 14) 822 return 2484; 823 if (chan < 14) /* 0-13 */ 824 return 2407 + chan*5; 825 if (chan < 27) /* 15-26 */ 826 return 2512 + ((chan-15)*20); 827 return 5000 + (chan*5); 828 } 829 } 830 831 /* 832 * Locate a channel given a frequency+flags. We cache 833 * the previous lookup to optimize switching between two 834 * channels--as happens with dynamic turbo. 835 */ 836 struct ieee80211_channel * 837 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 838 { 839 struct ieee80211_channel *c; 840 int i; 841 842 flags &= IEEE80211_CHAN_ALLTURBO; 843 c = ic->ic_prevchan; 844 if (c != NULL && c->ic_freq == freq && 845 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 846 return c; 847 /* brute force search */ 848 for (i = 0; i < ic->ic_nchans; i++) { 849 c = &ic->ic_channels[i]; 850 if (c->ic_freq == freq && 851 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 852 return c; 853 } 854 return NULL; 855 } 856 857 /* 858 * Locate a channel given a channel number+flags. We cache 859 * the previous lookup to optimize switching between two 860 * channels--as happens with dynamic turbo. 861 */ 862 struct ieee80211_channel * 863 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 864 { 865 struct ieee80211_channel *c; 866 int i; 867 868 flags &= IEEE80211_CHAN_ALLTURBO; 869 c = ic->ic_prevchan; 870 if (c != NULL && c->ic_ieee == ieee && 871 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 872 return c; 873 /* brute force search */ 874 for (i = 0; i < ic->ic_nchans; i++) { 875 c = &ic->ic_channels[i]; 876 if (c->ic_ieee == ieee && 877 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 878 return c; 879 } 880 return NULL; 881 } 882 883 static void 884 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 885 { 886 #define ADD(_ic, _s, _o) \ 887 ifmedia_add(media, \ 888 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 889 static const u_int mopts[IEEE80211_MODE_MAX] = { 890 [IEEE80211_MODE_AUTO] = IFM_AUTO, 891 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 892 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 893 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 894 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 895 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 896 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 897 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 898 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 899 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 900 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 901 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 902 }; 903 u_int mopt; 904 905 mopt = mopts[mode]; 906 if (addsta) 907 ADD(ic, mword, mopt); /* STA mode has no cap */ 908 if (caps & IEEE80211_C_IBSS) 909 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 910 if (caps & IEEE80211_C_HOSTAP) 911 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 912 if (caps & IEEE80211_C_AHDEMO) 913 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 914 if (caps & IEEE80211_C_MONITOR) 915 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 916 if (caps & IEEE80211_C_WDS) 917 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 918 #undef ADD 919 } 920 921 /* 922 * Setup the media data structures according to the channel and 923 * rate tables. 924 */ 925 static int 926 ieee80211_media_setup(struct ieee80211com *ic, 927 struct ifmedia *media, int caps, int addsta, 928 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 929 { 930 int i, j, mode, rate, maxrate, mword, r; 931 const struct ieee80211_rateset *rs; 932 struct ieee80211_rateset allrates; 933 934 /* 935 * Fill in media characteristics. 936 */ 937 ifmedia_init(media, 0, media_change, media_stat); 938 maxrate = 0; 939 /* 940 * Add media for legacy operating modes. 941 */ 942 memset(&allrates, 0, sizeof(allrates)); 943 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 944 if (isclr(ic->ic_modecaps, mode)) 945 continue; 946 addmedia(media, caps, addsta, mode, IFM_AUTO); 947 if (mode == IEEE80211_MODE_AUTO) 948 continue; 949 rs = &ic->ic_sup_rates[mode]; 950 for (i = 0; i < rs->rs_nrates; i++) { 951 rate = rs->rs_rates[i]; 952 mword = ieee80211_rate2media(ic, rate, mode); 953 if (mword == 0) 954 continue; 955 addmedia(media, caps, addsta, mode, mword); 956 /* 957 * Add legacy rate to the collection of all rates. 958 */ 959 r = rate & IEEE80211_RATE_VAL; 960 for (j = 0; j < allrates.rs_nrates; j++) 961 if (allrates.rs_rates[j] == r) 962 break; 963 if (j == allrates.rs_nrates) { 964 /* unique, add to the set */ 965 allrates.rs_rates[j] = r; 966 allrates.rs_nrates++; 967 } 968 rate = (rate & IEEE80211_RATE_VAL) / 2; 969 if (rate > maxrate) 970 maxrate = rate; 971 } 972 } 973 for (i = 0; i < allrates.rs_nrates; i++) { 974 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 975 IEEE80211_MODE_AUTO); 976 if (mword == 0) 977 continue; 978 /* NB: remove media options from mword */ 979 addmedia(media, caps, addsta, 980 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 981 } 982 /* 983 * Add HT/11n media. Note that we do not have enough 984 * bits in the media subtype to express the MCS so we 985 * use a "placeholder" media subtype and any fixed MCS 986 * must be specified with a different mechanism. 987 */ 988 for (; mode <= IEEE80211_MODE_11NG; mode++) { 989 if (isclr(ic->ic_modecaps, mode)) 990 continue; 991 addmedia(media, caps, addsta, mode, IFM_AUTO); 992 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 993 } 994 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 995 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 996 addmedia(media, caps, addsta, 997 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 998 /* XXX could walk htrates */ 999 /* XXX known array size */ 1000 if (ieee80211_htrates[15].ht40_rate_400ns > maxrate) 1001 maxrate = ieee80211_htrates[15].ht40_rate_400ns; 1002 } 1003 return maxrate; 1004 } 1005 1006 void 1007 ieee80211_media_init(struct ieee80211com *ic) 1008 { 1009 struct ifnet *ifp = ic->ic_ifp; 1010 int maxrate; 1011 1012 /* NB: this works because the structure is initialized to zero */ 1013 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1014 /* 1015 * We are re-initializing the channel list; clear 1016 * the existing media state as the media routines 1017 * don't suppress duplicates. 1018 */ 1019 ifmedia_removeall(&ic->ic_media); 1020 } 1021 ieee80211_chan_init(ic); 1022 1023 /* 1024 * Recalculate media settings in case new channel list changes 1025 * the set of available modes. 1026 */ 1027 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1028 ieee80211com_media_change, ieee80211com_media_status); 1029 /* NB: strip explicit mode; we're actually in autoselect */ 1030 ifmedia_set(&ic->ic_media, 1031 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1032 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1033 if (maxrate) 1034 ifp->if_baudrate = IF_Mbps(maxrate); 1035 1036 /* XXX need to propagate new media settings to vap's */ 1037 } 1038 1039 /* XXX inline or eliminate? */ 1040 const struct ieee80211_rateset * 1041 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1042 { 1043 /* XXX does this work for 11ng basic rates? */ 1044 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1045 } 1046 1047 void 1048 ieee80211_announce(struct ieee80211com *ic) 1049 { 1050 struct ifnet *ifp = ic->ic_ifp; 1051 int i, mode, rate, mword; 1052 const struct ieee80211_rateset *rs; 1053 1054 /* NB: skip AUTO since it has no rates */ 1055 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1056 if (isclr(ic->ic_modecaps, mode)) 1057 continue; 1058 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1059 rs = &ic->ic_sup_rates[mode]; 1060 for (i = 0; i < rs->rs_nrates; i++) { 1061 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1062 if (mword == 0) 1063 continue; 1064 rate = ieee80211_media2rate(mword); 1065 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1066 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1067 } 1068 printf("\n"); 1069 } 1070 ieee80211_ht_announce(ic); 1071 } 1072 1073 void 1074 ieee80211_announce_channels(struct ieee80211com *ic) 1075 { 1076 const struct ieee80211_channel *c; 1077 char type; 1078 int i, cw; 1079 1080 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1081 for (i = 0; i < ic->ic_nchans; i++) { 1082 c = &ic->ic_channels[i]; 1083 if (IEEE80211_IS_CHAN_ST(c)) 1084 type = 'S'; 1085 else if (IEEE80211_IS_CHAN_108A(c)) 1086 type = 'T'; 1087 else if (IEEE80211_IS_CHAN_108G(c)) 1088 type = 'G'; 1089 else if (IEEE80211_IS_CHAN_HT(c)) 1090 type = 'n'; 1091 else if (IEEE80211_IS_CHAN_A(c)) 1092 type = 'a'; 1093 else if (IEEE80211_IS_CHAN_ANYG(c)) 1094 type = 'g'; 1095 else if (IEEE80211_IS_CHAN_B(c)) 1096 type = 'b'; 1097 else 1098 type = 'f'; 1099 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1100 cw = 40; 1101 else if (IEEE80211_IS_CHAN_HALF(c)) 1102 cw = 10; 1103 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1104 cw = 5; 1105 else 1106 cw = 20; 1107 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1108 , c->ic_ieee, c->ic_freq, type 1109 , cw 1110 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1111 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1112 , c->ic_maxregpower 1113 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1114 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1115 ); 1116 } 1117 } 1118 1119 static int 1120 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1121 { 1122 switch (IFM_MODE(ime->ifm_media)) { 1123 case IFM_IEEE80211_11A: 1124 *mode = IEEE80211_MODE_11A; 1125 break; 1126 case IFM_IEEE80211_11B: 1127 *mode = IEEE80211_MODE_11B; 1128 break; 1129 case IFM_IEEE80211_11G: 1130 *mode = IEEE80211_MODE_11G; 1131 break; 1132 case IFM_IEEE80211_FH: 1133 *mode = IEEE80211_MODE_FH; 1134 break; 1135 case IFM_IEEE80211_11NA: 1136 *mode = IEEE80211_MODE_11NA; 1137 break; 1138 case IFM_IEEE80211_11NG: 1139 *mode = IEEE80211_MODE_11NG; 1140 break; 1141 case IFM_AUTO: 1142 *mode = IEEE80211_MODE_AUTO; 1143 break; 1144 default: 1145 return 0; 1146 } 1147 /* 1148 * Turbo mode is an ``option''. 1149 * XXX does not apply to AUTO 1150 */ 1151 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1152 if (*mode == IEEE80211_MODE_11A) { 1153 if (flags & IEEE80211_F_TURBOP) 1154 *mode = IEEE80211_MODE_TURBO_A; 1155 else 1156 *mode = IEEE80211_MODE_STURBO_A; 1157 } else if (*mode == IEEE80211_MODE_11G) 1158 *mode = IEEE80211_MODE_TURBO_G; 1159 else 1160 return 0; 1161 } 1162 /* XXX HT40 +/- */ 1163 return 1; 1164 } 1165 1166 /* 1167 * Handle a media change request on the underlying interface. 1168 */ 1169 int 1170 ieee80211com_media_change(struct ifnet *ifp) 1171 { 1172 return EINVAL; 1173 } 1174 1175 /* 1176 * Handle a media change request on the vap interface. 1177 */ 1178 int 1179 ieee80211_media_change(struct ifnet *ifp) 1180 { 1181 struct ieee80211vap *vap = ifp->if_softc; 1182 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1183 uint16_t newmode; 1184 1185 if (!media2mode(ime, vap->iv_flags, &newmode)) 1186 return EINVAL; 1187 if (vap->iv_des_mode != newmode) { 1188 vap->iv_des_mode = newmode; 1189 /* XXX kick state machine if up+running */ 1190 } 1191 return 0; 1192 } 1193 1194 /* 1195 * Common code to calculate the media status word 1196 * from the operating mode and channel state. 1197 */ 1198 static int 1199 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1200 { 1201 int status; 1202 1203 status = IFM_IEEE80211; 1204 switch (opmode) { 1205 case IEEE80211_M_STA: 1206 break; 1207 case IEEE80211_M_IBSS: 1208 status |= IFM_IEEE80211_ADHOC; 1209 break; 1210 case IEEE80211_M_HOSTAP: 1211 status |= IFM_IEEE80211_HOSTAP; 1212 break; 1213 case IEEE80211_M_MONITOR: 1214 status |= IFM_IEEE80211_MONITOR; 1215 break; 1216 case IEEE80211_M_AHDEMO: 1217 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1218 break; 1219 case IEEE80211_M_WDS: 1220 status |= IFM_IEEE80211_WDS; 1221 break; 1222 } 1223 if (IEEE80211_IS_CHAN_HTA(chan)) { 1224 status |= IFM_IEEE80211_11NA; 1225 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1226 status |= IFM_IEEE80211_11NG; 1227 } else if (IEEE80211_IS_CHAN_A(chan)) { 1228 status |= IFM_IEEE80211_11A; 1229 } else if (IEEE80211_IS_CHAN_B(chan)) { 1230 status |= IFM_IEEE80211_11B; 1231 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1232 status |= IFM_IEEE80211_11G; 1233 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1234 status |= IFM_IEEE80211_FH; 1235 } 1236 /* XXX else complain? */ 1237 1238 if (IEEE80211_IS_CHAN_TURBO(chan)) 1239 status |= IFM_IEEE80211_TURBO; 1240 #if 0 1241 if (IEEE80211_IS_CHAN_HT20(chan)) 1242 status |= IFM_IEEE80211_HT20; 1243 if (IEEE80211_IS_CHAN_HT40(chan)) 1244 status |= IFM_IEEE80211_HT40; 1245 #endif 1246 return status; 1247 } 1248 1249 static void 1250 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1251 { 1252 struct ieee80211com *ic = ifp->if_l2com; 1253 struct ieee80211vap *vap; 1254 1255 imr->ifm_status = IFM_AVALID; 1256 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1257 if (vap->iv_ifp->if_flags & IFF_UP) { 1258 imr->ifm_status |= IFM_ACTIVE; 1259 break; 1260 } 1261 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1262 if (imr->ifm_status & IFM_ACTIVE) 1263 imr->ifm_current = imr->ifm_active; 1264 } 1265 1266 void 1267 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1268 { 1269 struct ieee80211vap *vap = ifp->if_softc; 1270 struct ieee80211com *ic = vap->iv_ic; 1271 enum ieee80211_phymode mode; 1272 1273 imr->ifm_status = IFM_AVALID; 1274 /* 1275 * NB: use the current channel's mode to lock down a xmit 1276 * rate only when running; otherwise we may have a mismatch 1277 * in which case the rate will not be convertible. 1278 */ 1279 if (vap->iv_state == IEEE80211_S_RUN) { 1280 imr->ifm_status |= IFM_ACTIVE; 1281 mode = ieee80211_chan2mode(ic->ic_curchan); 1282 } else 1283 mode = IEEE80211_MODE_AUTO; 1284 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1285 /* 1286 * Calculate a current rate if possible. 1287 */ 1288 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1289 /* 1290 * A fixed rate is set, report that. 1291 */ 1292 imr->ifm_active |= ieee80211_rate2media(ic, 1293 vap->iv_txparms[mode].ucastrate, mode); 1294 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1295 /* 1296 * In station mode report the current transmit rate. 1297 */ 1298 imr->ifm_active |= ieee80211_rate2media(ic, 1299 vap->iv_bss->ni_txrate, mode); 1300 } else 1301 imr->ifm_active |= IFM_AUTO; 1302 if (imr->ifm_status & IFM_ACTIVE) 1303 imr->ifm_current = imr->ifm_active; 1304 } 1305 1306 /* 1307 * Set the current phy mode and recalculate the active channel 1308 * set based on the available channels for this mode. Also 1309 * select a new default/current channel if the current one is 1310 * inappropriate for this mode. 1311 */ 1312 int 1313 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1314 { 1315 /* 1316 * Adjust basic rates in 11b/11g supported rate set. 1317 * Note that if operating on a hal/quarter rate channel 1318 * this is a noop as those rates sets are different 1319 * and used instead. 1320 */ 1321 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1322 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1323 1324 ic->ic_curmode = mode; 1325 ieee80211_reset_erp(ic); /* reset ERP state */ 1326 1327 return 0; 1328 } 1329 1330 /* 1331 * Return the phy mode for with the specified channel. 1332 */ 1333 enum ieee80211_phymode 1334 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1335 { 1336 1337 if (IEEE80211_IS_CHAN_HTA(chan)) 1338 return IEEE80211_MODE_11NA; 1339 else if (IEEE80211_IS_CHAN_HTG(chan)) 1340 return IEEE80211_MODE_11NG; 1341 else if (IEEE80211_IS_CHAN_108G(chan)) 1342 return IEEE80211_MODE_TURBO_G; 1343 else if (IEEE80211_IS_CHAN_ST(chan)) 1344 return IEEE80211_MODE_STURBO_A; 1345 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1346 return IEEE80211_MODE_TURBO_A; 1347 else if (IEEE80211_IS_CHAN_HALF(chan)) 1348 return IEEE80211_MODE_HALF; 1349 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1350 return IEEE80211_MODE_QUARTER; 1351 else if (IEEE80211_IS_CHAN_A(chan)) 1352 return IEEE80211_MODE_11A; 1353 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1354 return IEEE80211_MODE_11G; 1355 else if (IEEE80211_IS_CHAN_B(chan)) 1356 return IEEE80211_MODE_11B; 1357 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1358 return IEEE80211_MODE_FH; 1359 1360 /* NB: should not get here */ 1361 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1362 __func__, chan->ic_freq, chan->ic_flags); 1363 return IEEE80211_MODE_11B; 1364 } 1365 1366 struct ratemedia { 1367 u_int match; /* rate + mode */ 1368 u_int media; /* if_media rate */ 1369 }; 1370 1371 static int 1372 findmedia(const struct ratemedia rates[], int n, u_int match) 1373 { 1374 int i; 1375 1376 for (i = 0; i < n; i++) 1377 if (rates[i].match == match) 1378 return rates[i].media; 1379 return IFM_AUTO; 1380 } 1381 1382 /* 1383 * Convert IEEE80211 rate value to ifmedia subtype. 1384 * Rate is either a legacy rate in units of 0.5Mbps 1385 * or an MCS index. 1386 */ 1387 int 1388 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1389 { 1390 #define N(a) (sizeof(a) / sizeof(a[0])) 1391 static const struct ratemedia rates[] = { 1392 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1393 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1394 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1395 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1396 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1397 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1398 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1399 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1400 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1401 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1402 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1403 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1404 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1405 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1406 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1407 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1408 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1409 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1410 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1411 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1412 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1413 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1414 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1415 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1416 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1417 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1418 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1419 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1420 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1421 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1422 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1423 }; 1424 static const struct ratemedia htrates[] = { 1425 { 0, IFM_IEEE80211_MCS }, 1426 { 1, IFM_IEEE80211_MCS }, 1427 { 2, IFM_IEEE80211_MCS }, 1428 { 3, IFM_IEEE80211_MCS }, 1429 { 4, IFM_IEEE80211_MCS }, 1430 { 5, IFM_IEEE80211_MCS }, 1431 { 6, IFM_IEEE80211_MCS }, 1432 { 7, IFM_IEEE80211_MCS }, 1433 { 8, IFM_IEEE80211_MCS }, 1434 { 9, IFM_IEEE80211_MCS }, 1435 { 10, IFM_IEEE80211_MCS }, 1436 { 11, IFM_IEEE80211_MCS }, 1437 { 12, IFM_IEEE80211_MCS }, 1438 { 13, IFM_IEEE80211_MCS }, 1439 { 14, IFM_IEEE80211_MCS }, 1440 { 15, IFM_IEEE80211_MCS }, 1441 }; 1442 int m; 1443 1444 /* 1445 * Check 11n rates first for match as an MCS. 1446 */ 1447 if (mode == IEEE80211_MODE_11NA) { 1448 if (rate & IEEE80211_RATE_MCS) { 1449 rate &= ~IEEE80211_RATE_MCS; 1450 m = findmedia(htrates, N(htrates), rate); 1451 if (m != IFM_AUTO) 1452 return m | IFM_IEEE80211_11NA; 1453 } 1454 } else if (mode == IEEE80211_MODE_11NG) { 1455 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1456 if (rate & IEEE80211_RATE_MCS) { 1457 rate &= ~IEEE80211_RATE_MCS; 1458 m = findmedia(htrates, N(htrates), rate); 1459 if (m != IFM_AUTO) 1460 return m | IFM_IEEE80211_11NG; 1461 } 1462 } 1463 rate &= IEEE80211_RATE_VAL; 1464 switch (mode) { 1465 case IEEE80211_MODE_11A: 1466 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1467 case IEEE80211_MODE_QUARTER: 1468 case IEEE80211_MODE_11NA: 1469 case IEEE80211_MODE_TURBO_A: 1470 case IEEE80211_MODE_STURBO_A: 1471 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1472 case IEEE80211_MODE_11B: 1473 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1474 case IEEE80211_MODE_FH: 1475 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1476 case IEEE80211_MODE_AUTO: 1477 /* NB: ic may be NULL for some drivers */ 1478 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1479 return findmedia(rates, N(rates), 1480 rate | IFM_IEEE80211_FH); 1481 /* NB: hack, 11g matches both 11b+11a rates */ 1482 /* fall thru... */ 1483 case IEEE80211_MODE_11G: 1484 case IEEE80211_MODE_11NG: 1485 case IEEE80211_MODE_TURBO_G: 1486 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1487 } 1488 return IFM_AUTO; 1489 #undef N 1490 } 1491 1492 int 1493 ieee80211_media2rate(int mword) 1494 { 1495 #define N(a) (sizeof(a) / sizeof(a[0])) 1496 static const int ieeerates[] = { 1497 -1, /* IFM_AUTO */ 1498 0, /* IFM_MANUAL */ 1499 0, /* IFM_NONE */ 1500 2, /* IFM_IEEE80211_FH1 */ 1501 4, /* IFM_IEEE80211_FH2 */ 1502 2, /* IFM_IEEE80211_DS1 */ 1503 4, /* IFM_IEEE80211_DS2 */ 1504 11, /* IFM_IEEE80211_DS5 */ 1505 22, /* IFM_IEEE80211_DS11 */ 1506 44, /* IFM_IEEE80211_DS22 */ 1507 12, /* IFM_IEEE80211_OFDM6 */ 1508 18, /* IFM_IEEE80211_OFDM9 */ 1509 24, /* IFM_IEEE80211_OFDM12 */ 1510 36, /* IFM_IEEE80211_OFDM18 */ 1511 48, /* IFM_IEEE80211_OFDM24 */ 1512 72, /* IFM_IEEE80211_OFDM36 */ 1513 96, /* IFM_IEEE80211_OFDM48 */ 1514 108, /* IFM_IEEE80211_OFDM54 */ 1515 144, /* IFM_IEEE80211_OFDM72 */ 1516 0, /* IFM_IEEE80211_DS354k */ 1517 0, /* IFM_IEEE80211_DS512k */ 1518 6, /* IFM_IEEE80211_OFDM3 */ 1519 9, /* IFM_IEEE80211_OFDM4 */ 1520 54, /* IFM_IEEE80211_OFDM27 */ 1521 -1, /* IFM_IEEE80211_MCS */ 1522 }; 1523 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1524 ieeerates[IFM_SUBTYPE(mword)] : 0; 1525 #undef N 1526 } 1527