1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/socket.h> 42 #include <sys/sbuf.h> 43 44 #include <machine/stdarg.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_dl.h> 49 #include <net/if_media.h> 50 #include <net/if_private.h> 51 #include <net/if_types.h> 52 #include <net/ethernet.h> 53 54 #include <net80211/ieee80211_var.h> 55 #include <net80211/ieee80211_regdomain.h> 56 #ifdef IEEE80211_SUPPORT_SUPERG 57 #include <net80211/ieee80211_superg.h> 58 #endif 59 #include <net80211/ieee80211_ratectl.h> 60 #include <net80211/ieee80211_vht.h> 61 62 #include <net/bpf.h> 63 64 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 65 [IEEE80211_MODE_AUTO] = "auto", 66 [IEEE80211_MODE_11A] = "11a", 67 [IEEE80211_MODE_11B] = "11b", 68 [IEEE80211_MODE_11G] = "11g", 69 [IEEE80211_MODE_FH] = "FH", 70 [IEEE80211_MODE_TURBO_A] = "turboA", 71 [IEEE80211_MODE_TURBO_G] = "turboG", 72 [IEEE80211_MODE_STURBO_A] = "sturboA", 73 [IEEE80211_MODE_HALF] = "half", 74 [IEEE80211_MODE_QUARTER] = "quarter", 75 [IEEE80211_MODE_11NA] = "11na", 76 [IEEE80211_MODE_11NG] = "11ng", 77 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 78 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 79 }; 80 /* map ieee80211_opmode to the corresponding capability bit */ 81 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 82 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 83 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 84 [IEEE80211_M_STA] = IEEE80211_C_STA, 85 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 86 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 87 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 88 #ifdef IEEE80211_SUPPORT_MESH 89 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 90 #endif 91 }; 92 93 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 94 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 95 96 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 98 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 99 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 100 static int ieee80211_media_setup(struct ieee80211com *ic, 101 struct ifmedia *media, int caps, int addsta, 102 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 103 static int media_status(enum ieee80211_opmode, 104 const struct ieee80211_channel *); 105 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 106 107 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 108 109 /* 110 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 111 */ 112 #define B(r) ((r) | IEEE80211_RATE_BASIC) 113 static const struct ieee80211_rateset ieee80211_rateset_11a = 114 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 115 static const struct ieee80211_rateset ieee80211_rateset_half = 116 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 117 static const struct ieee80211_rateset ieee80211_rateset_quarter = 118 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 119 static const struct ieee80211_rateset ieee80211_rateset_11b = 120 { 4, { B(2), B(4), B(11), B(22) } }; 121 /* NB: OFDM rates are handled specially based on mode */ 122 static const struct ieee80211_rateset ieee80211_rateset_11g = 123 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 124 #undef B 125 126 static int set_vht_extchan(struct ieee80211_channel *c); 127 128 /* 129 * Fill in 802.11 available channel set, mark 130 * all available channels as active, and pick 131 * a default channel if not already specified. 132 */ 133 void 134 ieee80211_chan_init(struct ieee80211com *ic) 135 { 136 #define DEFAULTRATES(m, def) do { \ 137 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 138 ic->ic_sup_rates[m] = def; \ 139 } while (0) 140 struct ieee80211_channel *c; 141 int i; 142 143 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 144 ("invalid number of channels specified: %u", ic->ic_nchans)); 145 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 146 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 147 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 148 for (i = 0; i < ic->ic_nchans; i++) { 149 c = &ic->ic_channels[i]; 150 KASSERT(c->ic_flags != 0, ("channel with no flags")); 151 /* 152 * Help drivers that work only with frequencies by filling 153 * in IEEE channel #'s if not already calculated. Note this 154 * mimics similar work done in ieee80211_setregdomain when 155 * changing regulatory state. 156 */ 157 if (c->ic_ieee == 0) 158 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 159 160 /* 161 * Setup the HT40/VHT40 upper/lower bits. 162 * The VHT80/... math is done elsewhere. 163 */ 164 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 165 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 166 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 167 c->ic_flags); 168 169 /* Update VHT math */ 170 /* 171 * XXX VHT again, note that this assumes VHT80/... channels 172 * are legit already. 173 */ 174 set_vht_extchan(c); 175 176 /* default max tx power to max regulatory */ 177 if (c->ic_maxpower == 0) 178 c->ic_maxpower = 2*c->ic_maxregpower; 179 setbit(ic->ic_chan_avail, c->ic_ieee); 180 /* 181 * Identify mode capabilities. 182 */ 183 if (IEEE80211_IS_CHAN_A(c)) 184 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 185 if (IEEE80211_IS_CHAN_B(c)) 186 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 187 if (IEEE80211_IS_CHAN_ANYG(c)) 188 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 189 if (IEEE80211_IS_CHAN_FHSS(c)) 190 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 191 if (IEEE80211_IS_CHAN_108A(c)) 192 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 193 if (IEEE80211_IS_CHAN_108G(c)) 194 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 195 if (IEEE80211_IS_CHAN_ST(c)) 196 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 197 if (IEEE80211_IS_CHAN_HALF(c)) 198 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 199 if (IEEE80211_IS_CHAN_QUARTER(c)) 200 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 201 if (IEEE80211_IS_CHAN_HTA(c)) 202 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 203 if (IEEE80211_IS_CHAN_HTG(c)) 204 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 205 if (IEEE80211_IS_CHAN_VHTA(c)) 206 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 207 if (IEEE80211_IS_CHAN_VHTG(c)) 208 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 209 } 210 /* initialize candidate channels to all available */ 211 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 212 sizeof(ic->ic_chan_avail)); 213 214 /* sort channel table to allow lookup optimizations */ 215 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 216 217 /* invalidate any previous state */ 218 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 219 ic->ic_prevchan = NULL; 220 ic->ic_csa_newchan = NULL; 221 /* arbitrarily pick the first channel */ 222 ic->ic_curchan = &ic->ic_channels[0]; 223 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 224 225 /* fillin well-known rate sets if driver has not specified */ 226 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 227 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 228 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 229 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 230 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 231 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 232 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 233 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 234 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 235 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 236 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 237 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 238 239 /* 240 * Setup required information to fill the mcsset field, if driver did 241 * not. Assume a 2T2R setup for historic reasons. 242 */ 243 if (ic->ic_rxstream == 0) 244 ic->ic_rxstream = 2; 245 if (ic->ic_txstream == 0) 246 ic->ic_txstream = 2; 247 248 ieee80211_init_suphtrates(ic); 249 250 /* 251 * Set auto mode to reset active channel state and any desired channel. 252 */ 253 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 254 #undef DEFAULTRATES 255 } 256 257 static void 258 null_update_mcast(struct ieee80211com *ic) 259 { 260 261 ic_printf(ic, "need multicast update callback\n"); 262 } 263 264 static void 265 null_update_promisc(struct ieee80211com *ic) 266 { 267 268 ic_printf(ic, "need promiscuous mode update callback\n"); 269 } 270 271 static void 272 null_update_chw(struct ieee80211com *ic) 273 { 274 275 ic_printf(ic, "%s: need callback\n", __func__); 276 } 277 278 int 279 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 280 { 281 va_list ap; 282 int retval; 283 284 retval = printf("%s: ", ic->ic_name); 285 va_start(ap, fmt); 286 retval += vprintf(fmt, ap); 287 va_end(ap); 288 return (retval); 289 } 290 291 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 292 static struct mtx ic_list_mtx; 293 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 294 295 static int 296 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 297 { 298 struct ieee80211com *ic; 299 struct sbuf sb; 300 char *sp; 301 int error; 302 303 error = sysctl_wire_old_buffer(req, 0); 304 if (error) 305 return (error); 306 sbuf_new_for_sysctl(&sb, NULL, 8, req); 307 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 308 sp = ""; 309 mtx_lock(&ic_list_mtx); 310 LIST_FOREACH(ic, &ic_head, ic_next) { 311 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 312 sp = " "; 313 } 314 mtx_unlock(&ic_list_mtx); 315 error = sbuf_finish(&sb); 316 sbuf_delete(&sb); 317 return (error); 318 } 319 320 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 321 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 322 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 323 324 /* 325 * Attach/setup the common net80211 state. Called by 326 * the driver on attach to prior to creating any vap's. 327 */ 328 void 329 ieee80211_ifattach(struct ieee80211com *ic) 330 { 331 332 IEEE80211_LOCK_INIT(ic, ic->ic_name); 333 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 334 TAILQ_INIT(&ic->ic_vaps); 335 336 /* Create a taskqueue for all state changes */ 337 ic->ic_tq = taskqueue_create("ic_taskq", 338 IEEE80211_M_WAITOK | IEEE80211_M_ZERO, 339 taskqueue_thread_enqueue, &ic->ic_tq); 340 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 341 ic->ic_name); 342 ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK); 343 ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK); 344 /* 345 * Fill in 802.11 available channel set, mark all 346 * available channels as active, and pick a default 347 * channel if not already specified. 348 */ 349 ieee80211_chan_init(ic); 350 351 ic->ic_update_mcast = null_update_mcast; 352 ic->ic_update_promisc = null_update_promisc; 353 ic->ic_update_chw = null_update_chw; 354 355 ic->ic_hash_key = arc4random(); 356 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 357 ic->ic_lintval = ic->ic_bintval; 358 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 359 360 ieee80211_crypto_attach(ic); 361 ieee80211_node_attach(ic); 362 ieee80211_power_attach(ic); 363 ieee80211_proto_attach(ic); 364 #ifdef IEEE80211_SUPPORT_SUPERG 365 ieee80211_superg_attach(ic); 366 #endif 367 ieee80211_ht_attach(ic); 368 ieee80211_vht_attach(ic); 369 ieee80211_scan_attach(ic); 370 ieee80211_regdomain_attach(ic); 371 ieee80211_dfs_attach(ic); 372 373 ieee80211_sysctl_attach(ic); 374 375 mtx_lock(&ic_list_mtx); 376 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 377 mtx_unlock(&ic_list_mtx); 378 } 379 380 /* 381 * Detach net80211 state on device detach. Tear down 382 * all vap's and reclaim all common state prior to the 383 * device state going away. Note we may call back into 384 * driver; it must be prepared for this. 385 */ 386 void 387 ieee80211_ifdetach(struct ieee80211com *ic) 388 { 389 struct ieee80211vap *vap; 390 391 /* 392 * We use this as an indicator that ifattach never had a chance to be 393 * called, e.g. early driver attach failed and ifdetach was called 394 * during subsequent detach. Never fear, for we have nothing to do 395 * here. 396 */ 397 if (ic->ic_tq == NULL) 398 return; 399 400 mtx_lock(&ic_list_mtx); 401 LIST_REMOVE(ic, ic_next); 402 mtx_unlock(&ic_list_mtx); 403 404 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 405 406 /* 407 * The VAP is responsible for setting and clearing 408 * the VIMAGE context. 409 */ 410 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { 411 ieee80211_com_vdetach(vap); 412 ieee80211_vap_destroy(vap); 413 } 414 ieee80211_waitfor_parent(ic); 415 416 ieee80211_sysctl_detach(ic); 417 ieee80211_dfs_detach(ic); 418 ieee80211_regdomain_detach(ic); 419 ieee80211_scan_detach(ic); 420 #ifdef IEEE80211_SUPPORT_SUPERG 421 ieee80211_superg_detach(ic); 422 #endif 423 ieee80211_vht_detach(ic); 424 ieee80211_ht_detach(ic); 425 /* NB: must be called before ieee80211_node_detach */ 426 ieee80211_proto_detach(ic); 427 ieee80211_crypto_detach(ic); 428 ieee80211_power_detach(ic); 429 ieee80211_node_detach(ic); 430 431 counter_u64_free(ic->ic_ierrors); 432 counter_u64_free(ic->ic_oerrors); 433 434 taskqueue_free(ic->ic_tq); 435 IEEE80211_TX_LOCK_DESTROY(ic); 436 IEEE80211_LOCK_DESTROY(ic); 437 } 438 439 struct ieee80211com * 440 ieee80211_find_com(const char *name) 441 { 442 struct ieee80211com *ic; 443 444 mtx_lock(&ic_list_mtx); 445 LIST_FOREACH(ic, &ic_head, ic_next) 446 if (strcmp(ic->ic_name, name) == 0) 447 break; 448 mtx_unlock(&ic_list_mtx); 449 450 return (ic); 451 } 452 453 void 454 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 455 { 456 struct ieee80211com *ic; 457 458 mtx_lock(&ic_list_mtx); 459 LIST_FOREACH(ic, &ic_head, ic_next) 460 (*f)(arg, ic); 461 mtx_unlock(&ic_list_mtx); 462 } 463 464 /* 465 * Default reset method for use with the ioctl support. This 466 * method is invoked after any state change in the 802.11 467 * layer that should be propagated to the hardware but not 468 * require re-initialization of the 802.11 state machine (e.g 469 * rescanning for an ap). We always return ENETRESET which 470 * should cause the driver to re-initialize the device. Drivers 471 * can override this method to implement more optimized support. 472 */ 473 static int 474 default_reset(struct ieee80211vap *vap, u_long cmd) 475 { 476 return ENETRESET; 477 } 478 479 /* 480 * Default for updating the VAP default TX key index. 481 * 482 * Drivers that support TX offload as well as hardware encryption offload 483 * may need to be informed of key index changes separate from the key 484 * update. 485 */ 486 static void 487 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 488 { 489 490 /* XXX assert validity */ 491 /* XXX assert we're in a key update block */ 492 vap->iv_def_txkey = kid; 493 } 494 495 /* 496 * Add underlying device errors to vap errors. 497 */ 498 static uint64_t 499 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 500 { 501 struct ieee80211vap *vap = ifp->if_softc; 502 struct ieee80211com *ic = vap->iv_ic; 503 uint64_t rv; 504 505 rv = if_get_counter_default(ifp, cnt); 506 switch (cnt) { 507 case IFCOUNTER_OERRORS: 508 rv += counter_u64_fetch(ic->ic_oerrors); 509 break; 510 case IFCOUNTER_IERRORS: 511 rv += counter_u64_fetch(ic->ic_ierrors); 512 break; 513 default: 514 break; 515 } 516 517 return (rv); 518 } 519 520 /* 521 * Prepare a vap for use. Drivers use this call to 522 * setup net80211 state in new vap's prior attaching 523 * them with ieee80211_vap_attach (below). 524 */ 525 int 526 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 527 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 528 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 529 { 530 struct ifnet *ifp; 531 532 ifp = if_alloc(IFT_ETHER); 533 if (ifp == NULL) { 534 ic_printf(ic, "%s: unable to allocate ifnet\n", __func__); 535 return ENOMEM; 536 } 537 if_initname(ifp, name, unit); 538 ifp->if_softc = vap; /* back pointer */ 539 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 540 ifp->if_transmit = ieee80211_vap_transmit; 541 ifp->if_qflush = ieee80211_vap_qflush; 542 ifp->if_ioctl = ieee80211_ioctl; 543 ifp->if_init = ieee80211_init; 544 ifp->if_get_counter = ieee80211_get_counter; 545 546 vap->iv_ifp = ifp; 547 vap->iv_ic = ic; 548 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 549 vap->iv_flags_ext = ic->ic_flags_ext; 550 vap->iv_flags_ven = ic->ic_flags_ven; 551 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 552 553 /* 11n capabilities - XXX methodize */ 554 vap->iv_htcaps = ic->ic_htcaps; 555 vap->iv_htextcaps = ic->ic_htextcaps; 556 557 /* 11ac capabilities - XXX methodize */ 558 vap->iv_vhtcaps = ic->ic_vhtcaps; 559 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 560 561 vap->iv_opmode = opmode; 562 vap->iv_caps |= ieee80211_opcap[opmode]; 563 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 564 switch (opmode) { 565 case IEEE80211_M_WDS: 566 /* 567 * WDS links must specify the bssid of the far end. 568 * For legacy operation this is a static relationship. 569 * For non-legacy operation the station must associate 570 * and be authorized to pass traffic. Plumbing the 571 * vap to the proper node happens when the vap 572 * transitions to RUN state. 573 */ 574 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 575 vap->iv_flags |= IEEE80211_F_DESBSSID; 576 if (flags & IEEE80211_CLONE_WDSLEGACY) 577 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 578 break; 579 #ifdef IEEE80211_SUPPORT_TDMA 580 case IEEE80211_M_AHDEMO: 581 if (flags & IEEE80211_CLONE_TDMA) { 582 /* NB: checked before clone operation allowed */ 583 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 584 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 585 /* 586 * Propagate TDMA capability to mark vap; this 587 * cannot be removed and is used to distinguish 588 * regular ahdemo operation from ahdemo+tdma. 589 */ 590 vap->iv_caps |= IEEE80211_C_TDMA; 591 } 592 break; 593 #endif 594 default: 595 break; 596 } 597 /* auto-enable s/w beacon miss support */ 598 if (flags & IEEE80211_CLONE_NOBEACONS) 599 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 600 /* auto-generated or user supplied MAC address */ 601 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 602 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 603 /* 604 * Enable various functionality by default if we're 605 * capable; the driver can override us if it knows better. 606 */ 607 if (vap->iv_caps & IEEE80211_C_WME) 608 vap->iv_flags |= IEEE80211_F_WME; 609 if (vap->iv_caps & IEEE80211_C_BURST) 610 vap->iv_flags |= IEEE80211_F_BURST; 611 /* NB: bg scanning only makes sense for station mode right now */ 612 if (vap->iv_opmode == IEEE80211_M_STA && 613 (vap->iv_caps & IEEE80211_C_BGSCAN)) 614 vap->iv_flags |= IEEE80211_F_BGSCAN; 615 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 616 /* NB: DFS support only makes sense for ap mode right now */ 617 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 618 (vap->iv_caps & IEEE80211_C_DFS)) 619 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 620 /* NB: only flip on U-APSD for hostap/sta for now */ 621 if ((vap->iv_opmode == IEEE80211_M_STA) 622 || (vap->iv_opmode == IEEE80211_M_HOSTAP)) { 623 if (vap->iv_caps & IEEE80211_C_UAPSD) 624 vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; 625 } 626 627 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 628 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 629 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 630 /* 631 * Install a default reset method for the ioctl support; 632 * the driver can override this. 633 */ 634 vap->iv_reset = default_reset; 635 636 /* 637 * Install a default crypto key update method, the driver 638 * can override this. 639 */ 640 vap->iv_update_deftxkey = default_update_deftxkey; 641 642 ieee80211_sysctl_vattach(vap); 643 ieee80211_crypto_vattach(vap); 644 ieee80211_node_vattach(vap); 645 ieee80211_power_vattach(vap); 646 ieee80211_proto_vattach(vap); 647 #ifdef IEEE80211_SUPPORT_SUPERG 648 ieee80211_superg_vattach(vap); 649 #endif 650 ieee80211_ht_vattach(vap); 651 ieee80211_vht_vattach(vap); 652 ieee80211_scan_vattach(vap); 653 ieee80211_regdomain_vattach(vap); 654 ieee80211_radiotap_vattach(vap); 655 ieee80211_vap_reset_erp(vap); 656 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 657 658 return 0; 659 } 660 661 /* 662 * Activate a vap. State should have been prepared with a 663 * call to ieee80211_vap_setup and by the driver. On return 664 * from this call the vap is ready for use. 665 */ 666 int 667 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 668 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 669 { 670 struct ifnet *ifp = vap->iv_ifp; 671 struct ieee80211com *ic = vap->iv_ic; 672 struct ifmediareq imr; 673 int maxrate; 674 675 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 676 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 677 __func__, ieee80211_opmode_name[vap->iv_opmode], 678 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 679 680 /* 681 * Do late attach work that cannot happen until after 682 * the driver has had a chance to override defaults. 683 */ 684 ieee80211_node_latevattach(vap); 685 ieee80211_power_latevattach(vap); 686 687 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 688 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 689 ieee80211_media_status(ifp, &imr); 690 /* NB: strip explicit mode; we're actually in autoselect */ 691 ifmedia_set(&vap->iv_media, 692 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 693 if (maxrate) 694 ifp->if_baudrate = IF_Mbps(maxrate); 695 696 ether_ifattach(ifp, macaddr); 697 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 698 /* hook output method setup by ether_ifattach */ 699 vap->iv_output = ifp->if_output; 700 ifp->if_output = ieee80211_output; 701 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 702 703 IEEE80211_LOCK(ic); 704 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 705 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 706 #ifdef IEEE80211_SUPPORT_SUPERG 707 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 708 #endif 709 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 710 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 711 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 712 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 713 714 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 715 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 716 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 717 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 718 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 719 IEEE80211_UNLOCK(ic); 720 721 return 1; 722 } 723 724 /* 725 * Tear down vap state and reclaim the ifnet. 726 * The driver is assumed to have prepared for 727 * this; e.g. by turning off interrupts for the 728 * underlying device. 729 */ 730 void 731 ieee80211_vap_detach(struct ieee80211vap *vap) 732 { 733 struct ieee80211com *ic = vap->iv_ic; 734 struct ifnet *ifp = vap->iv_ifp; 735 736 CURVNET_SET(ifp->if_vnet); 737 738 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 739 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 740 741 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 742 ether_ifdetach(ifp); 743 744 ieee80211_stop(vap); 745 746 /* 747 * Flush any deferred vap tasks. 748 */ 749 ieee80211_draintask(ic, &vap->iv_nstate_task); 750 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 751 ieee80211_draintask(ic, &vap->iv_wme_task); 752 ieee80211_draintask(ic, &ic->ic_parent_task); 753 754 /* XXX band-aid until ifnet handles this for us */ 755 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 756 757 IEEE80211_LOCK(ic); 758 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 759 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 760 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 761 #ifdef IEEE80211_SUPPORT_SUPERG 762 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 763 #endif 764 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 765 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 766 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 767 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 768 769 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 770 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 771 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 772 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 773 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 774 775 /* NB: this handles the bpfdetach done below */ 776 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 777 if (vap->iv_ifflags & IFF_PROMISC) 778 ieee80211_promisc(vap, false); 779 if (vap->iv_ifflags & IFF_ALLMULTI) 780 ieee80211_allmulti(vap, false); 781 IEEE80211_UNLOCK(ic); 782 783 ifmedia_removeall(&vap->iv_media); 784 785 ieee80211_radiotap_vdetach(vap); 786 ieee80211_regdomain_vdetach(vap); 787 ieee80211_scan_vdetach(vap); 788 #ifdef IEEE80211_SUPPORT_SUPERG 789 ieee80211_superg_vdetach(vap); 790 #endif 791 ieee80211_vht_vdetach(vap); 792 ieee80211_ht_vdetach(vap); 793 /* NB: must be before ieee80211_node_vdetach */ 794 ieee80211_proto_vdetach(vap); 795 ieee80211_crypto_vdetach(vap); 796 ieee80211_power_vdetach(vap); 797 ieee80211_node_vdetach(vap); 798 ieee80211_sysctl_vdetach(vap); 799 800 if_free(ifp); 801 802 CURVNET_RESTORE(); 803 } 804 805 /* 806 * Count number of vaps in promisc, and issue promisc on 807 * parent respectively. 808 */ 809 void 810 ieee80211_promisc(struct ieee80211vap *vap, bool on) 811 { 812 struct ieee80211com *ic = vap->iv_ic; 813 814 IEEE80211_LOCK_ASSERT(ic); 815 816 if (on) { 817 if (++ic->ic_promisc == 1) 818 ieee80211_runtask(ic, &ic->ic_promisc_task); 819 } else { 820 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 821 __func__, ic)); 822 if (--ic->ic_promisc == 0) 823 ieee80211_runtask(ic, &ic->ic_promisc_task); 824 } 825 } 826 827 /* 828 * Count number of vaps in allmulti, and issue allmulti on 829 * parent respectively. 830 */ 831 void 832 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 833 { 834 struct ieee80211com *ic = vap->iv_ic; 835 836 IEEE80211_LOCK_ASSERT(ic); 837 838 if (on) { 839 if (++ic->ic_allmulti == 1) 840 ieee80211_runtask(ic, &ic->ic_mcast_task); 841 } else { 842 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 843 __func__, ic)); 844 if (--ic->ic_allmulti == 0) 845 ieee80211_runtask(ic, &ic->ic_mcast_task); 846 } 847 } 848 849 /* 850 * Synchronize flag bit state in the com structure 851 * according to the state of all vap's. This is used, 852 * for example, to handle state changes via ioctls. 853 */ 854 static void 855 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 856 { 857 struct ieee80211vap *vap; 858 int bit; 859 860 IEEE80211_LOCK_ASSERT(ic); 861 862 bit = 0; 863 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 864 if (vap->iv_flags & flag) { 865 bit = 1; 866 break; 867 } 868 if (bit) 869 ic->ic_flags |= flag; 870 else 871 ic->ic_flags &= ~flag; 872 } 873 874 void 875 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 876 { 877 struct ieee80211com *ic = vap->iv_ic; 878 879 IEEE80211_LOCK(ic); 880 if (flag < 0) { 881 flag = -flag; 882 vap->iv_flags &= ~flag; 883 } else 884 vap->iv_flags |= flag; 885 ieee80211_syncflag_locked(ic, flag); 886 IEEE80211_UNLOCK(ic); 887 } 888 889 /* 890 * Synchronize flags_ht bit state in the com structure 891 * according to the state of all vap's. This is used, 892 * for example, to handle state changes via ioctls. 893 */ 894 static void 895 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 896 { 897 struct ieee80211vap *vap; 898 int bit; 899 900 IEEE80211_LOCK_ASSERT(ic); 901 902 bit = 0; 903 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 904 if (vap->iv_flags_ht & flag) { 905 bit = 1; 906 break; 907 } 908 if (bit) 909 ic->ic_flags_ht |= flag; 910 else 911 ic->ic_flags_ht &= ~flag; 912 } 913 914 void 915 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 916 { 917 struct ieee80211com *ic = vap->iv_ic; 918 919 IEEE80211_LOCK(ic); 920 if (flag < 0) { 921 flag = -flag; 922 vap->iv_flags_ht &= ~flag; 923 } else 924 vap->iv_flags_ht |= flag; 925 ieee80211_syncflag_ht_locked(ic, flag); 926 IEEE80211_UNLOCK(ic); 927 } 928 929 /* 930 * Synchronize flags_vht bit state in the com structure 931 * according to the state of all vap's. This is used, 932 * for example, to handle state changes via ioctls. 933 */ 934 static void 935 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 936 { 937 struct ieee80211vap *vap; 938 int bit; 939 940 IEEE80211_LOCK_ASSERT(ic); 941 942 bit = 0; 943 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 944 if (vap->iv_flags_vht & flag) { 945 bit = 1; 946 break; 947 } 948 if (bit) 949 ic->ic_flags_vht |= flag; 950 else 951 ic->ic_flags_vht &= ~flag; 952 } 953 954 void 955 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 956 { 957 struct ieee80211com *ic = vap->iv_ic; 958 959 IEEE80211_LOCK(ic); 960 if (flag < 0) { 961 flag = -flag; 962 vap->iv_flags_vht &= ~flag; 963 } else 964 vap->iv_flags_vht |= flag; 965 ieee80211_syncflag_vht_locked(ic, flag); 966 IEEE80211_UNLOCK(ic); 967 } 968 969 /* 970 * Synchronize flags_ext bit state in the com structure 971 * according to the state of all vap's. This is used, 972 * for example, to handle state changes via ioctls. 973 */ 974 static void 975 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 976 { 977 struct ieee80211vap *vap; 978 int bit; 979 980 IEEE80211_LOCK_ASSERT(ic); 981 982 bit = 0; 983 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 984 if (vap->iv_flags_ext & flag) { 985 bit = 1; 986 break; 987 } 988 if (bit) 989 ic->ic_flags_ext |= flag; 990 else 991 ic->ic_flags_ext &= ~flag; 992 } 993 994 void 995 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 996 { 997 struct ieee80211com *ic = vap->iv_ic; 998 999 IEEE80211_LOCK(ic); 1000 if (flag < 0) { 1001 flag = -flag; 1002 vap->iv_flags_ext &= ~flag; 1003 } else 1004 vap->iv_flags_ext |= flag; 1005 ieee80211_syncflag_ext_locked(ic, flag); 1006 IEEE80211_UNLOCK(ic); 1007 } 1008 1009 static __inline int 1010 mapgsm(u_int freq, u_int flags) 1011 { 1012 freq *= 10; 1013 if (flags & IEEE80211_CHAN_QUARTER) 1014 freq += 5; 1015 else if (flags & IEEE80211_CHAN_HALF) 1016 freq += 10; 1017 else 1018 freq += 20; 1019 /* NB: there is no 907/20 wide but leave room */ 1020 return (freq - 906*10) / 5; 1021 } 1022 1023 static __inline int 1024 mappsb(u_int freq, u_int flags) 1025 { 1026 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1027 } 1028 1029 /* 1030 * Convert MHz frequency to IEEE channel number. 1031 */ 1032 int 1033 ieee80211_mhz2ieee(u_int freq, u_int flags) 1034 { 1035 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1036 if (flags & IEEE80211_CHAN_GSM) 1037 return mapgsm(freq, flags); 1038 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1039 if (freq == 2484) 1040 return 14; 1041 if (freq < 2484) 1042 return ((int) freq - 2407) / 5; 1043 else 1044 return 15 + ((freq - 2512) / 20); 1045 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1046 if (freq <= 5000) { 1047 /* XXX check regdomain? */ 1048 if (IS_FREQ_IN_PSB(freq)) 1049 return mappsb(freq, flags); 1050 return (freq - 4000) / 5; 1051 } else 1052 return (freq - 5000) / 5; 1053 } else { /* either, guess */ 1054 if (freq == 2484) 1055 return 14; 1056 if (freq < 2484) { 1057 if (907 <= freq && freq <= 922) 1058 return mapgsm(freq, flags); 1059 return ((int) freq - 2407) / 5; 1060 } 1061 if (freq < 5000) { 1062 if (IS_FREQ_IN_PSB(freq)) 1063 return mappsb(freq, flags); 1064 else if (freq > 4900) 1065 return (freq - 4000) / 5; 1066 else 1067 return 15 + ((freq - 2512) / 20); 1068 } 1069 return (freq - 5000) / 5; 1070 } 1071 #undef IS_FREQ_IN_PSB 1072 } 1073 1074 /* 1075 * Convert channel to IEEE channel number. 1076 */ 1077 int 1078 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1079 { 1080 if (c == NULL) { 1081 ic_printf(ic, "invalid channel (NULL)\n"); 1082 return 0; /* XXX */ 1083 } 1084 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1085 } 1086 1087 /* 1088 * Convert IEEE channel number to MHz frequency. 1089 */ 1090 u_int 1091 ieee80211_ieee2mhz(u_int chan, u_int flags) 1092 { 1093 if (flags & IEEE80211_CHAN_GSM) 1094 return 907 + 5 * (chan / 10); 1095 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1096 if (chan == 14) 1097 return 2484; 1098 if (chan < 14) 1099 return 2407 + chan*5; 1100 else 1101 return 2512 + ((chan-15)*20); 1102 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1103 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1104 chan -= 37; 1105 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1106 } 1107 return 5000 + (chan*5); 1108 } else { /* either, guess */ 1109 /* XXX can't distinguish PSB+GSM channels */ 1110 if (chan == 14) 1111 return 2484; 1112 if (chan < 14) /* 0-13 */ 1113 return 2407 + chan*5; 1114 if (chan < 27) /* 15-26 */ 1115 return 2512 + ((chan-15)*20); 1116 return 5000 + (chan*5); 1117 } 1118 } 1119 1120 static __inline void 1121 set_extchan(struct ieee80211_channel *c) 1122 { 1123 1124 /* 1125 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1126 * "the secondary channel number shall be 'N + [1,-1] * 4' 1127 */ 1128 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1129 c->ic_extieee = c->ic_ieee + 4; 1130 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1131 c->ic_extieee = c->ic_ieee - 4; 1132 else 1133 c->ic_extieee = 0; 1134 } 1135 1136 /* 1137 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1138 * 1139 * This for now uses a hard-coded list of 80MHz wide channels. 1140 * 1141 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1142 * wide channel we've already decided upon. 1143 * 1144 * For VHT80 and VHT160, there are only a small number of fixed 1145 * 80/160MHz wide channels, so we just use those. 1146 * 1147 * This is all likely very very wrong - both the regulatory code 1148 * and this code needs to ensure that all four channels are 1149 * available and valid before the VHT80 (and eight for VHT160) channel 1150 * is created. 1151 */ 1152 1153 struct vht_chan_range { 1154 uint16_t freq_start; 1155 uint16_t freq_end; 1156 }; 1157 1158 struct vht_chan_range vht80_chan_ranges[] = { 1159 { 5170, 5250 }, 1160 { 5250, 5330 }, 1161 { 5490, 5570 }, 1162 { 5570, 5650 }, 1163 { 5650, 5730 }, 1164 { 5735, 5815 }, 1165 { 0, 0 } 1166 }; 1167 1168 struct vht_chan_range vht160_chan_ranges[] = { 1169 { 5170, 5330 }, 1170 { 5490, 5650 }, 1171 { 0, 0 } 1172 }; 1173 1174 static int 1175 set_vht_extchan(struct ieee80211_channel *c) 1176 { 1177 int i; 1178 1179 if (! IEEE80211_IS_CHAN_VHT(c)) 1180 return (0); 1181 1182 if (IEEE80211_IS_CHAN_VHT80P80(c)) { 1183 printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n", 1184 __func__, c->ic_ieee, c->ic_flags); 1185 } 1186 1187 if (IEEE80211_IS_CHAN_VHT160(c)) { 1188 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1189 if (c->ic_freq >= vht160_chan_ranges[i].freq_start && 1190 c->ic_freq < vht160_chan_ranges[i].freq_end) { 1191 int midpoint; 1192 1193 midpoint = vht160_chan_ranges[i].freq_start + 80; 1194 c->ic_vht_ch_freq1 = 1195 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1196 c->ic_vht_ch_freq2 = 0; 1197 #if 0 1198 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1199 __func__, c->ic_ieee, c->ic_freq, midpoint, 1200 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1201 #endif 1202 return (1); 1203 } 1204 } 1205 return (0); 1206 } 1207 1208 if (IEEE80211_IS_CHAN_VHT80(c)) { 1209 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1210 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1211 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1212 int midpoint; 1213 1214 midpoint = vht80_chan_ranges[i].freq_start + 40; 1215 c->ic_vht_ch_freq1 = 1216 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1217 c->ic_vht_ch_freq2 = 0; 1218 #if 0 1219 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1220 __func__, c->ic_ieee, c->ic_freq, midpoint, 1221 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1222 #endif 1223 return (1); 1224 } 1225 } 1226 return (0); 1227 } 1228 1229 if (IEEE80211_IS_CHAN_VHT40(c)) { 1230 if (IEEE80211_IS_CHAN_HT40U(c)) 1231 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1232 else if (IEEE80211_IS_CHAN_HT40D(c)) 1233 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1234 else 1235 return (0); 1236 return (1); 1237 } 1238 1239 if (IEEE80211_IS_CHAN_VHT20(c)) { 1240 c->ic_vht_ch_freq1 = c->ic_ieee; 1241 return (1); 1242 } 1243 1244 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1245 __func__, c->ic_ieee, c->ic_flags); 1246 1247 return (0); 1248 } 1249 1250 /* 1251 * Return whether the current channel could possibly be a part of 1252 * a VHT80/VHT160 channel. 1253 * 1254 * This doesn't check that the whole range is in the allowed list 1255 * according to regulatory. 1256 */ 1257 static bool 1258 is_vht160_valid_freq(uint16_t freq) 1259 { 1260 int i; 1261 1262 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1263 if (freq >= vht160_chan_ranges[i].freq_start && 1264 freq < vht160_chan_ranges[i].freq_end) 1265 return (true); 1266 } 1267 return (false); 1268 } 1269 1270 static int 1271 is_vht80_valid_freq(uint16_t freq) 1272 { 1273 int i; 1274 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1275 if (freq >= vht80_chan_ranges[i].freq_start && 1276 freq < vht80_chan_ranges[i].freq_end) 1277 return (1); 1278 } 1279 return (0); 1280 } 1281 1282 static int 1283 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1284 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1285 { 1286 struct ieee80211_channel *c; 1287 1288 if (*nchans >= maxchans) 1289 return (ENOBUFS); 1290 1291 #if 0 1292 printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n", 1293 __func__, *nchans, maxchans, ieee, freq, flags); 1294 #endif 1295 1296 c = &chans[(*nchans)++]; 1297 c->ic_ieee = ieee; 1298 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1299 c->ic_maxregpower = maxregpower; 1300 c->ic_maxpower = 2 * maxregpower; 1301 c->ic_flags = flags; 1302 c->ic_vht_ch_freq1 = 0; 1303 c->ic_vht_ch_freq2 = 0; 1304 set_extchan(c); 1305 set_vht_extchan(c); 1306 1307 return (0); 1308 } 1309 1310 static int 1311 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1312 uint32_t flags) 1313 { 1314 struct ieee80211_channel *c; 1315 1316 KASSERT(*nchans > 0, ("channel list is empty\n")); 1317 1318 if (*nchans >= maxchans) 1319 return (ENOBUFS); 1320 1321 #if 0 1322 printf("%s: %d of %d: flags=0x%08x\n", 1323 __func__, *nchans, maxchans, flags); 1324 #endif 1325 1326 c = &chans[(*nchans)++]; 1327 c[0] = c[-1]; 1328 c->ic_flags = flags; 1329 c->ic_vht_ch_freq1 = 0; 1330 c->ic_vht_ch_freq2 = 0; 1331 set_extchan(c); 1332 set_vht_extchan(c); 1333 1334 return (0); 1335 } 1336 1337 /* 1338 * XXX VHT-2GHz 1339 */ 1340 static void 1341 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1342 { 1343 int nmodes; 1344 1345 nmodes = 0; 1346 if (isset(bands, IEEE80211_MODE_11B)) 1347 flags[nmodes++] = IEEE80211_CHAN_B; 1348 if (isset(bands, IEEE80211_MODE_11G)) 1349 flags[nmodes++] = IEEE80211_CHAN_G; 1350 if (isset(bands, IEEE80211_MODE_11NG)) 1351 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1352 if (cbw_flags & NET80211_CBW_FLAG_HT40) { 1353 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1354 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1355 } 1356 flags[nmodes] = 0; 1357 } 1358 1359 static void 1360 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1361 { 1362 int nmodes; 1363 1364 /* 1365 * The addchan_list() function seems to expect the flags array to 1366 * be in channel width order, so the VHT bits are interspersed 1367 * as appropriate to maintain said order. 1368 * 1369 * It also assumes HT40U is before HT40D. 1370 */ 1371 nmodes = 0; 1372 1373 /* 20MHz */ 1374 if (isset(bands, IEEE80211_MODE_11A)) 1375 flags[nmodes++] = IEEE80211_CHAN_A; 1376 if (isset(bands, IEEE80211_MODE_11NA)) 1377 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1378 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1379 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1380 IEEE80211_CHAN_VHT20; 1381 } 1382 1383 /* 40MHz */ 1384 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1385 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1386 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1387 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1388 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1389 IEEE80211_CHAN_VHT40U; 1390 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1391 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1392 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1393 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1394 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1395 IEEE80211_CHAN_VHT40D; 1396 1397 /* 80MHz */ 1398 if ((cbw_flags & NET80211_CBW_FLAG_VHT80) && 1399 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1400 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1401 IEEE80211_CHAN_VHT80; 1402 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1403 IEEE80211_CHAN_VHT80; 1404 } 1405 1406 /* VHT160 */ 1407 if ((cbw_flags & NET80211_CBW_FLAG_VHT160) && 1408 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1409 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1410 IEEE80211_CHAN_VHT160; 1411 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1412 IEEE80211_CHAN_VHT160; 1413 } 1414 1415 /* VHT80+80 */ 1416 if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) && 1417 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1418 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1419 IEEE80211_CHAN_VHT80P80; 1420 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1421 IEEE80211_CHAN_VHT80P80; 1422 } 1423 1424 flags[nmodes] = 0; 1425 } 1426 1427 static void 1428 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1429 { 1430 1431 flags[0] = 0; 1432 if (isset(bands, IEEE80211_MODE_11A) || 1433 isset(bands, IEEE80211_MODE_11NA) || 1434 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1435 if (isset(bands, IEEE80211_MODE_11B) || 1436 isset(bands, IEEE80211_MODE_11G) || 1437 isset(bands, IEEE80211_MODE_11NG) || 1438 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1439 return; 1440 1441 getflags_5ghz(bands, flags, cbw_flags); 1442 } else 1443 getflags_2ghz(bands, flags, cbw_flags); 1444 } 1445 1446 /* 1447 * Add one 20 MHz channel into specified channel list. 1448 * You MUST NOT mix bands when calling this. It will not add 5ghz 1449 * channels if you have any B/G/N band bit set. 1450 * The _cbw() variant does also support HT40/VHT80/160/80+80. 1451 */ 1452 int 1453 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans, 1454 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1455 uint32_t chan_flags, const uint8_t bands[], int cbw_flags) 1456 { 1457 uint32_t flags[IEEE80211_MODE_MAX]; 1458 int i, error; 1459 1460 getflags(bands, flags, cbw_flags); 1461 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1462 1463 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1464 flags[0] | chan_flags); 1465 for (i = 1; flags[i] != 0 && error == 0; i++) { 1466 error = copychan_prev(chans, maxchans, nchans, 1467 flags[i] | chan_flags); 1468 } 1469 1470 return (error); 1471 } 1472 1473 int 1474 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1475 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1476 uint32_t chan_flags, const uint8_t bands[]) 1477 { 1478 1479 return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq, 1480 maxregpower, chan_flags, bands, 0)); 1481 } 1482 1483 static struct ieee80211_channel * 1484 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1485 uint32_t flags) 1486 { 1487 struct ieee80211_channel *c; 1488 int i; 1489 1490 flags &= IEEE80211_CHAN_ALLTURBO; 1491 /* brute force search */ 1492 for (i = 0; i < nchans; i++) { 1493 c = &chans[i]; 1494 if (c->ic_freq == freq && 1495 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1496 return c; 1497 } 1498 return NULL; 1499 } 1500 1501 /* 1502 * Add 40 MHz channel pair into specified channel list. 1503 */ 1504 /* XXX VHT */ 1505 int 1506 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1507 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1508 { 1509 struct ieee80211_channel *cent, *extc; 1510 uint16_t freq; 1511 int error; 1512 1513 freq = ieee80211_ieee2mhz(ieee, flags); 1514 1515 /* 1516 * Each entry defines an HT40 channel pair; find the 1517 * center channel, then the extension channel above. 1518 */ 1519 flags |= IEEE80211_CHAN_HT20; 1520 cent = findchannel(chans, *nchans, freq, flags); 1521 if (cent == NULL) 1522 return (EINVAL); 1523 1524 extc = findchannel(chans, *nchans, freq + 20, flags); 1525 if (extc == NULL) 1526 return (ENOENT); 1527 1528 flags &= ~IEEE80211_CHAN_HT; 1529 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1530 maxregpower, flags | IEEE80211_CHAN_HT40U); 1531 if (error != 0) 1532 return (error); 1533 1534 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1535 maxregpower, flags | IEEE80211_CHAN_HT40D); 1536 1537 return (error); 1538 } 1539 1540 /* 1541 * Fetch the center frequency for the primary channel. 1542 */ 1543 uint32_t 1544 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1545 { 1546 1547 return (c->ic_freq); 1548 } 1549 1550 /* 1551 * Fetch the center frequency for the primary BAND channel. 1552 * 1553 * For 5, 10, 20MHz channels it'll be the normally configured channel 1554 * frequency. 1555 * 1556 * For 40MHz, 80MHz, 160MHz channels it will be the centre of the 1557 * wide channel, not the centre of the primary channel (that's ic_freq). 1558 * 1559 * For 80+80MHz channels this will be the centre of the primary 1560 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1561 */ 1562 uint32_t 1563 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1564 { 1565 1566 /* 1567 * VHT - use the pre-calculated centre frequency 1568 * of the given channel. 1569 */ 1570 if (IEEE80211_IS_CHAN_VHT(c)) 1571 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1572 1573 if (IEEE80211_IS_CHAN_HT40U(c)) { 1574 return (c->ic_freq + 10); 1575 } 1576 if (IEEE80211_IS_CHAN_HT40D(c)) { 1577 return (c->ic_freq - 10); 1578 } 1579 1580 return (c->ic_freq); 1581 } 1582 1583 /* 1584 * For now, no 80+80 support; it will likely always return 0. 1585 */ 1586 uint32_t 1587 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1588 { 1589 1590 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1591 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1592 1593 return (0); 1594 } 1595 1596 /* 1597 * Adds channels into specified channel list (ieee[] array must be sorted). 1598 * Channels are already sorted. 1599 */ 1600 static int 1601 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1602 const uint8_t ieee[], int nieee, uint32_t flags[]) 1603 { 1604 uint16_t freq; 1605 int i, j, error; 1606 int is_vht; 1607 1608 for (i = 0; i < nieee; i++) { 1609 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1610 for (j = 0; flags[j] != 0; j++) { 1611 /* 1612 * Notes: 1613 * + HT40 and VHT40 channels occur together, so 1614 * we need to be careful that we actually allow that. 1615 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1616 * make sure it's not skipped because of the overlap 1617 * check used for (V)HT40. 1618 */ 1619 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1620 1621 /* XXX TODO FIXME VHT80P80. */ 1622 1623 /* Test for VHT160 analogue to the VHT80 below. */ 1624 if (is_vht && flags[j] & IEEE80211_CHAN_VHT160) 1625 if (! is_vht160_valid_freq(freq)) 1626 continue; 1627 1628 /* 1629 * Test for VHT80. 1630 * XXX This is all very broken right now. 1631 * What we /should/ do is: 1632 * 1633 * + check that the frequency is in the list of 1634 * allowed VHT80 ranges; and 1635 * + the other 3 channels in the list are actually 1636 * also available. 1637 */ 1638 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1639 if (! is_vht80_valid_freq(freq)) 1640 continue; 1641 1642 /* 1643 * Test for (V)HT40. 1644 * 1645 * This is also a fall through from VHT80; as we only 1646 * allow a VHT80 channel if the VHT40 combination is 1647 * also valid. If the VHT40 form is not valid then 1648 * we certainly can't do VHT80.. 1649 */ 1650 if (flags[j] & IEEE80211_CHAN_HT40D) 1651 /* 1652 * Can't have a "lower" channel if we are the 1653 * first channel. 1654 * 1655 * Can't have a "lower" channel if it's below/ 1656 * within 20MHz of the first channel. 1657 * 1658 * Can't have a "lower" channel if the channel 1659 * below it is not 20MHz away. 1660 */ 1661 if (i == 0 || ieee[i] < ieee[0] + 4 || 1662 freq - 20 != 1663 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1664 continue; 1665 if (flags[j] & IEEE80211_CHAN_HT40U) 1666 /* 1667 * Can't have an "upper" channel if we are 1668 * the last channel. 1669 * 1670 * Can't have an "upper" channel be above the 1671 * last channel in the list. 1672 * 1673 * Can't have an "upper" channel if the next 1674 * channel according to the math isn't 20MHz 1675 * away. (Likely for channel 13/14.) 1676 */ 1677 if (i == nieee - 1 || 1678 ieee[i] + 4 > ieee[nieee - 1] || 1679 freq + 20 != 1680 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1681 continue; 1682 1683 if (j == 0) { 1684 error = addchan(chans, maxchans, nchans, 1685 ieee[i], freq, 0, flags[j]); 1686 } else { 1687 error = copychan_prev(chans, maxchans, nchans, 1688 flags[j]); 1689 } 1690 if (error != 0) 1691 return (error); 1692 } 1693 } 1694 1695 return (0); 1696 } 1697 1698 int 1699 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1700 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1701 int cbw_flags) 1702 { 1703 uint32_t flags[IEEE80211_MODE_MAX]; 1704 1705 /* XXX no VHT for now */ 1706 getflags_2ghz(bands, flags, cbw_flags); 1707 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1708 1709 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1710 } 1711 1712 int 1713 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], 1714 int maxchans, int *nchans, const uint8_t bands[], int cbw_flags) 1715 { 1716 const uint8_t default_chan_list[] = 1717 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 1718 1719 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 1720 default_chan_list, nitems(default_chan_list), bands, cbw_flags)); 1721 } 1722 1723 int 1724 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1725 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1726 int cbw_flags) 1727 { 1728 /* 1729 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all 1730 * uses of IEEE80211_MODE_MAX and add a new #define name for array size. 1731 */ 1732 uint32_t flags[2 * IEEE80211_MODE_MAX]; 1733 1734 getflags_5ghz(bands, flags, cbw_flags); 1735 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1736 1737 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1738 } 1739 1740 /* 1741 * Locate a channel given a frequency+flags. We cache 1742 * the previous lookup to optimize switching between two 1743 * channels--as happens with dynamic turbo. 1744 */ 1745 struct ieee80211_channel * 1746 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1747 { 1748 struct ieee80211_channel *c; 1749 1750 flags &= IEEE80211_CHAN_ALLTURBO; 1751 c = ic->ic_prevchan; 1752 if (c != NULL && c->ic_freq == freq && 1753 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1754 return c; 1755 /* brute force search */ 1756 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1757 } 1758 1759 /* 1760 * Locate a channel given a channel number+flags. We cache 1761 * the previous lookup to optimize switching between two 1762 * channels--as happens with dynamic turbo. 1763 */ 1764 struct ieee80211_channel * 1765 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1766 { 1767 struct ieee80211_channel *c; 1768 int i; 1769 1770 flags &= IEEE80211_CHAN_ALLTURBO; 1771 c = ic->ic_prevchan; 1772 if (c != NULL && c->ic_ieee == ieee && 1773 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1774 return c; 1775 /* brute force search */ 1776 for (i = 0; i < ic->ic_nchans; i++) { 1777 c = &ic->ic_channels[i]; 1778 if (c->ic_ieee == ieee && 1779 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1780 return c; 1781 } 1782 return NULL; 1783 } 1784 1785 /* 1786 * Lookup a channel suitable for the given rx status. 1787 * 1788 * This is used to find a channel for a frame (eg beacon, probe 1789 * response) based purely on the received PHY information. 1790 * 1791 * For now it tries to do it based on R_FREQ / R_IEEE. 1792 * This is enough for 11bg and 11a (and thus 11ng/11na) 1793 * but it will not be enough for GSM, PSB channels and the 1794 * like. It also doesn't know about legacy-turbog and 1795 * legacy-turbo modes, which some offload NICs actually 1796 * support in weird ways. 1797 * 1798 * Takes the ic and rxstatus; returns the channel or NULL 1799 * if not found. 1800 * 1801 * XXX TODO: Add support for that when the need arises. 1802 */ 1803 struct ieee80211_channel * 1804 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1805 const struct ieee80211_rx_stats *rxs) 1806 { 1807 struct ieee80211com *ic = vap->iv_ic; 1808 uint32_t flags; 1809 struct ieee80211_channel *c; 1810 1811 if (rxs == NULL) 1812 return (NULL); 1813 1814 /* 1815 * Strictly speaking we only use freq for now, 1816 * however later on we may wish to just store 1817 * the ieee for verification. 1818 */ 1819 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1820 return (NULL); 1821 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1822 return (NULL); 1823 if ((rxs->r_flags & IEEE80211_R_BAND) == 0) 1824 return (NULL); 1825 1826 /* 1827 * If the rx status contains a valid ieee/freq, then 1828 * ensure we populate the correct channel information 1829 * in rxchan before passing it up to the scan infrastructure. 1830 * Offload NICs will pass up beacons from all channels 1831 * during background scans. 1832 */ 1833 1834 /* Determine a band */ 1835 switch (rxs->c_band) { 1836 case IEEE80211_CHAN_2GHZ: 1837 flags = IEEE80211_CHAN_G; 1838 break; 1839 case IEEE80211_CHAN_5GHZ: 1840 flags = IEEE80211_CHAN_A; 1841 break; 1842 default: 1843 if (rxs->c_freq < 3000) { 1844 flags = IEEE80211_CHAN_G; 1845 } else { 1846 flags = IEEE80211_CHAN_A; 1847 } 1848 break; 1849 } 1850 1851 /* Channel lookup */ 1852 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1853 1854 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1855 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1856 __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c); 1857 1858 return (c); 1859 } 1860 1861 static void 1862 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1863 { 1864 #define ADD(_ic, _s, _o) \ 1865 ifmedia_add(media, \ 1866 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1867 static const u_int mopts[IEEE80211_MODE_MAX] = { 1868 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1869 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1870 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1871 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1872 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1873 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1874 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1875 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1876 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1877 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1878 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1879 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1880 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1881 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1882 }; 1883 u_int mopt; 1884 1885 mopt = mopts[mode]; 1886 if (addsta) 1887 ADD(ic, mword, mopt); /* STA mode has no cap */ 1888 if (caps & IEEE80211_C_IBSS) 1889 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1890 if (caps & IEEE80211_C_HOSTAP) 1891 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1892 if (caps & IEEE80211_C_AHDEMO) 1893 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1894 if (caps & IEEE80211_C_MONITOR) 1895 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1896 if (caps & IEEE80211_C_WDS) 1897 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1898 if (caps & IEEE80211_C_MBSS) 1899 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1900 #undef ADD 1901 } 1902 1903 /* 1904 * Setup the media data structures according to the channel and 1905 * rate tables. 1906 */ 1907 static int 1908 ieee80211_media_setup(struct ieee80211com *ic, 1909 struct ifmedia *media, int caps, int addsta, 1910 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1911 { 1912 int i, j, rate, maxrate, mword, r; 1913 enum ieee80211_phymode mode; 1914 const struct ieee80211_rateset *rs; 1915 struct ieee80211_rateset allrates; 1916 1917 /* 1918 * Fill in media characteristics. 1919 */ 1920 ifmedia_init(media, 0, media_change, media_stat); 1921 maxrate = 0; 1922 /* 1923 * Add media for legacy operating modes. 1924 */ 1925 memset(&allrates, 0, sizeof(allrates)); 1926 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1927 if (isclr(ic->ic_modecaps, mode)) 1928 continue; 1929 addmedia(media, caps, addsta, mode, IFM_AUTO); 1930 if (mode == IEEE80211_MODE_AUTO) 1931 continue; 1932 rs = &ic->ic_sup_rates[mode]; 1933 for (i = 0; i < rs->rs_nrates; i++) { 1934 rate = rs->rs_rates[i]; 1935 mword = ieee80211_rate2media(ic, rate, mode); 1936 if (mword == 0) 1937 continue; 1938 addmedia(media, caps, addsta, mode, mword); 1939 /* 1940 * Add legacy rate to the collection of all rates. 1941 */ 1942 r = rate & IEEE80211_RATE_VAL; 1943 for (j = 0; j < allrates.rs_nrates; j++) 1944 if (allrates.rs_rates[j] == r) 1945 break; 1946 if (j == allrates.rs_nrates) { 1947 /* unique, add to the set */ 1948 allrates.rs_rates[j] = r; 1949 allrates.rs_nrates++; 1950 } 1951 rate = (rate & IEEE80211_RATE_VAL) / 2; 1952 if (rate > maxrate) 1953 maxrate = rate; 1954 } 1955 } 1956 for (i = 0; i < allrates.rs_nrates; i++) { 1957 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1958 IEEE80211_MODE_AUTO); 1959 if (mword == 0) 1960 continue; 1961 /* NB: remove media options from mword */ 1962 addmedia(media, caps, addsta, 1963 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1964 } 1965 /* 1966 * Add HT/11n media. Note that we do not have enough 1967 * bits in the media subtype to express the MCS so we 1968 * use a "placeholder" media subtype and any fixed MCS 1969 * must be specified with a different mechanism. 1970 */ 1971 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1972 if (isclr(ic->ic_modecaps, mode)) 1973 continue; 1974 addmedia(media, caps, addsta, mode, IFM_AUTO); 1975 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1976 } 1977 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1978 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1979 addmedia(media, caps, addsta, 1980 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1981 i = ic->ic_txstream * 8 - 1; 1982 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1983 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1984 rate = ieee80211_htrates[i].ht40_rate_400ns; 1985 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1986 rate = ieee80211_htrates[i].ht40_rate_800ns; 1987 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1988 rate = ieee80211_htrates[i].ht20_rate_400ns; 1989 else 1990 rate = ieee80211_htrates[i].ht20_rate_800ns; 1991 if (rate > maxrate) 1992 maxrate = rate; 1993 } 1994 1995 /* 1996 * Add VHT media. 1997 * XXX-BZ skip "VHT_2GHZ" for now. 1998 */ 1999 for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ; 2000 mode++) { 2001 if (isclr(ic->ic_modecaps, mode)) 2002 continue; 2003 addmedia(media, caps, addsta, mode, IFM_AUTO); 2004 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 2005 } 2006 if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) { 2007 addmedia(media, caps, addsta, 2008 IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT); 2009 2010 /* XXX TODO: VHT maxrate */ 2011 } 2012 2013 return maxrate; 2014 } 2015 2016 /* XXX inline or eliminate? */ 2017 const struct ieee80211_rateset * 2018 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 2019 { 2020 /* XXX does this work for 11ng basic rates? */ 2021 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 2022 } 2023 2024 /* XXX inline or eliminate? */ 2025 const struct ieee80211_htrateset * 2026 ieee80211_get_suphtrates(struct ieee80211com *ic, 2027 const struct ieee80211_channel *c) 2028 { 2029 return &ic->ic_sup_htrates; 2030 } 2031 2032 void 2033 ieee80211_announce(struct ieee80211com *ic) 2034 { 2035 int i, rate, mword; 2036 enum ieee80211_phymode mode; 2037 const struct ieee80211_rateset *rs; 2038 2039 /* NB: skip AUTO since it has no rates */ 2040 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 2041 if (isclr(ic->ic_modecaps, mode)) 2042 continue; 2043 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 2044 rs = &ic->ic_sup_rates[mode]; 2045 for (i = 0; i < rs->rs_nrates; i++) { 2046 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 2047 if (mword == 0) 2048 continue; 2049 rate = ieee80211_media2rate(mword); 2050 printf("%s%d%sMbps", (i != 0 ? " " : ""), 2051 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 2052 } 2053 printf("\n"); 2054 } 2055 ieee80211_ht_announce(ic); 2056 ieee80211_vht_announce(ic); 2057 } 2058 2059 void 2060 ieee80211_announce_channels(struct ieee80211com *ic) 2061 { 2062 const struct ieee80211_channel *c; 2063 char type; 2064 int i, cw; 2065 2066 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 2067 for (i = 0; i < ic->ic_nchans; i++) { 2068 c = &ic->ic_channels[i]; 2069 if (IEEE80211_IS_CHAN_ST(c)) 2070 type = 'S'; 2071 else if (IEEE80211_IS_CHAN_108A(c)) 2072 type = 'T'; 2073 else if (IEEE80211_IS_CHAN_108G(c)) 2074 type = 'G'; 2075 else if (IEEE80211_IS_CHAN_HT(c)) 2076 type = 'n'; 2077 else if (IEEE80211_IS_CHAN_A(c)) 2078 type = 'a'; 2079 else if (IEEE80211_IS_CHAN_ANYG(c)) 2080 type = 'g'; 2081 else if (IEEE80211_IS_CHAN_B(c)) 2082 type = 'b'; 2083 else 2084 type = 'f'; 2085 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 2086 cw = 40; 2087 else if (IEEE80211_IS_CHAN_HALF(c)) 2088 cw = 10; 2089 else if (IEEE80211_IS_CHAN_QUARTER(c)) 2090 cw = 5; 2091 else 2092 cw = 20; 2093 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 2094 , c->ic_ieee, c->ic_freq, type 2095 , cw 2096 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 2097 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 2098 , c->ic_maxregpower 2099 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 2100 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 2101 ); 2102 } 2103 } 2104 2105 static int 2106 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 2107 { 2108 switch (IFM_MODE(ime->ifm_media)) { 2109 case IFM_IEEE80211_11A: 2110 *mode = IEEE80211_MODE_11A; 2111 break; 2112 case IFM_IEEE80211_11B: 2113 *mode = IEEE80211_MODE_11B; 2114 break; 2115 case IFM_IEEE80211_11G: 2116 *mode = IEEE80211_MODE_11G; 2117 break; 2118 case IFM_IEEE80211_FH: 2119 *mode = IEEE80211_MODE_FH; 2120 break; 2121 case IFM_IEEE80211_11NA: 2122 *mode = IEEE80211_MODE_11NA; 2123 break; 2124 case IFM_IEEE80211_11NG: 2125 *mode = IEEE80211_MODE_11NG; 2126 break; 2127 case IFM_IEEE80211_VHT2G: 2128 *mode = IEEE80211_MODE_VHT_2GHZ; 2129 break; 2130 case IFM_IEEE80211_VHT5G: 2131 *mode = IEEE80211_MODE_VHT_5GHZ; 2132 break; 2133 case IFM_AUTO: 2134 *mode = IEEE80211_MODE_AUTO; 2135 break; 2136 default: 2137 return 0; 2138 } 2139 /* 2140 * Turbo mode is an ``option''. 2141 * XXX does not apply to AUTO 2142 */ 2143 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2144 if (*mode == IEEE80211_MODE_11A) { 2145 if (flags & IEEE80211_F_TURBOP) 2146 *mode = IEEE80211_MODE_TURBO_A; 2147 else 2148 *mode = IEEE80211_MODE_STURBO_A; 2149 } else if (*mode == IEEE80211_MODE_11G) 2150 *mode = IEEE80211_MODE_TURBO_G; 2151 else 2152 return 0; 2153 } 2154 /* XXX HT40 +/- */ 2155 return 1; 2156 } 2157 2158 /* 2159 * Handle a media change request on the vap interface. 2160 */ 2161 int 2162 ieee80211_media_change(struct ifnet *ifp) 2163 { 2164 struct ieee80211vap *vap = ifp->if_softc; 2165 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2166 uint16_t newmode; 2167 2168 if (!media2mode(ime, vap->iv_flags, &newmode)) 2169 return EINVAL; 2170 if (vap->iv_des_mode != newmode) { 2171 vap->iv_des_mode = newmode; 2172 /* XXX kick state machine if up+running */ 2173 } 2174 return 0; 2175 } 2176 2177 /* 2178 * Common code to calculate the media status word 2179 * from the operating mode and channel state. 2180 */ 2181 static int 2182 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2183 { 2184 int status; 2185 2186 status = IFM_IEEE80211; 2187 switch (opmode) { 2188 case IEEE80211_M_STA: 2189 break; 2190 case IEEE80211_M_IBSS: 2191 status |= IFM_IEEE80211_ADHOC; 2192 break; 2193 case IEEE80211_M_HOSTAP: 2194 status |= IFM_IEEE80211_HOSTAP; 2195 break; 2196 case IEEE80211_M_MONITOR: 2197 status |= IFM_IEEE80211_MONITOR; 2198 break; 2199 case IEEE80211_M_AHDEMO: 2200 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2201 break; 2202 case IEEE80211_M_WDS: 2203 status |= IFM_IEEE80211_WDS; 2204 break; 2205 case IEEE80211_M_MBSS: 2206 status |= IFM_IEEE80211_MBSS; 2207 break; 2208 } 2209 if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) { 2210 status |= IFM_IEEE80211_VHT5G; 2211 } else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) { 2212 status |= IFM_IEEE80211_VHT2G; 2213 } else if (IEEE80211_IS_CHAN_HTA(chan)) { 2214 status |= IFM_IEEE80211_11NA; 2215 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2216 status |= IFM_IEEE80211_11NG; 2217 } else if (IEEE80211_IS_CHAN_A(chan)) { 2218 status |= IFM_IEEE80211_11A; 2219 } else if (IEEE80211_IS_CHAN_B(chan)) { 2220 status |= IFM_IEEE80211_11B; 2221 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2222 status |= IFM_IEEE80211_11G; 2223 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2224 status |= IFM_IEEE80211_FH; 2225 } 2226 /* XXX else complain? */ 2227 2228 if (IEEE80211_IS_CHAN_TURBO(chan)) 2229 status |= IFM_IEEE80211_TURBO; 2230 #if 0 2231 if (IEEE80211_IS_CHAN_HT20(chan)) 2232 status |= IFM_IEEE80211_HT20; 2233 if (IEEE80211_IS_CHAN_HT40(chan)) 2234 status |= IFM_IEEE80211_HT40; 2235 #endif 2236 return status; 2237 } 2238 2239 void 2240 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2241 { 2242 struct ieee80211vap *vap = ifp->if_softc; 2243 struct ieee80211com *ic = vap->iv_ic; 2244 enum ieee80211_phymode mode; 2245 2246 imr->ifm_status = IFM_AVALID; 2247 /* 2248 * NB: use the current channel's mode to lock down a xmit 2249 * rate only when running; otherwise we may have a mismatch 2250 * in which case the rate will not be convertible. 2251 */ 2252 if (vap->iv_state == IEEE80211_S_RUN || 2253 vap->iv_state == IEEE80211_S_SLEEP) { 2254 imr->ifm_status |= IFM_ACTIVE; 2255 mode = ieee80211_chan2mode(ic->ic_curchan); 2256 } else 2257 mode = IEEE80211_MODE_AUTO; 2258 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2259 /* 2260 * Calculate a current rate if possible. 2261 */ 2262 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2263 /* 2264 * A fixed rate is set, report that. 2265 */ 2266 imr->ifm_active |= ieee80211_rate2media(ic, 2267 vap->iv_txparms[mode].ucastrate, mode); 2268 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2269 /* 2270 * In station mode report the current transmit rate. 2271 */ 2272 imr->ifm_active |= ieee80211_rate2media(ic, 2273 vap->iv_bss->ni_txrate, mode); 2274 } else 2275 imr->ifm_active |= IFM_AUTO; 2276 if (imr->ifm_status & IFM_ACTIVE) 2277 imr->ifm_current = imr->ifm_active; 2278 } 2279 2280 /* 2281 * Set the current phy mode and recalculate the active channel 2282 * set based on the available channels for this mode. Also 2283 * select a new default/current channel if the current one is 2284 * inappropriate for this mode. 2285 */ 2286 int 2287 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2288 { 2289 /* 2290 * Adjust basic rates in 11b/11g supported rate set. 2291 * Note that if operating on a hal/quarter rate channel 2292 * this is a noop as those rates sets are different 2293 * and used instead. 2294 */ 2295 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2296 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2297 2298 ic->ic_curmode = mode; 2299 ieee80211_reset_erp(ic); /* reset global ERP state */ 2300 2301 return 0; 2302 } 2303 2304 /* 2305 * Return the phy mode for with the specified channel. 2306 */ 2307 enum ieee80211_phymode 2308 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2309 { 2310 2311 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2312 return IEEE80211_MODE_VHT_2GHZ; 2313 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2314 return IEEE80211_MODE_VHT_5GHZ; 2315 else if (IEEE80211_IS_CHAN_HTA(chan)) 2316 return IEEE80211_MODE_11NA; 2317 else if (IEEE80211_IS_CHAN_HTG(chan)) 2318 return IEEE80211_MODE_11NG; 2319 else if (IEEE80211_IS_CHAN_108G(chan)) 2320 return IEEE80211_MODE_TURBO_G; 2321 else if (IEEE80211_IS_CHAN_ST(chan)) 2322 return IEEE80211_MODE_STURBO_A; 2323 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2324 return IEEE80211_MODE_TURBO_A; 2325 else if (IEEE80211_IS_CHAN_HALF(chan)) 2326 return IEEE80211_MODE_HALF; 2327 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2328 return IEEE80211_MODE_QUARTER; 2329 else if (IEEE80211_IS_CHAN_A(chan)) 2330 return IEEE80211_MODE_11A; 2331 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2332 return IEEE80211_MODE_11G; 2333 else if (IEEE80211_IS_CHAN_B(chan)) 2334 return IEEE80211_MODE_11B; 2335 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2336 return IEEE80211_MODE_FH; 2337 2338 /* NB: should not get here */ 2339 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2340 __func__, chan->ic_freq, chan->ic_flags); 2341 return IEEE80211_MODE_11B; 2342 } 2343 2344 struct ratemedia { 2345 u_int match; /* rate + mode */ 2346 u_int media; /* if_media rate */ 2347 }; 2348 2349 static int 2350 findmedia(const struct ratemedia rates[], int n, u_int match) 2351 { 2352 int i; 2353 2354 for (i = 0; i < n; i++) 2355 if (rates[i].match == match) 2356 return rates[i].media; 2357 return IFM_AUTO; 2358 } 2359 2360 /* 2361 * Convert IEEE80211 rate value to ifmedia subtype. 2362 * Rate is either a legacy rate in units of 0.5Mbps 2363 * or an MCS index. 2364 */ 2365 int 2366 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2367 { 2368 static const struct ratemedia rates[] = { 2369 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2370 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2371 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2372 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2373 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2374 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2375 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2376 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2377 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2378 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2379 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2380 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2381 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2382 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2383 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2384 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2385 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2386 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2387 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2388 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2389 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2390 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2391 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2392 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2393 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2394 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2395 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2396 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2397 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2398 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2399 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2400 }; 2401 static const struct ratemedia htrates[] = { 2402 { 0, IFM_IEEE80211_MCS }, 2403 { 1, IFM_IEEE80211_MCS }, 2404 { 2, IFM_IEEE80211_MCS }, 2405 { 3, IFM_IEEE80211_MCS }, 2406 { 4, IFM_IEEE80211_MCS }, 2407 { 5, IFM_IEEE80211_MCS }, 2408 { 6, IFM_IEEE80211_MCS }, 2409 { 7, IFM_IEEE80211_MCS }, 2410 { 8, IFM_IEEE80211_MCS }, 2411 { 9, IFM_IEEE80211_MCS }, 2412 { 10, IFM_IEEE80211_MCS }, 2413 { 11, IFM_IEEE80211_MCS }, 2414 { 12, IFM_IEEE80211_MCS }, 2415 { 13, IFM_IEEE80211_MCS }, 2416 { 14, IFM_IEEE80211_MCS }, 2417 { 15, IFM_IEEE80211_MCS }, 2418 { 16, IFM_IEEE80211_MCS }, 2419 { 17, IFM_IEEE80211_MCS }, 2420 { 18, IFM_IEEE80211_MCS }, 2421 { 19, IFM_IEEE80211_MCS }, 2422 { 20, IFM_IEEE80211_MCS }, 2423 { 21, IFM_IEEE80211_MCS }, 2424 { 22, IFM_IEEE80211_MCS }, 2425 { 23, IFM_IEEE80211_MCS }, 2426 { 24, IFM_IEEE80211_MCS }, 2427 { 25, IFM_IEEE80211_MCS }, 2428 { 26, IFM_IEEE80211_MCS }, 2429 { 27, IFM_IEEE80211_MCS }, 2430 { 28, IFM_IEEE80211_MCS }, 2431 { 29, IFM_IEEE80211_MCS }, 2432 { 30, IFM_IEEE80211_MCS }, 2433 { 31, IFM_IEEE80211_MCS }, 2434 { 32, IFM_IEEE80211_MCS }, 2435 { 33, IFM_IEEE80211_MCS }, 2436 { 34, IFM_IEEE80211_MCS }, 2437 { 35, IFM_IEEE80211_MCS }, 2438 { 36, IFM_IEEE80211_MCS }, 2439 { 37, IFM_IEEE80211_MCS }, 2440 { 38, IFM_IEEE80211_MCS }, 2441 { 39, IFM_IEEE80211_MCS }, 2442 { 40, IFM_IEEE80211_MCS }, 2443 { 41, IFM_IEEE80211_MCS }, 2444 { 42, IFM_IEEE80211_MCS }, 2445 { 43, IFM_IEEE80211_MCS }, 2446 { 44, IFM_IEEE80211_MCS }, 2447 { 45, IFM_IEEE80211_MCS }, 2448 { 46, IFM_IEEE80211_MCS }, 2449 { 47, IFM_IEEE80211_MCS }, 2450 { 48, IFM_IEEE80211_MCS }, 2451 { 49, IFM_IEEE80211_MCS }, 2452 { 50, IFM_IEEE80211_MCS }, 2453 { 51, IFM_IEEE80211_MCS }, 2454 { 52, IFM_IEEE80211_MCS }, 2455 { 53, IFM_IEEE80211_MCS }, 2456 { 54, IFM_IEEE80211_MCS }, 2457 { 55, IFM_IEEE80211_MCS }, 2458 { 56, IFM_IEEE80211_MCS }, 2459 { 57, IFM_IEEE80211_MCS }, 2460 { 58, IFM_IEEE80211_MCS }, 2461 { 59, IFM_IEEE80211_MCS }, 2462 { 60, IFM_IEEE80211_MCS }, 2463 { 61, IFM_IEEE80211_MCS }, 2464 { 62, IFM_IEEE80211_MCS }, 2465 { 63, IFM_IEEE80211_MCS }, 2466 { 64, IFM_IEEE80211_MCS }, 2467 { 65, IFM_IEEE80211_MCS }, 2468 { 66, IFM_IEEE80211_MCS }, 2469 { 67, IFM_IEEE80211_MCS }, 2470 { 68, IFM_IEEE80211_MCS }, 2471 { 69, IFM_IEEE80211_MCS }, 2472 { 70, IFM_IEEE80211_MCS }, 2473 { 71, IFM_IEEE80211_MCS }, 2474 { 72, IFM_IEEE80211_MCS }, 2475 { 73, IFM_IEEE80211_MCS }, 2476 { 74, IFM_IEEE80211_MCS }, 2477 { 75, IFM_IEEE80211_MCS }, 2478 { 76, IFM_IEEE80211_MCS }, 2479 }; 2480 static const struct ratemedia vhtrates[] = { 2481 { 0, IFM_IEEE80211_VHT }, 2482 { 1, IFM_IEEE80211_VHT }, 2483 { 2, IFM_IEEE80211_VHT }, 2484 { 3, IFM_IEEE80211_VHT }, 2485 { 4, IFM_IEEE80211_VHT }, 2486 { 5, IFM_IEEE80211_VHT }, 2487 { 6, IFM_IEEE80211_VHT }, 2488 { 7, IFM_IEEE80211_VHT }, 2489 { 8, IFM_IEEE80211_VHT }, /* Optional. */ 2490 { 9, IFM_IEEE80211_VHT }, /* Optional. */ 2491 #if 0 2492 /* Some QCA and BRCM seem to support this; offspec. */ 2493 { 10, IFM_IEEE80211_VHT }, 2494 { 11, IFM_IEEE80211_VHT }, 2495 #endif 2496 }; 2497 int m; 2498 2499 /* 2500 * Check 11ac/11n rates first for match as an MCS. 2501 */ 2502 if (mode == IEEE80211_MODE_VHT_5GHZ) { 2503 if (rate & IFM_IEEE80211_VHT) { 2504 rate &= ~IFM_IEEE80211_VHT; 2505 m = findmedia(vhtrates, nitems(vhtrates), rate); 2506 if (m != IFM_AUTO) 2507 return (m | IFM_IEEE80211_VHT); 2508 } 2509 } else if (mode == IEEE80211_MODE_11NA) { 2510 if (rate & IEEE80211_RATE_MCS) { 2511 rate &= ~IEEE80211_RATE_MCS; 2512 m = findmedia(htrates, nitems(htrates), rate); 2513 if (m != IFM_AUTO) 2514 return m | IFM_IEEE80211_11NA; 2515 } 2516 } else if (mode == IEEE80211_MODE_11NG) { 2517 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2518 if (rate & IEEE80211_RATE_MCS) { 2519 rate &= ~IEEE80211_RATE_MCS; 2520 m = findmedia(htrates, nitems(htrates), rate); 2521 if (m != IFM_AUTO) 2522 return m | IFM_IEEE80211_11NG; 2523 } 2524 } 2525 rate &= IEEE80211_RATE_VAL; 2526 switch (mode) { 2527 case IEEE80211_MODE_11A: 2528 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2529 case IEEE80211_MODE_QUARTER: 2530 case IEEE80211_MODE_11NA: 2531 case IEEE80211_MODE_TURBO_A: 2532 case IEEE80211_MODE_STURBO_A: 2533 return findmedia(rates, nitems(rates), 2534 rate | IFM_IEEE80211_11A); 2535 case IEEE80211_MODE_11B: 2536 return findmedia(rates, nitems(rates), 2537 rate | IFM_IEEE80211_11B); 2538 case IEEE80211_MODE_FH: 2539 return findmedia(rates, nitems(rates), 2540 rate | IFM_IEEE80211_FH); 2541 case IEEE80211_MODE_AUTO: 2542 /* NB: ic may be NULL for some drivers */ 2543 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2544 return findmedia(rates, nitems(rates), 2545 rate | IFM_IEEE80211_FH); 2546 /* NB: hack, 11g matches both 11b+11a rates */ 2547 /* fall thru... */ 2548 case IEEE80211_MODE_11G: 2549 case IEEE80211_MODE_11NG: 2550 case IEEE80211_MODE_TURBO_G: 2551 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2552 case IEEE80211_MODE_VHT_2GHZ: 2553 case IEEE80211_MODE_VHT_5GHZ: 2554 /* XXX TODO: need to figure out mapping for VHT rates */ 2555 return IFM_AUTO; 2556 } 2557 return IFM_AUTO; 2558 } 2559 2560 int 2561 ieee80211_media2rate(int mword) 2562 { 2563 static const int ieeerates[] = { 2564 -1, /* IFM_AUTO */ 2565 0, /* IFM_MANUAL */ 2566 0, /* IFM_NONE */ 2567 2, /* IFM_IEEE80211_FH1 */ 2568 4, /* IFM_IEEE80211_FH2 */ 2569 2, /* IFM_IEEE80211_DS1 */ 2570 4, /* IFM_IEEE80211_DS2 */ 2571 11, /* IFM_IEEE80211_DS5 */ 2572 22, /* IFM_IEEE80211_DS11 */ 2573 44, /* IFM_IEEE80211_DS22 */ 2574 12, /* IFM_IEEE80211_OFDM6 */ 2575 18, /* IFM_IEEE80211_OFDM9 */ 2576 24, /* IFM_IEEE80211_OFDM12 */ 2577 36, /* IFM_IEEE80211_OFDM18 */ 2578 48, /* IFM_IEEE80211_OFDM24 */ 2579 72, /* IFM_IEEE80211_OFDM36 */ 2580 96, /* IFM_IEEE80211_OFDM48 */ 2581 108, /* IFM_IEEE80211_OFDM54 */ 2582 144, /* IFM_IEEE80211_OFDM72 */ 2583 0, /* IFM_IEEE80211_DS354k */ 2584 0, /* IFM_IEEE80211_DS512k */ 2585 6, /* IFM_IEEE80211_OFDM3 */ 2586 9, /* IFM_IEEE80211_OFDM4 */ 2587 54, /* IFM_IEEE80211_OFDM27 */ 2588 -1, /* IFM_IEEE80211_MCS */ 2589 -1, /* IFM_IEEE80211_VHT */ 2590 }; 2591 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2592 ieeerates[IFM_SUBTYPE(mword)] : 0; 2593 } 2594 2595 /* 2596 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2597 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2598 */ 2599 #define mix(a, b, c) \ 2600 do { \ 2601 a -= b; a -= c; a ^= (c >> 13); \ 2602 b -= c; b -= a; b ^= (a << 8); \ 2603 c -= a; c -= b; c ^= (b >> 13); \ 2604 a -= b; a -= c; a ^= (c >> 12); \ 2605 b -= c; b -= a; b ^= (a << 16); \ 2606 c -= a; c -= b; c ^= (b >> 5); \ 2607 a -= b; a -= c; a ^= (c >> 3); \ 2608 b -= c; b -= a; b ^= (a << 10); \ 2609 c -= a; c -= b; c ^= (b >> 15); \ 2610 } while (/*CONSTCOND*/0) 2611 2612 uint32_t 2613 ieee80211_mac_hash(const struct ieee80211com *ic, 2614 const uint8_t addr[IEEE80211_ADDR_LEN]) 2615 { 2616 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2617 2618 b += addr[5] << 8; 2619 b += addr[4]; 2620 a += addr[3] << 24; 2621 a += addr[2] << 16; 2622 a += addr[1] << 8; 2623 a += addr[0]; 2624 2625 mix(a, b, c); 2626 2627 return c; 2628 } 2629 #undef mix 2630 2631 char 2632 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2633 { 2634 if (IEEE80211_IS_CHAN_ST(c)) 2635 return 'S'; 2636 if (IEEE80211_IS_CHAN_108A(c)) 2637 return 'T'; 2638 if (IEEE80211_IS_CHAN_108G(c)) 2639 return 'G'; 2640 if (IEEE80211_IS_CHAN_VHT(c)) 2641 return 'v'; 2642 if (IEEE80211_IS_CHAN_HT(c)) 2643 return 'n'; 2644 if (IEEE80211_IS_CHAN_A(c)) 2645 return 'a'; 2646 if (IEEE80211_IS_CHAN_ANYG(c)) 2647 return 'g'; 2648 if (IEEE80211_IS_CHAN_B(c)) 2649 return 'b'; 2650 return 'f'; 2651 } 2652