1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/socket.h> 42 #include <sys/sbuf.h> 43 44 #include <machine/stdarg.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_dl.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 #include <net/ethernet.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #include <net80211/ieee80211_ratectl.h> 59 #include <net80211/ieee80211_vht.h> 60 61 #include <net/bpf.h> 62 63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 64 [IEEE80211_MODE_AUTO] = "auto", 65 [IEEE80211_MODE_11A] = "11a", 66 [IEEE80211_MODE_11B] = "11b", 67 [IEEE80211_MODE_11G] = "11g", 68 [IEEE80211_MODE_FH] = "FH", 69 [IEEE80211_MODE_TURBO_A] = "turboA", 70 [IEEE80211_MODE_TURBO_G] = "turboG", 71 [IEEE80211_MODE_STURBO_A] = "sturboA", 72 [IEEE80211_MODE_HALF] = "half", 73 [IEEE80211_MODE_QUARTER] = "quarter", 74 [IEEE80211_MODE_11NA] = "11na", 75 [IEEE80211_MODE_11NG] = "11ng", 76 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 77 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 78 }; 79 /* map ieee80211_opmode to the corresponding capability bit */ 80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 81 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 82 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 83 [IEEE80211_M_STA] = IEEE80211_C_STA, 84 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 85 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 86 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 87 #ifdef IEEE80211_SUPPORT_MESH 88 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 89 #endif 90 }; 91 92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 93 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 94 95 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 96 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 98 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 99 static int ieee80211_media_setup(struct ieee80211com *ic, 100 struct ifmedia *media, int caps, int addsta, 101 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 102 static int media_status(enum ieee80211_opmode, 103 const struct ieee80211_channel *); 104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 105 106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 107 108 /* 109 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 110 */ 111 #define B(r) ((r) | IEEE80211_RATE_BASIC) 112 static const struct ieee80211_rateset ieee80211_rateset_11a = 113 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 114 static const struct ieee80211_rateset ieee80211_rateset_half = 115 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 116 static const struct ieee80211_rateset ieee80211_rateset_quarter = 117 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 118 static const struct ieee80211_rateset ieee80211_rateset_11b = 119 { 4, { B(2), B(4), B(11), B(22) } }; 120 /* NB: OFDM rates are handled specially based on mode */ 121 static const struct ieee80211_rateset ieee80211_rateset_11g = 122 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 123 #undef B 124 125 static int set_vht_extchan(struct ieee80211_channel *c); 126 127 /* 128 * Fill in 802.11 available channel set, mark 129 * all available channels as active, and pick 130 * a default channel if not already specified. 131 */ 132 void 133 ieee80211_chan_init(struct ieee80211com *ic) 134 { 135 #define DEFAULTRATES(m, def) do { \ 136 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 137 ic->ic_sup_rates[m] = def; \ 138 } while (0) 139 struct ieee80211_channel *c; 140 int i; 141 142 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 143 ("invalid number of channels specified: %u", ic->ic_nchans)); 144 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 145 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 146 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 147 for (i = 0; i < ic->ic_nchans; i++) { 148 c = &ic->ic_channels[i]; 149 KASSERT(c->ic_flags != 0, ("channel with no flags")); 150 /* 151 * Help drivers that work only with frequencies by filling 152 * in IEEE channel #'s if not already calculated. Note this 153 * mimics similar work done in ieee80211_setregdomain when 154 * changing regulatory state. 155 */ 156 if (c->ic_ieee == 0) 157 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 158 159 /* 160 * Setup the HT40/VHT40 upper/lower bits. 161 * The VHT80 math is done elsewhere. 162 */ 163 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 164 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 165 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 166 c->ic_flags); 167 168 /* Update VHT math */ 169 /* 170 * XXX VHT again, note that this assumes VHT80 channels 171 * are legit already 172 */ 173 set_vht_extchan(c); 174 175 /* default max tx power to max regulatory */ 176 if (c->ic_maxpower == 0) 177 c->ic_maxpower = 2*c->ic_maxregpower; 178 setbit(ic->ic_chan_avail, c->ic_ieee); 179 /* 180 * Identify mode capabilities. 181 */ 182 if (IEEE80211_IS_CHAN_A(c)) 183 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 184 if (IEEE80211_IS_CHAN_B(c)) 185 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 186 if (IEEE80211_IS_CHAN_ANYG(c)) 187 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 188 if (IEEE80211_IS_CHAN_FHSS(c)) 189 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 190 if (IEEE80211_IS_CHAN_108A(c)) 191 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 192 if (IEEE80211_IS_CHAN_108G(c)) 193 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 194 if (IEEE80211_IS_CHAN_ST(c)) 195 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 196 if (IEEE80211_IS_CHAN_HALF(c)) 197 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 198 if (IEEE80211_IS_CHAN_QUARTER(c)) 199 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 200 if (IEEE80211_IS_CHAN_HTA(c)) 201 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 202 if (IEEE80211_IS_CHAN_HTG(c)) 203 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 204 if (IEEE80211_IS_CHAN_VHTA(c)) 205 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 206 if (IEEE80211_IS_CHAN_VHTG(c)) 207 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 208 } 209 /* initialize candidate channels to all available */ 210 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 211 sizeof(ic->ic_chan_avail)); 212 213 /* sort channel table to allow lookup optimizations */ 214 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 215 216 /* invalidate any previous state */ 217 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 218 ic->ic_prevchan = NULL; 219 ic->ic_csa_newchan = NULL; 220 /* arbitrarily pick the first channel */ 221 ic->ic_curchan = &ic->ic_channels[0]; 222 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 223 224 /* fillin well-known rate sets if driver has not specified */ 225 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 226 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 227 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 228 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 229 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 230 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 231 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 232 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 233 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 234 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 235 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 236 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 237 238 /* 239 * Setup required information to fill the mcsset field, if driver did 240 * not. Assume a 2T2R setup for historic reasons. 241 */ 242 if (ic->ic_rxstream == 0) 243 ic->ic_rxstream = 2; 244 if (ic->ic_txstream == 0) 245 ic->ic_txstream = 2; 246 247 ieee80211_init_suphtrates(ic); 248 249 /* 250 * Set auto mode to reset active channel state and any desired channel. 251 */ 252 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 253 #undef DEFAULTRATES 254 } 255 256 static void 257 null_update_mcast(struct ieee80211com *ic) 258 { 259 260 ic_printf(ic, "need multicast update callback\n"); 261 } 262 263 static void 264 null_update_promisc(struct ieee80211com *ic) 265 { 266 267 ic_printf(ic, "need promiscuous mode update callback\n"); 268 } 269 270 static void 271 null_update_chw(struct ieee80211com *ic) 272 { 273 274 ic_printf(ic, "%s: need callback\n", __func__); 275 } 276 277 int 278 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 279 { 280 va_list ap; 281 int retval; 282 283 retval = printf("%s: ", ic->ic_name); 284 va_start(ap, fmt); 285 retval += vprintf(fmt, ap); 286 va_end(ap); 287 return (retval); 288 } 289 290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 291 static struct mtx ic_list_mtx; 292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 293 294 static int 295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 296 { 297 struct ieee80211com *ic; 298 struct sbuf sb; 299 char *sp; 300 int error; 301 302 error = sysctl_wire_old_buffer(req, 0); 303 if (error) 304 return (error); 305 sbuf_new_for_sysctl(&sb, NULL, 8, req); 306 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 307 sp = ""; 308 mtx_lock(&ic_list_mtx); 309 LIST_FOREACH(ic, &ic_head, ic_next) { 310 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 311 sp = " "; 312 } 313 mtx_unlock(&ic_list_mtx); 314 error = sbuf_finish(&sb); 315 sbuf_delete(&sb); 316 return (error); 317 } 318 319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 320 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 321 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 322 323 /* 324 * Attach/setup the common net80211 state. Called by 325 * the driver on attach to prior to creating any vap's. 326 */ 327 void 328 ieee80211_ifattach(struct ieee80211com *ic) 329 { 330 331 IEEE80211_LOCK_INIT(ic, ic->ic_name); 332 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 333 TAILQ_INIT(&ic->ic_vaps); 334 335 /* Create a taskqueue for all state changes */ 336 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 337 taskqueue_thread_enqueue, &ic->ic_tq); 338 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 339 ic->ic_name); 340 ic->ic_ierrors = counter_u64_alloc(M_WAITOK); 341 ic->ic_oerrors = counter_u64_alloc(M_WAITOK); 342 /* 343 * Fill in 802.11 available channel set, mark all 344 * available channels as active, and pick a default 345 * channel if not already specified. 346 */ 347 ieee80211_chan_init(ic); 348 349 ic->ic_update_mcast = null_update_mcast; 350 ic->ic_update_promisc = null_update_promisc; 351 ic->ic_update_chw = null_update_chw; 352 353 ic->ic_hash_key = arc4random(); 354 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 355 ic->ic_lintval = ic->ic_bintval; 356 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 357 358 ieee80211_crypto_attach(ic); 359 ieee80211_node_attach(ic); 360 ieee80211_power_attach(ic); 361 ieee80211_proto_attach(ic); 362 #ifdef IEEE80211_SUPPORT_SUPERG 363 ieee80211_superg_attach(ic); 364 #endif 365 ieee80211_ht_attach(ic); 366 ieee80211_vht_attach(ic); 367 ieee80211_scan_attach(ic); 368 ieee80211_regdomain_attach(ic); 369 ieee80211_dfs_attach(ic); 370 371 ieee80211_sysctl_attach(ic); 372 373 mtx_lock(&ic_list_mtx); 374 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 375 mtx_unlock(&ic_list_mtx); 376 } 377 378 /* 379 * Detach net80211 state on device detach. Tear down 380 * all vap's and reclaim all common state prior to the 381 * device state going away. Note we may call back into 382 * driver; it must be prepared for this. 383 */ 384 void 385 ieee80211_ifdetach(struct ieee80211com *ic) 386 { 387 struct ieee80211vap *vap; 388 389 /* 390 * We use this as an indicator that ifattach never had a chance to be 391 * called, e.g. early driver attach failed and ifdetach was called 392 * during subsequent detach. Never fear, for we have nothing to do 393 * here. 394 */ 395 if (ic->ic_tq == NULL) 396 return; 397 398 mtx_lock(&ic_list_mtx); 399 LIST_REMOVE(ic, ic_next); 400 mtx_unlock(&ic_list_mtx); 401 402 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 403 404 /* 405 * The VAP is responsible for setting and clearing 406 * the VIMAGE context. 407 */ 408 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { 409 ieee80211_com_vdetach(vap); 410 ieee80211_vap_destroy(vap); 411 } 412 ieee80211_waitfor_parent(ic); 413 414 ieee80211_sysctl_detach(ic); 415 ieee80211_dfs_detach(ic); 416 ieee80211_regdomain_detach(ic); 417 ieee80211_scan_detach(ic); 418 #ifdef IEEE80211_SUPPORT_SUPERG 419 ieee80211_superg_detach(ic); 420 #endif 421 ieee80211_vht_detach(ic); 422 ieee80211_ht_detach(ic); 423 /* NB: must be called before ieee80211_node_detach */ 424 ieee80211_proto_detach(ic); 425 ieee80211_crypto_detach(ic); 426 ieee80211_power_detach(ic); 427 ieee80211_node_detach(ic); 428 429 counter_u64_free(ic->ic_ierrors); 430 counter_u64_free(ic->ic_oerrors); 431 432 taskqueue_free(ic->ic_tq); 433 IEEE80211_TX_LOCK_DESTROY(ic); 434 IEEE80211_LOCK_DESTROY(ic); 435 } 436 437 struct ieee80211com * 438 ieee80211_find_com(const char *name) 439 { 440 struct ieee80211com *ic; 441 442 mtx_lock(&ic_list_mtx); 443 LIST_FOREACH(ic, &ic_head, ic_next) 444 if (strcmp(ic->ic_name, name) == 0) 445 break; 446 mtx_unlock(&ic_list_mtx); 447 448 return (ic); 449 } 450 451 void 452 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 453 { 454 struct ieee80211com *ic; 455 456 mtx_lock(&ic_list_mtx); 457 LIST_FOREACH(ic, &ic_head, ic_next) 458 (*f)(arg, ic); 459 mtx_unlock(&ic_list_mtx); 460 } 461 462 /* 463 * Default reset method for use with the ioctl support. This 464 * method is invoked after any state change in the 802.11 465 * layer that should be propagated to the hardware but not 466 * require re-initialization of the 802.11 state machine (e.g 467 * rescanning for an ap). We always return ENETRESET which 468 * should cause the driver to re-initialize the device. Drivers 469 * can override this method to implement more optimized support. 470 */ 471 static int 472 default_reset(struct ieee80211vap *vap, u_long cmd) 473 { 474 return ENETRESET; 475 } 476 477 /* 478 * Default for updating the VAP default TX key index. 479 * 480 * Drivers that support TX offload as well as hardware encryption offload 481 * may need to be informed of key index changes separate from the key 482 * update. 483 */ 484 static void 485 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 486 { 487 488 /* XXX assert validity */ 489 /* XXX assert we're in a key update block */ 490 vap->iv_def_txkey = kid; 491 } 492 493 /* 494 * Add underlying device errors to vap errors. 495 */ 496 static uint64_t 497 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 498 { 499 struct ieee80211vap *vap = ifp->if_softc; 500 struct ieee80211com *ic = vap->iv_ic; 501 uint64_t rv; 502 503 rv = if_get_counter_default(ifp, cnt); 504 switch (cnt) { 505 case IFCOUNTER_OERRORS: 506 rv += counter_u64_fetch(ic->ic_oerrors); 507 break; 508 case IFCOUNTER_IERRORS: 509 rv += counter_u64_fetch(ic->ic_ierrors); 510 break; 511 default: 512 break; 513 } 514 515 return (rv); 516 } 517 518 /* 519 * Prepare a vap for use. Drivers use this call to 520 * setup net80211 state in new vap's prior attaching 521 * them with ieee80211_vap_attach (below). 522 */ 523 int 524 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 525 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 526 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 527 { 528 struct ifnet *ifp; 529 530 ifp = if_alloc(IFT_ETHER); 531 if (ifp == NULL) { 532 ic_printf(ic, "%s: unable to allocate ifnet\n", 533 __func__); 534 return ENOMEM; 535 } 536 if_initname(ifp, name, unit); 537 ifp->if_softc = vap; /* back pointer */ 538 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 539 ifp->if_transmit = ieee80211_vap_transmit; 540 ifp->if_qflush = ieee80211_vap_qflush; 541 ifp->if_ioctl = ieee80211_ioctl; 542 ifp->if_init = ieee80211_init; 543 ifp->if_get_counter = ieee80211_get_counter; 544 545 vap->iv_ifp = ifp; 546 vap->iv_ic = ic; 547 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 548 vap->iv_flags_ext = ic->ic_flags_ext; 549 vap->iv_flags_ven = ic->ic_flags_ven; 550 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 551 552 /* 11n capabilities - XXX methodize */ 553 vap->iv_htcaps = ic->ic_htcaps; 554 vap->iv_htextcaps = ic->ic_htextcaps; 555 556 /* 11ac capabilities - XXX methodize */ 557 vap->iv_vhtcaps = ic->ic_vhtcaps; 558 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 559 560 vap->iv_opmode = opmode; 561 vap->iv_caps |= ieee80211_opcap[opmode]; 562 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 563 switch (opmode) { 564 case IEEE80211_M_WDS: 565 /* 566 * WDS links must specify the bssid of the far end. 567 * For legacy operation this is a static relationship. 568 * For non-legacy operation the station must associate 569 * and be authorized to pass traffic. Plumbing the 570 * vap to the proper node happens when the vap 571 * transitions to RUN state. 572 */ 573 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 574 vap->iv_flags |= IEEE80211_F_DESBSSID; 575 if (flags & IEEE80211_CLONE_WDSLEGACY) 576 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 577 break; 578 #ifdef IEEE80211_SUPPORT_TDMA 579 case IEEE80211_M_AHDEMO: 580 if (flags & IEEE80211_CLONE_TDMA) { 581 /* NB: checked before clone operation allowed */ 582 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 583 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 584 /* 585 * Propagate TDMA capability to mark vap; this 586 * cannot be removed and is used to distinguish 587 * regular ahdemo operation from ahdemo+tdma. 588 */ 589 vap->iv_caps |= IEEE80211_C_TDMA; 590 } 591 break; 592 #endif 593 default: 594 break; 595 } 596 /* auto-enable s/w beacon miss support */ 597 if (flags & IEEE80211_CLONE_NOBEACONS) 598 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 599 /* auto-generated or user supplied MAC address */ 600 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 601 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 602 /* 603 * Enable various functionality by default if we're 604 * capable; the driver can override us if it knows better. 605 */ 606 if (vap->iv_caps & IEEE80211_C_WME) 607 vap->iv_flags |= IEEE80211_F_WME; 608 if (vap->iv_caps & IEEE80211_C_BURST) 609 vap->iv_flags |= IEEE80211_F_BURST; 610 /* NB: bg scanning only makes sense for station mode right now */ 611 if (vap->iv_opmode == IEEE80211_M_STA && 612 (vap->iv_caps & IEEE80211_C_BGSCAN)) 613 vap->iv_flags |= IEEE80211_F_BGSCAN; 614 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 615 /* NB: DFS support only makes sense for ap mode right now */ 616 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 617 (vap->iv_caps & IEEE80211_C_DFS)) 618 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 619 620 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 621 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 622 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 623 /* 624 * Install a default reset method for the ioctl support; 625 * the driver can override this. 626 */ 627 vap->iv_reset = default_reset; 628 629 /* 630 * Install a default crypto key update method, the driver 631 * can override this. 632 */ 633 vap->iv_update_deftxkey = default_update_deftxkey; 634 635 ieee80211_sysctl_vattach(vap); 636 ieee80211_crypto_vattach(vap); 637 ieee80211_node_vattach(vap); 638 ieee80211_power_vattach(vap); 639 ieee80211_proto_vattach(vap); 640 #ifdef IEEE80211_SUPPORT_SUPERG 641 ieee80211_superg_vattach(vap); 642 #endif 643 ieee80211_ht_vattach(vap); 644 ieee80211_vht_vattach(vap); 645 ieee80211_scan_vattach(vap); 646 ieee80211_regdomain_vattach(vap); 647 ieee80211_radiotap_vattach(vap); 648 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 649 650 return 0; 651 } 652 653 /* 654 * Activate a vap. State should have been prepared with a 655 * call to ieee80211_vap_setup and by the driver. On return 656 * from this call the vap is ready for use. 657 */ 658 int 659 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 660 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 661 { 662 struct ifnet *ifp = vap->iv_ifp; 663 struct ieee80211com *ic = vap->iv_ic; 664 struct ifmediareq imr; 665 int maxrate; 666 667 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 668 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 669 __func__, ieee80211_opmode_name[vap->iv_opmode], 670 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 671 672 /* 673 * Do late attach work that cannot happen until after 674 * the driver has had a chance to override defaults. 675 */ 676 ieee80211_node_latevattach(vap); 677 ieee80211_power_latevattach(vap); 678 679 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 680 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 681 ieee80211_media_status(ifp, &imr); 682 /* NB: strip explicit mode; we're actually in autoselect */ 683 ifmedia_set(&vap->iv_media, 684 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 685 if (maxrate) 686 ifp->if_baudrate = IF_Mbps(maxrate); 687 688 ether_ifattach(ifp, macaddr); 689 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 690 /* hook output method setup by ether_ifattach */ 691 vap->iv_output = ifp->if_output; 692 ifp->if_output = ieee80211_output; 693 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 694 695 IEEE80211_LOCK(ic); 696 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 697 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 698 #ifdef IEEE80211_SUPPORT_SUPERG 699 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 700 #endif 701 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 702 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 703 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 704 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 705 706 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 707 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 708 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 709 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 710 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 711 IEEE80211_UNLOCK(ic); 712 713 return 1; 714 } 715 716 /* 717 * Tear down vap state and reclaim the ifnet. 718 * The driver is assumed to have prepared for 719 * this; e.g. by turning off interrupts for the 720 * underlying device. 721 */ 722 void 723 ieee80211_vap_detach(struct ieee80211vap *vap) 724 { 725 struct ieee80211com *ic = vap->iv_ic; 726 struct ifnet *ifp = vap->iv_ifp; 727 728 CURVNET_SET(ifp->if_vnet); 729 730 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 731 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 732 733 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 734 ether_ifdetach(ifp); 735 736 ieee80211_stop(vap); 737 738 /* 739 * Flush any deferred vap tasks. 740 */ 741 ieee80211_draintask(ic, &vap->iv_nstate_task); 742 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 743 ieee80211_draintask(ic, &vap->iv_wme_task); 744 ieee80211_draintask(ic, &ic->ic_parent_task); 745 746 /* XXX band-aid until ifnet handles this for us */ 747 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 748 749 IEEE80211_LOCK(ic); 750 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 751 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 752 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 753 #ifdef IEEE80211_SUPPORT_SUPERG 754 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 755 #endif 756 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 757 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 758 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 759 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 760 761 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 762 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 763 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 764 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 765 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 766 767 /* NB: this handles the bpfdetach done below */ 768 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 769 if (vap->iv_ifflags & IFF_PROMISC) 770 ieee80211_promisc(vap, false); 771 if (vap->iv_ifflags & IFF_ALLMULTI) 772 ieee80211_allmulti(vap, false); 773 IEEE80211_UNLOCK(ic); 774 775 ifmedia_removeall(&vap->iv_media); 776 777 ieee80211_radiotap_vdetach(vap); 778 ieee80211_regdomain_vdetach(vap); 779 ieee80211_scan_vdetach(vap); 780 #ifdef IEEE80211_SUPPORT_SUPERG 781 ieee80211_superg_vdetach(vap); 782 #endif 783 ieee80211_vht_vdetach(vap); 784 ieee80211_ht_vdetach(vap); 785 /* NB: must be before ieee80211_node_vdetach */ 786 ieee80211_proto_vdetach(vap); 787 ieee80211_crypto_vdetach(vap); 788 ieee80211_power_vdetach(vap); 789 ieee80211_node_vdetach(vap); 790 ieee80211_sysctl_vdetach(vap); 791 792 if_free(ifp); 793 794 CURVNET_RESTORE(); 795 } 796 797 /* 798 * Count number of vaps in promisc, and issue promisc on 799 * parent respectively. 800 */ 801 void 802 ieee80211_promisc(struct ieee80211vap *vap, bool on) 803 { 804 struct ieee80211com *ic = vap->iv_ic; 805 806 IEEE80211_LOCK_ASSERT(ic); 807 808 if (on) { 809 if (++ic->ic_promisc == 1) 810 ieee80211_runtask(ic, &ic->ic_promisc_task); 811 } else { 812 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 813 __func__, ic)); 814 if (--ic->ic_promisc == 0) 815 ieee80211_runtask(ic, &ic->ic_promisc_task); 816 } 817 } 818 819 /* 820 * Count number of vaps in allmulti, and issue allmulti on 821 * parent respectively. 822 */ 823 void 824 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 825 { 826 struct ieee80211com *ic = vap->iv_ic; 827 828 IEEE80211_LOCK_ASSERT(ic); 829 830 if (on) { 831 if (++ic->ic_allmulti == 1) 832 ieee80211_runtask(ic, &ic->ic_mcast_task); 833 } else { 834 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 835 __func__, ic)); 836 if (--ic->ic_allmulti == 0) 837 ieee80211_runtask(ic, &ic->ic_mcast_task); 838 } 839 } 840 841 /* 842 * Synchronize flag bit state in the com structure 843 * according to the state of all vap's. This is used, 844 * for example, to handle state changes via ioctls. 845 */ 846 static void 847 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 848 { 849 struct ieee80211vap *vap; 850 int bit; 851 852 IEEE80211_LOCK_ASSERT(ic); 853 854 bit = 0; 855 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 856 if (vap->iv_flags & flag) { 857 bit = 1; 858 break; 859 } 860 if (bit) 861 ic->ic_flags |= flag; 862 else 863 ic->ic_flags &= ~flag; 864 } 865 866 void 867 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 868 { 869 struct ieee80211com *ic = vap->iv_ic; 870 871 IEEE80211_LOCK(ic); 872 if (flag < 0) { 873 flag = -flag; 874 vap->iv_flags &= ~flag; 875 } else 876 vap->iv_flags |= flag; 877 ieee80211_syncflag_locked(ic, flag); 878 IEEE80211_UNLOCK(ic); 879 } 880 881 /* 882 * Synchronize flags_ht bit state in the com structure 883 * according to the state of all vap's. This is used, 884 * for example, to handle state changes via ioctls. 885 */ 886 static void 887 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 888 { 889 struct ieee80211vap *vap; 890 int bit; 891 892 IEEE80211_LOCK_ASSERT(ic); 893 894 bit = 0; 895 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 896 if (vap->iv_flags_ht & flag) { 897 bit = 1; 898 break; 899 } 900 if (bit) 901 ic->ic_flags_ht |= flag; 902 else 903 ic->ic_flags_ht &= ~flag; 904 } 905 906 void 907 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 908 { 909 struct ieee80211com *ic = vap->iv_ic; 910 911 IEEE80211_LOCK(ic); 912 if (flag < 0) { 913 flag = -flag; 914 vap->iv_flags_ht &= ~flag; 915 } else 916 vap->iv_flags_ht |= flag; 917 ieee80211_syncflag_ht_locked(ic, flag); 918 IEEE80211_UNLOCK(ic); 919 } 920 921 /* 922 * Synchronize flags_vht bit state in the com structure 923 * according to the state of all vap's. This is used, 924 * for example, to handle state changes via ioctls. 925 */ 926 static void 927 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 928 { 929 struct ieee80211vap *vap; 930 int bit; 931 932 IEEE80211_LOCK_ASSERT(ic); 933 934 bit = 0; 935 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 936 if (vap->iv_flags_vht & flag) { 937 bit = 1; 938 break; 939 } 940 if (bit) 941 ic->ic_flags_vht |= flag; 942 else 943 ic->ic_flags_vht &= ~flag; 944 } 945 946 void 947 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 948 { 949 struct ieee80211com *ic = vap->iv_ic; 950 951 IEEE80211_LOCK(ic); 952 if (flag < 0) { 953 flag = -flag; 954 vap->iv_flags_vht &= ~flag; 955 } else 956 vap->iv_flags_vht |= flag; 957 ieee80211_syncflag_vht_locked(ic, flag); 958 IEEE80211_UNLOCK(ic); 959 } 960 961 /* 962 * Synchronize flags_ext bit state in the com structure 963 * according to the state of all vap's. This is used, 964 * for example, to handle state changes via ioctls. 965 */ 966 static void 967 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 968 { 969 struct ieee80211vap *vap; 970 int bit; 971 972 IEEE80211_LOCK_ASSERT(ic); 973 974 bit = 0; 975 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 976 if (vap->iv_flags_ext & flag) { 977 bit = 1; 978 break; 979 } 980 if (bit) 981 ic->ic_flags_ext |= flag; 982 else 983 ic->ic_flags_ext &= ~flag; 984 } 985 986 void 987 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 988 { 989 struct ieee80211com *ic = vap->iv_ic; 990 991 IEEE80211_LOCK(ic); 992 if (flag < 0) { 993 flag = -flag; 994 vap->iv_flags_ext &= ~flag; 995 } else 996 vap->iv_flags_ext |= flag; 997 ieee80211_syncflag_ext_locked(ic, flag); 998 IEEE80211_UNLOCK(ic); 999 } 1000 1001 static __inline int 1002 mapgsm(u_int freq, u_int flags) 1003 { 1004 freq *= 10; 1005 if (flags & IEEE80211_CHAN_QUARTER) 1006 freq += 5; 1007 else if (flags & IEEE80211_CHAN_HALF) 1008 freq += 10; 1009 else 1010 freq += 20; 1011 /* NB: there is no 907/20 wide but leave room */ 1012 return (freq - 906*10) / 5; 1013 } 1014 1015 static __inline int 1016 mappsb(u_int freq, u_int flags) 1017 { 1018 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1019 } 1020 1021 /* 1022 * Convert MHz frequency to IEEE channel number. 1023 */ 1024 int 1025 ieee80211_mhz2ieee(u_int freq, u_int flags) 1026 { 1027 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1028 if (flags & IEEE80211_CHAN_GSM) 1029 return mapgsm(freq, flags); 1030 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1031 if (freq == 2484) 1032 return 14; 1033 if (freq < 2484) 1034 return ((int) freq - 2407) / 5; 1035 else 1036 return 15 + ((freq - 2512) / 20); 1037 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1038 if (freq <= 5000) { 1039 /* XXX check regdomain? */ 1040 if (IS_FREQ_IN_PSB(freq)) 1041 return mappsb(freq, flags); 1042 return (freq - 4000) / 5; 1043 } else 1044 return (freq - 5000) / 5; 1045 } else { /* either, guess */ 1046 if (freq == 2484) 1047 return 14; 1048 if (freq < 2484) { 1049 if (907 <= freq && freq <= 922) 1050 return mapgsm(freq, flags); 1051 return ((int) freq - 2407) / 5; 1052 } 1053 if (freq < 5000) { 1054 if (IS_FREQ_IN_PSB(freq)) 1055 return mappsb(freq, flags); 1056 else if (freq > 4900) 1057 return (freq - 4000) / 5; 1058 else 1059 return 15 + ((freq - 2512) / 20); 1060 } 1061 return (freq - 5000) / 5; 1062 } 1063 #undef IS_FREQ_IN_PSB 1064 } 1065 1066 /* 1067 * Convert channel to IEEE channel number. 1068 */ 1069 int 1070 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1071 { 1072 if (c == NULL) { 1073 ic_printf(ic, "invalid channel (NULL)\n"); 1074 return 0; /* XXX */ 1075 } 1076 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1077 } 1078 1079 /* 1080 * Convert IEEE channel number to MHz frequency. 1081 */ 1082 u_int 1083 ieee80211_ieee2mhz(u_int chan, u_int flags) 1084 { 1085 if (flags & IEEE80211_CHAN_GSM) 1086 return 907 + 5 * (chan / 10); 1087 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1088 if (chan == 14) 1089 return 2484; 1090 if (chan < 14) 1091 return 2407 + chan*5; 1092 else 1093 return 2512 + ((chan-15)*20); 1094 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1095 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1096 chan -= 37; 1097 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1098 } 1099 return 5000 + (chan*5); 1100 } else { /* either, guess */ 1101 /* XXX can't distinguish PSB+GSM channels */ 1102 if (chan == 14) 1103 return 2484; 1104 if (chan < 14) /* 0-13 */ 1105 return 2407 + chan*5; 1106 if (chan < 27) /* 15-26 */ 1107 return 2512 + ((chan-15)*20); 1108 return 5000 + (chan*5); 1109 } 1110 } 1111 1112 static __inline void 1113 set_extchan(struct ieee80211_channel *c) 1114 { 1115 1116 /* 1117 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1118 * "the secondary channel number shall be 'N + [1,-1] * 4' 1119 */ 1120 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1121 c->ic_extieee = c->ic_ieee + 4; 1122 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1123 c->ic_extieee = c->ic_ieee - 4; 1124 else 1125 c->ic_extieee = 0; 1126 } 1127 1128 /* 1129 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1130 * 1131 * This for now uses a hard-coded list of 80MHz wide channels. 1132 * 1133 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1134 * wide channel we've already decided upon. 1135 * 1136 * For VHT80 and VHT160, there are only a small number of fixed 1137 * 80/160MHz wide channels, so we just use those. 1138 * 1139 * This is all likely very very wrong - both the regulatory code 1140 * and this code needs to ensure that all four channels are 1141 * available and valid before the VHT80 (and eight for VHT160) channel 1142 * is created. 1143 */ 1144 1145 struct vht_chan_range { 1146 uint16_t freq_start; 1147 uint16_t freq_end; 1148 }; 1149 1150 struct vht_chan_range vht80_chan_ranges[] = { 1151 { 5170, 5250 }, 1152 { 5250, 5330 }, 1153 { 5490, 5570 }, 1154 { 5570, 5650 }, 1155 { 5650, 5730 }, 1156 { 5735, 5815 }, 1157 { 0, 0, } 1158 }; 1159 1160 static int 1161 set_vht_extchan(struct ieee80211_channel *c) 1162 { 1163 int i; 1164 1165 if (! IEEE80211_IS_CHAN_VHT(c)) { 1166 return (0); 1167 } 1168 1169 if (IEEE80211_IS_CHAN_VHT20(c)) { 1170 c->ic_vht_ch_freq1 = c->ic_ieee; 1171 return (1); 1172 } 1173 1174 if (IEEE80211_IS_CHAN_VHT40(c)) { 1175 if (IEEE80211_IS_CHAN_HT40U(c)) 1176 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1177 else if (IEEE80211_IS_CHAN_HT40D(c)) 1178 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1179 else 1180 return (0); 1181 return (1); 1182 } 1183 1184 if (IEEE80211_IS_CHAN_VHT80(c)) { 1185 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1186 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1187 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1188 int midpoint; 1189 1190 midpoint = vht80_chan_ranges[i].freq_start + 40; 1191 c->ic_vht_ch_freq1 = 1192 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1193 c->ic_vht_ch_freq2 = 0; 1194 #if 0 1195 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1196 __func__, c->ic_ieee, c->ic_freq, midpoint, 1197 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1198 #endif 1199 return (1); 1200 } 1201 } 1202 return (0); 1203 } 1204 1205 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1206 __func__, 1207 c->ic_ieee, 1208 c->ic_flags); 1209 1210 return (0); 1211 } 1212 1213 /* 1214 * Return whether the current channel could possibly be a part of 1215 * a VHT80 channel. 1216 * 1217 * This doesn't check that the whole range is in the allowed list 1218 * according to regulatory. 1219 */ 1220 static int 1221 is_vht80_valid_freq(uint16_t freq) 1222 { 1223 int i; 1224 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1225 if (freq >= vht80_chan_ranges[i].freq_start && 1226 freq < vht80_chan_ranges[i].freq_end) 1227 return (1); 1228 } 1229 return (0); 1230 } 1231 1232 static int 1233 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1234 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1235 { 1236 struct ieee80211_channel *c; 1237 1238 if (*nchans >= maxchans) 1239 return (ENOBUFS); 1240 1241 #if 0 1242 printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n", 1243 __func__, 1244 *nchans, 1245 ieee, 1246 freq, 1247 flags); 1248 #endif 1249 1250 c = &chans[(*nchans)++]; 1251 c->ic_ieee = ieee; 1252 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1253 c->ic_maxregpower = maxregpower; 1254 c->ic_maxpower = 2 * maxregpower; 1255 c->ic_flags = flags; 1256 c->ic_vht_ch_freq1 = 0; 1257 c->ic_vht_ch_freq2 = 0; 1258 set_extchan(c); 1259 set_vht_extchan(c); 1260 1261 return (0); 1262 } 1263 1264 static int 1265 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1266 uint32_t flags) 1267 { 1268 struct ieee80211_channel *c; 1269 1270 KASSERT(*nchans > 0, ("channel list is empty\n")); 1271 1272 if (*nchans >= maxchans) 1273 return (ENOBUFS); 1274 1275 #if 0 1276 printf("%s: %d: flags=0x%08x\n", 1277 __func__, 1278 *nchans, 1279 flags); 1280 #endif 1281 1282 c = &chans[(*nchans)++]; 1283 c[0] = c[-1]; 1284 c->ic_flags = flags; 1285 c->ic_vht_ch_freq1 = 0; 1286 c->ic_vht_ch_freq2 = 0; 1287 set_extchan(c); 1288 set_vht_extchan(c); 1289 1290 return (0); 1291 } 1292 1293 /* 1294 * XXX VHT-2GHz 1295 */ 1296 static void 1297 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40) 1298 { 1299 int nmodes; 1300 1301 nmodes = 0; 1302 if (isset(bands, IEEE80211_MODE_11B)) 1303 flags[nmodes++] = IEEE80211_CHAN_B; 1304 if (isset(bands, IEEE80211_MODE_11G)) 1305 flags[nmodes++] = IEEE80211_CHAN_G; 1306 if (isset(bands, IEEE80211_MODE_11NG)) 1307 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1308 if (ht40) { 1309 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1310 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1311 } 1312 flags[nmodes] = 0; 1313 } 1314 1315 static void 1316 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1317 { 1318 int nmodes; 1319 1320 /* 1321 * the addchan_list function seems to expect the flags array to 1322 * be in channel width order, so the VHT bits are interspersed 1323 * as appropriate to maintain said order. 1324 * 1325 * It also assumes HT40U is before HT40D. 1326 */ 1327 nmodes = 0; 1328 1329 /* 20MHz */ 1330 if (isset(bands, IEEE80211_MODE_11A)) 1331 flags[nmodes++] = IEEE80211_CHAN_A; 1332 if (isset(bands, IEEE80211_MODE_11NA)) 1333 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1334 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1335 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1336 IEEE80211_CHAN_VHT20; 1337 } 1338 1339 /* 40MHz */ 1340 if (ht40) { 1341 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1342 } 1343 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1344 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U 1345 | IEEE80211_CHAN_VHT40U; 1346 } 1347 if (ht40) { 1348 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1349 } 1350 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1351 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D 1352 | IEEE80211_CHAN_VHT40D; 1353 } 1354 1355 /* 80MHz */ 1356 if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1357 flags[nmodes++] = IEEE80211_CHAN_A | 1358 IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80; 1359 flags[nmodes++] = IEEE80211_CHAN_A | 1360 IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80; 1361 } 1362 1363 /* XXX VHT80+80 */ 1364 /* XXX VHT160 */ 1365 flags[nmodes] = 0; 1366 } 1367 1368 static void 1369 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1370 { 1371 1372 flags[0] = 0; 1373 if (isset(bands, IEEE80211_MODE_11A) || 1374 isset(bands, IEEE80211_MODE_11NA) || 1375 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1376 if (isset(bands, IEEE80211_MODE_11B) || 1377 isset(bands, IEEE80211_MODE_11G) || 1378 isset(bands, IEEE80211_MODE_11NG) || 1379 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1380 return; 1381 1382 getflags_5ghz(bands, flags, ht40, vht80); 1383 } else 1384 getflags_2ghz(bands, flags, ht40); 1385 } 1386 1387 /* 1388 * Add one 20 MHz channel into specified channel list. 1389 * You MUST NOT mix bands when calling this. It will not add 5ghz 1390 * channels if you have any B/G/N band bit set. 1391 */ 1392 /* XXX VHT */ 1393 int 1394 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1395 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1396 uint32_t chan_flags, const uint8_t bands[]) 1397 { 1398 uint32_t flags[IEEE80211_MODE_MAX]; 1399 int i, error; 1400 1401 getflags(bands, flags, 0, 0); 1402 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1403 1404 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1405 flags[0] | chan_flags); 1406 for (i = 1; flags[i] != 0 && error == 0; i++) { 1407 error = copychan_prev(chans, maxchans, nchans, 1408 flags[i] | chan_flags); 1409 } 1410 1411 return (error); 1412 } 1413 1414 static struct ieee80211_channel * 1415 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1416 uint32_t flags) 1417 { 1418 struct ieee80211_channel *c; 1419 int i; 1420 1421 flags &= IEEE80211_CHAN_ALLTURBO; 1422 /* brute force search */ 1423 for (i = 0; i < nchans; i++) { 1424 c = &chans[i]; 1425 if (c->ic_freq == freq && 1426 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1427 return c; 1428 } 1429 return NULL; 1430 } 1431 1432 /* 1433 * Add 40 MHz channel pair into specified channel list. 1434 */ 1435 /* XXX VHT */ 1436 int 1437 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1438 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1439 { 1440 struct ieee80211_channel *cent, *extc; 1441 uint16_t freq; 1442 int error; 1443 1444 freq = ieee80211_ieee2mhz(ieee, flags); 1445 1446 /* 1447 * Each entry defines an HT40 channel pair; find the 1448 * center channel, then the extension channel above. 1449 */ 1450 flags |= IEEE80211_CHAN_HT20; 1451 cent = findchannel(chans, *nchans, freq, flags); 1452 if (cent == NULL) 1453 return (EINVAL); 1454 1455 extc = findchannel(chans, *nchans, freq + 20, flags); 1456 if (extc == NULL) 1457 return (ENOENT); 1458 1459 flags &= ~IEEE80211_CHAN_HT; 1460 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1461 maxregpower, flags | IEEE80211_CHAN_HT40U); 1462 if (error != 0) 1463 return (error); 1464 1465 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1466 maxregpower, flags | IEEE80211_CHAN_HT40D); 1467 1468 return (error); 1469 } 1470 1471 /* 1472 * Fetch the center frequency for the primary channel. 1473 */ 1474 uint32_t 1475 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1476 { 1477 1478 return (c->ic_freq); 1479 } 1480 1481 /* 1482 * Fetch the center frequency for the primary BAND channel. 1483 * 1484 * For 5, 10, 20MHz channels it'll be the normally configured channel 1485 * frequency. 1486 * 1487 * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the 1488 * wide channel, not the centre of the primary channel (that's ic_freq). 1489 * 1490 * For 80+80MHz channels this will be the centre of the primary 1491 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1492 */ 1493 uint32_t 1494 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1495 { 1496 1497 /* 1498 * VHT - use the pre-calculated centre frequency 1499 * of the given channel. 1500 */ 1501 if (IEEE80211_IS_CHAN_VHT(c)) 1502 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1503 1504 if (IEEE80211_IS_CHAN_HT40U(c)) { 1505 return (c->ic_freq + 10); 1506 } 1507 if (IEEE80211_IS_CHAN_HT40D(c)) { 1508 return (c->ic_freq - 10); 1509 } 1510 1511 return (c->ic_freq); 1512 } 1513 1514 /* 1515 * For now, no 80+80 support; it will likely always return 0. 1516 */ 1517 uint32_t 1518 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1519 { 1520 1521 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1522 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1523 1524 return (0); 1525 } 1526 1527 /* 1528 * Adds channels into specified channel list (ieee[] array must be sorted). 1529 * Channels are already sorted. 1530 */ 1531 static int 1532 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1533 const uint8_t ieee[], int nieee, uint32_t flags[]) 1534 { 1535 uint16_t freq; 1536 int i, j, error; 1537 int is_vht; 1538 1539 for (i = 0; i < nieee; i++) { 1540 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1541 for (j = 0; flags[j] != 0; j++) { 1542 /* 1543 * Notes: 1544 * + HT40 and VHT40 channels occur together, so 1545 * we need to be careful that we actually allow that. 1546 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1547 * make sure it's not skipped because of the overlap 1548 * check used for (V)HT40. 1549 */ 1550 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1551 1552 /* 1553 * Test for VHT80. 1554 * XXX This is all very broken right now. 1555 * What we /should/ do is: 1556 * 1557 * + check that the frequency is in the list of 1558 * allowed VHT80 ranges; and 1559 * + the other 3 channels in the list are actually 1560 * also available. 1561 */ 1562 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1563 if (! is_vht80_valid_freq(freq)) 1564 continue; 1565 1566 /* 1567 * Test for (V)HT40. 1568 * 1569 * This is also a fall through from VHT80; as we only 1570 * allow a VHT80 channel if the VHT40 combination is 1571 * also valid. If the VHT40 form is not valid then 1572 * we certainly can't do VHT80.. 1573 */ 1574 if (flags[j] & IEEE80211_CHAN_HT40D) 1575 /* 1576 * Can't have a "lower" channel if we are the 1577 * first channel. 1578 * 1579 * Can't have a "lower" channel if it's below/ 1580 * within 20MHz of the first channel. 1581 * 1582 * Can't have a "lower" channel if the channel 1583 * below it is not 20MHz away. 1584 */ 1585 if (i == 0 || ieee[i] < ieee[0] + 4 || 1586 freq - 20 != 1587 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1588 continue; 1589 if (flags[j] & IEEE80211_CHAN_HT40U) 1590 /* 1591 * Can't have an "upper" channel if we are 1592 * the last channel. 1593 * 1594 * Can't have an "upper" channel be above the 1595 * last channel in the list. 1596 * 1597 * Can't have an "upper" channel if the next 1598 * channel according to the math isn't 20MHz 1599 * away. (Likely for channel 13/14.) 1600 */ 1601 if (i == nieee - 1 || 1602 ieee[i] + 4 > ieee[nieee - 1] || 1603 freq + 20 != 1604 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1605 continue; 1606 1607 if (j == 0) { 1608 error = addchan(chans, maxchans, nchans, 1609 ieee[i], freq, 0, flags[j]); 1610 } else { 1611 error = copychan_prev(chans, maxchans, nchans, 1612 flags[j]); 1613 } 1614 if (error != 0) 1615 return (error); 1616 } 1617 } 1618 1619 return (0); 1620 } 1621 1622 int 1623 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1624 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1625 int ht40) 1626 { 1627 uint32_t flags[IEEE80211_MODE_MAX]; 1628 1629 /* XXX no VHT for now */ 1630 getflags_2ghz(bands, flags, ht40); 1631 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1632 1633 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1634 } 1635 1636 int 1637 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], 1638 int maxchans, int *nchans, const uint8_t bands[], int ht40) 1639 { 1640 const uint8_t default_chan_list[] = 1641 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 1642 1643 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 1644 default_chan_list, nitems(default_chan_list), bands, ht40)); 1645 } 1646 1647 int 1648 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1649 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1650 int ht40) 1651 { 1652 uint32_t flags[IEEE80211_MODE_MAX]; 1653 int vht80 = 0; 1654 1655 /* 1656 * For now, assume VHT == VHT80 support as a minimum. 1657 */ 1658 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1659 vht80 = 1; 1660 1661 getflags_5ghz(bands, flags, ht40, vht80); 1662 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1663 1664 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1665 } 1666 1667 /* 1668 * Locate a channel given a frequency+flags. We cache 1669 * the previous lookup to optimize switching between two 1670 * channels--as happens with dynamic turbo. 1671 */ 1672 struct ieee80211_channel * 1673 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1674 { 1675 struct ieee80211_channel *c; 1676 1677 flags &= IEEE80211_CHAN_ALLTURBO; 1678 c = ic->ic_prevchan; 1679 if (c != NULL && c->ic_freq == freq && 1680 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1681 return c; 1682 /* brute force search */ 1683 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1684 } 1685 1686 /* 1687 * Locate a channel given a channel number+flags. We cache 1688 * the previous lookup to optimize switching between two 1689 * channels--as happens with dynamic turbo. 1690 */ 1691 struct ieee80211_channel * 1692 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1693 { 1694 struct ieee80211_channel *c; 1695 int i; 1696 1697 flags &= IEEE80211_CHAN_ALLTURBO; 1698 c = ic->ic_prevchan; 1699 if (c != NULL && c->ic_ieee == ieee && 1700 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1701 return c; 1702 /* brute force search */ 1703 for (i = 0; i < ic->ic_nchans; i++) { 1704 c = &ic->ic_channels[i]; 1705 if (c->ic_ieee == ieee && 1706 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1707 return c; 1708 } 1709 return NULL; 1710 } 1711 1712 /* 1713 * Lookup a channel suitable for the given rx status. 1714 * 1715 * This is used to find a channel for a frame (eg beacon, probe 1716 * response) based purely on the received PHY information. 1717 * 1718 * For now it tries to do it based on R_FREQ / R_IEEE. 1719 * This is enough for 11bg and 11a (and thus 11ng/11na) 1720 * but it will not be enough for GSM, PSB channels and the 1721 * like. It also doesn't know about legacy-turbog and 1722 * legacy-turbo modes, which some offload NICs actually 1723 * support in weird ways. 1724 * 1725 * Takes the ic and rxstatus; returns the channel or NULL 1726 * if not found. 1727 * 1728 * XXX TODO: Add support for that when the need arises. 1729 */ 1730 struct ieee80211_channel * 1731 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1732 const struct ieee80211_rx_stats *rxs) 1733 { 1734 struct ieee80211com *ic = vap->iv_ic; 1735 uint32_t flags; 1736 struct ieee80211_channel *c; 1737 1738 if (rxs == NULL) 1739 return (NULL); 1740 1741 /* 1742 * Strictly speaking we only use freq for now, 1743 * however later on we may wish to just store 1744 * the ieee for verification. 1745 */ 1746 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1747 return (NULL); 1748 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1749 return (NULL); 1750 1751 /* 1752 * If the rx status contains a valid ieee/freq, then 1753 * ensure we populate the correct channel information 1754 * in rxchan before passing it up to the scan infrastructure. 1755 * Offload NICs will pass up beacons from all channels 1756 * during background scans. 1757 */ 1758 1759 /* Determine a band */ 1760 /* XXX should be done by the driver? */ 1761 if (rxs->c_freq < 3000) { 1762 flags = IEEE80211_CHAN_G; 1763 } else { 1764 flags = IEEE80211_CHAN_A; 1765 } 1766 1767 /* Channel lookup */ 1768 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1769 1770 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1771 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1772 __func__, 1773 (int) rxs->c_freq, 1774 (int) rxs->c_ieee, 1775 flags, 1776 c); 1777 1778 return (c); 1779 } 1780 1781 static void 1782 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1783 { 1784 #define ADD(_ic, _s, _o) \ 1785 ifmedia_add(media, \ 1786 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1787 static const u_int mopts[IEEE80211_MODE_MAX] = { 1788 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1789 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1790 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1791 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1792 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1793 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1794 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1795 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1796 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1797 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1798 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1799 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1800 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1801 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1802 }; 1803 u_int mopt; 1804 1805 mopt = mopts[mode]; 1806 if (addsta) 1807 ADD(ic, mword, mopt); /* STA mode has no cap */ 1808 if (caps & IEEE80211_C_IBSS) 1809 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1810 if (caps & IEEE80211_C_HOSTAP) 1811 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1812 if (caps & IEEE80211_C_AHDEMO) 1813 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1814 if (caps & IEEE80211_C_MONITOR) 1815 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1816 if (caps & IEEE80211_C_WDS) 1817 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1818 if (caps & IEEE80211_C_MBSS) 1819 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1820 #undef ADD 1821 } 1822 1823 /* 1824 * Setup the media data structures according to the channel and 1825 * rate tables. 1826 */ 1827 static int 1828 ieee80211_media_setup(struct ieee80211com *ic, 1829 struct ifmedia *media, int caps, int addsta, 1830 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1831 { 1832 int i, j, rate, maxrate, mword, r; 1833 enum ieee80211_phymode mode; 1834 const struct ieee80211_rateset *rs; 1835 struct ieee80211_rateset allrates; 1836 1837 /* 1838 * Fill in media characteristics. 1839 */ 1840 ifmedia_init(media, 0, media_change, media_stat); 1841 maxrate = 0; 1842 /* 1843 * Add media for legacy operating modes. 1844 */ 1845 memset(&allrates, 0, sizeof(allrates)); 1846 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1847 if (isclr(ic->ic_modecaps, mode)) 1848 continue; 1849 addmedia(media, caps, addsta, mode, IFM_AUTO); 1850 if (mode == IEEE80211_MODE_AUTO) 1851 continue; 1852 rs = &ic->ic_sup_rates[mode]; 1853 for (i = 0; i < rs->rs_nrates; i++) { 1854 rate = rs->rs_rates[i]; 1855 mword = ieee80211_rate2media(ic, rate, mode); 1856 if (mword == 0) 1857 continue; 1858 addmedia(media, caps, addsta, mode, mword); 1859 /* 1860 * Add legacy rate to the collection of all rates. 1861 */ 1862 r = rate & IEEE80211_RATE_VAL; 1863 for (j = 0; j < allrates.rs_nrates; j++) 1864 if (allrates.rs_rates[j] == r) 1865 break; 1866 if (j == allrates.rs_nrates) { 1867 /* unique, add to the set */ 1868 allrates.rs_rates[j] = r; 1869 allrates.rs_nrates++; 1870 } 1871 rate = (rate & IEEE80211_RATE_VAL) / 2; 1872 if (rate > maxrate) 1873 maxrate = rate; 1874 } 1875 } 1876 for (i = 0; i < allrates.rs_nrates; i++) { 1877 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1878 IEEE80211_MODE_AUTO); 1879 if (mword == 0) 1880 continue; 1881 /* NB: remove media options from mword */ 1882 addmedia(media, caps, addsta, 1883 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1884 } 1885 /* 1886 * Add HT/11n media. Note that we do not have enough 1887 * bits in the media subtype to express the MCS so we 1888 * use a "placeholder" media subtype and any fixed MCS 1889 * must be specified with a different mechanism. 1890 */ 1891 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1892 if (isclr(ic->ic_modecaps, mode)) 1893 continue; 1894 addmedia(media, caps, addsta, mode, IFM_AUTO); 1895 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1896 } 1897 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1898 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1899 addmedia(media, caps, addsta, 1900 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1901 i = ic->ic_txstream * 8 - 1; 1902 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1903 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1904 rate = ieee80211_htrates[i].ht40_rate_400ns; 1905 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1906 rate = ieee80211_htrates[i].ht40_rate_800ns; 1907 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1908 rate = ieee80211_htrates[i].ht20_rate_400ns; 1909 else 1910 rate = ieee80211_htrates[i].ht20_rate_800ns; 1911 if (rate > maxrate) 1912 maxrate = rate; 1913 } 1914 1915 /* 1916 * Add VHT media. 1917 */ 1918 for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) { 1919 if (isclr(ic->ic_modecaps, mode)) 1920 continue; 1921 addmedia(media, caps, addsta, mode, IFM_AUTO); 1922 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 1923 1924 /* XXX TODO: VHT maxrate */ 1925 } 1926 1927 return maxrate; 1928 } 1929 1930 /* XXX inline or eliminate? */ 1931 const struct ieee80211_rateset * 1932 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1933 { 1934 /* XXX does this work for 11ng basic rates? */ 1935 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1936 } 1937 1938 /* XXX inline or eliminate? */ 1939 const struct ieee80211_htrateset * 1940 ieee80211_get_suphtrates(struct ieee80211com *ic, 1941 const struct ieee80211_channel *c) 1942 { 1943 return &ic->ic_sup_htrates; 1944 } 1945 1946 void 1947 ieee80211_announce(struct ieee80211com *ic) 1948 { 1949 int i, rate, mword; 1950 enum ieee80211_phymode mode; 1951 const struct ieee80211_rateset *rs; 1952 1953 /* NB: skip AUTO since it has no rates */ 1954 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1955 if (isclr(ic->ic_modecaps, mode)) 1956 continue; 1957 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 1958 rs = &ic->ic_sup_rates[mode]; 1959 for (i = 0; i < rs->rs_nrates; i++) { 1960 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1961 if (mword == 0) 1962 continue; 1963 rate = ieee80211_media2rate(mword); 1964 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1965 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1966 } 1967 printf("\n"); 1968 } 1969 ieee80211_ht_announce(ic); 1970 ieee80211_vht_announce(ic); 1971 } 1972 1973 void 1974 ieee80211_announce_channels(struct ieee80211com *ic) 1975 { 1976 const struct ieee80211_channel *c; 1977 char type; 1978 int i, cw; 1979 1980 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1981 for (i = 0; i < ic->ic_nchans; i++) { 1982 c = &ic->ic_channels[i]; 1983 if (IEEE80211_IS_CHAN_ST(c)) 1984 type = 'S'; 1985 else if (IEEE80211_IS_CHAN_108A(c)) 1986 type = 'T'; 1987 else if (IEEE80211_IS_CHAN_108G(c)) 1988 type = 'G'; 1989 else if (IEEE80211_IS_CHAN_HT(c)) 1990 type = 'n'; 1991 else if (IEEE80211_IS_CHAN_A(c)) 1992 type = 'a'; 1993 else if (IEEE80211_IS_CHAN_ANYG(c)) 1994 type = 'g'; 1995 else if (IEEE80211_IS_CHAN_B(c)) 1996 type = 'b'; 1997 else 1998 type = 'f'; 1999 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 2000 cw = 40; 2001 else if (IEEE80211_IS_CHAN_HALF(c)) 2002 cw = 10; 2003 else if (IEEE80211_IS_CHAN_QUARTER(c)) 2004 cw = 5; 2005 else 2006 cw = 20; 2007 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 2008 , c->ic_ieee, c->ic_freq, type 2009 , cw 2010 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 2011 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 2012 , c->ic_maxregpower 2013 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 2014 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 2015 ); 2016 } 2017 } 2018 2019 static int 2020 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 2021 { 2022 switch (IFM_MODE(ime->ifm_media)) { 2023 case IFM_IEEE80211_11A: 2024 *mode = IEEE80211_MODE_11A; 2025 break; 2026 case IFM_IEEE80211_11B: 2027 *mode = IEEE80211_MODE_11B; 2028 break; 2029 case IFM_IEEE80211_11G: 2030 *mode = IEEE80211_MODE_11G; 2031 break; 2032 case IFM_IEEE80211_FH: 2033 *mode = IEEE80211_MODE_FH; 2034 break; 2035 case IFM_IEEE80211_11NA: 2036 *mode = IEEE80211_MODE_11NA; 2037 break; 2038 case IFM_IEEE80211_11NG: 2039 *mode = IEEE80211_MODE_11NG; 2040 break; 2041 case IFM_AUTO: 2042 *mode = IEEE80211_MODE_AUTO; 2043 break; 2044 default: 2045 return 0; 2046 } 2047 /* 2048 * Turbo mode is an ``option''. 2049 * XXX does not apply to AUTO 2050 */ 2051 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2052 if (*mode == IEEE80211_MODE_11A) { 2053 if (flags & IEEE80211_F_TURBOP) 2054 *mode = IEEE80211_MODE_TURBO_A; 2055 else 2056 *mode = IEEE80211_MODE_STURBO_A; 2057 } else if (*mode == IEEE80211_MODE_11G) 2058 *mode = IEEE80211_MODE_TURBO_G; 2059 else 2060 return 0; 2061 } 2062 /* XXX HT40 +/- */ 2063 return 1; 2064 } 2065 2066 /* 2067 * Handle a media change request on the vap interface. 2068 */ 2069 int 2070 ieee80211_media_change(struct ifnet *ifp) 2071 { 2072 struct ieee80211vap *vap = ifp->if_softc; 2073 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2074 uint16_t newmode; 2075 2076 if (!media2mode(ime, vap->iv_flags, &newmode)) 2077 return EINVAL; 2078 if (vap->iv_des_mode != newmode) { 2079 vap->iv_des_mode = newmode; 2080 /* XXX kick state machine if up+running */ 2081 } 2082 return 0; 2083 } 2084 2085 /* 2086 * Common code to calculate the media status word 2087 * from the operating mode and channel state. 2088 */ 2089 static int 2090 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2091 { 2092 int status; 2093 2094 status = IFM_IEEE80211; 2095 switch (opmode) { 2096 case IEEE80211_M_STA: 2097 break; 2098 case IEEE80211_M_IBSS: 2099 status |= IFM_IEEE80211_ADHOC; 2100 break; 2101 case IEEE80211_M_HOSTAP: 2102 status |= IFM_IEEE80211_HOSTAP; 2103 break; 2104 case IEEE80211_M_MONITOR: 2105 status |= IFM_IEEE80211_MONITOR; 2106 break; 2107 case IEEE80211_M_AHDEMO: 2108 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2109 break; 2110 case IEEE80211_M_WDS: 2111 status |= IFM_IEEE80211_WDS; 2112 break; 2113 case IEEE80211_M_MBSS: 2114 status |= IFM_IEEE80211_MBSS; 2115 break; 2116 } 2117 if (IEEE80211_IS_CHAN_HTA(chan)) { 2118 status |= IFM_IEEE80211_11NA; 2119 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2120 status |= IFM_IEEE80211_11NG; 2121 } else if (IEEE80211_IS_CHAN_A(chan)) { 2122 status |= IFM_IEEE80211_11A; 2123 } else if (IEEE80211_IS_CHAN_B(chan)) { 2124 status |= IFM_IEEE80211_11B; 2125 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2126 status |= IFM_IEEE80211_11G; 2127 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2128 status |= IFM_IEEE80211_FH; 2129 } 2130 /* XXX else complain? */ 2131 2132 if (IEEE80211_IS_CHAN_TURBO(chan)) 2133 status |= IFM_IEEE80211_TURBO; 2134 #if 0 2135 if (IEEE80211_IS_CHAN_HT20(chan)) 2136 status |= IFM_IEEE80211_HT20; 2137 if (IEEE80211_IS_CHAN_HT40(chan)) 2138 status |= IFM_IEEE80211_HT40; 2139 #endif 2140 return status; 2141 } 2142 2143 void 2144 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2145 { 2146 struct ieee80211vap *vap = ifp->if_softc; 2147 struct ieee80211com *ic = vap->iv_ic; 2148 enum ieee80211_phymode mode; 2149 2150 imr->ifm_status = IFM_AVALID; 2151 /* 2152 * NB: use the current channel's mode to lock down a xmit 2153 * rate only when running; otherwise we may have a mismatch 2154 * in which case the rate will not be convertible. 2155 */ 2156 if (vap->iv_state == IEEE80211_S_RUN || 2157 vap->iv_state == IEEE80211_S_SLEEP) { 2158 imr->ifm_status |= IFM_ACTIVE; 2159 mode = ieee80211_chan2mode(ic->ic_curchan); 2160 } else 2161 mode = IEEE80211_MODE_AUTO; 2162 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2163 /* 2164 * Calculate a current rate if possible. 2165 */ 2166 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2167 /* 2168 * A fixed rate is set, report that. 2169 */ 2170 imr->ifm_active |= ieee80211_rate2media(ic, 2171 vap->iv_txparms[mode].ucastrate, mode); 2172 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2173 /* 2174 * In station mode report the current transmit rate. 2175 */ 2176 imr->ifm_active |= ieee80211_rate2media(ic, 2177 vap->iv_bss->ni_txrate, mode); 2178 } else 2179 imr->ifm_active |= IFM_AUTO; 2180 if (imr->ifm_status & IFM_ACTIVE) 2181 imr->ifm_current = imr->ifm_active; 2182 } 2183 2184 /* 2185 * Set the current phy mode and recalculate the active channel 2186 * set based on the available channels for this mode. Also 2187 * select a new default/current channel if the current one is 2188 * inappropriate for this mode. 2189 */ 2190 int 2191 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2192 { 2193 /* 2194 * Adjust basic rates in 11b/11g supported rate set. 2195 * Note that if operating on a hal/quarter rate channel 2196 * this is a noop as those rates sets are different 2197 * and used instead. 2198 */ 2199 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2200 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2201 2202 ic->ic_curmode = mode; 2203 ieee80211_reset_erp(ic); /* reset ERP state */ 2204 2205 return 0; 2206 } 2207 2208 /* 2209 * Return the phy mode for with the specified channel. 2210 */ 2211 enum ieee80211_phymode 2212 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2213 { 2214 2215 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2216 return IEEE80211_MODE_VHT_2GHZ; 2217 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2218 return IEEE80211_MODE_VHT_5GHZ; 2219 else if (IEEE80211_IS_CHAN_HTA(chan)) 2220 return IEEE80211_MODE_11NA; 2221 else if (IEEE80211_IS_CHAN_HTG(chan)) 2222 return IEEE80211_MODE_11NG; 2223 else if (IEEE80211_IS_CHAN_108G(chan)) 2224 return IEEE80211_MODE_TURBO_G; 2225 else if (IEEE80211_IS_CHAN_ST(chan)) 2226 return IEEE80211_MODE_STURBO_A; 2227 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2228 return IEEE80211_MODE_TURBO_A; 2229 else if (IEEE80211_IS_CHAN_HALF(chan)) 2230 return IEEE80211_MODE_HALF; 2231 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2232 return IEEE80211_MODE_QUARTER; 2233 else if (IEEE80211_IS_CHAN_A(chan)) 2234 return IEEE80211_MODE_11A; 2235 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2236 return IEEE80211_MODE_11G; 2237 else if (IEEE80211_IS_CHAN_B(chan)) 2238 return IEEE80211_MODE_11B; 2239 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2240 return IEEE80211_MODE_FH; 2241 2242 /* NB: should not get here */ 2243 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2244 __func__, chan->ic_freq, chan->ic_flags); 2245 return IEEE80211_MODE_11B; 2246 } 2247 2248 struct ratemedia { 2249 u_int match; /* rate + mode */ 2250 u_int media; /* if_media rate */ 2251 }; 2252 2253 static int 2254 findmedia(const struct ratemedia rates[], int n, u_int match) 2255 { 2256 int i; 2257 2258 for (i = 0; i < n; i++) 2259 if (rates[i].match == match) 2260 return rates[i].media; 2261 return IFM_AUTO; 2262 } 2263 2264 /* 2265 * Convert IEEE80211 rate value to ifmedia subtype. 2266 * Rate is either a legacy rate in units of 0.5Mbps 2267 * or an MCS index. 2268 */ 2269 int 2270 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2271 { 2272 static const struct ratemedia rates[] = { 2273 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2274 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2275 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2276 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2277 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2278 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2279 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2280 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2281 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2282 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2283 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2284 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2285 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2286 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2287 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2288 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2289 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2290 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2291 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2292 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2293 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2294 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2295 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2296 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2297 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2298 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2299 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2300 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2301 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2302 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2303 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2304 }; 2305 static const struct ratemedia htrates[] = { 2306 { 0, IFM_IEEE80211_MCS }, 2307 { 1, IFM_IEEE80211_MCS }, 2308 { 2, IFM_IEEE80211_MCS }, 2309 { 3, IFM_IEEE80211_MCS }, 2310 { 4, IFM_IEEE80211_MCS }, 2311 { 5, IFM_IEEE80211_MCS }, 2312 { 6, IFM_IEEE80211_MCS }, 2313 { 7, IFM_IEEE80211_MCS }, 2314 { 8, IFM_IEEE80211_MCS }, 2315 { 9, IFM_IEEE80211_MCS }, 2316 { 10, IFM_IEEE80211_MCS }, 2317 { 11, IFM_IEEE80211_MCS }, 2318 { 12, IFM_IEEE80211_MCS }, 2319 { 13, IFM_IEEE80211_MCS }, 2320 { 14, IFM_IEEE80211_MCS }, 2321 { 15, IFM_IEEE80211_MCS }, 2322 { 16, IFM_IEEE80211_MCS }, 2323 { 17, IFM_IEEE80211_MCS }, 2324 { 18, IFM_IEEE80211_MCS }, 2325 { 19, IFM_IEEE80211_MCS }, 2326 { 20, IFM_IEEE80211_MCS }, 2327 { 21, IFM_IEEE80211_MCS }, 2328 { 22, IFM_IEEE80211_MCS }, 2329 { 23, IFM_IEEE80211_MCS }, 2330 { 24, IFM_IEEE80211_MCS }, 2331 { 25, IFM_IEEE80211_MCS }, 2332 { 26, IFM_IEEE80211_MCS }, 2333 { 27, IFM_IEEE80211_MCS }, 2334 { 28, IFM_IEEE80211_MCS }, 2335 { 29, IFM_IEEE80211_MCS }, 2336 { 30, IFM_IEEE80211_MCS }, 2337 { 31, IFM_IEEE80211_MCS }, 2338 { 32, IFM_IEEE80211_MCS }, 2339 { 33, IFM_IEEE80211_MCS }, 2340 { 34, IFM_IEEE80211_MCS }, 2341 { 35, IFM_IEEE80211_MCS }, 2342 { 36, IFM_IEEE80211_MCS }, 2343 { 37, IFM_IEEE80211_MCS }, 2344 { 38, IFM_IEEE80211_MCS }, 2345 { 39, IFM_IEEE80211_MCS }, 2346 { 40, IFM_IEEE80211_MCS }, 2347 { 41, IFM_IEEE80211_MCS }, 2348 { 42, IFM_IEEE80211_MCS }, 2349 { 43, IFM_IEEE80211_MCS }, 2350 { 44, IFM_IEEE80211_MCS }, 2351 { 45, IFM_IEEE80211_MCS }, 2352 { 46, IFM_IEEE80211_MCS }, 2353 { 47, IFM_IEEE80211_MCS }, 2354 { 48, IFM_IEEE80211_MCS }, 2355 { 49, IFM_IEEE80211_MCS }, 2356 { 50, IFM_IEEE80211_MCS }, 2357 { 51, IFM_IEEE80211_MCS }, 2358 { 52, IFM_IEEE80211_MCS }, 2359 { 53, IFM_IEEE80211_MCS }, 2360 { 54, IFM_IEEE80211_MCS }, 2361 { 55, IFM_IEEE80211_MCS }, 2362 { 56, IFM_IEEE80211_MCS }, 2363 { 57, IFM_IEEE80211_MCS }, 2364 { 58, IFM_IEEE80211_MCS }, 2365 { 59, IFM_IEEE80211_MCS }, 2366 { 60, IFM_IEEE80211_MCS }, 2367 { 61, IFM_IEEE80211_MCS }, 2368 { 62, IFM_IEEE80211_MCS }, 2369 { 63, IFM_IEEE80211_MCS }, 2370 { 64, IFM_IEEE80211_MCS }, 2371 { 65, IFM_IEEE80211_MCS }, 2372 { 66, IFM_IEEE80211_MCS }, 2373 { 67, IFM_IEEE80211_MCS }, 2374 { 68, IFM_IEEE80211_MCS }, 2375 { 69, IFM_IEEE80211_MCS }, 2376 { 70, IFM_IEEE80211_MCS }, 2377 { 71, IFM_IEEE80211_MCS }, 2378 { 72, IFM_IEEE80211_MCS }, 2379 { 73, IFM_IEEE80211_MCS }, 2380 { 74, IFM_IEEE80211_MCS }, 2381 { 75, IFM_IEEE80211_MCS }, 2382 { 76, IFM_IEEE80211_MCS }, 2383 }; 2384 int m; 2385 2386 /* 2387 * Check 11n rates first for match as an MCS. 2388 */ 2389 if (mode == IEEE80211_MODE_11NA) { 2390 if (rate & IEEE80211_RATE_MCS) { 2391 rate &= ~IEEE80211_RATE_MCS; 2392 m = findmedia(htrates, nitems(htrates), rate); 2393 if (m != IFM_AUTO) 2394 return m | IFM_IEEE80211_11NA; 2395 } 2396 } else if (mode == IEEE80211_MODE_11NG) { 2397 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2398 if (rate & IEEE80211_RATE_MCS) { 2399 rate &= ~IEEE80211_RATE_MCS; 2400 m = findmedia(htrates, nitems(htrates), rate); 2401 if (m != IFM_AUTO) 2402 return m | IFM_IEEE80211_11NG; 2403 } 2404 } 2405 rate &= IEEE80211_RATE_VAL; 2406 switch (mode) { 2407 case IEEE80211_MODE_11A: 2408 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2409 case IEEE80211_MODE_QUARTER: 2410 case IEEE80211_MODE_11NA: 2411 case IEEE80211_MODE_TURBO_A: 2412 case IEEE80211_MODE_STURBO_A: 2413 return findmedia(rates, nitems(rates), 2414 rate | IFM_IEEE80211_11A); 2415 case IEEE80211_MODE_11B: 2416 return findmedia(rates, nitems(rates), 2417 rate | IFM_IEEE80211_11B); 2418 case IEEE80211_MODE_FH: 2419 return findmedia(rates, nitems(rates), 2420 rate | IFM_IEEE80211_FH); 2421 case IEEE80211_MODE_AUTO: 2422 /* NB: ic may be NULL for some drivers */ 2423 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2424 return findmedia(rates, nitems(rates), 2425 rate | IFM_IEEE80211_FH); 2426 /* NB: hack, 11g matches both 11b+11a rates */ 2427 /* fall thru... */ 2428 case IEEE80211_MODE_11G: 2429 case IEEE80211_MODE_11NG: 2430 case IEEE80211_MODE_TURBO_G: 2431 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2432 case IEEE80211_MODE_VHT_2GHZ: 2433 case IEEE80211_MODE_VHT_5GHZ: 2434 /* XXX TODO: need to figure out mapping for VHT rates */ 2435 return IFM_AUTO; 2436 } 2437 return IFM_AUTO; 2438 } 2439 2440 int 2441 ieee80211_media2rate(int mword) 2442 { 2443 static const int ieeerates[] = { 2444 -1, /* IFM_AUTO */ 2445 0, /* IFM_MANUAL */ 2446 0, /* IFM_NONE */ 2447 2, /* IFM_IEEE80211_FH1 */ 2448 4, /* IFM_IEEE80211_FH2 */ 2449 2, /* IFM_IEEE80211_DS1 */ 2450 4, /* IFM_IEEE80211_DS2 */ 2451 11, /* IFM_IEEE80211_DS5 */ 2452 22, /* IFM_IEEE80211_DS11 */ 2453 44, /* IFM_IEEE80211_DS22 */ 2454 12, /* IFM_IEEE80211_OFDM6 */ 2455 18, /* IFM_IEEE80211_OFDM9 */ 2456 24, /* IFM_IEEE80211_OFDM12 */ 2457 36, /* IFM_IEEE80211_OFDM18 */ 2458 48, /* IFM_IEEE80211_OFDM24 */ 2459 72, /* IFM_IEEE80211_OFDM36 */ 2460 96, /* IFM_IEEE80211_OFDM48 */ 2461 108, /* IFM_IEEE80211_OFDM54 */ 2462 144, /* IFM_IEEE80211_OFDM72 */ 2463 0, /* IFM_IEEE80211_DS354k */ 2464 0, /* IFM_IEEE80211_DS512k */ 2465 6, /* IFM_IEEE80211_OFDM3 */ 2466 9, /* IFM_IEEE80211_OFDM4 */ 2467 54, /* IFM_IEEE80211_OFDM27 */ 2468 -1, /* IFM_IEEE80211_MCS */ 2469 -1, /* IFM_IEEE80211_VHT */ 2470 }; 2471 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2472 ieeerates[IFM_SUBTYPE(mword)] : 0; 2473 } 2474 2475 /* 2476 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2477 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2478 */ 2479 #define mix(a, b, c) \ 2480 do { \ 2481 a -= b; a -= c; a ^= (c >> 13); \ 2482 b -= c; b -= a; b ^= (a << 8); \ 2483 c -= a; c -= b; c ^= (b >> 13); \ 2484 a -= b; a -= c; a ^= (c >> 12); \ 2485 b -= c; b -= a; b ^= (a << 16); \ 2486 c -= a; c -= b; c ^= (b >> 5); \ 2487 a -= b; a -= c; a ^= (c >> 3); \ 2488 b -= c; b -= a; b ^= (a << 10); \ 2489 c -= a; c -= b; c ^= (b >> 15); \ 2490 } while (/*CONSTCOND*/0) 2491 2492 uint32_t 2493 ieee80211_mac_hash(const struct ieee80211com *ic, 2494 const uint8_t addr[IEEE80211_ADDR_LEN]) 2495 { 2496 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2497 2498 b += addr[5] << 8; 2499 b += addr[4]; 2500 a += addr[3] << 24; 2501 a += addr[2] << 16; 2502 a += addr[1] << 8; 2503 a += addr[0]; 2504 2505 mix(a, b, c); 2506 2507 return c; 2508 } 2509 #undef mix 2510 2511 char 2512 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2513 { 2514 if (IEEE80211_IS_CHAN_ST(c)) 2515 return 'S'; 2516 if (IEEE80211_IS_CHAN_108A(c)) 2517 return 'T'; 2518 if (IEEE80211_IS_CHAN_108G(c)) 2519 return 'G'; 2520 if (IEEE80211_IS_CHAN_VHT(c)) 2521 return 'v'; 2522 if (IEEE80211_IS_CHAN_HT(c)) 2523 return 'n'; 2524 if (IEEE80211_IS_CHAN_A(c)) 2525 return 'a'; 2526 if (IEEE80211_IS_CHAN_ANYG(c)) 2527 return 'g'; 2528 if (IEEE80211_IS_CHAN_B(c)) 2529 return 'b'; 2530 return 'f'; 2531 } 2532