1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/socket.h> 42 #include <sys/sbuf.h> 43 44 #include <machine/stdarg.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_dl.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 #include <net/ethernet.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #include <net80211/ieee80211_ratectl.h> 59 #include <net80211/ieee80211_vht.h> 60 61 #include <net/bpf.h> 62 63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 64 [IEEE80211_MODE_AUTO] = "auto", 65 [IEEE80211_MODE_11A] = "11a", 66 [IEEE80211_MODE_11B] = "11b", 67 [IEEE80211_MODE_11G] = "11g", 68 [IEEE80211_MODE_FH] = "FH", 69 [IEEE80211_MODE_TURBO_A] = "turboA", 70 [IEEE80211_MODE_TURBO_G] = "turboG", 71 [IEEE80211_MODE_STURBO_A] = "sturboA", 72 [IEEE80211_MODE_HALF] = "half", 73 [IEEE80211_MODE_QUARTER] = "quarter", 74 [IEEE80211_MODE_11NA] = "11na", 75 [IEEE80211_MODE_11NG] = "11ng", 76 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 77 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 78 }; 79 /* map ieee80211_opmode to the corresponding capability bit */ 80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 81 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 82 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 83 [IEEE80211_M_STA] = IEEE80211_C_STA, 84 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 85 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 86 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 87 #ifdef IEEE80211_SUPPORT_MESH 88 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 89 #endif 90 }; 91 92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 93 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 94 95 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 96 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 98 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 99 static int ieee80211_media_setup(struct ieee80211com *ic, 100 struct ifmedia *media, int caps, int addsta, 101 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 102 static int media_status(enum ieee80211_opmode, 103 const struct ieee80211_channel *); 104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 105 106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 107 108 /* 109 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 110 */ 111 #define B(r) ((r) | IEEE80211_RATE_BASIC) 112 static const struct ieee80211_rateset ieee80211_rateset_11a = 113 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 114 static const struct ieee80211_rateset ieee80211_rateset_half = 115 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 116 static const struct ieee80211_rateset ieee80211_rateset_quarter = 117 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 118 static const struct ieee80211_rateset ieee80211_rateset_11b = 119 { 4, { B(2), B(4), B(11), B(22) } }; 120 /* NB: OFDM rates are handled specially based on mode */ 121 static const struct ieee80211_rateset ieee80211_rateset_11g = 122 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 123 #undef B 124 125 static int set_vht_extchan(struct ieee80211_channel *c); 126 127 /* 128 * Fill in 802.11 available channel set, mark 129 * all available channels as active, and pick 130 * a default channel if not already specified. 131 */ 132 void 133 ieee80211_chan_init(struct ieee80211com *ic) 134 { 135 #define DEFAULTRATES(m, def) do { \ 136 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 137 ic->ic_sup_rates[m] = def; \ 138 } while (0) 139 struct ieee80211_channel *c; 140 int i; 141 142 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 143 ("invalid number of channels specified: %u", ic->ic_nchans)); 144 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 145 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 146 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 147 for (i = 0; i < ic->ic_nchans; i++) { 148 c = &ic->ic_channels[i]; 149 KASSERT(c->ic_flags != 0, ("channel with no flags")); 150 /* 151 * Help drivers that work only with frequencies by filling 152 * in IEEE channel #'s if not already calculated. Note this 153 * mimics similar work done in ieee80211_setregdomain when 154 * changing regulatory state. 155 */ 156 if (c->ic_ieee == 0) 157 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 158 159 /* 160 * Setup the HT40/VHT40 upper/lower bits. 161 * The VHT80 math is done elsewhere. 162 */ 163 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 164 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 165 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 166 c->ic_flags); 167 168 /* Update VHT math */ 169 /* 170 * XXX VHT again, note that this assumes VHT80 channels 171 * are legit already 172 */ 173 set_vht_extchan(c); 174 175 /* default max tx power to max regulatory */ 176 if (c->ic_maxpower == 0) 177 c->ic_maxpower = 2*c->ic_maxregpower; 178 setbit(ic->ic_chan_avail, c->ic_ieee); 179 /* 180 * Identify mode capabilities. 181 */ 182 if (IEEE80211_IS_CHAN_A(c)) 183 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 184 if (IEEE80211_IS_CHAN_B(c)) 185 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 186 if (IEEE80211_IS_CHAN_ANYG(c)) 187 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 188 if (IEEE80211_IS_CHAN_FHSS(c)) 189 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 190 if (IEEE80211_IS_CHAN_108A(c)) 191 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 192 if (IEEE80211_IS_CHAN_108G(c)) 193 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 194 if (IEEE80211_IS_CHAN_ST(c)) 195 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 196 if (IEEE80211_IS_CHAN_HALF(c)) 197 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 198 if (IEEE80211_IS_CHAN_QUARTER(c)) 199 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 200 if (IEEE80211_IS_CHAN_HTA(c)) 201 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 202 if (IEEE80211_IS_CHAN_HTG(c)) 203 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 204 if (IEEE80211_IS_CHAN_VHTA(c)) 205 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 206 if (IEEE80211_IS_CHAN_VHTG(c)) 207 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 208 } 209 /* initialize candidate channels to all available */ 210 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 211 sizeof(ic->ic_chan_avail)); 212 213 /* sort channel table to allow lookup optimizations */ 214 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 215 216 /* invalidate any previous state */ 217 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 218 ic->ic_prevchan = NULL; 219 ic->ic_csa_newchan = NULL; 220 /* arbitrarily pick the first channel */ 221 ic->ic_curchan = &ic->ic_channels[0]; 222 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 223 224 /* fillin well-known rate sets if driver has not specified */ 225 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 226 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 227 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 228 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 229 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 230 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 231 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 232 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 233 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 234 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 235 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 236 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 237 238 /* 239 * Setup required information to fill the mcsset field, if driver did 240 * not. Assume a 2T2R setup for historic reasons. 241 */ 242 if (ic->ic_rxstream == 0) 243 ic->ic_rxstream = 2; 244 if (ic->ic_txstream == 0) 245 ic->ic_txstream = 2; 246 247 ieee80211_init_suphtrates(ic); 248 249 /* 250 * Set auto mode to reset active channel state and any desired channel. 251 */ 252 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 253 #undef DEFAULTRATES 254 } 255 256 static void 257 null_update_mcast(struct ieee80211com *ic) 258 { 259 260 ic_printf(ic, "need multicast update callback\n"); 261 } 262 263 static void 264 null_update_promisc(struct ieee80211com *ic) 265 { 266 267 ic_printf(ic, "need promiscuous mode update callback\n"); 268 } 269 270 static void 271 null_update_chw(struct ieee80211com *ic) 272 { 273 274 ic_printf(ic, "%s: need callback\n", __func__); 275 } 276 277 int 278 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 279 { 280 va_list ap; 281 int retval; 282 283 retval = printf("%s: ", ic->ic_name); 284 va_start(ap, fmt); 285 retval += vprintf(fmt, ap); 286 va_end(ap); 287 return (retval); 288 } 289 290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 291 static struct mtx ic_list_mtx; 292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 293 294 static int 295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 296 { 297 struct ieee80211com *ic; 298 struct sbuf sb; 299 char *sp; 300 int error; 301 302 error = sysctl_wire_old_buffer(req, 0); 303 if (error) 304 return (error); 305 sbuf_new_for_sysctl(&sb, NULL, 8, req); 306 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 307 sp = ""; 308 mtx_lock(&ic_list_mtx); 309 LIST_FOREACH(ic, &ic_head, ic_next) { 310 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 311 sp = " "; 312 } 313 mtx_unlock(&ic_list_mtx); 314 error = sbuf_finish(&sb); 315 sbuf_delete(&sb); 316 return (error); 317 } 318 319 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 320 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 321 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 322 323 /* 324 * Attach/setup the common net80211 state. Called by 325 * the driver on attach to prior to creating any vap's. 326 */ 327 void 328 ieee80211_ifattach(struct ieee80211com *ic) 329 { 330 331 IEEE80211_LOCK_INIT(ic, ic->ic_name); 332 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 333 TAILQ_INIT(&ic->ic_vaps); 334 335 /* Create a taskqueue for all state changes */ 336 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 337 taskqueue_thread_enqueue, &ic->ic_tq); 338 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 339 ic->ic_name); 340 ic->ic_ierrors = counter_u64_alloc(M_WAITOK); 341 ic->ic_oerrors = counter_u64_alloc(M_WAITOK); 342 /* 343 * Fill in 802.11 available channel set, mark all 344 * available channels as active, and pick a default 345 * channel if not already specified. 346 */ 347 ieee80211_chan_init(ic); 348 349 ic->ic_update_mcast = null_update_mcast; 350 ic->ic_update_promisc = null_update_promisc; 351 ic->ic_update_chw = null_update_chw; 352 353 ic->ic_hash_key = arc4random(); 354 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 355 ic->ic_lintval = ic->ic_bintval; 356 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 357 358 ieee80211_crypto_attach(ic); 359 ieee80211_node_attach(ic); 360 ieee80211_power_attach(ic); 361 ieee80211_proto_attach(ic); 362 #ifdef IEEE80211_SUPPORT_SUPERG 363 ieee80211_superg_attach(ic); 364 #endif 365 ieee80211_ht_attach(ic); 366 ieee80211_vht_attach(ic); 367 ieee80211_scan_attach(ic); 368 ieee80211_regdomain_attach(ic); 369 ieee80211_dfs_attach(ic); 370 371 ieee80211_sysctl_attach(ic); 372 373 mtx_lock(&ic_list_mtx); 374 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 375 mtx_unlock(&ic_list_mtx); 376 } 377 378 /* 379 * Detach net80211 state on device detach. Tear down 380 * all vap's and reclaim all common state prior to the 381 * device state going away. Note we may call back into 382 * driver; it must be prepared for this. 383 */ 384 void 385 ieee80211_ifdetach(struct ieee80211com *ic) 386 { 387 struct ieee80211vap *vap; 388 389 /* 390 * We use this as an indicator that ifattach never had a chance to be 391 * called, e.g. early driver attach failed and ifdetach was called 392 * during subsequent detach. Never fear, for we have nothing to do 393 * here. 394 */ 395 if (ic->ic_tq == NULL) 396 return; 397 398 mtx_lock(&ic_list_mtx); 399 LIST_REMOVE(ic, ic_next); 400 mtx_unlock(&ic_list_mtx); 401 402 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 403 404 /* 405 * The VAP is responsible for setting and clearing 406 * the VIMAGE context. 407 */ 408 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { 409 ieee80211_com_vdetach(vap); 410 ieee80211_vap_destroy(vap); 411 } 412 ieee80211_waitfor_parent(ic); 413 414 ieee80211_sysctl_detach(ic); 415 ieee80211_dfs_detach(ic); 416 ieee80211_regdomain_detach(ic); 417 ieee80211_scan_detach(ic); 418 #ifdef IEEE80211_SUPPORT_SUPERG 419 ieee80211_superg_detach(ic); 420 #endif 421 ieee80211_vht_detach(ic); 422 ieee80211_ht_detach(ic); 423 /* NB: must be called before ieee80211_node_detach */ 424 ieee80211_proto_detach(ic); 425 ieee80211_crypto_detach(ic); 426 ieee80211_power_detach(ic); 427 ieee80211_node_detach(ic); 428 429 counter_u64_free(ic->ic_ierrors); 430 counter_u64_free(ic->ic_oerrors); 431 432 taskqueue_free(ic->ic_tq); 433 IEEE80211_TX_LOCK_DESTROY(ic); 434 IEEE80211_LOCK_DESTROY(ic); 435 } 436 437 struct ieee80211com * 438 ieee80211_find_com(const char *name) 439 { 440 struct ieee80211com *ic; 441 442 mtx_lock(&ic_list_mtx); 443 LIST_FOREACH(ic, &ic_head, ic_next) 444 if (strcmp(ic->ic_name, name) == 0) 445 break; 446 mtx_unlock(&ic_list_mtx); 447 448 return (ic); 449 } 450 451 void 452 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 453 { 454 struct ieee80211com *ic; 455 456 mtx_lock(&ic_list_mtx); 457 LIST_FOREACH(ic, &ic_head, ic_next) 458 (*f)(arg, ic); 459 mtx_unlock(&ic_list_mtx); 460 } 461 462 /* 463 * Default reset method for use with the ioctl support. This 464 * method is invoked after any state change in the 802.11 465 * layer that should be propagated to the hardware but not 466 * require re-initialization of the 802.11 state machine (e.g 467 * rescanning for an ap). We always return ENETRESET which 468 * should cause the driver to re-initialize the device. Drivers 469 * can override this method to implement more optimized support. 470 */ 471 static int 472 default_reset(struct ieee80211vap *vap, u_long cmd) 473 { 474 return ENETRESET; 475 } 476 477 /* 478 * Default for updating the VAP default TX key index. 479 * 480 * Drivers that support TX offload as well as hardware encryption offload 481 * may need to be informed of key index changes separate from the key 482 * update. 483 */ 484 static void 485 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 486 { 487 488 /* XXX assert validity */ 489 /* XXX assert we're in a key update block */ 490 vap->iv_def_txkey = kid; 491 } 492 493 /* 494 * Add underlying device errors to vap errors. 495 */ 496 static uint64_t 497 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 498 { 499 struct ieee80211vap *vap = ifp->if_softc; 500 struct ieee80211com *ic = vap->iv_ic; 501 uint64_t rv; 502 503 rv = if_get_counter_default(ifp, cnt); 504 switch (cnt) { 505 case IFCOUNTER_OERRORS: 506 rv += counter_u64_fetch(ic->ic_oerrors); 507 break; 508 case IFCOUNTER_IERRORS: 509 rv += counter_u64_fetch(ic->ic_ierrors); 510 break; 511 default: 512 break; 513 } 514 515 return (rv); 516 } 517 518 /* 519 * Prepare a vap for use. Drivers use this call to 520 * setup net80211 state in new vap's prior attaching 521 * them with ieee80211_vap_attach (below). 522 */ 523 int 524 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 525 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 526 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 527 { 528 struct ifnet *ifp; 529 530 ifp = if_alloc(IFT_ETHER); 531 if (ifp == NULL) { 532 ic_printf(ic, "%s: unable to allocate ifnet\n", __func__); 533 return ENOMEM; 534 } 535 if_initname(ifp, name, unit); 536 ifp->if_softc = vap; /* back pointer */ 537 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 538 ifp->if_transmit = ieee80211_vap_transmit; 539 ifp->if_qflush = ieee80211_vap_qflush; 540 ifp->if_ioctl = ieee80211_ioctl; 541 ifp->if_init = ieee80211_init; 542 ifp->if_get_counter = ieee80211_get_counter; 543 544 vap->iv_ifp = ifp; 545 vap->iv_ic = ic; 546 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 547 vap->iv_flags_ext = ic->ic_flags_ext; 548 vap->iv_flags_ven = ic->ic_flags_ven; 549 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 550 551 /* 11n capabilities - XXX methodize */ 552 vap->iv_htcaps = ic->ic_htcaps; 553 vap->iv_htextcaps = ic->ic_htextcaps; 554 555 /* 11ac capabilities - XXX methodize */ 556 vap->iv_vhtcaps = ic->ic_vhtcaps; 557 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 558 559 vap->iv_opmode = opmode; 560 vap->iv_caps |= ieee80211_opcap[opmode]; 561 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 562 switch (opmode) { 563 case IEEE80211_M_WDS: 564 /* 565 * WDS links must specify the bssid of the far end. 566 * For legacy operation this is a static relationship. 567 * For non-legacy operation the station must associate 568 * and be authorized to pass traffic. Plumbing the 569 * vap to the proper node happens when the vap 570 * transitions to RUN state. 571 */ 572 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 573 vap->iv_flags |= IEEE80211_F_DESBSSID; 574 if (flags & IEEE80211_CLONE_WDSLEGACY) 575 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 576 break; 577 #ifdef IEEE80211_SUPPORT_TDMA 578 case IEEE80211_M_AHDEMO: 579 if (flags & IEEE80211_CLONE_TDMA) { 580 /* NB: checked before clone operation allowed */ 581 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 582 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 583 /* 584 * Propagate TDMA capability to mark vap; this 585 * cannot be removed and is used to distinguish 586 * regular ahdemo operation from ahdemo+tdma. 587 */ 588 vap->iv_caps |= IEEE80211_C_TDMA; 589 } 590 break; 591 #endif 592 default: 593 break; 594 } 595 /* auto-enable s/w beacon miss support */ 596 if (flags & IEEE80211_CLONE_NOBEACONS) 597 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 598 /* auto-generated or user supplied MAC address */ 599 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 600 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 601 /* 602 * Enable various functionality by default if we're 603 * capable; the driver can override us if it knows better. 604 */ 605 if (vap->iv_caps & IEEE80211_C_WME) 606 vap->iv_flags |= IEEE80211_F_WME; 607 if (vap->iv_caps & IEEE80211_C_BURST) 608 vap->iv_flags |= IEEE80211_F_BURST; 609 /* NB: bg scanning only makes sense for station mode right now */ 610 if (vap->iv_opmode == IEEE80211_M_STA && 611 (vap->iv_caps & IEEE80211_C_BGSCAN)) 612 vap->iv_flags |= IEEE80211_F_BGSCAN; 613 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 614 /* NB: DFS support only makes sense for ap mode right now */ 615 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 616 (vap->iv_caps & IEEE80211_C_DFS)) 617 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 618 /* NB: only flip on U-APSD for hostap/sta for now */ 619 if ((vap->iv_opmode == IEEE80211_M_STA) 620 || (vap->iv_opmode == IEEE80211_M_HOSTAP)) { 621 if (vap->iv_caps & IEEE80211_C_UAPSD) 622 vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; 623 } 624 625 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 626 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 627 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 628 /* 629 * Install a default reset method for the ioctl support; 630 * the driver can override this. 631 */ 632 vap->iv_reset = default_reset; 633 634 /* 635 * Install a default crypto key update method, the driver 636 * can override this. 637 */ 638 vap->iv_update_deftxkey = default_update_deftxkey; 639 640 ieee80211_sysctl_vattach(vap); 641 ieee80211_crypto_vattach(vap); 642 ieee80211_node_vattach(vap); 643 ieee80211_power_vattach(vap); 644 ieee80211_proto_vattach(vap); 645 #ifdef IEEE80211_SUPPORT_SUPERG 646 ieee80211_superg_vattach(vap); 647 #endif 648 ieee80211_ht_vattach(vap); 649 ieee80211_vht_vattach(vap); 650 ieee80211_scan_vattach(vap); 651 ieee80211_regdomain_vattach(vap); 652 ieee80211_radiotap_vattach(vap); 653 ieee80211_vap_reset_erp(vap); 654 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 655 656 return 0; 657 } 658 659 /* 660 * Activate a vap. State should have been prepared with a 661 * call to ieee80211_vap_setup and by the driver. On return 662 * from this call the vap is ready for use. 663 */ 664 int 665 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 666 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 667 { 668 struct ifnet *ifp = vap->iv_ifp; 669 struct ieee80211com *ic = vap->iv_ic; 670 struct ifmediareq imr; 671 int maxrate; 672 673 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 674 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 675 __func__, ieee80211_opmode_name[vap->iv_opmode], 676 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 677 678 /* 679 * Do late attach work that cannot happen until after 680 * the driver has had a chance to override defaults. 681 */ 682 ieee80211_node_latevattach(vap); 683 ieee80211_power_latevattach(vap); 684 685 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 686 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 687 ieee80211_media_status(ifp, &imr); 688 /* NB: strip explicit mode; we're actually in autoselect */ 689 ifmedia_set(&vap->iv_media, 690 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 691 if (maxrate) 692 ifp->if_baudrate = IF_Mbps(maxrate); 693 694 ether_ifattach(ifp, macaddr); 695 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 696 /* hook output method setup by ether_ifattach */ 697 vap->iv_output = ifp->if_output; 698 ifp->if_output = ieee80211_output; 699 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 700 701 IEEE80211_LOCK(ic); 702 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 703 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 704 #ifdef IEEE80211_SUPPORT_SUPERG 705 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 706 #endif 707 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 708 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 709 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 710 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 711 712 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 713 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 714 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 715 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 716 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 717 IEEE80211_UNLOCK(ic); 718 719 return 1; 720 } 721 722 /* 723 * Tear down vap state and reclaim the ifnet. 724 * The driver is assumed to have prepared for 725 * this; e.g. by turning off interrupts for the 726 * underlying device. 727 */ 728 void 729 ieee80211_vap_detach(struct ieee80211vap *vap) 730 { 731 struct ieee80211com *ic = vap->iv_ic; 732 struct ifnet *ifp = vap->iv_ifp; 733 734 CURVNET_SET(ifp->if_vnet); 735 736 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 737 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 738 739 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 740 ether_ifdetach(ifp); 741 742 ieee80211_stop(vap); 743 744 /* 745 * Flush any deferred vap tasks. 746 */ 747 ieee80211_draintask(ic, &vap->iv_nstate_task); 748 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 749 ieee80211_draintask(ic, &vap->iv_wme_task); 750 ieee80211_draintask(ic, &ic->ic_parent_task); 751 752 /* XXX band-aid until ifnet handles this for us */ 753 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 754 755 IEEE80211_LOCK(ic); 756 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 757 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 758 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 759 #ifdef IEEE80211_SUPPORT_SUPERG 760 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 761 #endif 762 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 763 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 764 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 765 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 766 767 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 768 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 769 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 770 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 771 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 772 773 /* NB: this handles the bpfdetach done below */ 774 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 775 if (vap->iv_ifflags & IFF_PROMISC) 776 ieee80211_promisc(vap, false); 777 if (vap->iv_ifflags & IFF_ALLMULTI) 778 ieee80211_allmulti(vap, false); 779 IEEE80211_UNLOCK(ic); 780 781 ifmedia_removeall(&vap->iv_media); 782 783 ieee80211_radiotap_vdetach(vap); 784 ieee80211_regdomain_vdetach(vap); 785 ieee80211_scan_vdetach(vap); 786 #ifdef IEEE80211_SUPPORT_SUPERG 787 ieee80211_superg_vdetach(vap); 788 #endif 789 ieee80211_vht_vdetach(vap); 790 ieee80211_ht_vdetach(vap); 791 /* NB: must be before ieee80211_node_vdetach */ 792 ieee80211_proto_vdetach(vap); 793 ieee80211_crypto_vdetach(vap); 794 ieee80211_power_vdetach(vap); 795 ieee80211_node_vdetach(vap); 796 ieee80211_sysctl_vdetach(vap); 797 798 if_free(ifp); 799 800 CURVNET_RESTORE(); 801 } 802 803 /* 804 * Count number of vaps in promisc, and issue promisc on 805 * parent respectively. 806 */ 807 void 808 ieee80211_promisc(struct ieee80211vap *vap, bool on) 809 { 810 struct ieee80211com *ic = vap->iv_ic; 811 812 IEEE80211_LOCK_ASSERT(ic); 813 814 if (on) { 815 if (++ic->ic_promisc == 1) 816 ieee80211_runtask(ic, &ic->ic_promisc_task); 817 } else { 818 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 819 __func__, ic)); 820 if (--ic->ic_promisc == 0) 821 ieee80211_runtask(ic, &ic->ic_promisc_task); 822 } 823 } 824 825 /* 826 * Count number of vaps in allmulti, and issue allmulti on 827 * parent respectively. 828 */ 829 void 830 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 831 { 832 struct ieee80211com *ic = vap->iv_ic; 833 834 IEEE80211_LOCK_ASSERT(ic); 835 836 if (on) { 837 if (++ic->ic_allmulti == 1) 838 ieee80211_runtask(ic, &ic->ic_mcast_task); 839 } else { 840 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 841 __func__, ic)); 842 if (--ic->ic_allmulti == 0) 843 ieee80211_runtask(ic, &ic->ic_mcast_task); 844 } 845 } 846 847 /* 848 * Synchronize flag bit state in the com structure 849 * according to the state of all vap's. This is used, 850 * for example, to handle state changes via ioctls. 851 */ 852 static void 853 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 854 { 855 struct ieee80211vap *vap; 856 int bit; 857 858 IEEE80211_LOCK_ASSERT(ic); 859 860 bit = 0; 861 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 862 if (vap->iv_flags & flag) { 863 bit = 1; 864 break; 865 } 866 if (bit) 867 ic->ic_flags |= flag; 868 else 869 ic->ic_flags &= ~flag; 870 } 871 872 void 873 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 874 { 875 struct ieee80211com *ic = vap->iv_ic; 876 877 IEEE80211_LOCK(ic); 878 if (flag < 0) { 879 flag = -flag; 880 vap->iv_flags &= ~flag; 881 } else 882 vap->iv_flags |= flag; 883 ieee80211_syncflag_locked(ic, flag); 884 IEEE80211_UNLOCK(ic); 885 } 886 887 /* 888 * Synchronize flags_ht bit state in the com structure 889 * according to the state of all vap's. This is used, 890 * for example, to handle state changes via ioctls. 891 */ 892 static void 893 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 894 { 895 struct ieee80211vap *vap; 896 int bit; 897 898 IEEE80211_LOCK_ASSERT(ic); 899 900 bit = 0; 901 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 902 if (vap->iv_flags_ht & flag) { 903 bit = 1; 904 break; 905 } 906 if (bit) 907 ic->ic_flags_ht |= flag; 908 else 909 ic->ic_flags_ht &= ~flag; 910 } 911 912 void 913 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 914 { 915 struct ieee80211com *ic = vap->iv_ic; 916 917 IEEE80211_LOCK(ic); 918 if (flag < 0) { 919 flag = -flag; 920 vap->iv_flags_ht &= ~flag; 921 } else 922 vap->iv_flags_ht |= flag; 923 ieee80211_syncflag_ht_locked(ic, flag); 924 IEEE80211_UNLOCK(ic); 925 } 926 927 /* 928 * Synchronize flags_vht bit state in the com structure 929 * according to the state of all vap's. This is used, 930 * for example, to handle state changes via ioctls. 931 */ 932 static void 933 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 934 { 935 struct ieee80211vap *vap; 936 int bit; 937 938 IEEE80211_LOCK_ASSERT(ic); 939 940 bit = 0; 941 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 942 if (vap->iv_flags_vht & flag) { 943 bit = 1; 944 break; 945 } 946 if (bit) 947 ic->ic_flags_vht |= flag; 948 else 949 ic->ic_flags_vht &= ~flag; 950 } 951 952 void 953 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 954 { 955 struct ieee80211com *ic = vap->iv_ic; 956 957 IEEE80211_LOCK(ic); 958 if (flag < 0) { 959 flag = -flag; 960 vap->iv_flags_vht &= ~flag; 961 } else 962 vap->iv_flags_vht |= flag; 963 ieee80211_syncflag_vht_locked(ic, flag); 964 IEEE80211_UNLOCK(ic); 965 } 966 967 /* 968 * Synchronize flags_ext bit state in the com structure 969 * according to the state of all vap's. This is used, 970 * for example, to handle state changes via ioctls. 971 */ 972 static void 973 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 974 { 975 struct ieee80211vap *vap; 976 int bit; 977 978 IEEE80211_LOCK_ASSERT(ic); 979 980 bit = 0; 981 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 982 if (vap->iv_flags_ext & flag) { 983 bit = 1; 984 break; 985 } 986 if (bit) 987 ic->ic_flags_ext |= flag; 988 else 989 ic->ic_flags_ext &= ~flag; 990 } 991 992 void 993 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 994 { 995 struct ieee80211com *ic = vap->iv_ic; 996 997 IEEE80211_LOCK(ic); 998 if (flag < 0) { 999 flag = -flag; 1000 vap->iv_flags_ext &= ~flag; 1001 } else 1002 vap->iv_flags_ext |= flag; 1003 ieee80211_syncflag_ext_locked(ic, flag); 1004 IEEE80211_UNLOCK(ic); 1005 } 1006 1007 static __inline int 1008 mapgsm(u_int freq, u_int flags) 1009 { 1010 freq *= 10; 1011 if (flags & IEEE80211_CHAN_QUARTER) 1012 freq += 5; 1013 else if (flags & IEEE80211_CHAN_HALF) 1014 freq += 10; 1015 else 1016 freq += 20; 1017 /* NB: there is no 907/20 wide but leave room */ 1018 return (freq - 906*10) / 5; 1019 } 1020 1021 static __inline int 1022 mappsb(u_int freq, u_int flags) 1023 { 1024 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1025 } 1026 1027 /* 1028 * Convert MHz frequency to IEEE channel number. 1029 */ 1030 int 1031 ieee80211_mhz2ieee(u_int freq, u_int flags) 1032 { 1033 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1034 if (flags & IEEE80211_CHAN_GSM) 1035 return mapgsm(freq, flags); 1036 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1037 if (freq == 2484) 1038 return 14; 1039 if (freq < 2484) 1040 return ((int) freq - 2407) / 5; 1041 else 1042 return 15 + ((freq - 2512) / 20); 1043 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1044 if (freq <= 5000) { 1045 /* XXX check regdomain? */ 1046 if (IS_FREQ_IN_PSB(freq)) 1047 return mappsb(freq, flags); 1048 return (freq - 4000) / 5; 1049 } else 1050 return (freq - 5000) / 5; 1051 } else { /* either, guess */ 1052 if (freq == 2484) 1053 return 14; 1054 if (freq < 2484) { 1055 if (907 <= freq && freq <= 922) 1056 return mapgsm(freq, flags); 1057 return ((int) freq - 2407) / 5; 1058 } 1059 if (freq < 5000) { 1060 if (IS_FREQ_IN_PSB(freq)) 1061 return mappsb(freq, flags); 1062 else if (freq > 4900) 1063 return (freq - 4000) / 5; 1064 else 1065 return 15 + ((freq - 2512) / 20); 1066 } 1067 return (freq - 5000) / 5; 1068 } 1069 #undef IS_FREQ_IN_PSB 1070 } 1071 1072 /* 1073 * Convert channel to IEEE channel number. 1074 */ 1075 int 1076 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1077 { 1078 if (c == NULL) { 1079 ic_printf(ic, "invalid channel (NULL)\n"); 1080 return 0; /* XXX */ 1081 } 1082 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1083 } 1084 1085 /* 1086 * Convert IEEE channel number to MHz frequency. 1087 */ 1088 u_int 1089 ieee80211_ieee2mhz(u_int chan, u_int flags) 1090 { 1091 if (flags & IEEE80211_CHAN_GSM) 1092 return 907 + 5 * (chan / 10); 1093 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1094 if (chan == 14) 1095 return 2484; 1096 if (chan < 14) 1097 return 2407 + chan*5; 1098 else 1099 return 2512 + ((chan-15)*20); 1100 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1101 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1102 chan -= 37; 1103 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1104 } 1105 return 5000 + (chan*5); 1106 } else { /* either, guess */ 1107 /* XXX can't distinguish PSB+GSM channels */ 1108 if (chan == 14) 1109 return 2484; 1110 if (chan < 14) /* 0-13 */ 1111 return 2407 + chan*5; 1112 if (chan < 27) /* 15-26 */ 1113 return 2512 + ((chan-15)*20); 1114 return 5000 + (chan*5); 1115 } 1116 } 1117 1118 static __inline void 1119 set_extchan(struct ieee80211_channel *c) 1120 { 1121 1122 /* 1123 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1124 * "the secondary channel number shall be 'N + [1,-1] * 4' 1125 */ 1126 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1127 c->ic_extieee = c->ic_ieee + 4; 1128 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1129 c->ic_extieee = c->ic_ieee - 4; 1130 else 1131 c->ic_extieee = 0; 1132 } 1133 1134 /* 1135 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1136 * 1137 * This for now uses a hard-coded list of 80MHz wide channels. 1138 * 1139 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1140 * wide channel we've already decided upon. 1141 * 1142 * For VHT80 and VHT160, there are only a small number of fixed 1143 * 80/160MHz wide channels, so we just use those. 1144 * 1145 * This is all likely very very wrong - both the regulatory code 1146 * and this code needs to ensure that all four channels are 1147 * available and valid before the VHT80 (and eight for VHT160) channel 1148 * is created. 1149 */ 1150 1151 struct vht_chan_range { 1152 uint16_t freq_start; 1153 uint16_t freq_end; 1154 }; 1155 1156 struct vht_chan_range vht80_chan_ranges[] = { 1157 { 5170, 5250 }, 1158 { 5250, 5330 }, 1159 { 5490, 5570 }, 1160 { 5570, 5650 }, 1161 { 5650, 5730 }, 1162 { 5735, 5815 }, 1163 { 0, 0, } 1164 }; 1165 1166 static int 1167 set_vht_extchan(struct ieee80211_channel *c) 1168 { 1169 int i; 1170 1171 if (! IEEE80211_IS_CHAN_VHT(c)) 1172 return (0); 1173 1174 if (IEEE80211_IS_CHAN_VHT80P80(c)) { 1175 printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n", 1176 __func__, c->ic_ieee, c->ic_flags); 1177 } 1178 1179 if (IEEE80211_IS_CHAN_VHT160(c)) { 1180 printf("%s: TODO VHT160 channel (ieee=%d, flags=0x%08x)\n", 1181 __func__, c->ic_ieee, c->ic_flags); 1182 } 1183 1184 if (IEEE80211_IS_CHAN_VHT80(c)) { 1185 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1186 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1187 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1188 int midpoint; 1189 1190 midpoint = vht80_chan_ranges[i].freq_start + 40; 1191 c->ic_vht_ch_freq1 = 1192 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1193 c->ic_vht_ch_freq2 = 0; 1194 #if 0 1195 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1196 __func__, c->ic_ieee, c->ic_freq, midpoint, 1197 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1198 #endif 1199 return (1); 1200 } 1201 } 1202 return (0); 1203 } 1204 1205 if (IEEE80211_IS_CHAN_VHT40(c)) { 1206 if (IEEE80211_IS_CHAN_HT40U(c)) 1207 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1208 else if (IEEE80211_IS_CHAN_HT40D(c)) 1209 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1210 else 1211 return (0); 1212 return (1); 1213 } 1214 1215 if (IEEE80211_IS_CHAN_VHT20(c)) { 1216 c->ic_vht_ch_freq1 = c->ic_ieee; 1217 return (1); 1218 } 1219 1220 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1221 __func__, c->ic_ieee, c->ic_flags); 1222 1223 return (0); 1224 } 1225 1226 /* 1227 * Return whether the current channel could possibly be a part of 1228 * a VHT80 channel. 1229 * 1230 * This doesn't check that the whole range is in the allowed list 1231 * according to regulatory. 1232 */ 1233 static int 1234 is_vht80_valid_freq(uint16_t freq) 1235 { 1236 int i; 1237 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1238 if (freq >= vht80_chan_ranges[i].freq_start && 1239 freq < vht80_chan_ranges[i].freq_end) 1240 return (1); 1241 } 1242 return (0); 1243 } 1244 1245 static int 1246 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1247 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1248 { 1249 struct ieee80211_channel *c; 1250 1251 if (*nchans >= maxchans) 1252 return (ENOBUFS); 1253 1254 #if 0 1255 printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n", 1256 __func__, *nchans, ieee, freq, flags); 1257 #endif 1258 1259 c = &chans[(*nchans)++]; 1260 c->ic_ieee = ieee; 1261 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1262 c->ic_maxregpower = maxregpower; 1263 c->ic_maxpower = 2 * maxregpower; 1264 c->ic_flags = flags; 1265 c->ic_vht_ch_freq1 = 0; 1266 c->ic_vht_ch_freq2 = 0; 1267 set_extchan(c); 1268 set_vht_extchan(c); 1269 1270 return (0); 1271 } 1272 1273 static int 1274 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1275 uint32_t flags) 1276 { 1277 struct ieee80211_channel *c; 1278 1279 KASSERT(*nchans > 0, ("channel list is empty\n")); 1280 1281 if (*nchans >= maxchans) 1282 return (ENOBUFS); 1283 1284 #if 0 1285 printf("%s: %d: flags=0x%08x\n", 1286 __func__, *nchans, flags); 1287 #endif 1288 1289 c = &chans[(*nchans)++]; 1290 c[0] = c[-1]; 1291 c->ic_flags = flags; 1292 c->ic_vht_ch_freq1 = 0; 1293 c->ic_vht_ch_freq2 = 0; 1294 set_extchan(c); 1295 set_vht_extchan(c); 1296 1297 return (0); 1298 } 1299 1300 /* 1301 * XXX VHT-2GHz 1302 */ 1303 static void 1304 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40) 1305 { 1306 int nmodes; 1307 1308 nmodes = 0; 1309 if (isset(bands, IEEE80211_MODE_11B)) 1310 flags[nmodes++] = IEEE80211_CHAN_B; 1311 if (isset(bands, IEEE80211_MODE_11G)) 1312 flags[nmodes++] = IEEE80211_CHAN_G; 1313 if (isset(bands, IEEE80211_MODE_11NG)) 1314 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1315 if (ht40) { 1316 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1317 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1318 } 1319 flags[nmodes] = 0; 1320 } 1321 1322 static void 1323 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1324 { 1325 int nmodes; 1326 1327 /* 1328 * the addchan_list function seems to expect the flags array to 1329 * be in channel width order, so the VHT bits are interspersed 1330 * as appropriate to maintain said order. 1331 * 1332 * It also assumes HT40U is before HT40D. 1333 */ 1334 nmodes = 0; 1335 1336 /* 20MHz */ 1337 if (isset(bands, IEEE80211_MODE_11A)) 1338 flags[nmodes++] = IEEE80211_CHAN_A; 1339 if (isset(bands, IEEE80211_MODE_11NA)) 1340 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1341 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1342 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1343 IEEE80211_CHAN_VHT20; 1344 } 1345 1346 /* 40MHz */ 1347 if (ht40) { 1348 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1349 } 1350 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1351 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U 1352 | IEEE80211_CHAN_VHT40U; 1353 } 1354 if (ht40) { 1355 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1356 } 1357 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1358 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D 1359 | IEEE80211_CHAN_VHT40D; 1360 } 1361 1362 /* 80MHz */ 1363 if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1364 flags[nmodes++] = IEEE80211_CHAN_A | 1365 IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80; 1366 flags[nmodes++] = IEEE80211_CHAN_A | 1367 IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80; 1368 } 1369 1370 /* XXX VHT160 */ 1371 /* XXX VHT80+80 */ 1372 flags[nmodes] = 0; 1373 } 1374 1375 static void 1376 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1377 { 1378 1379 flags[0] = 0; 1380 if (isset(bands, IEEE80211_MODE_11A) || 1381 isset(bands, IEEE80211_MODE_11NA) || 1382 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1383 if (isset(bands, IEEE80211_MODE_11B) || 1384 isset(bands, IEEE80211_MODE_11G) || 1385 isset(bands, IEEE80211_MODE_11NG) || 1386 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1387 return; 1388 1389 getflags_5ghz(bands, flags, ht40, vht80); 1390 } else 1391 getflags_2ghz(bands, flags, ht40); 1392 } 1393 1394 /* 1395 * Add one 20 MHz channel into specified channel list. 1396 * You MUST NOT mix bands when calling this. It will not add 5ghz 1397 * channels if you have any B/G/N band bit set. 1398 */ 1399 /* XXX VHT */ 1400 int 1401 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1402 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1403 uint32_t chan_flags, const uint8_t bands[]) 1404 { 1405 uint32_t flags[IEEE80211_MODE_MAX]; 1406 int i, error; 1407 1408 getflags(bands, flags, 0, 0); 1409 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1410 1411 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1412 flags[0] | chan_flags); 1413 for (i = 1; flags[i] != 0 && error == 0; i++) { 1414 error = copychan_prev(chans, maxchans, nchans, 1415 flags[i] | chan_flags); 1416 } 1417 1418 return (error); 1419 } 1420 1421 static struct ieee80211_channel * 1422 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1423 uint32_t flags) 1424 { 1425 struct ieee80211_channel *c; 1426 int i; 1427 1428 flags &= IEEE80211_CHAN_ALLTURBO; 1429 /* brute force search */ 1430 for (i = 0; i < nchans; i++) { 1431 c = &chans[i]; 1432 if (c->ic_freq == freq && 1433 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1434 return c; 1435 } 1436 return NULL; 1437 } 1438 1439 /* 1440 * Add 40 MHz channel pair into specified channel list. 1441 */ 1442 /* XXX VHT */ 1443 int 1444 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1445 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1446 { 1447 struct ieee80211_channel *cent, *extc; 1448 uint16_t freq; 1449 int error; 1450 1451 freq = ieee80211_ieee2mhz(ieee, flags); 1452 1453 /* 1454 * Each entry defines an HT40 channel pair; find the 1455 * center channel, then the extension channel above. 1456 */ 1457 flags |= IEEE80211_CHAN_HT20; 1458 cent = findchannel(chans, *nchans, freq, flags); 1459 if (cent == NULL) 1460 return (EINVAL); 1461 1462 extc = findchannel(chans, *nchans, freq + 20, flags); 1463 if (extc == NULL) 1464 return (ENOENT); 1465 1466 flags &= ~IEEE80211_CHAN_HT; 1467 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1468 maxregpower, flags | IEEE80211_CHAN_HT40U); 1469 if (error != 0) 1470 return (error); 1471 1472 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1473 maxregpower, flags | IEEE80211_CHAN_HT40D); 1474 1475 return (error); 1476 } 1477 1478 /* 1479 * Fetch the center frequency for the primary channel. 1480 */ 1481 uint32_t 1482 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1483 { 1484 1485 return (c->ic_freq); 1486 } 1487 1488 /* 1489 * Fetch the center frequency for the primary BAND channel. 1490 * 1491 * For 5, 10, 20MHz channels it'll be the normally configured channel 1492 * frequency. 1493 * 1494 * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the 1495 * wide channel, not the centre of the primary channel (that's ic_freq). 1496 * 1497 * For 80+80MHz channels this will be the centre of the primary 1498 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1499 */ 1500 uint32_t 1501 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1502 { 1503 1504 /* 1505 * VHT - use the pre-calculated centre frequency 1506 * of the given channel. 1507 */ 1508 if (IEEE80211_IS_CHAN_VHT(c)) 1509 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1510 1511 if (IEEE80211_IS_CHAN_HT40U(c)) { 1512 return (c->ic_freq + 10); 1513 } 1514 if (IEEE80211_IS_CHAN_HT40D(c)) { 1515 return (c->ic_freq - 10); 1516 } 1517 1518 return (c->ic_freq); 1519 } 1520 1521 /* 1522 * For now, no 80+80 support; it will likely always return 0. 1523 */ 1524 uint32_t 1525 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1526 { 1527 1528 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1529 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1530 1531 return (0); 1532 } 1533 1534 /* 1535 * Adds channels into specified channel list (ieee[] array must be sorted). 1536 * Channels are already sorted. 1537 */ 1538 static int 1539 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1540 const uint8_t ieee[], int nieee, uint32_t flags[]) 1541 { 1542 uint16_t freq; 1543 int i, j, error; 1544 int is_vht; 1545 1546 for (i = 0; i < nieee; i++) { 1547 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1548 for (j = 0; flags[j] != 0; j++) { 1549 /* 1550 * Notes: 1551 * + HT40 and VHT40 channels occur together, so 1552 * we need to be careful that we actually allow that. 1553 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1554 * make sure it's not skipped because of the overlap 1555 * check used for (V)HT40. 1556 */ 1557 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1558 1559 /* XXX TODO FIXME VHT80P80. */ 1560 /* XXX TODO FIXME VHT160. */ 1561 1562 /* 1563 * Test for VHT80. 1564 * XXX This is all very broken right now. 1565 * What we /should/ do is: 1566 * 1567 * + check that the frequency is in the list of 1568 * allowed VHT80 ranges; and 1569 * + the other 3 channels in the list are actually 1570 * also available. 1571 */ 1572 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1573 if (! is_vht80_valid_freq(freq)) 1574 continue; 1575 1576 /* 1577 * Test for (V)HT40. 1578 * 1579 * This is also a fall through from VHT80; as we only 1580 * allow a VHT80 channel if the VHT40 combination is 1581 * also valid. If the VHT40 form is not valid then 1582 * we certainly can't do VHT80.. 1583 */ 1584 if (flags[j] & IEEE80211_CHAN_HT40D) 1585 /* 1586 * Can't have a "lower" channel if we are the 1587 * first channel. 1588 * 1589 * Can't have a "lower" channel if it's below/ 1590 * within 20MHz of the first channel. 1591 * 1592 * Can't have a "lower" channel if the channel 1593 * below it is not 20MHz away. 1594 */ 1595 if (i == 0 || ieee[i] < ieee[0] + 4 || 1596 freq - 20 != 1597 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1598 continue; 1599 if (flags[j] & IEEE80211_CHAN_HT40U) 1600 /* 1601 * Can't have an "upper" channel if we are 1602 * the last channel. 1603 * 1604 * Can't have an "upper" channel be above the 1605 * last channel in the list. 1606 * 1607 * Can't have an "upper" channel if the next 1608 * channel according to the math isn't 20MHz 1609 * away. (Likely for channel 13/14.) 1610 */ 1611 if (i == nieee - 1 || 1612 ieee[i] + 4 > ieee[nieee - 1] || 1613 freq + 20 != 1614 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1615 continue; 1616 1617 if (j == 0) { 1618 error = addchan(chans, maxchans, nchans, 1619 ieee[i], freq, 0, flags[j]); 1620 } else { 1621 error = copychan_prev(chans, maxchans, nchans, 1622 flags[j]); 1623 } 1624 if (error != 0) 1625 return (error); 1626 } 1627 } 1628 1629 return (0); 1630 } 1631 1632 int 1633 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1634 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1635 int ht40) 1636 { 1637 uint32_t flags[IEEE80211_MODE_MAX]; 1638 1639 /* XXX no VHT for now */ 1640 getflags_2ghz(bands, flags, ht40); 1641 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1642 1643 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1644 } 1645 1646 int 1647 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], 1648 int maxchans, int *nchans, const uint8_t bands[], int ht40) 1649 { 1650 const uint8_t default_chan_list[] = 1651 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 1652 1653 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 1654 default_chan_list, nitems(default_chan_list), bands, ht40)); 1655 } 1656 1657 int 1658 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1659 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1660 int ht40) 1661 { 1662 uint32_t flags[IEEE80211_MODE_MAX]; 1663 int vht80 = 0; 1664 1665 /* 1666 * For now, assume VHT == VHT80 support as a minimum. 1667 */ 1668 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1669 vht80 = 1; 1670 1671 getflags_5ghz(bands, flags, ht40, vht80); 1672 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1673 1674 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1675 } 1676 1677 /* 1678 * Locate a channel given a frequency+flags. We cache 1679 * the previous lookup to optimize switching between two 1680 * channels--as happens with dynamic turbo. 1681 */ 1682 struct ieee80211_channel * 1683 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1684 { 1685 struct ieee80211_channel *c; 1686 1687 flags &= IEEE80211_CHAN_ALLTURBO; 1688 c = ic->ic_prevchan; 1689 if (c != NULL && c->ic_freq == freq && 1690 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1691 return c; 1692 /* brute force search */ 1693 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1694 } 1695 1696 /* 1697 * Locate a channel given a channel number+flags. We cache 1698 * the previous lookup to optimize switching between two 1699 * channels--as happens with dynamic turbo. 1700 */ 1701 struct ieee80211_channel * 1702 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1703 { 1704 struct ieee80211_channel *c; 1705 int i; 1706 1707 flags &= IEEE80211_CHAN_ALLTURBO; 1708 c = ic->ic_prevchan; 1709 if (c != NULL && c->ic_ieee == ieee && 1710 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1711 return c; 1712 /* brute force search */ 1713 for (i = 0; i < ic->ic_nchans; i++) { 1714 c = &ic->ic_channels[i]; 1715 if (c->ic_ieee == ieee && 1716 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1717 return c; 1718 } 1719 return NULL; 1720 } 1721 1722 /* 1723 * Lookup a channel suitable for the given rx status. 1724 * 1725 * This is used to find a channel for a frame (eg beacon, probe 1726 * response) based purely on the received PHY information. 1727 * 1728 * For now it tries to do it based on R_FREQ / R_IEEE. 1729 * This is enough for 11bg and 11a (and thus 11ng/11na) 1730 * but it will not be enough for GSM, PSB channels and the 1731 * like. It also doesn't know about legacy-turbog and 1732 * legacy-turbo modes, which some offload NICs actually 1733 * support in weird ways. 1734 * 1735 * Takes the ic and rxstatus; returns the channel or NULL 1736 * if not found. 1737 * 1738 * XXX TODO: Add support for that when the need arises. 1739 */ 1740 struct ieee80211_channel * 1741 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1742 const struct ieee80211_rx_stats *rxs) 1743 { 1744 struct ieee80211com *ic = vap->iv_ic; 1745 uint32_t flags; 1746 struct ieee80211_channel *c; 1747 1748 if (rxs == NULL) 1749 return (NULL); 1750 1751 /* 1752 * Strictly speaking we only use freq for now, 1753 * however later on we may wish to just store 1754 * the ieee for verification. 1755 */ 1756 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1757 return (NULL); 1758 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1759 return (NULL); 1760 1761 /* 1762 * If the rx status contains a valid ieee/freq, then 1763 * ensure we populate the correct channel information 1764 * in rxchan before passing it up to the scan infrastructure. 1765 * Offload NICs will pass up beacons from all channels 1766 * during background scans. 1767 */ 1768 1769 /* Determine a band */ 1770 /* XXX should be done by the driver? */ 1771 if (rxs->c_freq < 3000) { 1772 flags = IEEE80211_CHAN_G; 1773 } else { 1774 flags = IEEE80211_CHAN_A; 1775 } 1776 1777 /* Channel lookup */ 1778 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1779 1780 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1781 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1782 __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c); 1783 1784 return (c); 1785 } 1786 1787 static void 1788 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1789 { 1790 #define ADD(_ic, _s, _o) \ 1791 ifmedia_add(media, \ 1792 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1793 static const u_int mopts[IEEE80211_MODE_MAX] = { 1794 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1795 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1796 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1797 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1798 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1799 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1800 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1801 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1802 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1803 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1804 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1805 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1806 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1807 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1808 }; 1809 u_int mopt; 1810 1811 mopt = mopts[mode]; 1812 if (addsta) 1813 ADD(ic, mword, mopt); /* STA mode has no cap */ 1814 if (caps & IEEE80211_C_IBSS) 1815 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1816 if (caps & IEEE80211_C_HOSTAP) 1817 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1818 if (caps & IEEE80211_C_AHDEMO) 1819 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1820 if (caps & IEEE80211_C_MONITOR) 1821 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1822 if (caps & IEEE80211_C_WDS) 1823 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1824 if (caps & IEEE80211_C_MBSS) 1825 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1826 #undef ADD 1827 } 1828 1829 /* 1830 * Setup the media data structures according to the channel and 1831 * rate tables. 1832 */ 1833 static int 1834 ieee80211_media_setup(struct ieee80211com *ic, 1835 struct ifmedia *media, int caps, int addsta, 1836 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1837 { 1838 int i, j, rate, maxrate, mword, r; 1839 enum ieee80211_phymode mode; 1840 const struct ieee80211_rateset *rs; 1841 struct ieee80211_rateset allrates; 1842 1843 /* 1844 * Fill in media characteristics. 1845 */ 1846 ifmedia_init(media, 0, media_change, media_stat); 1847 maxrate = 0; 1848 /* 1849 * Add media for legacy operating modes. 1850 */ 1851 memset(&allrates, 0, sizeof(allrates)); 1852 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1853 if (isclr(ic->ic_modecaps, mode)) 1854 continue; 1855 addmedia(media, caps, addsta, mode, IFM_AUTO); 1856 if (mode == IEEE80211_MODE_AUTO) 1857 continue; 1858 rs = &ic->ic_sup_rates[mode]; 1859 for (i = 0; i < rs->rs_nrates; i++) { 1860 rate = rs->rs_rates[i]; 1861 mword = ieee80211_rate2media(ic, rate, mode); 1862 if (mword == 0) 1863 continue; 1864 addmedia(media, caps, addsta, mode, mword); 1865 /* 1866 * Add legacy rate to the collection of all rates. 1867 */ 1868 r = rate & IEEE80211_RATE_VAL; 1869 for (j = 0; j < allrates.rs_nrates; j++) 1870 if (allrates.rs_rates[j] == r) 1871 break; 1872 if (j == allrates.rs_nrates) { 1873 /* unique, add to the set */ 1874 allrates.rs_rates[j] = r; 1875 allrates.rs_nrates++; 1876 } 1877 rate = (rate & IEEE80211_RATE_VAL) / 2; 1878 if (rate > maxrate) 1879 maxrate = rate; 1880 } 1881 } 1882 for (i = 0; i < allrates.rs_nrates; i++) { 1883 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1884 IEEE80211_MODE_AUTO); 1885 if (mword == 0) 1886 continue; 1887 /* NB: remove media options from mword */ 1888 addmedia(media, caps, addsta, 1889 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1890 } 1891 /* 1892 * Add HT/11n media. Note that we do not have enough 1893 * bits in the media subtype to express the MCS so we 1894 * use a "placeholder" media subtype and any fixed MCS 1895 * must be specified with a different mechanism. 1896 */ 1897 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1898 if (isclr(ic->ic_modecaps, mode)) 1899 continue; 1900 addmedia(media, caps, addsta, mode, IFM_AUTO); 1901 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1902 } 1903 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1904 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1905 addmedia(media, caps, addsta, 1906 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1907 i = ic->ic_txstream * 8 - 1; 1908 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1909 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1910 rate = ieee80211_htrates[i].ht40_rate_400ns; 1911 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1912 rate = ieee80211_htrates[i].ht40_rate_800ns; 1913 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1914 rate = ieee80211_htrates[i].ht20_rate_400ns; 1915 else 1916 rate = ieee80211_htrates[i].ht20_rate_800ns; 1917 if (rate > maxrate) 1918 maxrate = rate; 1919 } 1920 1921 /* 1922 * Add VHT media. 1923 * XXX-BZ skip "VHT_2GHZ" for now. 1924 */ 1925 for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ; 1926 mode++) { 1927 if (isclr(ic->ic_modecaps, mode)) 1928 continue; 1929 addmedia(media, caps, addsta, mode, IFM_AUTO); 1930 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 1931 } 1932 if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) { 1933 addmedia(media, caps, addsta, 1934 IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT); 1935 1936 /* XXX TODO: VHT maxrate */ 1937 } 1938 1939 return maxrate; 1940 } 1941 1942 /* XXX inline or eliminate? */ 1943 const struct ieee80211_rateset * 1944 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1945 { 1946 /* XXX does this work for 11ng basic rates? */ 1947 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1948 } 1949 1950 /* XXX inline or eliminate? */ 1951 const struct ieee80211_htrateset * 1952 ieee80211_get_suphtrates(struct ieee80211com *ic, 1953 const struct ieee80211_channel *c) 1954 { 1955 return &ic->ic_sup_htrates; 1956 } 1957 1958 void 1959 ieee80211_announce(struct ieee80211com *ic) 1960 { 1961 int i, rate, mword; 1962 enum ieee80211_phymode mode; 1963 const struct ieee80211_rateset *rs; 1964 1965 /* NB: skip AUTO since it has no rates */ 1966 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1967 if (isclr(ic->ic_modecaps, mode)) 1968 continue; 1969 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 1970 rs = &ic->ic_sup_rates[mode]; 1971 for (i = 0; i < rs->rs_nrates; i++) { 1972 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1973 if (mword == 0) 1974 continue; 1975 rate = ieee80211_media2rate(mword); 1976 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1977 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1978 } 1979 printf("\n"); 1980 } 1981 ieee80211_ht_announce(ic); 1982 ieee80211_vht_announce(ic); 1983 } 1984 1985 void 1986 ieee80211_announce_channels(struct ieee80211com *ic) 1987 { 1988 const struct ieee80211_channel *c; 1989 char type; 1990 int i, cw; 1991 1992 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1993 for (i = 0; i < ic->ic_nchans; i++) { 1994 c = &ic->ic_channels[i]; 1995 if (IEEE80211_IS_CHAN_ST(c)) 1996 type = 'S'; 1997 else if (IEEE80211_IS_CHAN_108A(c)) 1998 type = 'T'; 1999 else if (IEEE80211_IS_CHAN_108G(c)) 2000 type = 'G'; 2001 else if (IEEE80211_IS_CHAN_HT(c)) 2002 type = 'n'; 2003 else if (IEEE80211_IS_CHAN_A(c)) 2004 type = 'a'; 2005 else if (IEEE80211_IS_CHAN_ANYG(c)) 2006 type = 'g'; 2007 else if (IEEE80211_IS_CHAN_B(c)) 2008 type = 'b'; 2009 else 2010 type = 'f'; 2011 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 2012 cw = 40; 2013 else if (IEEE80211_IS_CHAN_HALF(c)) 2014 cw = 10; 2015 else if (IEEE80211_IS_CHAN_QUARTER(c)) 2016 cw = 5; 2017 else 2018 cw = 20; 2019 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 2020 , c->ic_ieee, c->ic_freq, type 2021 , cw 2022 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 2023 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 2024 , c->ic_maxregpower 2025 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 2026 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 2027 ); 2028 } 2029 } 2030 2031 static int 2032 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 2033 { 2034 switch (IFM_MODE(ime->ifm_media)) { 2035 case IFM_IEEE80211_11A: 2036 *mode = IEEE80211_MODE_11A; 2037 break; 2038 case IFM_IEEE80211_11B: 2039 *mode = IEEE80211_MODE_11B; 2040 break; 2041 case IFM_IEEE80211_11G: 2042 *mode = IEEE80211_MODE_11G; 2043 break; 2044 case IFM_IEEE80211_FH: 2045 *mode = IEEE80211_MODE_FH; 2046 break; 2047 case IFM_IEEE80211_11NA: 2048 *mode = IEEE80211_MODE_11NA; 2049 break; 2050 case IFM_IEEE80211_11NG: 2051 *mode = IEEE80211_MODE_11NG; 2052 break; 2053 case IFM_IEEE80211_VHT2G: 2054 *mode = IEEE80211_MODE_VHT_2GHZ; 2055 break; 2056 case IFM_IEEE80211_VHT5G: 2057 *mode = IEEE80211_MODE_VHT_5GHZ; 2058 break; 2059 case IFM_AUTO: 2060 *mode = IEEE80211_MODE_AUTO; 2061 break; 2062 default: 2063 return 0; 2064 } 2065 /* 2066 * Turbo mode is an ``option''. 2067 * XXX does not apply to AUTO 2068 */ 2069 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2070 if (*mode == IEEE80211_MODE_11A) { 2071 if (flags & IEEE80211_F_TURBOP) 2072 *mode = IEEE80211_MODE_TURBO_A; 2073 else 2074 *mode = IEEE80211_MODE_STURBO_A; 2075 } else if (*mode == IEEE80211_MODE_11G) 2076 *mode = IEEE80211_MODE_TURBO_G; 2077 else 2078 return 0; 2079 } 2080 /* XXX HT40 +/- */ 2081 return 1; 2082 } 2083 2084 /* 2085 * Handle a media change request on the vap interface. 2086 */ 2087 int 2088 ieee80211_media_change(struct ifnet *ifp) 2089 { 2090 struct ieee80211vap *vap = ifp->if_softc; 2091 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2092 uint16_t newmode; 2093 2094 if (!media2mode(ime, vap->iv_flags, &newmode)) 2095 return EINVAL; 2096 if (vap->iv_des_mode != newmode) { 2097 vap->iv_des_mode = newmode; 2098 /* XXX kick state machine if up+running */ 2099 } 2100 return 0; 2101 } 2102 2103 /* 2104 * Common code to calculate the media status word 2105 * from the operating mode and channel state. 2106 */ 2107 static int 2108 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2109 { 2110 int status; 2111 2112 status = IFM_IEEE80211; 2113 switch (opmode) { 2114 case IEEE80211_M_STA: 2115 break; 2116 case IEEE80211_M_IBSS: 2117 status |= IFM_IEEE80211_ADHOC; 2118 break; 2119 case IEEE80211_M_HOSTAP: 2120 status |= IFM_IEEE80211_HOSTAP; 2121 break; 2122 case IEEE80211_M_MONITOR: 2123 status |= IFM_IEEE80211_MONITOR; 2124 break; 2125 case IEEE80211_M_AHDEMO: 2126 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2127 break; 2128 case IEEE80211_M_WDS: 2129 status |= IFM_IEEE80211_WDS; 2130 break; 2131 case IEEE80211_M_MBSS: 2132 status |= IFM_IEEE80211_MBSS; 2133 break; 2134 } 2135 if (IEEE80211_IS_CHAN_HTA(chan)) { 2136 status |= IFM_IEEE80211_11NA; 2137 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2138 status |= IFM_IEEE80211_11NG; 2139 } else if (IEEE80211_IS_CHAN_A(chan)) { 2140 status |= IFM_IEEE80211_11A; 2141 } else if (IEEE80211_IS_CHAN_B(chan)) { 2142 status |= IFM_IEEE80211_11B; 2143 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2144 status |= IFM_IEEE80211_11G; 2145 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2146 status |= IFM_IEEE80211_FH; 2147 } 2148 /* XXX else complain? */ 2149 2150 if (IEEE80211_IS_CHAN_TURBO(chan)) 2151 status |= IFM_IEEE80211_TURBO; 2152 #if 0 2153 if (IEEE80211_IS_CHAN_HT20(chan)) 2154 status |= IFM_IEEE80211_HT20; 2155 if (IEEE80211_IS_CHAN_HT40(chan)) 2156 status |= IFM_IEEE80211_HT40; 2157 #endif 2158 return status; 2159 } 2160 2161 void 2162 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2163 { 2164 struct ieee80211vap *vap = ifp->if_softc; 2165 struct ieee80211com *ic = vap->iv_ic; 2166 enum ieee80211_phymode mode; 2167 2168 imr->ifm_status = IFM_AVALID; 2169 /* 2170 * NB: use the current channel's mode to lock down a xmit 2171 * rate only when running; otherwise we may have a mismatch 2172 * in which case the rate will not be convertible. 2173 */ 2174 if (vap->iv_state == IEEE80211_S_RUN || 2175 vap->iv_state == IEEE80211_S_SLEEP) { 2176 imr->ifm_status |= IFM_ACTIVE; 2177 mode = ieee80211_chan2mode(ic->ic_curchan); 2178 } else 2179 mode = IEEE80211_MODE_AUTO; 2180 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2181 /* 2182 * Calculate a current rate if possible. 2183 */ 2184 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2185 /* 2186 * A fixed rate is set, report that. 2187 */ 2188 imr->ifm_active |= ieee80211_rate2media(ic, 2189 vap->iv_txparms[mode].ucastrate, mode); 2190 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2191 /* 2192 * In station mode report the current transmit rate. 2193 */ 2194 imr->ifm_active |= ieee80211_rate2media(ic, 2195 vap->iv_bss->ni_txrate, mode); 2196 } else 2197 imr->ifm_active |= IFM_AUTO; 2198 if (imr->ifm_status & IFM_ACTIVE) 2199 imr->ifm_current = imr->ifm_active; 2200 } 2201 2202 /* 2203 * Set the current phy mode and recalculate the active channel 2204 * set based on the available channels for this mode. Also 2205 * select a new default/current channel if the current one is 2206 * inappropriate for this mode. 2207 */ 2208 int 2209 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2210 { 2211 /* 2212 * Adjust basic rates in 11b/11g supported rate set. 2213 * Note that if operating on a hal/quarter rate channel 2214 * this is a noop as those rates sets are different 2215 * and used instead. 2216 */ 2217 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2218 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2219 2220 ic->ic_curmode = mode; 2221 ieee80211_reset_erp(ic); /* reset global ERP state */ 2222 2223 return 0; 2224 } 2225 2226 /* 2227 * Return the phy mode for with the specified channel. 2228 */ 2229 enum ieee80211_phymode 2230 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2231 { 2232 2233 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2234 return IEEE80211_MODE_VHT_2GHZ; 2235 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2236 return IEEE80211_MODE_VHT_5GHZ; 2237 else if (IEEE80211_IS_CHAN_HTA(chan)) 2238 return IEEE80211_MODE_11NA; 2239 else if (IEEE80211_IS_CHAN_HTG(chan)) 2240 return IEEE80211_MODE_11NG; 2241 else if (IEEE80211_IS_CHAN_108G(chan)) 2242 return IEEE80211_MODE_TURBO_G; 2243 else if (IEEE80211_IS_CHAN_ST(chan)) 2244 return IEEE80211_MODE_STURBO_A; 2245 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2246 return IEEE80211_MODE_TURBO_A; 2247 else if (IEEE80211_IS_CHAN_HALF(chan)) 2248 return IEEE80211_MODE_HALF; 2249 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2250 return IEEE80211_MODE_QUARTER; 2251 else if (IEEE80211_IS_CHAN_A(chan)) 2252 return IEEE80211_MODE_11A; 2253 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2254 return IEEE80211_MODE_11G; 2255 else if (IEEE80211_IS_CHAN_B(chan)) 2256 return IEEE80211_MODE_11B; 2257 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2258 return IEEE80211_MODE_FH; 2259 2260 /* NB: should not get here */ 2261 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2262 __func__, chan->ic_freq, chan->ic_flags); 2263 return IEEE80211_MODE_11B; 2264 } 2265 2266 struct ratemedia { 2267 u_int match; /* rate + mode */ 2268 u_int media; /* if_media rate */ 2269 }; 2270 2271 static int 2272 findmedia(const struct ratemedia rates[], int n, u_int match) 2273 { 2274 int i; 2275 2276 for (i = 0; i < n; i++) 2277 if (rates[i].match == match) 2278 return rates[i].media; 2279 return IFM_AUTO; 2280 } 2281 2282 /* 2283 * Convert IEEE80211 rate value to ifmedia subtype. 2284 * Rate is either a legacy rate in units of 0.5Mbps 2285 * or an MCS index. 2286 */ 2287 int 2288 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2289 { 2290 static const struct ratemedia rates[] = { 2291 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2292 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2293 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2294 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2295 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2296 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2297 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2298 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2299 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2300 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2301 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2302 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2303 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2304 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2305 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2306 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2307 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2308 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2309 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2310 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2311 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2312 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2313 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2314 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2315 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2316 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2317 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2318 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2319 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2320 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2321 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2322 }; 2323 static const struct ratemedia htrates[] = { 2324 { 0, IFM_IEEE80211_MCS }, 2325 { 1, IFM_IEEE80211_MCS }, 2326 { 2, IFM_IEEE80211_MCS }, 2327 { 3, IFM_IEEE80211_MCS }, 2328 { 4, IFM_IEEE80211_MCS }, 2329 { 5, IFM_IEEE80211_MCS }, 2330 { 6, IFM_IEEE80211_MCS }, 2331 { 7, IFM_IEEE80211_MCS }, 2332 { 8, IFM_IEEE80211_MCS }, 2333 { 9, IFM_IEEE80211_MCS }, 2334 { 10, IFM_IEEE80211_MCS }, 2335 { 11, IFM_IEEE80211_MCS }, 2336 { 12, IFM_IEEE80211_MCS }, 2337 { 13, IFM_IEEE80211_MCS }, 2338 { 14, IFM_IEEE80211_MCS }, 2339 { 15, IFM_IEEE80211_MCS }, 2340 { 16, IFM_IEEE80211_MCS }, 2341 { 17, IFM_IEEE80211_MCS }, 2342 { 18, IFM_IEEE80211_MCS }, 2343 { 19, IFM_IEEE80211_MCS }, 2344 { 20, IFM_IEEE80211_MCS }, 2345 { 21, IFM_IEEE80211_MCS }, 2346 { 22, IFM_IEEE80211_MCS }, 2347 { 23, IFM_IEEE80211_MCS }, 2348 { 24, IFM_IEEE80211_MCS }, 2349 { 25, IFM_IEEE80211_MCS }, 2350 { 26, IFM_IEEE80211_MCS }, 2351 { 27, IFM_IEEE80211_MCS }, 2352 { 28, IFM_IEEE80211_MCS }, 2353 { 29, IFM_IEEE80211_MCS }, 2354 { 30, IFM_IEEE80211_MCS }, 2355 { 31, IFM_IEEE80211_MCS }, 2356 { 32, IFM_IEEE80211_MCS }, 2357 { 33, IFM_IEEE80211_MCS }, 2358 { 34, IFM_IEEE80211_MCS }, 2359 { 35, IFM_IEEE80211_MCS }, 2360 { 36, IFM_IEEE80211_MCS }, 2361 { 37, IFM_IEEE80211_MCS }, 2362 { 38, IFM_IEEE80211_MCS }, 2363 { 39, IFM_IEEE80211_MCS }, 2364 { 40, IFM_IEEE80211_MCS }, 2365 { 41, IFM_IEEE80211_MCS }, 2366 { 42, IFM_IEEE80211_MCS }, 2367 { 43, IFM_IEEE80211_MCS }, 2368 { 44, IFM_IEEE80211_MCS }, 2369 { 45, IFM_IEEE80211_MCS }, 2370 { 46, IFM_IEEE80211_MCS }, 2371 { 47, IFM_IEEE80211_MCS }, 2372 { 48, IFM_IEEE80211_MCS }, 2373 { 49, IFM_IEEE80211_MCS }, 2374 { 50, IFM_IEEE80211_MCS }, 2375 { 51, IFM_IEEE80211_MCS }, 2376 { 52, IFM_IEEE80211_MCS }, 2377 { 53, IFM_IEEE80211_MCS }, 2378 { 54, IFM_IEEE80211_MCS }, 2379 { 55, IFM_IEEE80211_MCS }, 2380 { 56, IFM_IEEE80211_MCS }, 2381 { 57, IFM_IEEE80211_MCS }, 2382 { 58, IFM_IEEE80211_MCS }, 2383 { 59, IFM_IEEE80211_MCS }, 2384 { 60, IFM_IEEE80211_MCS }, 2385 { 61, IFM_IEEE80211_MCS }, 2386 { 62, IFM_IEEE80211_MCS }, 2387 { 63, IFM_IEEE80211_MCS }, 2388 { 64, IFM_IEEE80211_MCS }, 2389 { 65, IFM_IEEE80211_MCS }, 2390 { 66, IFM_IEEE80211_MCS }, 2391 { 67, IFM_IEEE80211_MCS }, 2392 { 68, IFM_IEEE80211_MCS }, 2393 { 69, IFM_IEEE80211_MCS }, 2394 { 70, IFM_IEEE80211_MCS }, 2395 { 71, IFM_IEEE80211_MCS }, 2396 { 72, IFM_IEEE80211_MCS }, 2397 { 73, IFM_IEEE80211_MCS }, 2398 { 74, IFM_IEEE80211_MCS }, 2399 { 75, IFM_IEEE80211_MCS }, 2400 { 76, IFM_IEEE80211_MCS }, 2401 }; 2402 static const struct ratemedia vhtrates[] = { 2403 { 0, IFM_IEEE80211_VHT }, 2404 { 1, IFM_IEEE80211_VHT }, 2405 { 2, IFM_IEEE80211_VHT }, 2406 { 3, IFM_IEEE80211_VHT }, 2407 { 4, IFM_IEEE80211_VHT }, 2408 { 5, IFM_IEEE80211_VHT }, 2409 { 6, IFM_IEEE80211_VHT }, 2410 { 7, IFM_IEEE80211_VHT }, 2411 { 8, IFM_IEEE80211_VHT }, /* Optional. */ 2412 { 9, IFM_IEEE80211_VHT }, /* Optional. */ 2413 #if 0 2414 /* Some QCA and BRCM seem to support this; offspec. */ 2415 { 10, IFM_IEEE80211_VHT }, 2416 { 11, IFM_IEEE80211_VHT }, 2417 #endif 2418 }; 2419 int m; 2420 2421 /* 2422 * Check 11ac/11n rates first for match as an MCS. 2423 */ 2424 if (mode == IEEE80211_MODE_VHT_5GHZ) { 2425 if (rate & IFM_IEEE80211_VHT) { 2426 rate &= ~IFM_IEEE80211_VHT; 2427 m = findmedia(vhtrates, nitems(vhtrates), rate); 2428 if (m != IFM_AUTO) 2429 return (m | IFM_IEEE80211_VHT); 2430 } 2431 } else if (mode == IEEE80211_MODE_11NA) { 2432 if (rate & IEEE80211_RATE_MCS) { 2433 rate &= ~IEEE80211_RATE_MCS; 2434 m = findmedia(htrates, nitems(htrates), rate); 2435 if (m != IFM_AUTO) 2436 return m | IFM_IEEE80211_11NA; 2437 } 2438 } else if (mode == IEEE80211_MODE_11NG) { 2439 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2440 if (rate & IEEE80211_RATE_MCS) { 2441 rate &= ~IEEE80211_RATE_MCS; 2442 m = findmedia(htrates, nitems(htrates), rate); 2443 if (m != IFM_AUTO) 2444 return m | IFM_IEEE80211_11NG; 2445 } 2446 } 2447 rate &= IEEE80211_RATE_VAL; 2448 switch (mode) { 2449 case IEEE80211_MODE_11A: 2450 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2451 case IEEE80211_MODE_QUARTER: 2452 case IEEE80211_MODE_11NA: 2453 case IEEE80211_MODE_TURBO_A: 2454 case IEEE80211_MODE_STURBO_A: 2455 return findmedia(rates, nitems(rates), 2456 rate | IFM_IEEE80211_11A); 2457 case IEEE80211_MODE_11B: 2458 return findmedia(rates, nitems(rates), 2459 rate | IFM_IEEE80211_11B); 2460 case IEEE80211_MODE_FH: 2461 return findmedia(rates, nitems(rates), 2462 rate | IFM_IEEE80211_FH); 2463 case IEEE80211_MODE_AUTO: 2464 /* NB: ic may be NULL for some drivers */ 2465 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2466 return findmedia(rates, nitems(rates), 2467 rate | IFM_IEEE80211_FH); 2468 /* NB: hack, 11g matches both 11b+11a rates */ 2469 /* fall thru... */ 2470 case IEEE80211_MODE_11G: 2471 case IEEE80211_MODE_11NG: 2472 case IEEE80211_MODE_TURBO_G: 2473 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2474 case IEEE80211_MODE_VHT_2GHZ: 2475 case IEEE80211_MODE_VHT_5GHZ: 2476 /* XXX TODO: need to figure out mapping for VHT rates */ 2477 return IFM_AUTO; 2478 } 2479 return IFM_AUTO; 2480 } 2481 2482 int 2483 ieee80211_media2rate(int mword) 2484 { 2485 static const int ieeerates[] = { 2486 -1, /* IFM_AUTO */ 2487 0, /* IFM_MANUAL */ 2488 0, /* IFM_NONE */ 2489 2, /* IFM_IEEE80211_FH1 */ 2490 4, /* IFM_IEEE80211_FH2 */ 2491 2, /* IFM_IEEE80211_DS1 */ 2492 4, /* IFM_IEEE80211_DS2 */ 2493 11, /* IFM_IEEE80211_DS5 */ 2494 22, /* IFM_IEEE80211_DS11 */ 2495 44, /* IFM_IEEE80211_DS22 */ 2496 12, /* IFM_IEEE80211_OFDM6 */ 2497 18, /* IFM_IEEE80211_OFDM9 */ 2498 24, /* IFM_IEEE80211_OFDM12 */ 2499 36, /* IFM_IEEE80211_OFDM18 */ 2500 48, /* IFM_IEEE80211_OFDM24 */ 2501 72, /* IFM_IEEE80211_OFDM36 */ 2502 96, /* IFM_IEEE80211_OFDM48 */ 2503 108, /* IFM_IEEE80211_OFDM54 */ 2504 144, /* IFM_IEEE80211_OFDM72 */ 2505 0, /* IFM_IEEE80211_DS354k */ 2506 0, /* IFM_IEEE80211_DS512k */ 2507 6, /* IFM_IEEE80211_OFDM3 */ 2508 9, /* IFM_IEEE80211_OFDM4 */ 2509 54, /* IFM_IEEE80211_OFDM27 */ 2510 -1, /* IFM_IEEE80211_MCS */ 2511 -1, /* IFM_IEEE80211_VHT */ 2512 }; 2513 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2514 ieeerates[IFM_SUBTYPE(mword)] : 0; 2515 } 2516 2517 /* 2518 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2519 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2520 */ 2521 #define mix(a, b, c) \ 2522 do { \ 2523 a -= b; a -= c; a ^= (c >> 13); \ 2524 b -= c; b -= a; b ^= (a << 8); \ 2525 c -= a; c -= b; c ^= (b >> 13); \ 2526 a -= b; a -= c; a ^= (c >> 12); \ 2527 b -= c; b -= a; b ^= (a << 16); \ 2528 c -= a; c -= b; c ^= (b >> 5); \ 2529 a -= b; a -= c; a ^= (c >> 3); \ 2530 b -= c; b -= a; b ^= (a << 10); \ 2531 c -= a; c -= b; c ^= (b >> 15); \ 2532 } while (/*CONSTCOND*/0) 2533 2534 uint32_t 2535 ieee80211_mac_hash(const struct ieee80211com *ic, 2536 const uint8_t addr[IEEE80211_ADDR_LEN]) 2537 { 2538 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2539 2540 b += addr[5] << 8; 2541 b += addr[4]; 2542 a += addr[3] << 24; 2543 a += addr[2] << 16; 2544 a += addr[1] << 8; 2545 a += addr[0]; 2546 2547 mix(a, b, c); 2548 2549 return c; 2550 } 2551 #undef mix 2552 2553 char 2554 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2555 { 2556 if (IEEE80211_IS_CHAN_ST(c)) 2557 return 'S'; 2558 if (IEEE80211_IS_CHAN_108A(c)) 2559 return 'T'; 2560 if (IEEE80211_IS_CHAN_108G(c)) 2561 return 'G'; 2562 if (IEEE80211_IS_CHAN_VHT(c)) 2563 return 'v'; 2564 if (IEEE80211_IS_CHAN_HT(c)) 2565 return 'n'; 2566 if (IEEE80211_IS_CHAN_A(c)) 2567 return 'a'; 2568 if (IEEE80211_IS_CHAN_ANYG(c)) 2569 return 'g'; 2570 if (IEEE80211_IS_CHAN_B(c)) 2571 return 'b'; 2572 return 'f'; 2573 } 2574