xref: /freebsd/sys/net80211/ieee80211.c (revision 0440b3d2cbf83afb55209a9938b31a48912f222c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_private.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #include <net80211/ieee80211_ratectl.h>
58 #include <net80211/ieee80211_vht.h>
59 
60 #include <net/bpf.h>
61 
62 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
63 	[IEEE80211_MODE_AUTO]	  = "auto",
64 	[IEEE80211_MODE_11A]	  = "11a",
65 	[IEEE80211_MODE_11B]	  = "11b",
66 	[IEEE80211_MODE_11G]	  = "11g",
67 	[IEEE80211_MODE_FH]	  = "FH",
68 	[IEEE80211_MODE_TURBO_A]  = "turboA",
69 	[IEEE80211_MODE_TURBO_G]  = "turboG",
70 	[IEEE80211_MODE_STURBO_A] = "sturboA",
71 	[IEEE80211_MODE_HALF]	  = "half",
72 	[IEEE80211_MODE_QUARTER]  = "quarter",
73 	[IEEE80211_MODE_11NA]	  = "11na",
74 	[IEEE80211_MODE_11NG]	  = "11ng",
75 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
76 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
77 };
78 /* map ieee80211_opmode to the corresponding capability bit */
79 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
80 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
81 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
82 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
83 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
84 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
85 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
86 #ifdef IEEE80211_SUPPORT_MESH
87 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
88 #endif
89 };
90 
91 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
92 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
93 
94 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
95 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
98 static	int ieee80211_media_setup(struct ieee80211com *ic,
99 		struct ifmedia *media, int caps, int addsta,
100 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
101 static	int media_status(enum ieee80211_opmode,
102 		const struct ieee80211_channel *);
103 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
104 
105 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
106 
107 /*
108  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
109  */
110 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
111 static const struct ieee80211_rateset ieee80211_rateset_11a =
112 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
113 static const struct ieee80211_rateset ieee80211_rateset_half =
114 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
115 static const struct ieee80211_rateset ieee80211_rateset_quarter =
116 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
117 static const struct ieee80211_rateset ieee80211_rateset_11b =
118 	{ 4, { B(2), B(4), B(11), B(22) } };
119 /* NB: OFDM rates are handled specially based on mode */
120 static const struct ieee80211_rateset ieee80211_rateset_11g =
121 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
122 #undef B
123 
124 static int set_vht_extchan(struct ieee80211_channel *c);
125 
126 /*
127  * Fill in 802.11 available channel set, mark
128  * all available channels as active, and pick
129  * a default channel if not already specified.
130  */
131 void
132 ieee80211_chan_init(struct ieee80211com *ic)
133 {
134 #define	DEFAULTRATES(m, def) do { \
135 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
136 		ic->ic_sup_rates[m] = def; \
137 } while (0)
138 	struct ieee80211_channel *c;
139 	int i;
140 
141 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
142 		("invalid number of channels specified: %u", ic->ic_nchans));
143 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
144 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
145 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
146 	for (i = 0; i < ic->ic_nchans; i++) {
147 		c = &ic->ic_channels[i];
148 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
149 		/*
150 		 * Help drivers that work only with frequencies by filling
151 		 * in IEEE channel #'s if not already calculated.  Note this
152 		 * mimics similar work done in ieee80211_setregdomain when
153 		 * changing regulatory state.
154 		 */
155 		if (c->ic_ieee == 0)
156 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
157 
158 		/*
159 		 * Setup the HT40/VHT40 upper/lower bits.
160 		 * The VHT80/... math is done elsewhere.
161 		 */
162 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
163 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
164 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
165 			    c->ic_flags);
166 
167 		/* Update VHT math */
168 		/*
169 		 * XXX VHT again, note that this assumes VHT80/... channels
170 		 * are legit already.
171 		 */
172 		set_vht_extchan(c);
173 
174 		/* default max tx power to max regulatory */
175 		if (c->ic_maxpower == 0)
176 			c->ic_maxpower = 2*c->ic_maxregpower;
177 		setbit(ic->ic_chan_avail, c->ic_ieee);
178 		/*
179 		 * Identify mode capabilities.
180 		 */
181 		if (IEEE80211_IS_CHAN_A(c))
182 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
183 		if (IEEE80211_IS_CHAN_B(c))
184 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
185 		if (IEEE80211_IS_CHAN_ANYG(c))
186 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
187 		if (IEEE80211_IS_CHAN_FHSS(c))
188 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
189 		if (IEEE80211_IS_CHAN_108A(c))
190 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
191 		if (IEEE80211_IS_CHAN_108G(c))
192 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
193 		if (IEEE80211_IS_CHAN_ST(c))
194 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
195 		if (IEEE80211_IS_CHAN_HALF(c))
196 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
197 		if (IEEE80211_IS_CHAN_QUARTER(c))
198 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
199 		if (IEEE80211_IS_CHAN_HTA(c))
200 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
201 		if (IEEE80211_IS_CHAN_HTG(c))
202 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
203 		if (IEEE80211_IS_CHAN_VHTA(c))
204 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
205 		if (IEEE80211_IS_CHAN_VHTG(c))
206 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
207 	}
208 	/* initialize candidate channels to all available */
209 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
210 		sizeof(ic->ic_chan_avail));
211 
212 	/* sort channel table to allow lookup optimizations */
213 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
214 
215 	/* invalidate any previous state */
216 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
217 	ic->ic_prevchan = NULL;
218 	ic->ic_csa_newchan = NULL;
219 	/* arbitrarily pick the first channel */
220 	ic->ic_curchan = &ic->ic_channels[0];
221 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
222 
223 	/* fillin well-known rate sets if driver has not specified */
224 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
225 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
226 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
227 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
228 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
229 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
230 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
231 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
232 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
233 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
234 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
235 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
236 
237 	/*
238 	 * Setup required information to fill the mcsset field, if driver did
239 	 * not. Assume a 2T2R setup for historic reasons.
240 	 */
241 	if (ic->ic_rxstream == 0)
242 		ic->ic_rxstream = 2;
243 	if (ic->ic_txstream == 0)
244 		ic->ic_txstream = 2;
245 
246 	ieee80211_init_suphtrates(ic);
247 
248 	/*
249 	 * Set auto mode to reset active channel state and any desired channel.
250 	 */
251 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
252 #undef DEFAULTRATES
253 }
254 
255 static void
256 null_update_mcast(struct ieee80211com *ic)
257 {
258 
259 	ic_printf(ic, "need multicast update callback\n");
260 }
261 
262 static void
263 null_update_promisc(struct ieee80211com *ic)
264 {
265 
266 	ic_printf(ic, "need promiscuous mode update callback\n");
267 }
268 
269 static void
270 null_update_chw(struct ieee80211com *ic)
271 {
272 
273 	ic_printf(ic, "%s: need callback\n", __func__);
274 }
275 
276 int
277 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
278 {
279 	va_list ap;
280 	int retval;
281 
282 	retval = printf("%s: ", ic->ic_name);
283 	va_start(ap, fmt);
284 	retval += vprintf(fmt, ap);
285 	va_end(ap);
286 	return (retval);
287 }
288 
289 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
290 static struct mtx ic_list_mtx;
291 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
292 
293 static int
294 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
295 {
296 	struct ieee80211com *ic;
297 	struct sbuf sb;
298 	char *sp;
299 	int error;
300 
301 	error = sysctl_wire_old_buffer(req, 0);
302 	if (error)
303 		return (error);
304 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
305 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
306 	sp = "";
307 	mtx_lock(&ic_list_mtx);
308 	LIST_FOREACH(ic, &ic_head, ic_next) {
309 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
310 		sp = " ";
311 	}
312 	mtx_unlock(&ic_list_mtx);
313 	error = sbuf_finish(&sb);
314 	sbuf_delete(&sb);
315 	return (error);
316 }
317 
318 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
319     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
320     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
321 
322 /*
323  * Attach/setup the common net80211 state.  Called by
324  * the driver on attach to prior to creating any vap's.
325  */
326 void
327 ieee80211_ifattach(struct ieee80211com *ic)
328 {
329 
330 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
331 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
332 	TAILQ_INIT(&ic->ic_vaps);
333 
334 	/* Create a taskqueue for all state changes */
335 	ic->ic_tq = taskqueue_create("ic_taskq",
336 	    IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
337 	    taskqueue_thread_enqueue, &ic->ic_tq);
338 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
339 	    ic->ic_name);
340 	ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
341 	ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
342 	/*
343 	 * Fill in 802.11 available channel set, mark all
344 	 * available channels as active, and pick a default
345 	 * channel if not already specified.
346 	 */
347 	ieee80211_chan_init(ic);
348 
349 	ic->ic_update_mcast = null_update_mcast;
350 	ic->ic_update_promisc = null_update_promisc;
351 	ic->ic_update_chw = null_update_chw;
352 
353 	ic->ic_hash_key = arc4random();
354 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
355 	ic->ic_lintval = ic->ic_bintval;
356 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
357 
358 	ieee80211_crypto_attach(ic);
359 	ieee80211_node_attach(ic);
360 	ieee80211_power_attach(ic);
361 	ieee80211_proto_attach(ic);
362 #ifdef IEEE80211_SUPPORT_SUPERG
363 	ieee80211_superg_attach(ic);
364 #endif
365 	ieee80211_ht_attach(ic);
366 	ieee80211_vht_attach(ic);
367 	ieee80211_scan_attach(ic);
368 	ieee80211_regdomain_attach(ic);
369 	ieee80211_dfs_attach(ic);
370 
371 	ieee80211_sysctl_attach(ic);
372 
373 	mtx_lock(&ic_list_mtx);
374 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
375 	mtx_unlock(&ic_list_mtx);
376 }
377 
378 /*
379  * Detach net80211 state on device detach.  Tear down
380  * all vap's and reclaim all common state prior to the
381  * device state going away.  Note we may call back into
382  * driver; it must be prepared for this.
383  */
384 void
385 ieee80211_ifdetach(struct ieee80211com *ic)
386 {
387 	struct ieee80211vap *vap;
388 
389 	/*
390 	 * We use this as an indicator that ifattach never had a chance to be
391 	 * called, e.g. early driver attach failed and ifdetach was called
392 	 * during subsequent detach.  Never fear, for we have nothing to do
393 	 * here.
394 	 */
395 	if (ic->ic_tq == NULL)
396 		return;
397 
398 	mtx_lock(&ic_list_mtx);
399 	LIST_REMOVE(ic, ic_next);
400 	mtx_unlock(&ic_list_mtx);
401 
402 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
403 
404 	/*
405 	 * The VAP is responsible for setting and clearing
406 	 * the VIMAGE context.
407 	 */
408 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
409 		ieee80211_com_vdetach(vap);
410 		ieee80211_vap_destroy(vap);
411 	}
412 	ieee80211_waitfor_parent(ic);
413 
414 	ieee80211_sysctl_detach(ic);
415 	ieee80211_dfs_detach(ic);
416 	ieee80211_regdomain_detach(ic);
417 	ieee80211_scan_detach(ic);
418 #ifdef IEEE80211_SUPPORT_SUPERG
419 	ieee80211_superg_detach(ic);
420 #endif
421 	ieee80211_vht_detach(ic);
422 	ieee80211_ht_detach(ic);
423 	/* NB: must be called before ieee80211_node_detach */
424 	ieee80211_proto_detach(ic);
425 	ieee80211_crypto_detach(ic);
426 	ieee80211_power_detach(ic);
427 	ieee80211_node_detach(ic);
428 
429 	counter_u64_free(ic->ic_ierrors);
430 	counter_u64_free(ic->ic_oerrors);
431 
432 	taskqueue_free(ic->ic_tq);
433 	IEEE80211_TX_LOCK_DESTROY(ic);
434 	IEEE80211_LOCK_DESTROY(ic);
435 }
436 
437 /*
438  * Called by drivers during attach to set the supported
439  * cipher set for software encryption.
440  */
441 void
442 ieee80211_set_software_ciphers(struct ieee80211com *ic,
443     uint32_t cipher_suite)
444 {
445 	ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite);
446 }
447 
448 /*
449  * Called by drivers during attach to set the supported
450  * cipher set for hardware encryption.
451  */
452 void
453 ieee80211_set_hardware_ciphers(struct ieee80211com *ic,
454     uint32_t cipher_suite)
455 {
456 	ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite);
457 }
458 
459 /*
460  * Called by drivers during attach to set the supported
461  * key management suites by the driver/hardware.
462  */
463 void
464 ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic,
465     uint32_t keymgmt_set)
466 {
467 	ieee80211_crypto_set_supported_driver_keymgmt(ic,
468 	    keymgmt_set);
469 }
470 
471 struct ieee80211com *
472 ieee80211_find_com(const char *name)
473 {
474 	struct ieee80211com *ic;
475 
476 	mtx_lock(&ic_list_mtx);
477 	LIST_FOREACH(ic, &ic_head, ic_next)
478 		if (strcmp(ic->ic_name, name) == 0)
479 			break;
480 	mtx_unlock(&ic_list_mtx);
481 
482 	return (ic);
483 }
484 
485 void
486 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
487 {
488 	struct ieee80211com *ic;
489 
490 	mtx_lock(&ic_list_mtx);
491 	LIST_FOREACH(ic, &ic_head, ic_next)
492 		(*f)(arg, ic);
493 	mtx_unlock(&ic_list_mtx);
494 }
495 
496 /*
497  * Default reset method for use with the ioctl support.  This
498  * method is invoked after any state change in the 802.11
499  * layer that should be propagated to the hardware but not
500  * require re-initialization of the 802.11 state machine (e.g
501  * rescanning for an ap).  We always return ENETRESET which
502  * should cause the driver to re-initialize the device. Drivers
503  * can override this method to implement more optimized support.
504  */
505 static int
506 default_reset(struct ieee80211vap *vap, u_long cmd)
507 {
508 	return ENETRESET;
509 }
510 
511 /*
512  * Default for updating the VAP default TX key index.
513  *
514  * Drivers that support TX offload as well as hardware encryption offload
515  * may need to be informed of key index changes separate from the key
516  * update.
517  */
518 static void
519 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
520 {
521 
522 	/* XXX assert validity */
523 	/* XXX assert we're in a key update block */
524 	vap->iv_def_txkey = kid;
525 }
526 
527 /*
528  * Add underlying device errors to vap errors.
529  */
530 static uint64_t
531 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
532 {
533 	struct ieee80211vap *vap = ifp->if_softc;
534 	struct ieee80211com *ic = vap->iv_ic;
535 	uint64_t rv;
536 
537 	rv = if_get_counter_default(ifp, cnt);
538 	switch (cnt) {
539 	case IFCOUNTER_OERRORS:
540 		rv += counter_u64_fetch(ic->ic_oerrors);
541 		break;
542 	case IFCOUNTER_IERRORS:
543 		rv += counter_u64_fetch(ic->ic_ierrors);
544 		break;
545 	default:
546 		break;
547 	}
548 
549 	return (rv);
550 }
551 
552 /*
553  * Prepare a vap for use.  Drivers use this call to
554  * setup net80211 state in new vap's prior attaching
555  * them with ieee80211_vap_attach (below).
556  */
557 int
558 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
559     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
560     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
561 {
562 	struct ifnet *ifp;
563 
564 	ifp = if_alloc(IFT_ETHER);
565 	if_initname(ifp, name, unit);
566 	ifp->if_softc = vap;			/* back pointer */
567 	if_setflags(ifp, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST);
568 	ifp->if_transmit = ieee80211_vap_transmit;
569 	ifp->if_qflush = ieee80211_vap_qflush;
570 	ifp->if_ioctl = ieee80211_ioctl;
571 	ifp->if_init = ieee80211_init;
572 	ifp->if_get_counter = ieee80211_get_counter;
573 
574 	vap->iv_ifp = ifp;
575 	vap->iv_ic = ic;
576 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
577 	vap->iv_flags_ext = ic->ic_flags_ext;
578 	vap->iv_flags_ven = ic->ic_flags_ven;
579 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
580 
581 	/* 11n capabilities - XXX methodize */
582 	vap->iv_htcaps = ic->ic_htcaps;
583 	vap->iv_htextcaps = ic->ic_htextcaps;
584 
585 	/* 11ac capabilities - XXX methodize */
586 	vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
587 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
588 
589 	vap->iv_opmode = opmode;
590 	vap->iv_caps |= ieee80211_opcap[opmode];
591 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
592 	switch (opmode) {
593 	case IEEE80211_M_WDS:
594 		/*
595 		 * WDS links must specify the bssid of the far end.
596 		 * For legacy operation this is a static relationship.
597 		 * For non-legacy operation the station must associate
598 		 * and be authorized to pass traffic.  Plumbing the
599 		 * vap to the proper node happens when the vap
600 		 * transitions to RUN state.
601 		 */
602 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
603 		vap->iv_flags |= IEEE80211_F_DESBSSID;
604 		if (flags & IEEE80211_CLONE_WDSLEGACY)
605 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
606 		break;
607 #ifdef IEEE80211_SUPPORT_TDMA
608 	case IEEE80211_M_AHDEMO:
609 		if (flags & IEEE80211_CLONE_TDMA) {
610 			/* NB: checked before clone operation allowed */
611 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
612 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
613 			/*
614 			 * Propagate TDMA capability to mark vap; this
615 			 * cannot be removed and is used to distinguish
616 			 * regular ahdemo operation from ahdemo+tdma.
617 			 */
618 			vap->iv_caps |= IEEE80211_C_TDMA;
619 		}
620 		break;
621 #endif
622 	default:
623 		break;
624 	}
625 	/* auto-enable s/w beacon miss support */
626 	if (flags & IEEE80211_CLONE_NOBEACONS)
627 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
628 	/* auto-generated or user supplied MAC address */
629 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
630 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
631 	/*
632 	 * Enable various functionality by default if we're
633 	 * capable; the driver can override us if it knows better.
634 	 */
635 	if (vap->iv_caps & IEEE80211_C_WME)
636 		vap->iv_flags |= IEEE80211_F_WME;
637 	if (vap->iv_caps & IEEE80211_C_BURST)
638 		vap->iv_flags |= IEEE80211_F_BURST;
639 	/* NB: bg scanning only makes sense for station mode right now */
640 	if (vap->iv_opmode == IEEE80211_M_STA &&
641 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
642 		vap->iv_flags |= IEEE80211_F_BGSCAN;
643 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
644 	/* NB: DFS support only makes sense for ap mode right now */
645 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
646 	    (vap->iv_caps & IEEE80211_C_DFS))
647 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
648 	/* NB: only flip on U-APSD for hostap/sta for now */
649 	if ((vap->iv_opmode == IEEE80211_M_STA)
650 	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
651 		if (vap->iv_caps & IEEE80211_C_UAPSD)
652 			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
653 	}
654 
655 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
656 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
657 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
658 	/*
659 	 * Install a default reset method for the ioctl support;
660 	 * the driver can override this.
661 	 */
662 	vap->iv_reset = default_reset;
663 
664 	/*
665 	 * Install a default crypto key update method, the driver
666 	 * can override this.
667 	 */
668 	vap->iv_update_deftxkey = default_update_deftxkey;
669 
670 	ieee80211_sysctl_vattach(vap);
671 	ieee80211_crypto_vattach(vap);
672 	ieee80211_node_vattach(vap);
673 	ieee80211_power_vattach(vap);
674 	ieee80211_proto_vattach(vap);
675 #ifdef IEEE80211_SUPPORT_SUPERG
676 	ieee80211_superg_vattach(vap);
677 #endif
678 	ieee80211_ht_vattach(vap);
679 	ieee80211_vht_vattach(vap);
680 	ieee80211_scan_vattach(vap);
681 	ieee80211_regdomain_vattach(vap);
682 	ieee80211_radiotap_vattach(vap);
683 	ieee80211_vap_reset_erp(vap);
684 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
685 
686 	return 0;
687 }
688 
689 /*
690  * Activate a vap.  State should have been prepared with a
691  * call to ieee80211_vap_setup and by the driver.  On return
692  * from this call the vap is ready for use.
693  */
694 int
695 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
696     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
697 {
698 	struct ifnet *ifp = vap->iv_ifp;
699 	struct ieee80211com *ic = vap->iv_ic;
700 	struct ifmediareq imr;
701 	int maxrate;
702 
703 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
704 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
705 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
706 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
707 
708 	/*
709 	 * Do late attach work that cannot happen until after
710 	 * the driver has had a chance to override defaults.
711 	 */
712 	ieee80211_node_latevattach(vap);
713 	ieee80211_power_latevattach(vap);
714 
715 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
716 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
717 	ieee80211_media_status(ifp, &imr);
718 	/* NB: strip explicit mode; we're actually in autoselect */
719 	ifmedia_set(&vap->iv_media,
720 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
721 	if (maxrate)
722 		ifp->if_baudrate = IF_Mbps(maxrate);
723 
724 	ether_ifattach(ifp, macaddr);
725 	/* Do initial MAC address sync */
726 	ieee80211_vap_copy_mac_address(vap);
727 	/* hook output method setup by ether_ifattach */
728 	vap->iv_output = ifp->if_output;
729 	ifp->if_output = ieee80211_output;
730 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
731 
732 	IEEE80211_LOCK(ic);
733 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
734 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
735 #ifdef IEEE80211_SUPPORT_SUPERG
736 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
737 #endif
738 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
739 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
740 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
741 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
742 
743 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
744 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
745 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
746 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
747 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
748 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
749 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
750 	IEEE80211_UNLOCK(ic);
751 
752 	return 1;
753 }
754 
755 /*
756  * Tear down vap state and reclaim the ifnet.
757  * The driver is assumed to have prepared for
758  * this; e.g. by turning off interrupts for the
759  * underlying device.
760  */
761 void
762 ieee80211_vap_detach(struct ieee80211vap *vap)
763 {
764 	struct ieee80211com *ic = vap->iv_ic;
765 	struct ifnet *ifp = vap->iv_ifp;
766 	int i;
767 
768 	CURVNET_SET(ifp->if_vnet);
769 
770 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
771 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
772 
773 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
774 	ether_ifdetach(ifp);
775 
776 	ieee80211_stop(vap);
777 
778 	/*
779 	 * Flush any deferred vap tasks.
780 	 */
781 	for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
782 		ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
783 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
784 	ieee80211_draintask(ic, &vap->iv_wme_task);
785 	ieee80211_draintask(ic, &ic->ic_parent_task);
786 
787 	/* XXX band-aid until ifnet handles this for us */
788 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
789 
790 	IEEE80211_LOCK(ic);
791 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
792 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
793 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
794 #ifdef IEEE80211_SUPPORT_SUPERG
795 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
796 #endif
797 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
798 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
799 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
800 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
801 
802 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
803 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
804 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
805 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
806 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
807 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
808 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
809 
810 	/* NB: this handles the bpfdetach done below */
811 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
812 	if (vap->iv_ifflags & IFF_PROMISC)
813 		ieee80211_promisc(vap, false);
814 	if (vap->iv_ifflags & IFF_ALLMULTI)
815 		ieee80211_allmulti(vap, false);
816 	IEEE80211_UNLOCK(ic);
817 
818 	ifmedia_removeall(&vap->iv_media);
819 
820 	ieee80211_radiotap_vdetach(vap);
821 	ieee80211_regdomain_vdetach(vap);
822 	ieee80211_scan_vdetach(vap);
823 #ifdef IEEE80211_SUPPORT_SUPERG
824 	ieee80211_superg_vdetach(vap);
825 #endif
826 	ieee80211_vht_vdetach(vap);
827 	ieee80211_ht_vdetach(vap);
828 	/* NB: must be before ieee80211_node_vdetach */
829 	ieee80211_proto_vdetach(vap);
830 	ieee80211_crypto_vdetach(vap);
831 	ieee80211_power_vdetach(vap);
832 	ieee80211_node_vdetach(vap);
833 	ieee80211_sysctl_vdetach(vap);
834 
835 	if_free(ifp);
836 
837 	CURVNET_RESTORE();
838 }
839 
840 /*
841  * Count number of vaps in promisc, and issue promisc on
842  * parent respectively.
843  */
844 void
845 ieee80211_promisc(struct ieee80211vap *vap, bool on)
846 {
847 	struct ieee80211com *ic = vap->iv_ic;
848 
849 	IEEE80211_LOCK_ASSERT(ic);
850 
851 	if (on) {
852 		if (++ic->ic_promisc == 1)
853 			ieee80211_runtask(ic, &ic->ic_promisc_task);
854 	} else {
855 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
856 		    __func__, ic));
857 		if (--ic->ic_promisc == 0)
858 			ieee80211_runtask(ic, &ic->ic_promisc_task);
859 	}
860 }
861 
862 /*
863  * Count number of vaps in allmulti, and issue allmulti on
864  * parent respectively.
865  */
866 void
867 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
868 {
869 	struct ieee80211com *ic = vap->iv_ic;
870 
871 	IEEE80211_LOCK_ASSERT(ic);
872 
873 	if (on) {
874 		if (++ic->ic_allmulti == 1)
875 			ieee80211_runtask(ic, &ic->ic_mcast_task);
876 	} else {
877 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
878 		    __func__, ic));
879 		if (--ic->ic_allmulti == 0)
880 			ieee80211_runtask(ic, &ic->ic_mcast_task);
881 	}
882 }
883 
884 /*
885  * Synchronize flag bit state in the com structure
886  * according to the state of all vap's.  This is used,
887  * for example, to handle state changes via ioctls.
888  */
889 static void
890 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
891 {
892 	struct ieee80211vap *vap;
893 	int bit;
894 
895 	IEEE80211_LOCK_ASSERT(ic);
896 
897 	bit = 0;
898 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
899 		if (vap->iv_flags & flag) {
900 			bit = 1;
901 			break;
902 		}
903 	if (bit)
904 		ic->ic_flags |= flag;
905 	else
906 		ic->ic_flags &= ~flag;
907 }
908 
909 void
910 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
911 {
912 	struct ieee80211com *ic = vap->iv_ic;
913 
914 	IEEE80211_LOCK(ic);
915 	if (flag < 0) {
916 		flag = -flag;
917 		vap->iv_flags &= ~flag;
918 	} else
919 		vap->iv_flags |= flag;
920 	ieee80211_syncflag_locked(ic, flag);
921 	IEEE80211_UNLOCK(ic);
922 }
923 
924 /*
925  * Synchronize flags_ht bit state in the com structure
926  * according to the state of all vap's.  This is used,
927  * for example, to handle state changes via ioctls.
928  */
929 static void
930 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
931 {
932 	struct ieee80211vap *vap;
933 	int bit;
934 
935 	IEEE80211_LOCK_ASSERT(ic);
936 
937 	bit = 0;
938 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
939 		if (vap->iv_flags_ht & flag) {
940 			bit = 1;
941 			break;
942 		}
943 	if (bit)
944 		ic->ic_flags_ht |= flag;
945 	else
946 		ic->ic_flags_ht &= ~flag;
947 }
948 
949 void
950 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
951 {
952 	struct ieee80211com *ic = vap->iv_ic;
953 
954 	IEEE80211_LOCK(ic);
955 	if (flag < 0) {
956 		flag = -flag;
957 		vap->iv_flags_ht &= ~flag;
958 	} else
959 		vap->iv_flags_ht |= flag;
960 	ieee80211_syncflag_ht_locked(ic, flag);
961 	IEEE80211_UNLOCK(ic);
962 }
963 
964 /*
965  * Synchronize flags_vht bit state in the com structure
966  * according to the state of all vap's.  This is used,
967  * for example, to handle state changes via ioctls.
968  */
969 static void
970 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
971 {
972 	struct ieee80211vap *vap;
973 	int bit;
974 
975 	IEEE80211_LOCK_ASSERT(ic);
976 
977 	bit = 0;
978 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
979 		if (vap->iv_vht_flags & flag) {
980 			bit = 1;
981 			break;
982 		}
983 	if (bit)
984 		ic->ic_vht_flags |= flag;
985 	else
986 		ic->ic_vht_flags &= ~flag;
987 }
988 
989 void
990 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
991 {
992 	struct ieee80211com *ic = vap->iv_ic;
993 
994 	IEEE80211_LOCK(ic);
995 	if (flag < 0) {
996 		flag = -flag;
997 		vap->iv_vht_flags &= ~flag;
998 	} else
999 		vap->iv_vht_flags |= flag;
1000 	ieee80211_syncflag_vht_locked(ic, flag);
1001 	IEEE80211_UNLOCK(ic);
1002 }
1003 
1004 /*
1005  * Synchronize flags_ext bit state in the com structure
1006  * according to the state of all vap's.  This is used,
1007  * for example, to handle state changes via ioctls.
1008  */
1009 static void
1010 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
1011 {
1012 	struct ieee80211vap *vap;
1013 	int bit;
1014 
1015 	IEEE80211_LOCK_ASSERT(ic);
1016 
1017 	bit = 0;
1018 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1019 		if (vap->iv_flags_ext & flag) {
1020 			bit = 1;
1021 			break;
1022 		}
1023 	if (bit)
1024 		ic->ic_flags_ext |= flag;
1025 	else
1026 		ic->ic_flags_ext &= ~flag;
1027 }
1028 
1029 void
1030 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
1031 {
1032 	struct ieee80211com *ic = vap->iv_ic;
1033 
1034 	IEEE80211_LOCK(ic);
1035 	if (flag < 0) {
1036 		flag = -flag;
1037 		vap->iv_flags_ext &= ~flag;
1038 	} else
1039 		vap->iv_flags_ext |= flag;
1040 	ieee80211_syncflag_ext_locked(ic, flag);
1041 	IEEE80211_UNLOCK(ic);
1042 }
1043 
1044 static __inline int
1045 mapgsm(u_int freq, u_int flags)
1046 {
1047 	freq *= 10;
1048 	if (flags & IEEE80211_CHAN_QUARTER)
1049 		freq += 5;
1050 	else if (flags & IEEE80211_CHAN_HALF)
1051 		freq += 10;
1052 	else
1053 		freq += 20;
1054 	/* NB: there is no 907/20 wide but leave room */
1055 	return (freq - 906*10) / 5;
1056 }
1057 
1058 static __inline int
1059 mappsb(u_int freq, u_int flags)
1060 {
1061 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1062 }
1063 
1064 /*
1065  * Convert MHz frequency to IEEE channel number.
1066  */
1067 int
1068 ieee80211_mhz2ieee(u_int freq, u_int flags)
1069 {
1070 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1071 	if (flags & IEEE80211_CHAN_GSM)
1072 		return mapgsm(freq, flags);
1073 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1074 		if (freq == 2484)
1075 			return 14;
1076 		if (freq < 2484)
1077 			return ((int) freq - 2407) / 5;
1078 		else
1079 			return 15 + ((freq - 2512) / 20);
1080 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1081 		if (freq <= 5000) {
1082 			/* XXX check regdomain? */
1083 			if (IS_FREQ_IN_PSB(freq))
1084 				return mappsb(freq, flags);
1085 			return (freq - 4000) / 5;
1086 		} else
1087 			return (freq - 5000) / 5;
1088 	} else {				/* either, guess */
1089 		if (freq == 2484)
1090 			return 14;
1091 		if (freq < 2484) {
1092 			if (907 <= freq && freq <= 922)
1093 				return mapgsm(freq, flags);
1094 			return ((int) freq - 2407) / 5;
1095 		}
1096 		if (freq < 5000) {
1097 			if (IS_FREQ_IN_PSB(freq))
1098 				return mappsb(freq, flags);
1099 			else if (freq > 4900)
1100 				return (freq - 4000) / 5;
1101 			else
1102 				return 15 + ((freq - 2512) / 20);
1103 		}
1104 		return (freq - 5000) / 5;
1105 	}
1106 #undef IS_FREQ_IN_PSB
1107 }
1108 
1109 /*
1110  * Convert channel to IEEE channel number.
1111  */
1112 int
1113 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1114 {
1115 	if (c == NULL) {
1116 		ic_printf(ic, "invalid channel (NULL)\n");
1117 		return 0;		/* XXX */
1118 	}
1119 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1120 }
1121 
1122 /*
1123  * Convert IEEE channel number to MHz frequency.
1124  */
1125 u_int
1126 ieee80211_ieee2mhz(u_int chan, u_int flags)
1127 {
1128 	if (flags & IEEE80211_CHAN_GSM)
1129 		return 907 + 5 * (chan / 10);
1130 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1131 		if (chan == 14)
1132 			return 2484;
1133 		if (chan < 14)
1134 			return 2407 + chan*5;
1135 		else
1136 			return 2512 + ((chan-15)*20);
1137 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1138 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1139 			chan -= 37;
1140 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1141 		}
1142 		return 5000 + (chan*5);
1143 	} else {				/* either, guess */
1144 		/* XXX can't distinguish PSB+GSM channels */
1145 		if (chan == 14)
1146 			return 2484;
1147 		if (chan < 14)			/* 0-13 */
1148 			return 2407 + chan*5;
1149 		if (chan < 27)			/* 15-26 */
1150 			return 2512 + ((chan-15)*20);
1151 		return 5000 + (chan*5);
1152 	}
1153 }
1154 
1155 static __inline void
1156 set_extchan(struct ieee80211_channel *c)
1157 {
1158 
1159 	/*
1160 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1161 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1162 	 */
1163 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1164 		c->ic_extieee = c->ic_ieee + 4;
1165 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1166 		c->ic_extieee = c->ic_ieee - 4;
1167 	else
1168 		c->ic_extieee = 0;
1169 }
1170 
1171 /*
1172  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1173  *
1174  * This for now uses a hard-coded list of 80MHz wide channels.
1175  *
1176  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1177  * wide channel we've already decided upon.
1178  *
1179  * For VHT80 and VHT160, there are only a small number of fixed
1180  * 80/160MHz wide channels, so we just use those.
1181  *
1182  * This is all likely very very wrong - both the regulatory code
1183  * and this code needs to ensure that all four channels are
1184  * available and valid before the VHT80 (and eight for VHT160) channel
1185  * is created.
1186  */
1187 
1188 struct vht_chan_range {
1189 	uint16_t freq_start;
1190 	uint16_t freq_end;
1191 };
1192 
1193 struct vht_chan_range vht80_chan_ranges[] = {
1194 	{ 5170, 5250 },
1195 	{ 5250, 5330 },
1196 	{ 5490, 5570 },
1197 	{ 5570, 5650 },
1198 	{ 5650, 5730 },
1199 	{ 5735, 5815 },
1200 	{ 5815, 5895 },
1201 	{ 0, 0 }
1202 };
1203 
1204 struct vht_chan_range vht160_chan_ranges[] = {
1205 	{ 5170, 5330 },
1206 	{ 5490, 5650 },
1207 	{ 5735, 5895 },
1208 	{ 0, 0 }
1209 };
1210 
1211 static int
1212 set_vht_extchan(struct ieee80211_channel *c)
1213 {
1214 	int i;
1215 
1216 	if (! IEEE80211_IS_CHAN_VHT(c))
1217 		return (0);
1218 
1219 	if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1220 		printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1221 		    __func__, c->ic_ieee, c->ic_flags);
1222 	}
1223 
1224 	if (IEEE80211_IS_CHAN_VHT160(c)) {
1225 		for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1226 			if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1227 			    c->ic_freq < vht160_chan_ranges[i].freq_end) {
1228 				int midpoint;
1229 
1230 				midpoint = vht160_chan_ranges[i].freq_start + 80;
1231 				c->ic_vht_ch_freq1 =
1232 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1233 				c->ic_vht_ch_freq2 = 0;
1234 #if 0
1235 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1236 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1237 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1238 #endif
1239 				return (1);
1240 			}
1241 		}
1242 		return (0);
1243 	}
1244 
1245 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1246 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1247 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1248 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1249 				int midpoint;
1250 
1251 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1252 				c->ic_vht_ch_freq1 =
1253 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1254 				c->ic_vht_ch_freq2 = 0;
1255 #if 0
1256 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1257 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1258 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1259 #endif
1260 				return (1);
1261 			}
1262 		}
1263 		return (0);
1264 	}
1265 
1266 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1267 		if (IEEE80211_IS_CHAN_HT40U(c))
1268 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1269 		else if (IEEE80211_IS_CHAN_HT40D(c))
1270 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1271 		else
1272 			return (0);
1273 		return (1);
1274 	}
1275 
1276 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1277 		c->ic_vht_ch_freq1 = c->ic_ieee;
1278 		return (1);
1279 	}
1280 
1281 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1282 	    __func__, c->ic_ieee, c->ic_flags);
1283 
1284 	return (0);
1285 }
1286 
1287 /*
1288  * Return whether the current channel could possibly be a part of
1289  * a VHT80/VHT160 channel.
1290  *
1291  * This doesn't check that the whole range is in the allowed list
1292  * according to regulatory.
1293  */
1294 static bool
1295 is_vht160_valid_freq(uint16_t freq)
1296 {
1297 	int i;
1298 
1299 	for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1300 		if (freq >= vht160_chan_ranges[i].freq_start &&
1301 		    freq < vht160_chan_ranges[i].freq_end)
1302 			return (true);
1303 	}
1304 	return (false);
1305 }
1306 
1307 static int
1308 is_vht80_valid_freq(uint16_t freq)
1309 {
1310 	int i;
1311 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1312 		if (freq >= vht80_chan_ranges[i].freq_start &&
1313 		    freq < vht80_chan_ranges[i].freq_end)
1314 			return (1);
1315 	}
1316 	return (0);
1317 }
1318 
1319 static int
1320 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1321     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1322 {
1323 	struct ieee80211_channel *c;
1324 
1325 	if (*nchans >= maxchans)
1326 		return (ENOBUFS);
1327 
1328 #if 0
1329 	printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1330 	    __func__, *nchans, maxchans, ieee, freq, flags);
1331 #endif
1332 
1333 	c = &chans[(*nchans)++];
1334 	c->ic_ieee = ieee;
1335 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1336 	c->ic_maxregpower = maxregpower;
1337 	c->ic_maxpower = 2 * maxregpower;
1338 	c->ic_flags = flags;
1339 	c->ic_vht_ch_freq1 = 0;
1340 	c->ic_vht_ch_freq2 = 0;
1341 	set_extchan(c);
1342 	set_vht_extchan(c);
1343 
1344 	return (0);
1345 }
1346 
1347 static int
1348 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1349     uint32_t flags)
1350 {
1351 	struct ieee80211_channel *c;
1352 
1353 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1354 
1355 	if (*nchans >= maxchans)
1356 		return (ENOBUFS);
1357 
1358 #if 0
1359 	printf("%s: %d of %d: flags=0x%08x\n",
1360 	    __func__, *nchans, maxchans, flags);
1361 #endif
1362 
1363 	c = &chans[(*nchans)++];
1364 	c[0] = c[-1];
1365 	c->ic_flags = flags;
1366 	c->ic_vht_ch_freq1 = 0;
1367 	c->ic_vht_ch_freq2 = 0;
1368 	set_extchan(c);
1369 	set_vht_extchan(c);
1370 
1371 	return (0);
1372 }
1373 
1374 /*
1375  * XXX VHT-2GHz
1376  */
1377 static void
1378 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1379 {
1380 	int nmodes;
1381 
1382 	nmodes = 0;
1383 	if (isset(bands, IEEE80211_MODE_11B))
1384 		flags[nmodes++] = IEEE80211_CHAN_B;
1385 	if (isset(bands, IEEE80211_MODE_11G))
1386 		flags[nmodes++] = IEEE80211_CHAN_G;
1387 	if (isset(bands, IEEE80211_MODE_11NG))
1388 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1389 	if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1390 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1391 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1392 	}
1393 	flags[nmodes] = 0;
1394 }
1395 
1396 static void
1397 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1398 {
1399 	int nmodes;
1400 
1401 	/*
1402 	 * The addchan_list() function seems to expect the flags array to
1403 	 * be in channel width order, so the VHT bits are interspersed
1404 	 * as appropriate to maintain said order.
1405 	 *
1406 	 * It also assumes HT40U is before HT40D.
1407 	 */
1408 	nmodes = 0;
1409 
1410 	/* 20MHz */
1411 	if (isset(bands, IEEE80211_MODE_11A))
1412 		flags[nmodes++] = IEEE80211_CHAN_A;
1413 	if (isset(bands, IEEE80211_MODE_11NA))
1414 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1415 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1416 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1417 		    IEEE80211_CHAN_VHT20;
1418 	}
1419 
1420 	/* 40MHz */
1421 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1422 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1423 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1424 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1425 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1426 		    IEEE80211_CHAN_VHT40U;
1427 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1428 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1429 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1430 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1431 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1432 		    IEEE80211_CHAN_VHT40D;
1433 
1434 	/* 80MHz */
1435 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1436 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1437 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1438 		    IEEE80211_CHAN_VHT80;
1439 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1440 		    IEEE80211_CHAN_VHT80;
1441 	}
1442 
1443 	/* VHT160 */
1444 	if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1445 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1446 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1447 		    IEEE80211_CHAN_VHT160;
1448 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1449 		    IEEE80211_CHAN_VHT160;
1450 	}
1451 
1452 	/* VHT80+80 */
1453 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1454 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1455 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1456 		    IEEE80211_CHAN_VHT80P80;
1457 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1458 		    IEEE80211_CHAN_VHT80P80;
1459 	}
1460 
1461 	flags[nmodes] = 0;
1462 }
1463 
1464 static void
1465 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1466 {
1467 
1468 	flags[0] = 0;
1469 	if (isset(bands, IEEE80211_MODE_11A) ||
1470 	    isset(bands, IEEE80211_MODE_11NA) ||
1471 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1472 		if (isset(bands, IEEE80211_MODE_11B) ||
1473 		    isset(bands, IEEE80211_MODE_11G) ||
1474 		    isset(bands, IEEE80211_MODE_11NG) ||
1475 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1476 			return;
1477 
1478 		getflags_5ghz(bands, flags, cbw_flags);
1479 	} else
1480 		getflags_2ghz(bands, flags, cbw_flags);
1481 }
1482 
1483 /*
1484  * Add one 20 MHz channel into specified channel list.
1485  * You MUST NOT mix bands when calling this.  It will not add 5ghz
1486  * channels if you have any B/G/N band bit set.
1487  * The _cbw() variant does also support HT40/VHT80/160/80+80.
1488  */
1489 int
1490 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1491     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1492     uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1493 {
1494 	uint32_t flags[IEEE80211_MODE_MAX];
1495 	int i, error;
1496 
1497 	getflags(bands, flags, cbw_flags);
1498 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1499 
1500 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1501 	    flags[0] | chan_flags);
1502 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1503 		error = copychan_prev(chans, maxchans, nchans,
1504 		    flags[i] | chan_flags);
1505 	}
1506 
1507 	return (error);
1508 }
1509 
1510 int
1511 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1512     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1513     uint32_t chan_flags, const uint8_t bands[])
1514 {
1515 
1516 	return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1517 	    maxregpower, chan_flags, bands, 0));
1518 }
1519 
1520 static struct ieee80211_channel *
1521 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1522     uint32_t flags)
1523 {
1524 	struct ieee80211_channel *c;
1525 	int i;
1526 
1527 	flags &= IEEE80211_CHAN_ALLTURBO;
1528 	/* brute force search */
1529 	for (i = 0; i < nchans; i++) {
1530 		c = &chans[i];
1531 		if (c->ic_freq == freq &&
1532 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1533 			return c;
1534 	}
1535 	return NULL;
1536 }
1537 
1538 /*
1539  * Add 40 MHz channel pair into specified channel list.
1540  */
1541 /* XXX VHT */
1542 int
1543 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1544     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1545 {
1546 	struct ieee80211_channel *cent, *extc;
1547 	uint16_t freq;
1548 	int error;
1549 
1550 	freq = ieee80211_ieee2mhz(ieee, flags);
1551 
1552 	/*
1553 	 * Each entry defines an HT40 channel pair; find the
1554 	 * center channel, then the extension channel above.
1555 	 */
1556 	flags |= IEEE80211_CHAN_HT20;
1557 	cent = findchannel(chans, *nchans, freq, flags);
1558 	if (cent == NULL)
1559 		return (EINVAL);
1560 
1561 	extc = findchannel(chans, *nchans, freq + 20, flags);
1562 	if (extc == NULL)
1563 		return (ENOENT);
1564 
1565 	flags &= ~IEEE80211_CHAN_HT;
1566 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1567 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1568 	if (error != 0)
1569 		return (error);
1570 
1571 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1572 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1573 
1574 	return (error);
1575 }
1576 
1577 /*
1578  * Fetch the center frequency for the primary channel.
1579  */
1580 uint32_t
1581 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1582 {
1583 
1584 	return (c->ic_freq);
1585 }
1586 
1587 /*
1588  * Fetch the center frequency for the primary BAND channel.
1589  *
1590  * For 5, 10, 20MHz channels it'll be the normally configured channel
1591  * frequency.
1592  *
1593  * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1594  * wide channel, not the centre of the primary channel (that's ic_freq).
1595  *
1596  * For 80+80MHz channels this will be the centre of the primary
1597  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1598  */
1599 uint32_t
1600 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1601 {
1602 
1603 	/*
1604 	 * VHT - use the pre-calculated centre frequency
1605 	 * of the given channel.
1606 	 */
1607 	if (IEEE80211_IS_CHAN_VHT(c))
1608 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1609 
1610 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1611 		return (c->ic_freq + 10);
1612 	}
1613 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1614 		return (c->ic_freq - 10);
1615 	}
1616 
1617 	return (c->ic_freq);
1618 }
1619 
1620 /*
1621  * For now, no 80+80 support; it will likely always return 0.
1622  */
1623 uint32_t
1624 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1625 {
1626 
1627 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1628 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1629 
1630 	return (0);
1631 }
1632 
1633 /*
1634  * Adds channels into specified channel list (ieee[] array must be sorted).
1635  * Channels are already sorted.
1636  */
1637 static int
1638 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1639     const uint8_t ieee[], int nieee, uint32_t flags[])
1640 {
1641 	uint16_t freq;
1642 	int i, j, error;
1643 	int is_vht;
1644 
1645 	for (i = 0; i < nieee; i++) {
1646 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1647 		for (j = 0; flags[j] != 0; j++) {
1648 			/*
1649 			 * Notes:
1650 			 * + HT40 and VHT40 channels occur together, so
1651 			 *   we need to be careful that we actually allow that.
1652 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1653 			 *   make sure it's not skipped because of the overlap
1654 			 *   check used for (V)HT40.
1655 			 */
1656 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1657 
1658 			/* XXX TODO FIXME VHT80P80. */
1659 
1660 			/* Test for VHT160 analogue to the VHT80 below. */
1661 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1662 				if (! is_vht160_valid_freq(freq))
1663 					continue;
1664 
1665 			/*
1666 			 * Test for VHT80.
1667 			 * XXX This is all very broken right now.
1668 			 * What we /should/ do is:
1669 			 *
1670 			 * + check that the frequency is in the list of
1671 			 *   allowed VHT80 ranges; and
1672 			 * + the other 3 channels in the list are actually
1673 			 *   also available.
1674 			 */
1675 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1676 				if (! is_vht80_valid_freq(freq))
1677 					continue;
1678 
1679 			/*
1680 			 * Test for (V)HT40.
1681 			 *
1682 			 * This is also a fall through from VHT80; as we only
1683 			 * allow a VHT80 channel if the VHT40 combination is
1684 			 * also valid.  If the VHT40 form is not valid then
1685 			 * we certainly can't do VHT80..
1686 			 */
1687 			if (flags[j] & IEEE80211_CHAN_HT40D)
1688 				/*
1689 				 * Can't have a "lower" channel if we are the
1690 				 * first channel.
1691 				 *
1692 				 * Can't have a "lower" channel if it's below/
1693 				 * within 20MHz of the first channel.
1694 				 *
1695 				 * Can't have a "lower" channel if the channel
1696 				 * below it is not 20MHz away.
1697 				 */
1698 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1699 				    freq - 20 !=
1700 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1701 					continue;
1702 			if (flags[j] & IEEE80211_CHAN_HT40U)
1703 				/*
1704 				 * Can't have an "upper" channel if we are
1705 				 * the last channel.
1706 				 *
1707 				 * Can't have an "upper" channel be above the
1708 				 * last channel in the list.
1709 				 *
1710 				 * Can't have an "upper" channel if the next
1711 				 * channel according to the math isn't 20MHz
1712 				 * away.  (Likely for channel 13/14.)
1713 				 */
1714 				if (i == nieee - 1 ||
1715 				    ieee[i] + 4 > ieee[nieee - 1] ||
1716 				    freq + 20 !=
1717 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1718 					continue;
1719 
1720 			if (j == 0) {
1721 				error = addchan(chans, maxchans, nchans,
1722 				    ieee[i], freq, 0, flags[j]);
1723 			} else {
1724 				error = copychan_prev(chans, maxchans, nchans,
1725 				    flags[j]);
1726 			}
1727 			if (error != 0)
1728 				return (error);
1729 		}
1730 	}
1731 
1732 	return (0);
1733 }
1734 
1735 int
1736 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1737     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1738     int cbw_flags)
1739 {
1740 	uint32_t flags[IEEE80211_MODE_MAX];
1741 
1742 	/* XXX no VHT for now */
1743 	getflags_2ghz(bands, flags, cbw_flags);
1744 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1745 
1746 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1747 }
1748 
1749 int
1750 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1751     int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1752 {
1753 	const uint8_t default_chan_list[] =
1754 	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1755 
1756 	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1757 	    default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1758 }
1759 
1760 int
1761 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1762     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1763     int cbw_flags)
1764 {
1765 	/*
1766 	 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
1767 	 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1768 	 */
1769 	uint32_t flags[2 * IEEE80211_MODE_MAX];
1770 
1771 	getflags_5ghz(bands, flags, cbw_flags);
1772 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1773 
1774 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1775 }
1776 
1777 /*
1778  * Locate a channel given a frequency+flags.  We cache
1779  * the previous lookup to optimize switching between two
1780  * channels--as happens with dynamic turbo.
1781  */
1782 struct ieee80211_channel *
1783 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1784 {
1785 	struct ieee80211_channel *c;
1786 
1787 	flags &= IEEE80211_CHAN_ALLTURBO;
1788 	c = ic->ic_prevchan;
1789 	if (c != NULL && c->ic_freq == freq &&
1790 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1791 		return c;
1792 	/* brute force search */
1793 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1794 }
1795 
1796 /*
1797  * Locate a channel given a channel number+flags.  We cache
1798  * the previous lookup to optimize switching between two
1799  * channels--as happens with dynamic turbo.
1800  */
1801 struct ieee80211_channel *
1802 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1803 {
1804 	struct ieee80211_channel *c;
1805 	int i;
1806 
1807 	flags &= IEEE80211_CHAN_ALLTURBO;
1808 	c = ic->ic_prevchan;
1809 	if (c != NULL && c->ic_ieee == ieee &&
1810 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1811 		return c;
1812 	/* brute force search */
1813 	for (i = 0; i < ic->ic_nchans; i++) {
1814 		c = &ic->ic_channels[i];
1815 		if (c->ic_ieee == ieee &&
1816 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1817 			return c;
1818 	}
1819 	return NULL;
1820 }
1821 
1822 /*
1823  * Lookup a channel suitable for the given rx status.
1824  *
1825  * This is used to find a channel for a frame (eg beacon, probe
1826  * response) based purely on the received PHY information.
1827  *
1828  * For now it tries to do it based on R_FREQ / R_IEEE.
1829  * This is enough for 11bg and 11a (and thus 11ng/11na)
1830  * but it will not be enough for GSM, PSB channels and the
1831  * like.  It also doesn't know about legacy-turbog and
1832  * legacy-turbo modes, which some offload NICs actually
1833  * support in weird ways.
1834  *
1835  * Takes the ic and rxstatus; returns the channel or NULL
1836  * if not found.
1837  *
1838  * XXX TODO: Add support for that when the need arises.
1839  */
1840 struct ieee80211_channel *
1841 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1842     const struct ieee80211_rx_stats *rxs)
1843 {
1844 	struct ieee80211com *ic = vap->iv_ic;
1845 	uint32_t flags;
1846 	struct ieee80211_channel *c;
1847 
1848 	if (rxs == NULL)
1849 		return (NULL);
1850 
1851 	/*
1852 	 * Strictly speaking we only use freq for now,
1853 	 * however later on we may wish to just store
1854 	 * the ieee for verification.
1855 	 */
1856 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1857 		return (NULL);
1858 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1859 		return (NULL);
1860 	if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1861 		return (NULL);
1862 
1863 	/*
1864 	 * If the rx status contains a valid ieee/freq, then
1865 	 * ensure we populate the correct channel information
1866 	 * in rxchan before passing it up to the scan infrastructure.
1867 	 * Offload NICs will pass up beacons from all channels
1868 	 * during background scans.
1869 	 */
1870 
1871 	/* Determine a band */
1872 	switch (rxs->c_band) {
1873 	case IEEE80211_CHAN_2GHZ:
1874 		flags = IEEE80211_CHAN_G;
1875 		break;
1876 	case IEEE80211_CHAN_5GHZ:
1877 		flags = IEEE80211_CHAN_A;
1878 		break;
1879 	default:
1880 		if (rxs->c_freq < 3000) {
1881 			flags = IEEE80211_CHAN_G;
1882 		} else {
1883 			flags = IEEE80211_CHAN_A;
1884 		}
1885 		break;
1886 	}
1887 
1888 	/* Channel lookup */
1889 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1890 
1891 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1892 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1893 	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1894 
1895 	return (c);
1896 }
1897 
1898 static void
1899 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1900 {
1901 #define	ADD(_ic, _s, _o) \
1902 	ifmedia_add(media, \
1903 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1904 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1905 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1906 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1907 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1908 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1909 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1910 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1911 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1912 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1913 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1914 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1915 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1916 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1917 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1918 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1919 	};
1920 	u_int mopt;
1921 
1922 	mopt = mopts[mode];
1923 	if (addsta)
1924 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1925 	if (caps & IEEE80211_C_IBSS)
1926 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1927 	if (caps & IEEE80211_C_HOSTAP)
1928 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1929 	if (caps & IEEE80211_C_AHDEMO)
1930 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1931 	if (caps & IEEE80211_C_MONITOR)
1932 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1933 	if (caps & IEEE80211_C_WDS)
1934 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1935 	if (caps & IEEE80211_C_MBSS)
1936 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1937 #undef ADD
1938 }
1939 
1940 /*
1941  * Setup the media data structures according to the channel and
1942  * rate tables.
1943  */
1944 static int
1945 ieee80211_media_setup(struct ieee80211com *ic,
1946 	struct ifmedia *media, int caps, int addsta,
1947 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1948 {
1949 	int i, j, rate, maxrate, mword, r;
1950 	enum ieee80211_phymode mode;
1951 	const struct ieee80211_rateset *rs;
1952 	struct ieee80211_rateset allrates;
1953 	struct ieee80211_node_txrate tn;
1954 
1955 	/*
1956 	 * Fill in media characteristics.
1957 	 */
1958 	ifmedia_init(media, 0, media_change, media_stat);
1959 	maxrate = 0;
1960 	/*
1961 	 * Add media for legacy operating modes.
1962 	 */
1963 	memset(&allrates, 0, sizeof(allrates));
1964 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1965 		if (isclr(ic->ic_modecaps, mode))
1966 			continue;
1967 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1968 		if (mode == IEEE80211_MODE_AUTO)
1969 			continue;
1970 		rs = &ic->ic_sup_rates[mode];
1971 		for (i = 0; i < rs->rs_nrates; i++) {
1972 			rate = rs->rs_rates[i];
1973 			tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rate);
1974 			mword = ieee80211_rate2media(ic, &tn, mode);
1975 			if (mword == 0)
1976 				continue;
1977 			addmedia(media, caps, addsta, mode, mword);
1978 			/*
1979 			 * Add legacy rate to the collection of all rates.
1980 			 */
1981 			r = rate & IEEE80211_RATE_VAL;
1982 			for (j = 0; j < allrates.rs_nrates; j++)
1983 				if (allrates.rs_rates[j] == r)
1984 					break;
1985 			if (j == allrates.rs_nrates) {
1986 				/* unique, add to the set */
1987 				allrates.rs_rates[j] = r;
1988 				allrates.rs_nrates++;
1989 			}
1990 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1991 			if (rate > maxrate)
1992 				maxrate = rate;
1993 		}
1994 	}
1995 	for (i = 0; i < allrates.rs_nrates; i++) {
1996 		tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(allrates.rs_rates[i]);
1997 		mword = ieee80211_rate2media(ic, &tn, IEEE80211_MODE_AUTO);
1998 		if (mword == 0)
1999 			continue;
2000 		/* NB: remove media options from mword */
2001 		addmedia(media, caps, addsta,
2002 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
2003 	}
2004 	/*
2005 	 * Add HT/11n media.  Note that we do not have enough
2006 	 * bits in the media subtype to express the MCS so we
2007 	 * use a "placeholder" media subtype and any fixed MCS
2008 	 * must be specified with a different mechanism.
2009 	 */
2010 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
2011 		if (isclr(ic->ic_modecaps, mode))
2012 			continue;
2013 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2014 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
2015 	}
2016 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
2017 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
2018 		addmedia(media, caps, addsta,
2019 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
2020 		i = ic->ic_txstream * 8 - 1;
2021 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2022 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
2023 			rate = ieee80211_htrates[i].ht40_rate_400ns;
2024 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
2025 			rate = ieee80211_htrates[i].ht40_rate_800ns;
2026 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
2027 			rate = ieee80211_htrates[i].ht20_rate_400ns;
2028 		else
2029 			rate = ieee80211_htrates[i].ht20_rate_800ns;
2030 		if (rate > maxrate)
2031 			maxrate = rate;
2032 	}
2033 
2034 	/*
2035 	 * Add VHT media.
2036 	 * XXX-BZ skip "VHT_2GHZ" for now.
2037 	 */
2038 	for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
2039 	    mode++) {
2040 		if (isclr(ic->ic_modecaps, mode))
2041 			continue;
2042 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2043 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2044 	}
2045 	if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2046 	       addmedia(media, caps, addsta,
2047 		   IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2048 
2049 		/* XXX TODO: VHT maxrate */
2050 	}
2051 
2052 	return maxrate;
2053 }
2054 
2055 /* XXX inline or eliminate? */
2056 const struct ieee80211_rateset *
2057 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2058 {
2059 	/* XXX does this work for 11ng basic rates? */
2060 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2061 }
2062 
2063 /* XXX inline or eliminate? */
2064 const struct ieee80211_htrateset *
2065 ieee80211_get_suphtrates(struct ieee80211com *ic,
2066     const struct ieee80211_channel *c)
2067 {
2068 	return &ic->ic_sup_htrates;
2069 }
2070 
2071 void
2072 ieee80211_announce(struct ieee80211com *ic)
2073 {
2074 	int i, rate, mword;
2075 	enum ieee80211_phymode mode;
2076 	const struct ieee80211_rateset *rs;
2077 	struct ieee80211_node_txrate tn;
2078 
2079 	/* NB: skip AUTO since it has no rates */
2080 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2081 		if (isclr(ic->ic_modecaps, mode))
2082 			continue;
2083 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2084 		rs = &ic->ic_sup_rates[mode];
2085 		for (i = 0; i < rs->rs_nrates; i++) {
2086 			tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rs->rs_rates[i]);
2087 			mword = ieee80211_rate2media(ic, &tn, mode);
2088 			if (mword == 0)
2089 				continue;
2090 			rate = ieee80211_media2rate(mword);
2091 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
2092 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2093 		}
2094 		printf("\n");
2095 	}
2096 	ieee80211_ht_announce(ic);
2097 	ieee80211_vht_announce(ic);
2098 }
2099 
2100 void
2101 ieee80211_announce_channels(struct ieee80211com *ic)
2102 {
2103 	const struct ieee80211_channel *c;
2104 	char type;
2105 	int i, cw;
2106 
2107 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
2108 	for (i = 0; i < ic->ic_nchans; i++) {
2109 		c = &ic->ic_channels[i];
2110 		if (IEEE80211_IS_CHAN_ST(c))
2111 			type = 'S';
2112 		else if (IEEE80211_IS_CHAN_108A(c))
2113 			type = 'T';
2114 		else if (IEEE80211_IS_CHAN_108G(c))
2115 			type = 'G';
2116 		else if (IEEE80211_IS_CHAN_HT(c))
2117 			type = 'n';
2118 		else if (IEEE80211_IS_CHAN_A(c))
2119 			type = 'a';
2120 		else if (IEEE80211_IS_CHAN_ANYG(c))
2121 			type = 'g';
2122 		else if (IEEE80211_IS_CHAN_B(c))
2123 			type = 'b';
2124 		else
2125 			type = 'f';
2126 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2127 			cw = 40;
2128 		else if (IEEE80211_IS_CHAN_HALF(c))
2129 			cw = 10;
2130 		else if (IEEE80211_IS_CHAN_QUARTER(c))
2131 			cw = 5;
2132 		else
2133 			cw = 20;
2134 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2135 			, c->ic_ieee, c->ic_freq, type
2136 			, cw
2137 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2138 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2139 			, c->ic_maxregpower
2140 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2141 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2142 		);
2143 	}
2144 }
2145 
2146 static int
2147 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2148 {
2149 	switch (IFM_MODE(ime->ifm_media)) {
2150 	case IFM_IEEE80211_11A:
2151 		*mode = IEEE80211_MODE_11A;
2152 		break;
2153 	case IFM_IEEE80211_11B:
2154 		*mode = IEEE80211_MODE_11B;
2155 		break;
2156 	case IFM_IEEE80211_11G:
2157 		*mode = IEEE80211_MODE_11G;
2158 		break;
2159 	case IFM_IEEE80211_FH:
2160 		*mode = IEEE80211_MODE_FH;
2161 		break;
2162 	case IFM_IEEE80211_11NA:
2163 		*mode = IEEE80211_MODE_11NA;
2164 		break;
2165 	case IFM_IEEE80211_11NG:
2166 		*mode = IEEE80211_MODE_11NG;
2167 		break;
2168 	case IFM_IEEE80211_VHT2G:
2169 		*mode = IEEE80211_MODE_VHT_2GHZ;
2170 		break;
2171 	case IFM_IEEE80211_VHT5G:
2172 		*mode = IEEE80211_MODE_VHT_5GHZ;
2173 		break;
2174 	case IFM_AUTO:
2175 		*mode = IEEE80211_MODE_AUTO;
2176 		break;
2177 	default:
2178 		return 0;
2179 	}
2180 	/*
2181 	 * Turbo mode is an ``option''.
2182 	 * XXX does not apply to AUTO
2183 	 */
2184 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2185 		if (*mode == IEEE80211_MODE_11A) {
2186 			if (flags & IEEE80211_F_TURBOP)
2187 				*mode = IEEE80211_MODE_TURBO_A;
2188 			else
2189 				*mode = IEEE80211_MODE_STURBO_A;
2190 		} else if (*mode == IEEE80211_MODE_11G)
2191 			*mode = IEEE80211_MODE_TURBO_G;
2192 		else
2193 			return 0;
2194 	}
2195 	/* XXX HT40 +/- */
2196 	return 1;
2197 }
2198 
2199 /*
2200  * Handle a media change request on the vap interface.
2201  */
2202 int
2203 ieee80211_media_change(struct ifnet *ifp)
2204 {
2205 	struct ieee80211vap *vap = ifp->if_softc;
2206 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2207 	uint16_t newmode;
2208 
2209 	if (!media2mode(ime, vap->iv_flags, &newmode))
2210 		return EINVAL;
2211 	if (vap->iv_des_mode != newmode) {
2212 		vap->iv_des_mode = newmode;
2213 		/* XXX kick state machine if up+running */
2214 	}
2215 	return 0;
2216 }
2217 
2218 /*
2219  * Common code to calculate the media status word
2220  * from the operating mode and channel state.
2221  */
2222 static int
2223 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2224 {
2225 	int status;
2226 
2227 	status = IFM_IEEE80211;
2228 	switch (opmode) {
2229 	case IEEE80211_M_STA:
2230 		break;
2231 	case IEEE80211_M_IBSS:
2232 		status |= IFM_IEEE80211_ADHOC;
2233 		break;
2234 	case IEEE80211_M_HOSTAP:
2235 		status |= IFM_IEEE80211_HOSTAP;
2236 		break;
2237 	case IEEE80211_M_MONITOR:
2238 		status |= IFM_IEEE80211_MONITOR;
2239 		break;
2240 	case IEEE80211_M_AHDEMO:
2241 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2242 		break;
2243 	case IEEE80211_M_WDS:
2244 		status |= IFM_IEEE80211_WDS;
2245 		break;
2246 	case IEEE80211_M_MBSS:
2247 		status |= IFM_IEEE80211_MBSS;
2248 		break;
2249 	}
2250 	if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2251 		status |= IFM_IEEE80211_VHT5G;
2252 	} else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2253 		status |= IFM_IEEE80211_VHT2G;
2254 	} else if (IEEE80211_IS_CHAN_HTA(chan)) {
2255 		status |= IFM_IEEE80211_11NA;
2256 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2257 		status |= IFM_IEEE80211_11NG;
2258 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2259 		status |= IFM_IEEE80211_11A;
2260 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2261 		status |= IFM_IEEE80211_11B;
2262 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2263 		status |= IFM_IEEE80211_11G;
2264 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2265 		status |= IFM_IEEE80211_FH;
2266 	}
2267 	/* XXX else complain? */
2268 
2269 	if (IEEE80211_IS_CHAN_TURBO(chan))
2270 		status |= IFM_IEEE80211_TURBO;
2271 #if 0
2272 	if (IEEE80211_IS_CHAN_HT20(chan))
2273 		status |= IFM_IEEE80211_HT20;
2274 	if (IEEE80211_IS_CHAN_HT40(chan))
2275 		status |= IFM_IEEE80211_HT40;
2276 #endif
2277 	return status;
2278 }
2279 
2280 void
2281 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2282 {
2283 	struct ieee80211vap *vap = ifp->if_softc;
2284 	struct ieee80211com *ic = vap->iv_ic;
2285 	enum ieee80211_phymode mode;
2286 	struct ieee80211_node_txrate tn;
2287 
2288 	imr->ifm_status = IFM_AVALID;
2289 	/*
2290 	 * NB: use the current channel's mode to lock down a xmit
2291 	 * rate only when running; otherwise we may have a mismatch
2292 	 * in which case the rate will not be convertible.
2293 	 */
2294 	if (vap->iv_state == IEEE80211_S_RUN ||
2295 	    vap->iv_state == IEEE80211_S_SLEEP) {
2296 		imr->ifm_status |= IFM_ACTIVE;
2297 		mode = ieee80211_chan2mode(ic->ic_curchan);
2298 	} else
2299 		mode = IEEE80211_MODE_AUTO;
2300 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2301 	/*
2302 	 * Calculate a current rate if possible.
2303 	 */
2304 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2305 		/*
2306 		 * A fixed rate is set, report that.
2307 		 */
2308 		tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(
2309 		    vap->iv_txparms[mode].ucastrate);
2310 		imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode);
2311 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2312 		/*
2313 		 * In station mode report the current transmit rate.
2314 		 */
2315 		ieee80211_node_get_txrate(vap->iv_bss, &tn);
2316 		imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode);
2317 	} else
2318 		imr->ifm_active |= IFM_AUTO;
2319 	if (imr->ifm_status & IFM_ACTIVE)
2320 		imr->ifm_current = imr->ifm_active;
2321 }
2322 
2323 /*
2324  * Set the current phy mode and recalculate the active channel
2325  * set based on the available channels for this mode.  Also
2326  * select a new default/current channel if the current one is
2327  * inappropriate for this mode.
2328  */
2329 int
2330 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2331 {
2332 	/*
2333 	 * Adjust basic rates in 11b/11g supported rate set.
2334 	 * Note that if operating on a hal/quarter rate channel
2335 	 * this is a noop as those rates sets are different
2336 	 * and used instead.
2337 	 */
2338 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2339 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2340 
2341 	ic->ic_curmode = mode;
2342 	ieee80211_reset_erp(ic);	/* reset global ERP state */
2343 
2344 	return 0;
2345 }
2346 
2347 /*
2348  * Return the phy mode for with the specified channel.
2349  */
2350 enum ieee80211_phymode
2351 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2352 {
2353 
2354 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2355 		return IEEE80211_MODE_VHT_2GHZ;
2356 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2357 		return IEEE80211_MODE_VHT_5GHZ;
2358 	else if (IEEE80211_IS_CHAN_HTA(chan))
2359 		return IEEE80211_MODE_11NA;
2360 	else if (IEEE80211_IS_CHAN_HTG(chan))
2361 		return IEEE80211_MODE_11NG;
2362 	else if (IEEE80211_IS_CHAN_108G(chan))
2363 		return IEEE80211_MODE_TURBO_G;
2364 	else if (IEEE80211_IS_CHAN_ST(chan))
2365 		return IEEE80211_MODE_STURBO_A;
2366 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2367 		return IEEE80211_MODE_TURBO_A;
2368 	else if (IEEE80211_IS_CHAN_HALF(chan))
2369 		return IEEE80211_MODE_HALF;
2370 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2371 		return IEEE80211_MODE_QUARTER;
2372 	else if (IEEE80211_IS_CHAN_A(chan))
2373 		return IEEE80211_MODE_11A;
2374 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2375 		return IEEE80211_MODE_11G;
2376 	else if (IEEE80211_IS_CHAN_B(chan))
2377 		return IEEE80211_MODE_11B;
2378 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2379 		return IEEE80211_MODE_FH;
2380 
2381 	/* NB: should not get here */
2382 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2383 		__func__, chan->ic_freq, chan->ic_flags);
2384 	return IEEE80211_MODE_11B;
2385 }
2386 
2387 struct ratemedia {
2388 	u_int	match;	/* rate + mode */
2389 	u_int	media;	/* if_media rate */
2390 };
2391 
2392 static int
2393 findmedia(const struct ratemedia rates[], int n, u_int match)
2394 {
2395 	int i;
2396 
2397 	for (i = 0; i < n; i++)
2398 		if (rates[i].match == match)
2399 			return rates[i].media;
2400 	return IFM_AUTO;
2401 }
2402 
2403 /*
2404  * Convert IEEE80211 rate value to ifmedia subtype.
2405  * Rate is either a legacy rate in units of 0.5Mbps
2406  * or an MCS index.
2407  */
2408 int
2409 ieee80211_rate2media(struct ieee80211com *ic,
2410     const struct ieee80211_node_txrate *tr, enum ieee80211_phymode mode)
2411 {
2412 	static const struct ratemedia rates[] = {
2413 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2414 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2415 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2416 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2417 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2418 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2419 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2420 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2421 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2422 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2423 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2424 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2425 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2426 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2427 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2428 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2429 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2430 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2431 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2432 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2433 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2434 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2435 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2436 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2437 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2438 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2439 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2440 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2441 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2442 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2443 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2444 	};
2445 	static const struct ratemedia htrates[] = {
2446 		{   0, IFM_IEEE80211_MCS },
2447 		{   1, IFM_IEEE80211_MCS },
2448 		{   2, IFM_IEEE80211_MCS },
2449 		{   3, IFM_IEEE80211_MCS },
2450 		{   4, IFM_IEEE80211_MCS },
2451 		{   5, IFM_IEEE80211_MCS },
2452 		{   6, IFM_IEEE80211_MCS },
2453 		{   7, IFM_IEEE80211_MCS },
2454 		{   8, IFM_IEEE80211_MCS },
2455 		{   9, IFM_IEEE80211_MCS },
2456 		{  10, IFM_IEEE80211_MCS },
2457 		{  11, IFM_IEEE80211_MCS },
2458 		{  12, IFM_IEEE80211_MCS },
2459 		{  13, IFM_IEEE80211_MCS },
2460 		{  14, IFM_IEEE80211_MCS },
2461 		{  15, IFM_IEEE80211_MCS },
2462 		{  16, IFM_IEEE80211_MCS },
2463 		{  17, IFM_IEEE80211_MCS },
2464 		{  18, IFM_IEEE80211_MCS },
2465 		{  19, IFM_IEEE80211_MCS },
2466 		{  20, IFM_IEEE80211_MCS },
2467 		{  21, IFM_IEEE80211_MCS },
2468 		{  22, IFM_IEEE80211_MCS },
2469 		{  23, IFM_IEEE80211_MCS },
2470 		{  24, IFM_IEEE80211_MCS },
2471 		{  25, IFM_IEEE80211_MCS },
2472 		{  26, IFM_IEEE80211_MCS },
2473 		{  27, IFM_IEEE80211_MCS },
2474 		{  28, IFM_IEEE80211_MCS },
2475 		{  29, IFM_IEEE80211_MCS },
2476 		{  30, IFM_IEEE80211_MCS },
2477 		{  31, IFM_IEEE80211_MCS },
2478 		{  32, IFM_IEEE80211_MCS },
2479 		{  33, IFM_IEEE80211_MCS },
2480 		{  34, IFM_IEEE80211_MCS },
2481 		{  35, IFM_IEEE80211_MCS },
2482 		{  36, IFM_IEEE80211_MCS },
2483 		{  37, IFM_IEEE80211_MCS },
2484 		{  38, IFM_IEEE80211_MCS },
2485 		{  39, IFM_IEEE80211_MCS },
2486 		{  40, IFM_IEEE80211_MCS },
2487 		{  41, IFM_IEEE80211_MCS },
2488 		{  42, IFM_IEEE80211_MCS },
2489 		{  43, IFM_IEEE80211_MCS },
2490 		{  44, IFM_IEEE80211_MCS },
2491 		{  45, IFM_IEEE80211_MCS },
2492 		{  46, IFM_IEEE80211_MCS },
2493 		{  47, IFM_IEEE80211_MCS },
2494 		{  48, IFM_IEEE80211_MCS },
2495 		{  49, IFM_IEEE80211_MCS },
2496 		{  50, IFM_IEEE80211_MCS },
2497 		{  51, IFM_IEEE80211_MCS },
2498 		{  52, IFM_IEEE80211_MCS },
2499 		{  53, IFM_IEEE80211_MCS },
2500 		{  54, IFM_IEEE80211_MCS },
2501 		{  55, IFM_IEEE80211_MCS },
2502 		{  56, IFM_IEEE80211_MCS },
2503 		{  57, IFM_IEEE80211_MCS },
2504 		{  58, IFM_IEEE80211_MCS },
2505 		{  59, IFM_IEEE80211_MCS },
2506 		{  60, IFM_IEEE80211_MCS },
2507 		{  61, IFM_IEEE80211_MCS },
2508 		{  62, IFM_IEEE80211_MCS },
2509 		{  63, IFM_IEEE80211_MCS },
2510 		{  64, IFM_IEEE80211_MCS },
2511 		{  65, IFM_IEEE80211_MCS },
2512 		{  66, IFM_IEEE80211_MCS },
2513 		{  67, IFM_IEEE80211_MCS },
2514 		{  68, IFM_IEEE80211_MCS },
2515 		{  69, IFM_IEEE80211_MCS },
2516 		{  70, IFM_IEEE80211_MCS },
2517 		{  71, IFM_IEEE80211_MCS },
2518 		{  72, IFM_IEEE80211_MCS },
2519 		{  73, IFM_IEEE80211_MCS },
2520 		{  74, IFM_IEEE80211_MCS },
2521 		{  75, IFM_IEEE80211_MCS },
2522 		{  76, IFM_IEEE80211_MCS },
2523 	};
2524 	static const struct ratemedia vhtrates[] = {
2525 		{   0, IFM_IEEE80211_VHT },
2526 		{   1, IFM_IEEE80211_VHT },
2527 		{   2, IFM_IEEE80211_VHT },
2528 		{   3, IFM_IEEE80211_VHT },
2529 		{   4, IFM_IEEE80211_VHT },
2530 		{   5, IFM_IEEE80211_VHT },
2531 		{   6, IFM_IEEE80211_VHT },
2532 		{   7, IFM_IEEE80211_VHT },
2533 		{   8, IFM_IEEE80211_VHT },	/* Optional. */
2534 		{   9, IFM_IEEE80211_VHT },	/* Optional. */
2535 #if 0
2536 		/* Some QCA and BRCM seem to support this; offspec. */
2537 		{  10, IFM_IEEE80211_VHT },
2538 		{  11, IFM_IEEE80211_VHT },
2539 #endif
2540 	};
2541 	int m, rate;
2542 
2543 	/*
2544 	 * Check 11ac/11n rates first for match as an MCS.
2545 	 */
2546 	if (mode == IEEE80211_MODE_VHT_5GHZ) {
2547 		if (tr->type == IEEE80211_NODE_TXRATE_VHT) {
2548 			m = findmedia(vhtrates, nitems(vhtrates), tr->mcs);
2549 			if (m != IFM_AUTO)
2550 				return (m | IFM_IEEE80211_VHT);
2551 		}
2552 	} else if (mode == IEEE80211_MODE_11NA) {
2553 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2554 		if (tr->type == IEEE80211_NODE_TXRATE_HT) {
2555 			m = findmedia(htrates, nitems(htrates),
2556 			    tr->dot11rate & ~IEEE80211_RATE_MCS);
2557 			if (m != IFM_AUTO)
2558 				return m | IFM_IEEE80211_11NA;
2559 		}
2560 	} else if (mode == IEEE80211_MODE_11NG) {
2561 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2562 		if (tr->type == IEEE80211_NODE_TXRATE_HT) {
2563 			m = findmedia(htrates, nitems(htrates),
2564 			    tr->dot11rate & ~IEEE80211_RATE_MCS);
2565 			if (m != IFM_AUTO)
2566 				return m | IFM_IEEE80211_11NG;
2567 		}
2568 	}
2569 
2570 	/*
2571 	 * At this point it needs to be a dot11rate (legacy/HT) for the
2572 	 * rest of the logic to work.
2573 	 */
2574 	if ((tr->type != IEEE80211_NODE_TXRATE_LEGACY) &&
2575 	    (tr->type != IEEE80211_NODE_TXRATE_HT))
2576 		return (IFM_AUTO);
2577 	rate = tr->dot11rate & IEEE80211_RATE_VAL;
2578 
2579 	switch (mode) {
2580 	case IEEE80211_MODE_11A:
2581 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2582 	case IEEE80211_MODE_QUARTER:
2583 	case IEEE80211_MODE_11NA:
2584 	case IEEE80211_MODE_TURBO_A:
2585 	case IEEE80211_MODE_STURBO_A:
2586 		return findmedia(rates, nitems(rates),
2587 		    rate | IFM_IEEE80211_11A);
2588 	case IEEE80211_MODE_11B:
2589 		return findmedia(rates, nitems(rates),
2590 		    rate | IFM_IEEE80211_11B);
2591 	case IEEE80211_MODE_FH:
2592 		return findmedia(rates, nitems(rates),
2593 		    rate | IFM_IEEE80211_FH);
2594 	case IEEE80211_MODE_AUTO:
2595 		/* NB: ic may be NULL for some drivers */
2596 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2597 			return findmedia(rates, nitems(rates),
2598 			    rate | IFM_IEEE80211_FH);
2599 		/* NB: hack, 11g matches both 11b+11a rates */
2600 		/* fall thru... */
2601 	case IEEE80211_MODE_11G:
2602 	case IEEE80211_MODE_11NG:
2603 	case IEEE80211_MODE_TURBO_G:
2604 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2605 	case IEEE80211_MODE_VHT_2GHZ:
2606 	case IEEE80211_MODE_VHT_5GHZ:
2607 		/* XXX TODO: need to figure out mapping for VHT rates */
2608 		return IFM_AUTO;
2609 	}
2610 	return IFM_AUTO;
2611 }
2612 
2613 int
2614 ieee80211_media2rate(int mword)
2615 {
2616 	static const int ieeerates[] = {
2617 		-1,		/* IFM_AUTO */
2618 		0,		/* IFM_MANUAL */
2619 		0,		/* IFM_NONE */
2620 		2,		/* IFM_IEEE80211_FH1 */
2621 		4,		/* IFM_IEEE80211_FH2 */
2622 		2,		/* IFM_IEEE80211_DS1 */
2623 		4,		/* IFM_IEEE80211_DS2 */
2624 		11,		/* IFM_IEEE80211_DS5 */
2625 		22,		/* IFM_IEEE80211_DS11 */
2626 		44,		/* IFM_IEEE80211_DS22 */
2627 		12,		/* IFM_IEEE80211_OFDM6 */
2628 		18,		/* IFM_IEEE80211_OFDM9 */
2629 		24,		/* IFM_IEEE80211_OFDM12 */
2630 		36,		/* IFM_IEEE80211_OFDM18 */
2631 		48,		/* IFM_IEEE80211_OFDM24 */
2632 		72,		/* IFM_IEEE80211_OFDM36 */
2633 		96,		/* IFM_IEEE80211_OFDM48 */
2634 		108,		/* IFM_IEEE80211_OFDM54 */
2635 		144,		/* IFM_IEEE80211_OFDM72 */
2636 		0,		/* IFM_IEEE80211_DS354k */
2637 		0,		/* IFM_IEEE80211_DS512k */
2638 		6,		/* IFM_IEEE80211_OFDM3 */
2639 		9,		/* IFM_IEEE80211_OFDM4 */
2640 		54,		/* IFM_IEEE80211_OFDM27 */
2641 		-1,		/* IFM_IEEE80211_MCS */
2642 		-1,		/* IFM_IEEE80211_VHT */
2643 	};
2644 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2645 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2646 }
2647 
2648 /*
2649  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2650  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2651  */
2652 #define	mix(a, b, c)							\
2653 do {									\
2654 	a -= b; a -= c; a ^= (c >> 13);					\
2655 	b -= c; b -= a; b ^= (a << 8);					\
2656 	c -= a; c -= b; c ^= (b >> 13);					\
2657 	a -= b; a -= c; a ^= (c >> 12);					\
2658 	b -= c; b -= a; b ^= (a << 16);					\
2659 	c -= a; c -= b; c ^= (b >> 5);					\
2660 	a -= b; a -= c; a ^= (c >> 3);					\
2661 	b -= c; b -= a; b ^= (a << 10);					\
2662 	c -= a; c -= b; c ^= (b >> 15);					\
2663 } while (/*CONSTCOND*/0)
2664 
2665 uint32_t
2666 ieee80211_mac_hash(const struct ieee80211com *ic,
2667 	const uint8_t addr[IEEE80211_ADDR_LEN])
2668 {
2669 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2670 
2671 	b += addr[5] << 8;
2672 	b += addr[4];
2673 	a += addr[3] << 24;
2674 	a += addr[2] << 16;
2675 	a += addr[1] << 8;
2676 	a += addr[0];
2677 
2678 	mix(a, b, c);
2679 
2680 	return c;
2681 }
2682 #undef mix
2683 
2684 char
2685 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2686 {
2687 	if (IEEE80211_IS_CHAN_ST(c))
2688 		return 'S';
2689 	if (IEEE80211_IS_CHAN_108A(c))
2690 		return 'T';
2691 	if (IEEE80211_IS_CHAN_108G(c))
2692 		return 'G';
2693 	if (IEEE80211_IS_CHAN_VHT(c))
2694 		return 'v';
2695 	if (IEEE80211_IS_CHAN_HT(c))
2696 		return 'n';
2697 	if (IEEE80211_IS_CHAN_A(c))
2698 		return 'a';
2699 	if (IEEE80211_IS_CHAN_ANYG(c))
2700 		return 'g';
2701 	if (IEEE80211_IS_CHAN_B(c))
2702 		return 'b';
2703 	return 'f';
2704 }
2705 
2706 /*
2707  * Determine whether the given key in the given VAP is a global key.
2708  * (key index 0..3, shared between all stations on a VAP.)
2709  *
2710  * This is either a WEP key or a GROUP key.
2711  *
2712  * Note this will NOT return true if it is a IGTK key.
2713  */
2714 bool
2715 ieee80211_is_key_global(const struct ieee80211vap *vap,
2716     const struct ieee80211_key *key)
2717 {
2718 	return (&vap->iv_nw_keys[0] <= key &&
2719 	    key < &vap->iv_nw_keys[IEEE80211_WEP_NKID]);
2720 }
2721 
2722 /*
2723  * Determine whether the given key in the given VAP is a unicast key.
2724  */
2725 bool
2726 ieee80211_is_key_unicast(const struct ieee80211vap *vap,
2727     const struct ieee80211_key *key)
2728 {
2729 	/*
2730 	 * This is a short-cut for now; eventually we will need
2731 	 * to support multiple unicast keys, IGTK, etc) so we
2732 	 * will absolutely need to fix the key flags.
2733 	 */
2734 	return (!ieee80211_is_key_global(vap, key));
2735 }
2736 
2737 /**
2738  * Determine whether the given control frame is from a known node
2739  * and destined to us.
2740  *
2741  * In some instances a control frame won't have a TA (eg ACKs), so
2742  * we should only verify the RA for those.
2743  *
2744  * @param ni	ieee80211_node representing the sender, or BSS node
2745  * @param m0	mbuf representing the 802.11 frame.
2746  * @returns	false if the frame is not a CTL frame (with a warning logged);
2747  *		true if the frame is from a known sender / valid recipient,
2748  *		false otherwise.
2749  */
2750 bool
2751 ieee80211_is_ctl_frame_for_vap(struct ieee80211_node *ni, const struct mbuf *m0)
2752 {
2753 	const struct ieee80211vap *vap = ni->ni_vap;
2754 	const struct ieee80211_frame *wh;
2755 	uint8_t subtype;
2756 
2757 	wh = mtod(m0, const struct ieee80211_frame *);
2758 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2759 
2760 	/* Verify it's a ctl frame. */
2761 	KASSERT(IEEE80211_IS_CTL(wh), ("%s: not a CTL frame (fc[0]=0x%04x)",
2762 	    __func__, wh->i_fc[0]));
2763 	if (!IEEE80211_IS_CTL(wh)) {
2764 		if_printf(vap->iv_ifp,
2765 		    "%s: not a control frame (fc[0]=0x%04x)\n",
2766 		    __func__, wh->i_fc[0]);
2767 		return (false);
2768 	}
2769 
2770 	/* Verify the TA if present. */
2771 	switch (subtype) {
2772 	case IEEE80211_FC0_SUBTYPE_CTS:
2773 	case IEEE80211_FC0_SUBTYPE_ACK:
2774 		/* No TA. */
2775 		break;
2776 	default:
2777 		/*
2778 		 * Verify TA matches ni->ni_macaddr; for unknown
2779 		 * sources it will be the BSS node and ni->ni_macaddr
2780 		 * will the BSS MAC.
2781 		 */
2782 		if (!IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_macaddr))
2783 			return (false);
2784 		break;
2785 	}
2786 
2787 	/* Verify the RA */
2788 	return (IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr));
2789 }
2790