xref: /freebsd/sys/net80211/ieee80211.c (revision 02e9120893770924227138ba49df1edb3896112a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_private.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #include <net80211/ieee80211_ratectl.h>
58 #include <net80211/ieee80211_vht.h>
59 
60 #include <net/bpf.h>
61 
62 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
63 	[IEEE80211_MODE_AUTO]	  = "auto",
64 	[IEEE80211_MODE_11A]	  = "11a",
65 	[IEEE80211_MODE_11B]	  = "11b",
66 	[IEEE80211_MODE_11G]	  = "11g",
67 	[IEEE80211_MODE_FH]	  = "FH",
68 	[IEEE80211_MODE_TURBO_A]  = "turboA",
69 	[IEEE80211_MODE_TURBO_G]  = "turboG",
70 	[IEEE80211_MODE_STURBO_A] = "sturboA",
71 	[IEEE80211_MODE_HALF]	  = "half",
72 	[IEEE80211_MODE_QUARTER]  = "quarter",
73 	[IEEE80211_MODE_11NA]	  = "11na",
74 	[IEEE80211_MODE_11NG]	  = "11ng",
75 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
76 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
77 };
78 /* map ieee80211_opmode to the corresponding capability bit */
79 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
80 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
81 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
82 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
83 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
84 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
85 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
86 #ifdef IEEE80211_SUPPORT_MESH
87 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
88 #endif
89 };
90 
91 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
92 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
93 
94 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
95 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
98 static	int ieee80211_media_setup(struct ieee80211com *ic,
99 		struct ifmedia *media, int caps, int addsta,
100 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
101 static	int media_status(enum ieee80211_opmode,
102 		const struct ieee80211_channel *);
103 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
104 
105 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
106 
107 /*
108  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
109  */
110 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
111 static const struct ieee80211_rateset ieee80211_rateset_11a =
112 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
113 static const struct ieee80211_rateset ieee80211_rateset_half =
114 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
115 static const struct ieee80211_rateset ieee80211_rateset_quarter =
116 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
117 static const struct ieee80211_rateset ieee80211_rateset_11b =
118 	{ 4, { B(2), B(4), B(11), B(22) } };
119 /* NB: OFDM rates are handled specially based on mode */
120 static const struct ieee80211_rateset ieee80211_rateset_11g =
121 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
122 #undef B
123 
124 static int set_vht_extchan(struct ieee80211_channel *c);
125 
126 /*
127  * Fill in 802.11 available channel set, mark
128  * all available channels as active, and pick
129  * a default channel if not already specified.
130  */
131 void
132 ieee80211_chan_init(struct ieee80211com *ic)
133 {
134 #define	DEFAULTRATES(m, def) do { \
135 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
136 		ic->ic_sup_rates[m] = def; \
137 } while (0)
138 	struct ieee80211_channel *c;
139 	int i;
140 
141 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
142 		("invalid number of channels specified: %u", ic->ic_nchans));
143 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
144 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
145 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
146 	for (i = 0; i < ic->ic_nchans; i++) {
147 		c = &ic->ic_channels[i];
148 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
149 		/*
150 		 * Help drivers that work only with frequencies by filling
151 		 * in IEEE channel #'s if not already calculated.  Note this
152 		 * mimics similar work done in ieee80211_setregdomain when
153 		 * changing regulatory state.
154 		 */
155 		if (c->ic_ieee == 0)
156 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
157 
158 		/*
159 		 * Setup the HT40/VHT40 upper/lower bits.
160 		 * The VHT80/... math is done elsewhere.
161 		 */
162 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
163 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
164 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
165 			    c->ic_flags);
166 
167 		/* Update VHT math */
168 		/*
169 		 * XXX VHT again, note that this assumes VHT80/... channels
170 		 * are legit already.
171 		 */
172 		set_vht_extchan(c);
173 
174 		/* default max tx power to max regulatory */
175 		if (c->ic_maxpower == 0)
176 			c->ic_maxpower = 2*c->ic_maxregpower;
177 		setbit(ic->ic_chan_avail, c->ic_ieee);
178 		/*
179 		 * Identify mode capabilities.
180 		 */
181 		if (IEEE80211_IS_CHAN_A(c))
182 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
183 		if (IEEE80211_IS_CHAN_B(c))
184 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
185 		if (IEEE80211_IS_CHAN_ANYG(c))
186 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
187 		if (IEEE80211_IS_CHAN_FHSS(c))
188 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
189 		if (IEEE80211_IS_CHAN_108A(c))
190 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
191 		if (IEEE80211_IS_CHAN_108G(c))
192 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
193 		if (IEEE80211_IS_CHAN_ST(c))
194 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
195 		if (IEEE80211_IS_CHAN_HALF(c))
196 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
197 		if (IEEE80211_IS_CHAN_QUARTER(c))
198 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
199 		if (IEEE80211_IS_CHAN_HTA(c))
200 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
201 		if (IEEE80211_IS_CHAN_HTG(c))
202 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
203 		if (IEEE80211_IS_CHAN_VHTA(c))
204 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
205 		if (IEEE80211_IS_CHAN_VHTG(c))
206 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
207 	}
208 	/* initialize candidate channels to all available */
209 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
210 		sizeof(ic->ic_chan_avail));
211 
212 	/* sort channel table to allow lookup optimizations */
213 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
214 
215 	/* invalidate any previous state */
216 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
217 	ic->ic_prevchan = NULL;
218 	ic->ic_csa_newchan = NULL;
219 	/* arbitrarily pick the first channel */
220 	ic->ic_curchan = &ic->ic_channels[0];
221 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
222 
223 	/* fillin well-known rate sets if driver has not specified */
224 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
225 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
226 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
227 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
228 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
229 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
230 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
231 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
232 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
233 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
234 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
235 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
236 
237 	/*
238 	 * Setup required information to fill the mcsset field, if driver did
239 	 * not. Assume a 2T2R setup for historic reasons.
240 	 */
241 	if (ic->ic_rxstream == 0)
242 		ic->ic_rxstream = 2;
243 	if (ic->ic_txstream == 0)
244 		ic->ic_txstream = 2;
245 
246 	ieee80211_init_suphtrates(ic);
247 
248 	/*
249 	 * Set auto mode to reset active channel state and any desired channel.
250 	 */
251 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
252 #undef DEFAULTRATES
253 }
254 
255 static void
256 null_update_mcast(struct ieee80211com *ic)
257 {
258 
259 	ic_printf(ic, "need multicast update callback\n");
260 }
261 
262 static void
263 null_update_promisc(struct ieee80211com *ic)
264 {
265 
266 	ic_printf(ic, "need promiscuous mode update callback\n");
267 }
268 
269 static void
270 null_update_chw(struct ieee80211com *ic)
271 {
272 
273 	ic_printf(ic, "%s: need callback\n", __func__);
274 }
275 
276 int
277 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
278 {
279 	va_list ap;
280 	int retval;
281 
282 	retval = printf("%s: ", ic->ic_name);
283 	va_start(ap, fmt);
284 	retval += vprintf(fmt, ap);
285 	va_end(ap);
286 	return (retval);
287 }
288 
289 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
290 static struct mtx ic_list_mtx;
291 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
292 
293 static int
294 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
295 {
296 	struct ieee80211com *ic;
297 	struct sbuf sb;
298 	char *sp;
299 	int error;
300 
301 	error = sysctl_wire_old_buffer(req, 0);
302 	if (error)
303 		return (error);
304 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
305 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
306 	sp = "";
307 	mtx_lock(&ic_list_mtx);
308 	LIST_FOREACH(ic, &ic_head, ic_next) {
309 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
310 		sp = " ";
311 	}
312 	mtx_unlock(&ic_list_mtx);
313 	error = sbuf_finish(&sb);
314 	sbuf_delete(&sb);
315 	return (error);
316 }
317 
318 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
319     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
320     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
321 
322 /*
323  * Attach/setup the common net80211 state.  Called by
324  * the driver on attach to prior to creating any vap's.
325  */
326 void
327 ieee80211_ifattach(struct ieee80211com *ic)
328 {
329 
330 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
331 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
332 	TAILQ_INIT(&ic->ic_vaps);
333 
334 	/* Create a taskqueue for all state changes */
335 	ic->ic_tq = taskqueue_create("ic_taskq",
336 	    IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
337 	    taskqueue_thread_enqueue, &ic->ic_tq);
338 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
339 	    ic->ic_name);
340 	ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
341 	ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
342 	/*
343 	 * Fill in 802.11 available channel set, mark all
344 	 * available channels as active, and pick a default
345 	 * channel if not already specified.
346 	 */
347 	ieee80211_chan_init(ic);
348 
349 	ic->ic_update_mcast = null_update_mcast;
350 	ic->ic_update_promisc = null_update_promisc;
351 	ic->ic_update_chw = null_update_chw;
352 
353 	ic->ic_hash_key = arc4random();
354 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
355 	ic->ic_lintval = ic->ic_bintval;
356 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
357 
358 	ieee80211_crypto_attach(ic);
359 	ieee80211_node_attach(ic);
360 	ieee80211_power_attach(ic);
361 	ieee80211_proto_attach(ic);
362 #ifdef IEEE80211_SUPPORT_SUPERG
363 	ieee80211_superg_attach(ic);
364 #endif
365 	ieee80211_ht_attach(ic);
366 	ieee80211_vht_attach(ic);
367 	ieee80211_scan_attach(ic);
368 	ieee80211_regdomain_attach(ic);
369 	ieee80211_dfs_attach(ic);
370 
371 	ieee80211_sysctl_attach(ic);
372 
373 	mtx_lock(&ic_list_mtx);
374 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
375 	mtx_unlock(&ic_list_mtx);
376 }
377 
378 /*
379  * Detach net80211 state on device detach.  Tear down
380  * all vap's and reclaim all common state prior to the
381  * device state going away.  Note we may call back into
382  * driver; it must be prepared for this.
383  */
384 void
385 ieee80211_ifdetach(struct ieee80211com *ic)
386 {
387 	struct ieee80211vap *vap;
388 
389 	/*
390 	 * We use this as an indicator that ifattach never had a chance to be
391 	 * called, e.g. early driver attach failed and ifdetach was called
392 	 * during subsequent detach.  Never fear, for we have nothing to do
393 	 * here.
394 	 */
395 	if (ic->ic_tq == NULL)
396 		return;
397 
398 	mtx_lock(&ic_list_mtx);
399 	LIST_REMOVE(ic, ic_next);
400 	mtx_unlock(&ic_list_mtx);
401 
402 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
403 
404 	/*
405 	 * The VAP is responsible for setting and clearing
406 	 * the VIMAGE context.
407 	 */
408 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
409 		ieee80211_com_vdetach(vap);
410 		ieee80211_vap_destroy(vap);
411 	}
412 	ieee80211_waitfor_parent(ic);
413 
414 	ieee80211_sysctl_detach(ic);
415 	ieee80211_dfs_detach(ic);
416 	ieee80211_regdomain_detach(ic);
417 	ieee80211_scan_detach(ic);
418 #ifdef IEEE80211_SUPPORT_SUPERG
419 	ieee80211_superg_detach(ic);
420 #endif
421 	ieee80211_vht_detach(ic);
422 	ieee80211_ht_detach(ic);
423 	/* NB: must be called before ieee80211_node_detach */
424 	ieee80211_proto_detach(ic);
425 	ieee80211_crypto_detach(ic);
426 	ieee80211_power_detach(ic);
427 	ieee80211_node_detach(ic);
428 
429 	counter_u64_free(ic->ic_ierrors);
430 	counter_u64_free(ic->ic_oerrors);
431 
432 	taskqueue_free(ic->ic_tq);
433 	IEEE80211_TX_LOCK_DESTROY(ic);
434 	IEEE80211_LOCK_DESTROY(ic);
435 }
436 
437 struct ieee80211com *
438 ieee80211_find_com(const char *name)
439 {
440 	struct ieee80211com *ic;
441 
442 	mtx_lock(&ic_list_mtx);
443 	LIST_FOREACH(ic, &ic_head, ic_next)
444 		if (strcmp(ic->ic_name, name) == 0)
445 			break;
446 	mtx_unlock(&ic_list_mtx);
447 
448 	return (ic);
449 }
450 
451 void
452 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
453 {
454 	struct ieee80211com *ic;
455 
456 	mtx_lock(&ic_list_mtx);
457 	LIST_FOREACH(ic, &ic_head, ic_next)
458 		(*f)(arg, ic);
459 	mtx_unlock(&ic_list_mtx);
460 }
461 
462 /*
463  * Default reset method for use with the ioctl support.  This
464  * method is invoked after any state change in the 802.11
465  * layer that should be propagated to the hardware but not
466  * require re-initialization of the 802.11 state machine (e.g
467  * rescanning for an ap).  We always return ENETRESET which
468  * should cause the driver to re-initialize the device. Drivers
469  * can override this method to implement more optimized support.
470  */
471 static int
472 default_reset(struct ieee80211vap *vap, u_long cmd)
473 {
474 	return ENETRESET;
475 }
476 
477 /*
478  * Default for updating the VAP default TX key index.
479  *
480  * Drivers that support TX offload as well as hardware encryption offload
481  * may need to be informed of key index changes separate from the key
482  * update.
483  */
484 static void
485 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
486 {
487 
488 	/* XXX assert validity */
489 	/* XXX assert we're in a key update block */
490 	vap->iv_def_txkey = kid;
491 }
492 
493 /*
494  * Add underlying device errors to vap errors.
495  */
496 static uint64_t
497 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
498 {
499 	struct ieee80211vap *vap = ifp->if_softc;
500 	struct ieee80211com *ic = vap->iv_ic;
501 	uint64_t rv;
502 
503 	rv = if_get_counter_default(ifp, cnt);
504 	switch (cnt) {
505 	case IFCOUNTER_OERRORS:
506 		rv += counter_u64_fetch(ic->ic_oerrors);
507 		break;
508 	case IFCOUNTER_IERRORS:
509 		rv += counter_u64_fetch(ic->ic_ierrors);
510 		break;
511 	default:
512 		break;
513 	}
514 
515 	return (rv);
516 }
517 
518 /*
519  * Prepare a vap for use.  Drivers use this call to
520  * setup net80211 state in new vap's prior attaching
521  * them with ieee80211_vap_attach (below).
522  */
523 int
524 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
525     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
526     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
527 {
528 	struct ifnet *ifp;
529 
530 	ifp = if_alloc(IFT_ETHER);
531 	if (ifp == NULL) {
532 		ic_printf(ic, "%s: unable to allocate ifnet\n", __func__);
533 		return ENOMEM;
534 	}
535 	if_initname(ifp, name, unit);
536 	ifp->if_softc = vap;			/* back pointer */
537 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
538 	ifp->if_transmit = ieee80211_vap_transmit;
539 	ifp->if_qflush = ieee80211_vap_qflush;
540 	ifp->if_ioctl = ieee80211_ioctl;
541 	ifp->if_init = ieee80211_init;
542 	ifp->if_get_counter = ieee80211_get_counter;
543 
544 	vap->iv_ifp = ifp;
545 	vap->iv_ic = ic;
546 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
547 	vap->iv_flags_ext = ic->ic_flags_ext;
548 	vap->iv_flags_ven = ic->ic_flags_ven;
549 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
550 
551 	/* 11n capabilities - XXX methodize */
552 	vap->iv_htcaps = ic->ic_htcaps;
553 	vap->iv_htextcaps = ic->ic_htextcaps;
554 
555 	/* 11ac capabilities - XXX methodize */
556 	vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
557 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
558 
559 	vap->iv_opmode = opmode;
560 	vap->iv_caps |= ieee80211_opcap[opmode];
561 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
562 	switch (opmode) {
563 	case IEEE80211_M_WDS:
564 		/*
565 		 * WDS links must specify the bssid of the far end.
566 		 * For legacy operation this is a static relationship.
567 		 * For non-legacy operation the station must associate
568 		 * and be authorized to pass traffic.  Plumbing the
569 		 * vap to the proper node happens when the vap
570 		 * transitions to RUN state.
571 		 */
572 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
573 		vap->iv_flags |= IEEE80211_F_DESBSSID;
574 		if (flags & IEEE80211_CLONE_WDSLEGACY)
575 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
576 		break;
577 #ifdef IEEE80211_SUPPORT_TDMA
578 	case IEEE80211_M_AHDEMO:
579 		if (flags & IEEE80211_CLONE_TDMA) {
580 			/* NB: checked before clone operation allowed */
581 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
582 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
583 			/*
584 			 * Propagate TDMA capability to mark vap; this
585 			 * cannot be removed and is used to distinguish
586 			 * regular ahdemo operation from ahdemo+tdma.
587 			 */
588 			vap->iv_caps |= IEEE80211_C_TDMA;
589 		}
590 		break;
591 #endif
592 	default:
593 		break;
594 	}
595 	/* auto-enable s/w beacon miss support */
596 	if (flags & IEEE80211_CLONE_NOBEACONS)
597 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
598 	/* auto-generated or user supplied MAC address */
599 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
600 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
601 	/*
602 	 * Enable various functionality by default if we're
603 	 * capable; the driver can override us if it knows better.
604 	 */
605 	if (vap->iv_caps & IEEE80211_C_WME)
606 		vap->iv_flags |= IEEE80211_F_WME;
607 	if (vap->iv_caps & IEEE80211_C_BURST)
608 		vap->iv_flags |= IEEE80211_F_BURST;
609 	/* NB: bg scanning only makes sense for station mode right now */
610 	if (vap->iv_opmode == IEEE80211_M_STA &&
611 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
612 		vap->iv_flags |= IEEE80211_F_BGSCAN;
613 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
614 	/* NB: DFS support only makes sense for ap mode right now */
615 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
616 	    (vap->iv_caps & IEEE80211_C_DFS))
617 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
618 	/* NB: only flip on U-APSD for hostap/sta for now */
619 	if ((vap->iv_opmode == IEEE80211_M_STA)
620 	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
621 		if (vap->iv_caps & IEEE80211_C_UAPSD)
622 			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
623 	}
624 
625 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
626 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
627 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
628 	/*
629 	 * Install a default reset method for the ioctl support;
630 	 * the driver can override this.
631 	 */
632 	vap->iv_reset = default_reset;
633 
634 	/*
635 	 * Install a default crypto key update method, the driver
636 	 * can override this.
637 	 */
638 	vap->iv_update_deftxkey = default_update_deftxkey;
639 
640 	ieee80211_sysctl_vattach(vap);
641 	ieee80211_crypto_vattach(vap);
642 	ieee80211_node_vattach(vap);
643 	ieee80211_power_vattach(vap);
644 	ieee80211_proto_vattach(vap);
645 #ifdef IEEE80211_SUPPORT_SUPERG
646 	ieee80211_superg_vattach(vap);
647 #endif
648 	ieee80211_ht_vattach(vap);
649 	ieee80211_vht_vattach(vap);
650 	ieee80211_scan_vattach(vap);
651 	ieee80211_regdomain_vattach(vap);
652 	ieee80211_radiotap_vattach(vap);
653 	ieee80211_vap_reset_erp(vap);
654 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
655 
656 	return 0;
657 }
658 
659 /*
660  * Activate a vap.  State should have been prepared with a
661  * call to ieee80211_vap_setup and by the driver.  On return
662  * from this call the vap is ready for use.
663  */
664 int
665 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
666     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
667 {
668 	struct ifnet *ifp = vap->iv_ifp;
669 	struct ieee80211com *ic = vap->iv_ic;
670 	struct ifmediareq imr;
671 	int maxrate;
672 
673 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
674 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
675 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
676 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
677 
678 	/*
679 	 * Do late attach work that cannot happen until after
680 	 * the driver has had a chance to override defaults.
681 	 */
682 	ieee80211_node_latevattach(vap);
683 	ieee80211_power_latevattach(vap);
684 
685 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
686 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
687 	ieee80211_media_status(ifp, &imr);
688 	/* NB: strip explicit mode; we're actually in autoselect */
689 	ifmedia_set(&vap->iv_media,
690 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
691 	if (maxrate)
692 		ifp->if_baudrate = IF_Mbps(maxrate);
693 
694 	ether_ifattach(ifp, macaddr);
695 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
696 	/* hook output method setup by ether_ifattach */
697 	vap->iv_output = ifp->if_output;
698 	ifp->if_output = ieee80211_output;
699 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
700 
701 	IEEE80211_LOCK(ic);
702 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
703 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
704 #ifdef IEEE80211_SUPPORT_SUPERG
705 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
706 #endif
707 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
708 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
709 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
710 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
711 
712 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
713 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
714 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
715 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
716 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
717 	IEEE80211_UNLOCK(ic);
718 
719 	return 1;
720 }
721 
722 /*
723  * Tear down vap state and reclaim the ifnet.
724  * The driver is assumed to have prepared for
725  * this; e.g. by turning off interrupts for the
726  * underlying device.
727  */
728 void
729 ieee80211_vap_detach(struct ieee80211vap *vap)
730 {
731 	struct ieee80211com *ic = vap->iv_ic;
732 	struct ifnet *ifp = vap->iv_ifp;
733 
734 	CURVNET_SET(ifp->if_vnet);
735 
736 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
737 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
738 
739 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
740 	ether_ifdetach(ifp);
741 
742 	ieee80211_stop(vap);
743 
744 	/*
745 	 * Flush any deferred vap tasks.
746 	 */
747 	ieee80211_draintask(ic, &vap->iv_nstate_task);
748 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
749 	ieee80211_draintask(ic, &vap->iv_wme_task);
750 	ieee80211_draintask(ic, &ic->ic_parent_task);
751 
752 	/* XXX band-aid until ifnet handles this for us */
753 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
754 
755 	IEEE80211_LOCK(ic);
756 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
757 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
758 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
759 #ifdef IEEE80211_SUPPORT_SUPERG
760 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
761 #endif
762 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
763 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
764 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
765 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
766 
767 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
768 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
769 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
770 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
771 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
772 
773 	/* NB: this handles the bpfdetach done below */
774 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
775 	if (vap->iv_ifflags & IFF_PROMISC)
776 		ieee80211_promisc(vap, false);
777 	if (vap->iv_ifflags & IFF_ALLMULTI)
778 		ieee80211_allmulti(vap, false);
779 	IEEE80211_UNLOCK(ic);
780 
781 	ifmedia_removeall(&vap->iv_media);
782 
783 	ieee80211_radiotap_vdetach(vap);
784 	ieee80211_regdomain_vdetach(vap);
785 	ieee80211_scan_vdetach(vap);
786 #ifdef IEEE80211_SUPPORT_SUPERG
787 	ieee80211_superg_vdetach(vap);
788 #endif
789 	ieee80211_vht_vdetach(vap);
790 	ieee80211_ht_vdetach(vap);
791 	/* NB: must be before ieee80211_node_vdetach */
792 	ieee80211_proto_vdetach(vap);
793 	ieee80211_crypto_vdetach(vap);
794 	ieee80211_power_vdetach(vap);
795 	ieee80211_node_vdetach(vap);
796 	ieee80211_sysctl_vdetach(vap);
797 
798 	if_free(ifp);
799 
800 	CURVNET_RESTORE();
801 }
802 
803 /*
804  * Count number of vaps in promisc, and issue promisc on
805  * parent respectively.
806  */
807 void
808 ieee80211_promisc(struct ieee80211vap *vap, bool on)
809 {
810 	struct ieee80211com *ic = vap->iv_ic;
811 
812 	IEEE80211_LOCK_ASSERT(ic);
813 
814 	if (on) {
815 		if (++ic->ic_promisc == 1)
816 			ieee80211_runtask(ic, &ic->ic_promisc_task);
817 	} else {
818 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
819 		    __func__, ic));
820 		if (--ic->ic_promisc == 0)
821 			ieee80211_runtask(ic, &ic->ic_promisc_task);
822 	}
823 }
824 
825 /*
826  * Count number of vaps in allmulti, and issue allmulti on
827  * parent respectively.
828  */
829 void
830 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
831 {
832 	struct ieee80211com *ic = vap->iv_ic;
833 
834 	IEEE80211_LOCK_ASSERT(ic);
835 
836 	if (on) {
837 		if (++ic->ic_allmulti == 1)
838 			ieee80211_runtask(ic, &ic->ic_mcast_task);
839 	} else {
840 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
841 		    __func__, ic));
842 		if (--ic->ic_allmulti == 0)
843 			ieee80211_runtask(ic, &ic->ic_mcast_task);
844 	}
845 }
846 
847 /*
848  * Synchronize flag bit state in the com structure
849  * according to the state of all vap's.  This is used,
850  * for example, to handle state changes via ioctls.
851  */
852 static void
853 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
854 {
855 	struct ieee80211vap *vap;
856 	int bit;
857 
858 	IEEE80211_LOCK_ASSERT(ic);
859 
860 	bit = 0;
861 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
862 		if (vap->iv_flags & flag) {
863 			bit = 1;
864 			break;
865 		}
866 	if (bit)
867 		ic->ic_flags |= flag;
868 	else
869 		ic->ic_flags &= ~flag;
870 }
871 
872 void
873 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
874 {
875 	struct ieee80211com *ic = vap->iv_ic;
876 
877 	IEEE80211_LOCK(ic);
878 	if (flag < 0) {
879 		flag = -flag;
880 		vap->iv_flags &= ~flag;
881 	} else
882 		vap->iv_flags |= flag;
883 	ieee80211_syncflag_locked(ic, flag);
884 	IEEE80211_UNLOCK(ic);
885 }
886 
887 /*
888  * Synchronize flags_ht bit state in the com structure
889  * according to the state of all vap's.  This is used,
890  * for example, to handle state changes via ioctls.
891  */
892 static void
893 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
894 {
895 	struct ieee80211vap *vap;
896 	int bit;
897 
898 	IEEE80211_LOCK_ASSERT(ic);
899 
900 	bit = 0;
901 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
902 		if (vap->iv_flags_ht & flag) {
903 			bit = 1;
904 			break;
905 		}
906 	if (bit)
907 		ic->ic_flags_ht |= flag;
908 	else
909 		ic->ic_flags_ht &= ~flag;
910 }
911 
912 void
913 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
914 {
915 	struct ieee80211com *ic = vap->iv_ic;
916 
917 	IEEE80211_LOCK(ic);
918 	if (flag < 0) {
919 		flag = -flag;
920 		vap->iv_flags_ht &= ~flag;
921 	} else
922 		vap->iv_flags_ht |= flag;
923 	ieee80211_syncflag_ht_locked(ic, flag);
924 	IEEE80211_UNLOCK(ic);
925 }
926 
927 /*
928  * Synchronize flags_vht bit state in the com structure
929  * according to the state of all vap's.  This is used,
930  * for example, to handle state changes via ioctls.
931  */
932 static void
933 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
934 {
935 	struct ieee80211vap *vap;
936 	int bit;
937 
938 	IEEE80211_LOCK_ASSERT(ic);
939 
940 	bit = 0;
941 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
942 		if (vap->iv_vht_flags & flag) {
943 			bit = 1;
944 			break;
945 		}
946 	if (bit)
947 		ic->ic_vht_flags |= flag;
948 	else
949 		ic->ic_vht_flags &= ~flag;
950 }
951 
952 void
953 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
954 {
955 	struct ieee80211com *ic = vap->iv_ic;
956 
957 	IEEE80211_LOCK(ic);
958 	if (flag < 0) {
959 		flag = -flag;
960 		vap->iv_vht_flags &= ~flag;
961 	} else
962 		vap->iv_vht_flags |= flag;
963 	ieee80211_syncflag_vht_locked(ic, flag);
964 	IEEE80211_UNLOCK(ic);
965 }
966 
967 /*
968  * Synchronize flags_ext bit state in the com structure
969  * according to the state of all vap's.  This is used,
970  * for example, to handle state changes via ioctls.
971  */
972 static void
973 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
974 {
975 	struct ieee80211vap *vap;
976 	int bit;
977 
978 	IEEE80211_LOCK_ASSERT(ic);
979 
980 	bit = 0;
981 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
982 		if (vap->iv_flags_ext & flag) {
983 			bit = 1;
984 			break;
985 		}
986 	if (bit)
987 		ic->ic_flags_ext |= flag;
988 	else
989 		ic->ic_flags_ext &= ~flag;
990 }
991 
992 void
993 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
994 {
995 	struct ieee80211com *ic = vap->iv_ic;
996 
997 	IEEE80211_LOCK(ic);
998 	if (flag < 0) {
999 		flag = -flag;
1000 		vap->iv_flags_ext &= ~flag;
1001 	} else
1002 		vap->iv_flags_ext |= flag;
1003 	ieee80211_syncflag_ext_locked(ic, flag);
1004 	IEEE80211_UNLOCK(ic);
1005 }
1006 
1007 static __inline int
1008 mapgsm(u_int freq, u_int flags)
1009 {
1010 	freq *= 10;
1011 	if (flags & IEEE80211_CHAN_QUARTER)
1012 		freq += 5;
1013 	else if (flags & IEEE80211_CHAN_HALF)
1014 		freq += 10;
1015 	else
1016 		freq += 20;
1017 	/* NB: there is no 907/20 wide but leave room */
1018 	return (freq - 906*10) / 5;
1019 }
1020 
1021 static __inline int
1022 mappsb(u_int freq, u_int flags)
1023 {
1024 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1025 }
1026 
1027 /*
1028  * Convert MHz frequency to IEEE channel number.
1029  */
1030 int
1031 ieee80211_mhz2ieee(u_int freq, u_int flags)
1032 {
1033 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1034 	if (flags & IEEE80211_CHAN_GSM)
1035 		return mapgsm(freq, flags);
1036 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1037 		if (freq == 2484)
1038 			return 14;
1039 		if (freq < 2484)
1040 			return ((int) freq - 2407) / 5;
1041 		else
1042 			return 15 + ((freq - 2512) / 20);
1043 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1044 		if (freq <= 5000) {
1045 			/* XXX check regdomain? */
1046 			if (IS_FREQ_IN_PSB(freq))
1047 				return mappsb(freq, flags);
1048 			return (freq - 4000) / 5;
1049 		} else
1050 			return (freq - 5000) / 5;
1051 	} else {				/* either, guess */
1052 		if (freq == 2484)
1053 			return 14;
1054 		if (freq < 2484) {
1055 			if (907 <= freq && freq <= 922)
1056 				return mapgsm(freq, flags);
1057 			return ((int) freq - 2407) / 5;
1058 		}
1059 		if (freq < 5000) {
1060 			if (IS_FREQ_IN_PSB(freq))
1061 				return mappsb(freq, flags);
1062 			else if (freq > 4900)
1063 				return (freq - 4000) / 5;
1064 			else
1065 				return 15 + ((freq - 2512) / 20);
1066 		}
1067 		return (freq - 5000) / 5;
1068 	}
1069 #undef IS_FREQ_IN_PSB
1070 }
1071 
1072 /*
1073  * Convert channel to IEEE channel number.
1074  */
1075 int
1076 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1077 {
1078 	if (c == NULL) {
1079 		ic_printf(ic, "invalid channel (NULL)\n");
1080 		return 0;		/* XXX */
1081 	}
1082 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1083 }
1084 
1085 /*
1086  * Convert IEEE channel number to MHz frequency.
1087  */
1088 u_int
1089 ieee80211_ieee2mhz(u_int chan, u_int flags)
1090 {
1091 	if (flags & IEEE80211_CHAN_GSM)
1092 		return 907 + 5 * (chan / 10);
1093 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1094 		if (chan == 14)
1095 			return 2484;
1096 		if (chan < 14)
1097 			return 2407 + chan*5;
1098 		else
1099 			return 2512 + ((chan-15)*20);
1100 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1101 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1102 			chan -= 37;
1103 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1104 		}
1105 		return 5000 + (chan*5);
1106 	} else {				/* either, guess */
1107 		/* XXX can't distinguish PSB+GSM channels */
1108 		if (chan == 14)
1109 			return 2484;
1110 		if (chan < 14)			/* 0-13 */
1111 			return 2407 + chan*5;
1112 		if (chan < 27)			/* 15-26 */
1113 			return 2512 + ((chan-15)*20);
1114 		return 5000 + (chan*5);
1115 	}
1116 }
1117 
1118 static __inline void
1119 set_extchan(struct ieee80211_channel *c)
1120 {
1121 
1122 	/*
1123 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1124 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1125 	 */
1126 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1127 		c->ic_extieee = c->ic_ieee + 4;
1128 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1129 		c->ic_extieee = c->ic_ieee - 4;
1130 	else
1131 		c->ic_extieee = 0;
1132 }
1133 
1134 /*
1135  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1136  *
1137  * This for now uses a hard-coded list of 80MHz wide channels.
1138  *
1139  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1140  * wide channel we've already decided upon.
1141  *
1142  * For VHT80 and VHT160, there are only a small number of fixed
1143  * 80/160MHz wide channels, so we just use those.
1144  *
1145  * This is all likely very very wrong - both the regulatory code
1146  * and this code needs to ensure that all four channels are
1147  * available and valid before the VHT80 (and eight for VHT160) channel
1148  * is created.
1149  */
1150 
1151 struct vht_chan_range {
1152 	uint16_t freq_start;
1153 	uint16_t freq_end;
1154 };
1155 
1156 struct vht_chan_range vht80_chan_ranges[] = {
1157 	{ 5170, 5250 },
1158 	{ 5250, 5330 },
1159 	{ 5490, 5570 },
1160 	{ 5570, 5650 },
1161 	{ 5650, 5730 },
1162 	{ 5735, 5815 },
1163 	{ 0, 0 }
1164 };
1165 
1166 struct vht_chan_range vht160_chan_ranges[] = {
1167 	{ 5170, 5330 },
1168 	{ 5490, 5650 },
1169 	{ 0, 0 }
1170 };
1171 
1172 static int
1173 set_vht_extchan(struct ieee80211_channel *c)
1174 {
1175 	int i;
1176 
1177 	if (! IEEE80211_IS_CHAN_VHT(c))
1178 		return (0);
1179 
1180 	if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1181 		printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1182 		    __func__, c->ic_ieee, c->ic_flags);
1183 	}
1184 
1185 	if (IEEE80211_IS_CHAN_VHT160(c)) {
1186 		for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1187 			if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1188 			    c->ic_freq < vht160_chan_ranges[i].freq_end) {
1189 				int midpoint;
1190 
1191 				midpoint = vht160_chan_ranges[i].freq_start + 80;
1192 				c->ic_vht_ch_freq1 =
1193 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1194 				c->ic_vht_ch_freq2 = 0;
1195 #if 0
1196 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1197 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1198 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1199 #endif
1200 				return (1);
1201 			}
1202 		}
1203 		return (0);
1204 	}
1205 
1206 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1207 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1208 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1209 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1210 				int midpoint;
1211 
1212 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1213 				c->ic_vht_ch_freq1 =
1214 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1215 				c->ic_vht_ch_freq2 = 0;
1216 #if 0
1217 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1218 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1219 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1220 #endif
1221 				return (1);
1222 			}
1223 		}
1224 		return (0);
1225 	}
1226 
1227 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1228 		if (IEEE80211_IS_CHAN_HT40U(c))
1229 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1230 		else if (IEEE80211_IS_CHAN_HT40D(c))
1231 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1232 		else
1233 			return (0);
1234 		return (1);
1235 	}
1236 
1237 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1238 		c->ic_vht_ch_freq1 = c->ic_ieee;
1239 		return (1);
1240 	}
1241 
1242 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1243 	    __func__, c->ic_ieee, c->ic_flags);
1244 
1245 	return (0);
1246 }
1247 
1248 /*
1249  * Return whether the current channel could possibly be a part of
1250  * a VHT80/VHT160 channel.
1251  *
1252  * This doesn't check that the whole range is in the allowed list
1253  * according to regulatory.
1254  */
1255 static bool
1256 is_vht160_valid_freq(uint16_t freq)
1257 {
1258 	int i;
1259 
1260 	for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1261 		if (freq >= vht160_chan_ranges[i].freq_start &&
1262 		    freq < vht160_chan_ranges[i].freq_end)
1263 			return (true);
1264 	}
1265 	return (false);
1266 }
1267 
1268 static int
1269 is_vht80_valid_freq(uint16_t freq)
1270 {
1271 	int i;
1272 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1273 		if (freq >= vht80_chan_ranges[i].freq_start &&
1274 		    freq < vht80_chan_ranges[i].freq_end)
1275 			return (1);
1276 	}
1277 	return (0);
1278 }
1279 
1280 static int
1281 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1282     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1283 {
1284 	struct ieee80211_channel *c;
1285 
1286 	if (*nchans >= maxchans)
1287 		return (ENOBUFS);
1288 
1289 #if 0
1290 	printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1291 	    __func__, *nchans, maxchans, ieee, freq, flags);
1292 #endif
1293 
1294 	c = &chans[(*nchans)++];
1295 	c->ic_ieee = ieee;
1296 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1297 	c->ic_maxregpower = maxregpower;
1298 	c->ic_maxpower = 2 * maxregpower;
1299 	c->ic_flags = flags;
1300 	c->ic_vht_ch_freq1 = 0;
1301 	c->ic_vht_ch_freq2 = 0;
1302 	set_extchan(c);
1303 	set_vht_extchan(c);
1304 
1305 	return (0);
1306 }
1307 
1308 static int
1309 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1310     uint32_t flags)
1311 {
1312 	struct ieee80211_channel *c;
1313 
1314 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1315 
1316 	if (*nchans >= maxchans)
1317 		return (ENOBUFS);
1318 
1319 #if 0
1320 	printf("%s: %d of %d: flags=0x%08x\n",
1321 	    __func__, *nchans, maxchans, flags);
1322 #endif
1323 
1324 	c = &chans[(*nchans)++];
1325 	c[0] = c[-1];
1326 	c->ic_flags = flags;
1327 	c->ic_vht_ch_freq1 = 0;
1328 	c->ic_vht_ch_freq2 = 0;
1329 	set_extchan(c);
1330 	set_vht_extchan(c);
1331 
1332 	return (0);
1333 }
1334 
1335 /*
1336  * XXX VHT-2GHz
1337  */
1338 static void
1339 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1340 {
1341 	int nmodes;
1342 
1343 	nmodes = 0;
1344 	if (isset(bands, IEEE80211_MODE_11B))
1345 		flags[nmodes++] = IEEE80211_CHAN_B;
1346 	if (isset(bands, IEEE80211_MODE_11G))
1347 		flags[nmodes++] = IEEE80211_CHAN_G;
1348 	if (isset(bands, IEEE80211_MODE_11NG))
1349 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1350 	if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1351 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1352 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1353 	}
1354 	flags[nmodes] = 0;
1355 }
1356 
1357 static void
1358 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1359 {
1360 	int nmodes;
1361 
1362 	/*
1363 	 * The addchan_list() function seems to expect the flags array to
1364 	 * be in channel width order, so the VHT bits are interspersed
1365 	 * as appropriate to maintain said order.
1366 	 *
1367 	 * It also assumes HT40U is before HT40D.
1368 	 */
1369 	nmodes = 0;
1370 
1371 	/* 20MHz */
1372 	if (isset(bands, IEEE80211_MODE_11A))
1373 		flags[nmodes++] = IEEE80211_CHAN_A;
1374 	if (isset(bands, IEEE80211_MODE_11NA))
1375 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1376 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1377 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1378 		    IEEE80211_CHAN_VHT20;
1379 	}
1380 
1381 	/* 40MHz */
1382 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1383 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1384 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1385 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1386 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1387 		    IEEE80211_CHAN_VHT40U;
1388 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1389 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1390 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1391 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1392 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1393 		    IEEE80211_CHAN_VHT40D;
1394 
1395 	/* 80MHz */
1396 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1397 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1398 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1399 		    IEEE80211_CHAN_VHT80;
1400 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1401 		    IEEE80211_CHAN_VHT80;
1402 	}
1403 
1404 	/* VHT160 */
1405 	if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1406 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1407 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1408 		    IEEE80211_CHAN_VHT160;
1409 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1410 		    IEEE80211_CHAN_VHT160;
1411 	}
1412 
1413 	/* VHT80+80 */
1414 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1415 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1416 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1417 		    IEEE80211_CHAN_VHT80P80;
1418 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1419 		    IEEE80211_CHAN_VHT80P80;
1420 	}
1421 
1422 	flags[nmodes] = 0;
1423 }
1424 
1425 static void
1426 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1427 {
1428 
1429 	flags[0] = 0;
1430 	if (isset(bands, IEEE80211_MODE_11A) ||
1431 	    isset(bands, IEEE80211_MODE_11NA) ||
1432 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1433 		if (isset(bands, IEEE80211_MODE_11B) ||
1434 		    isset(bands, IEEE80211_MODE_11G) ||
1435 		    isset(bands, IEEE80211_MODE_11NG) ||
1436 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1437 			return;
1438 
1439 		getflags_5ghz(bands, flags, cbw_flags);
1440 	} else
1441 		getflags_2ghz(bands, flags, cbw_flags);
1442 }
1443 
1444 /*
1445  * Add one 20 MHz channel into specified channel list.
1446  * You MUST NOT mix bands when calling this.  It will not add 5ghz
1447  * channels if you have any B/G/N band bit set.
1448  * The _cbw() variant does also support HT40/VHT80/160/80+80.
1449  */
1450 int
1451 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1452     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1453     uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1454 {
1455 	uint32_t flags[IEEE80211_MODE_MAX];
1456 	int i, error;
1457 
1458 	getflags(bands, flags, cbw_flags);
1459 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1460 
1461 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1462 	    flags[0] | chan_flags);
1463 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1464 		error = copychan_prev(chans, maxchans, nchans,
1465 		    flags[i] | chan_flags);
1466 	}
1467 
1468 	return (error);
1469 }
1470 
1471 int
1472 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1473     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1474     uint32_t chan_flags, const uint8_t bands[])
1475 {
1476 
1477 	return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1478 	    maxregpower, chan_flags, bands, 0));
1479 }
1480 
1481 static struct ieee80211_channel *
1482 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1483     uint32_t flags)
1484 {
1485 	struct ieee80211_channel *c;
1486 	int i;
1487 
1488 	flags &= IEEE80211_CHAN_ALLTURBO;
1489 	/* brute force search */
1490 	for (i = 0; i < nchans; i++) {
1491 		c = &chans[i];
1492 		if (c->ic_freq == freq &&
1493 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1494 			return c;
1495 	}
1496 	return NULL;
1497 }
1498 
1499 /*
1500  * Add 40 MHz channel pair into specified channel list.
1501  */
1502 /* XXX VHT */
1503 int
1504 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1505     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1506 {
1507 	struct ieee80211_channel *cent, *extc;
1508 	uint16_t freq;
1509 	int error;
1510 
1511 	freq = ieee80211_ieee2mhz(ieee, flags);
1512 
1513 	/*
1514 	 * Each entry defines an HT40 channel pair; find the
1515 	 * center channel, then the extension channel above.
1516 	 */
1517 	flags |= IEEE80211_CHAN_HT20;
1518 	cent = findchannel(chans, *nchans, freq, flags);
1519 	if (cent == NULL)
1520 		return (EINVAL);
1521 
1522 	extc = findchannel(chans, *nchans, freq + 20, flags);
1523 	if (extc == NULL)
1524 		return (ENOENT);
1525 
1526 	flags &= ~IEEE80211_CHAN_HT;
1527 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1528 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1529 	if (error != 0)
1530 		return (error);
1531 
1532 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1533 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1534 
1535 	return (error);
1536 }
1537 
1538 /*
1539  * Fetch the center frequency for the primary channel.
1540  */
1541 uint32_t
1542 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1543 {
1544 
1545 	return (c->ic_freq);
1546 }
1547 
1548 /*
1549  * Fetch the center frequency for the primary BAND channel.
1550  *
1551  * For 5, 10, 20MHz channels it'll be the normally configured channel
1552  * frequency.
1553  *
1554  * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1555  * wide channel, not the centre of the primary channel (that's ic_freq).
1556  *
1557  * For 80+80MHz channels this will be the centre of the primary
1558  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1559  */
1560 uint32_t
1561 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1562 {
1563 
1564 	/*
1565 	 * VHT - use the pre-calculated centre frequency
1566 	 * of the given channel.
1567 	 */
1568 	if (IEEE80211_IS_CHAN_VHT(c))
1569 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1570 
1571 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1572 		return (c->ic_freq + 10);
1573 	}
1574 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1575 		return (c->ic_freq - 10);
1576 	}
1577 
1578 	return (c->ic_freq);
1579 }
1580 
1581 /*
1582  * For now, no 80+80 support; it will likely always return 0.
1583  */
1584 uint32_t
1585 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1586 {
1587 
1588 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1589 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1590 
1591 	return (0);
1592 }
1593 
1594 /*
1595  * Adds channels into specified channel list (ieee[] array must be sorted).
1596  * Channels are already sorted.
1597  */
1598 static int
1599 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1600     const uint8_t ieee[], int nieee, uint32_t flags[])
1601 {
1602 	uint16_t freq;
1603 	int i, j, error;
1604 	int is_vht;
1605 
1606 	for (i = 0; i < nieee; i++) {
1607 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1608 		for (j = 0; flags[j] != 0; j++) {
1609 			/*
1610 			 * Notes:
1611 			 * + HT40 and VHT40 channels occur together, so
1612 			 *   we need to be careful that we actually allow that.
1613 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1614 			 *   make sure it's not skipped because of the overlap
1615 			 *   check used for (V)HT40.
1616 			 */
1617 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1618 
1619 			/* XXX TODO FIXME VHT80P80. */
1620 
1621 			/* Test for VHT160 analogue to the VHT80 below. */
1622 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1623 				if (! is_vht160_valid_freq(freq))
1624 					continue;
1625 
1626 			/*
1627 			 * Test for VHT80.
1628 			 * XXX This is all very broken right now.
1629 			 * What we /should/ do is:
1630 			 *
1631 			 * + check that the frequency is in the list of
1632 			 *   allowed VHT80 ranges; and
1633 			 * + the other 3 channels in the list are actually
1634 			 *   also available.
1635 			 */
1636 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1637 				if (! is_vht80_valid_freq(freq))
1638 					continue;
1639 
1640 			/*
1641 			 * Test for (V)HT40.
1642 			 *
1643 			 * This is also a fall through from VHT80; as we only
1644 			 * allow a VHT80 channel if the VHT40 combination is
1645 			 * also valid.  If the VHT40 form is not valid then
1646 			 * we certainly can't do VHT80..
1647 			 */
1648 			if (flags[j] & IEEE80211_CHAN_HT40D)
1649 				/*
1650 				 * Can't have a "lower" channel if we are the
1651 				 * first channel.
1652 				 *
1653 				 * Can't have a "lower" channel if it's below/
1654 				 * within 20MHz of the first channel.
1655 				 *
1656 				 * Can't have a "lower" channel if the channel
1657 				 * below it is not 20MHz away.
1658 				 */
1659 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1660 				    freq - 20 !=
1661 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1662 					continue;
1663 			if (flags[j] & IEEE80211_CHAN_HT40U)
1664 				/*
1665 				 * Can't have an "upper" channel if we are
1666 				 * the last channel.
1667 				 *
1668 				 * Can't have an "upper" channel be above the
1669 				 * last channel in the list.
1670 				 *
1671 				 * Can't have an "upper" channel if the next
1672 				 * channel according to the math isn't 20MHz
1673 				 * away.  (Likely for channel 13/14.)
1674 				 */
1675 				if (i == nieee - 1 ||
1676 				    ieee[i] + 4 > ieee[nieee - 1] ||
1677 				    freq + 20 !=
1678 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1679 					continue;
1680 
1681 			if (j == 0) {
1682 				error = addchan(chans, maxchans, nchans,
1683 				    ieee[i], freq, 0, flags[j]);
1684 			} else {
1685 				error = copychan_prev(chans, maxchans, nchans,
1686 				    flags[j]);
1687 			}
1688 			if (error != 0)
1689 				return (error);
1690 		}
1691 	}
1692 
1693 	return (0);
1694 }
1695 
1696 int
1697 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1698     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1699     int cbw_flags)
1700 {
1701 	uint32_t flags[IEEE80211_MODE_MAX];
1702 
1703 	/* XXX no VHT for now */
1704 	getflags_2ghz(bands, flags, cbw_flags);
1705 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1706 
1707 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1708 }
1709 
1710 int
1711 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1712     int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1713 {
1714 	const uint8_t default_chan_list[] =
1715 	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1716 
1717 	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1718 	    default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1719 }
1720 
1721 int
1722 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1723     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1724     int cbw_flags)
1725 {
1726 	/*
1727 	 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
1728 	 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1729 	 */
1730 	uint32_t flags[2 * IEEE80211_MODE_MAX];
1731 
1732 	getflags_5ghz(bands, flags, cbw_flags);
1733 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1734 
1735 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1736 }
1737 
1738 /*
1739  * Locate a channel given a frequency+flags.  We cache
1740  * the previous lookup to optimize switching between two
1741  * channels--as happens with dynamic turbo.
1742  */
1743 struct ieee80211_channel *
1744 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1745 {
1746 	struct ieee80211_channel *c;
1747 
1748 	flags &= IEEE80211_CHAN_ALLTURBO;
1749 	c = ic->ic_prevchan;
1750 	if (c != NULL && c->ic_freq == freq &&
1751 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1752 		return c;
1753 	/* brute force search */
1754 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1755 }
1756 
1757 /*
1758  * Locate a channel given a channel number+flags.  We cache
1759  * the previous lookup to optimize switching between two
1760  * channels--as happens with dynamic turbo.
1761  */
1762 struct ieee80211_channel *
1763 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1764 {
1765 	struct ieee80211_channel *c;
1766 	int i;
1767 
1768 	flags &= IEEE80211_CHAN_ALLTURBO;
1769 	c = ic->ic_prevchan;
1770 	if (c != NULL && c->ic_ieee == ieee &&
1771 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1772 		return c;
1773 	/* brute force search */
1774 	for (i = 0; i < ic->ic_nchans; i++) {
1775 		c = &ic->ic_channels[i];
1776 		if (c->ic_ieee == ieee &&
1777 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1778 			return c;
1779 	}
1780 	return NULL;
1781 }
1782 
1783 /*
1784  * Lookup a channel suitable for the given rx status.
1785  *
1786  * This is used to find a channel for a frame (eg beacon, probe
1787  * response) based purely on the received PHY information.
1788  *
1789  * For now it tries to do it based on R_FREQ / R_IEEE.
1790  * This is enough for 11bg and 11a (and thus 11ng/11na)
1791  * but it will not be enough for GSM, PSB channels and the
1792  * like.  It also doesn't know about legacy-turbog and
1793  * legacy-turbo modes, which some offload NICs actually
1794  * support in weird ways.
1795  *
1796  * Takes the ic and rxstatus; returns the channel or NULL
1797  * if not found.
1798  *
1799  * XXX TODO: Add support for that when the need arises.
1800  */
1801 struct ieee80211_channel *
1802 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1803     const struct ieee80211_rx_stats *rxs)
1804 {
1805 	struct ieee80211com *ic = vap->iv_ic;
1806 	uint32_t flags;
1807 	struct ieee80211_channel *c;
1808 
1809 	if (rxs == NULL)
1810 		return (NULL);
1811 
1812 	/*
1813 	 * Strictly speaking we only use freq for now,
1814 	 * however later on we may wish to just store
1815 	 * the ieee for verification.
1816 	 */
1817 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1818 		return (NULL);
1819 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1820 		return (NULL);
1821 	if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1822 		return (NULL);
1823 
1824 	/*
1825 	 * If the rx status contains a valid ieee/freq, then
1826 	 * ensure we populate the correct channel information
1827 	 * in rxchan before passing it up to the scan infrastructure.
1828 	 * Offload NICs will pass up beacons from all channels
1829 	 * during background scans.
1830 	 */
1831 
1832 	/* Determine a band */
1833 	switch (rxs->c_band) {
1834 	case IEEE80211_CHAN_2GHZ:
1835 		flags = IEEE80211_CHAN_G;
1836 		break;
1837 	case IEEE80211_CHAN_5GHZ:
1838 		flags = IEEE80211_CHAN_A;
1839 		break;
1840 	default:
1841 		if (rxs->c_freq < 3000) {
1842 			flags = IEEE80211_CHAN_G;
1843 		} else {
1844 			flags = IEEE80211_CHAN_A;
1845 		}
1846 		break;
1847 	}
1848 
1849 	/* Channel lookup */
1850 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1851 
1852 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1853 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1854 	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1855 
1856 	return (c);
1857 }
1858 
1859 static void
1860 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1861 {
1862 #define	ADD(_ic, _s, _o) \
1863 	ifmedia_add(media, \
1864 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1865 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1866 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1867 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1868 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1869 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1870 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1871 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1872 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1873 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1874 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1875 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1876 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1877 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1878 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1879 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1880 	};
1881 	u_int mopt;
1882 
1883 	mopt = mopts[mode];
1884 	if (addsta)
1885 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1886 	if (caps & IEEE80211_C_IBSS)
1887 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1888 	if (caps & IEEE80211_C_HOSTAP)
1889 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1890 	if (caps & IEEE80211_C_AHDEMO)
1891 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1892 	if (caps & IEEE80211_C_MONITOR)
1893 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1894 	if (caps & IEEE80211_C_WDS)
1895 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1896 	if (caps & IEEE80211_C_MBSS)
1897 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1898 #undef ADD
1899 }
1900 
1901 /*
1902  * Setup the media data structures according to the channel and
1903  * rate tables.
1904  */
1905 static int
1906 ieee80211_media_setup(struct ieee80211com *ic,
1907 	struct ifmedia *media, int caps, int addsta,
1908 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1909 {
1910 	int i, j, rate, maxrate, mword, r;
1911 	enum ieee80211_phymode mode;
1912 	const struct ieee80211_rateset *rs;
1913 	struct ieee80211_rateset allrates;
1914 
1915 	/*
1916 	 * Fill in media characteristics.
1917 	 */
1918 	ifmedia_init(media, 0, media_change, media_stat);
1919 	maxrate = 0;
1920 	/*
1921 	 * Add media for legacy operating modes.
1922 	 */
1923 	memset(&allrates, 0, sizeof(allrates));
1924 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1925 		if (isclr(ic->ic_modecaps, mode))
1926 			continue;
1927 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1928 		if (mode == IEEE80211_MODE_AUTO)
1929 			continue;
1930 		rs = &ic->ic_sup_rates[mode];
1931 		for (i = 0; i < rs->rs_nrates; i++) {
1932 			rate = rs->rs_rates[i];
1933 			mword = ieee80211_rate2media(ic, rate, mode);
1934 			if (mword == 0)
1935 				continue;
1936 			addmedia(media, caps, addsta, mode, mword);
1937 			/*
1938 			 * Add legacy rate to the collection of all rates.
1939 			 */
1940 			r = rate & IEEE80211_RATE_VAL;
1941 			for (j = 0; j < allrates.rs_nrates; j++)
1942 				if (allrates.rs_rates[j] == r)
1943 					break;
1944 			if (j == allrates.rs_nrates) {
1945 				/* unique, add to the set */
1946 				allrates.rs_rates[j] = r;
1947 				allrates.rs_nrates++;
1948 			}
1949 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1950 			if (rate > maxrate)
1951 				maxrate = rate;
1952 		}
1953 	}
1954 	for (i = 0; i < allrates.rs_nrates; i++) {
1955 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1956 				IEEE80211_MODE_AUTO);
1957 		if (mword == 0)
1958 			continue;
1959 		/* NB: remove media options from mword */
1960 		addmedia(media, caps, addsta,
1961 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1962 	}
1963 	/*
1964 	 * Add HT/11n media.  Note that we do not have enough
1965 	 * bits in the media subtype to express the MCS so we
1966 	 * use a "placeholder" media subtype and any fixed MCS
1967 	 * must be specified with a different mechanism.
1968 	 */
1969 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1970 		if (isclr(ic->ic_modecaps, mode))
1971 			continue;
1972 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1973 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1974 	}
1975 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1976 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1977 		addmedia(media, caps, addsta,
1978 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1979 		i = ic->ic_txstream * 8 - 1;
1980 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1981 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1982 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1983 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1984 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1985 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1986 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1987 		else
1988 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1989 		if (rate > maxrate)
1990 			maxrate = rate;
1991 	}
1992 
1993 	/*
1994 	 * Add VHT media.
1995 	 * XXX-BZ skip "VHT_2GHZ" for now.
1996 	 */
1997 	for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
1998 	    mode++) {
1999 		if (isclr(ic->ic_modecaps, mode))
2000 			continue;
2001 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2002 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2003 	}
2004 	if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2005 	       addmedia(media, caps, addsta,
2006 		   IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2007 
2008 		/* XXX TODO: VHT maxrate */
2009 	}
2010 
2011 	return maxrate;
2012 }
2013 
2014 /* XXX inline or eliminate? */
2015 const struct ieee80211_rateset *
2016 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2017 {
2018 	/* XXX does this work for 11ng basic rates? */
2019 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2020 }
2021 
2022 /* XXX inline or eliminate? */
2023 const struct ieee80211_htrateset *
2024 ieee80211_get_suphtrates(struct ieee80211com *ic,
2025     const struct ieee80211_channel *c)
2026 {
2027 	return &ic->ic_sup_htrates;
2028 }
2029 
2030 void
2031 ieee80211_announce(struct ieee80211com *ic)
2032 {
2033 	int i, rate, mword;
2034 	enum ieee80211_phymode mode;
2035 	const struct ieee80211_rateset *rs;
2036 
2037 	/* NB: skip AUTO since it has no rates */
2038 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2039 		if (isclr(ic->ic_modecaps, mode))
2040 			continue;
2041 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2042 		rs = &ic->ic_sup_rates[mode];
2043 		for (i = 0; i < rs->rs_nrates; i++) {
2044 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
2045 			if (mword == 0)
2046 				continue;
2047 			rate = ieee80211_media2rate(mword);
2048 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
2049 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2050 		}
2051 		printf("\n");
2052 	}
2053 	ieee80211_ht_announce(ic);
2054 	ieee80211_vht_announce(ic);
2055 }
2056 
2057 void
2058 ieee80211_announce_channels(struct ieee80211com *ic)
2059 {
2060 	const struct ieee80211_channel *c;
2061 	char type;
2062 	int i, cw;
2063 
2064 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
2065 	for (i = 0; i < ic->ic_nchans; i++) {
2066 		c = &ic->ic_channels[i];
2067 		if (IEEE80211_IS_CHAN_ST(c))
2068 			type = 'S';
2069 		else if (IEEE80211_IS_CHAN_108A(c))
2070 			type = 'T';
2071 		else if (IEEE80211_IS_CHAN_108G(c))
2072 			type = 'G';
2073 		else if (IEEE80211_IS_CHAN_HT(c))
2074 			type = 'n';
2075 		else if (IEEE80211_IS_CHAN_A(c))
2076 			type = 'a';
2077 		else if (IEEE80211_IS_CHAN_ANYG(c))
2078 			type = 'g';
2079 		else if (IEEE80211_IS_CHAN_B(c))
2080 			type = 'b';
2081 		else
2082 			type = 'f';
2083 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2084 			cw = 40;
2085 		else if (IEEE80211_IS_CHAN_HALF(c))
2086 			cw = 10;
2087 		else if (IEEE80211_IS_CHAN_QUARTER(c))
2088 			cw = 5;
2089 		else
2090 			cw = 20;
2091 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2092 			, c->ic_ieee, c->ic_freq, type
2093 			, cw
2094 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2095 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2096 			, c->ic_maxregpower
2097 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2098 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2099 		);
2100 	}
2101 }
2102 
2103 static int
2104 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2105 {
2106 	switch (IFM_MODE(ime->ifm_media)) {
2107 	case IFM_IEEE80211_11A:
2108 		*mode = IEEE80211_MODE_11A;
2109 		break;
2110 	case IFM_IEEE80211_11B:
2111 		*mode = IEEE80211_MODE_11B;
2112 		break;
2113 	case IFM_IEEE80211_11G:
2114 		*mode = IEEE80211_MODE_11G;
2115 		break;
2116 	case IFM_IEEE80211_FH:
2117 		*mode = IEEE80211_MODE_FH;
2118 		break;
2119 	case IFM_IEEE80211_11NA:
2120 		*mode = IEEE80211_MODE_11NA;
2121 		break;
2122 	case IFM_IEEE80211_11NG:
2123 		*mode = IEEE80211_MODE_11NG;
2124 		break;
2125 	case IFM_IEEE80211_VHT2G:
2126 		*mode = IEEE80211_MODE_VHT_2GHZ;
2127 		break;
2128 	case IFM_IEEE80211_VHT5G:
2129 		*mode = IEEE80211_MODE_VHT_5GHZ;
2130 		break;
2131 	case IFM_AUTO:
2132 		*mode = IEEE80211_MODE_AUTO;
2133 		break;
2134 	default:
2135 		return 0;
2136 	}
2137 	/*
2138 	 * Turbo mode is an ``option''.
2139 	 * XXX does not apply to AUTO
2140 	 */
2141 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2142 		if (*mode == IEEE80211_MODE_11A) {
2143 			if (flags & IEEE80211_F_TURBOP)
2144 				*mode = IEEE80211_MODE_TURBO_A;
2145 			else
2146 				*mode = IEEE80211_MODE_STURBO_A;
2147 		} else if (*mode == IEEE80211_MODE_11G)
2148 			*mode = IEEE80211_MODE_TURBO_G;
2149 		else
2150 			return 0;
2151 	}
2152 	/* XXX HT40 +/- */
2153 	return 1;
2154 }
2155 
2156 /*
2157  * Handle a media change request on the vap interface.
2158  */
2159 int
2160 ieee80211_media_change(struct ifnet *ifp)
2161 {
2162 	struct ieee80211vap *vap = ifp->if_softc;
2163 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2164 	uint16_t newmode;
2165 
2166 	if (!media2mode(ime, vap->iv_flags, &newmode))
2167 		return EINVAL;
2168 	if (vap->iv_des_mode != newmode) {
2169 		vap->iv_des_mode = newmode;
2170 		/* XXX kick state machine if up+running */
2171 	}
2172 	return 0;
2173 }
2174 
2175 /*
2176  * Common code to calculate the media status word
2177  * from the operating mode and channel state.
2178  */
2179 static int
2180 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2181 {
2182 	int status;
2183 
2184 	status = IFM_IEEE80211;
2185 	switch (opmode) {
2186 	case IEEE80211_M_STA:
2187 		break;
2188 	case IEEE80211_M_IBSS:
2189 		status |= IFM_IEEE80211_ADHOC;
2190 		break;
2191 	case IEEE80211_M_HOSTAP:
2192 		status |= IFM_IEEE80211_HOSTAP;
2193 		break;
2194 	case IEEE80211_M_MONITOR:
2195 		status |= IFM_IEEE80211_MONITOR;
2196 		break;
2197 	case IEEE80211_M_AHDEMO:
2198 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2199 		break;
2200 	case IEEE80211_M_WDS:
2201 		status |= IFM_IEEE80211_WDS;
2202 		break;
2203 	case IEEE80211_M_MBSS:
2204 		status |= IFM_IEEE80211_MBSS;
2205 		break;
2206 	}
2207 	if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2208 		status |= IFM_IEEE80211_VHT5G;
2209 	} else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2210 		status |= IFM_IEEE80211_VHT2G;
2211 	} else if (IEEE80211_IS_CHAN_HTA(chan)) {
2212 		status |= IFM_IEEE80211_11NA;
2213 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2214 		status |= IFM_IEEE80211_11NG;
2215 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2216 		status |= IFM_IEEE80211_11A;
2217 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2218 		status |= IFM_IEEE80211_11B;
2219 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2220 		status |= IFM_IEEE80211_11G;
2221 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2222 		status |= IFM_IEEE80211_FH;
2223 	}
2224 	/* XXX else complain? */
2225 
2226 	if (IEEE80211_IS_CHAN_TURBO(chan))
2227 		status |= IFM_IEEE80211_TURBO;
2228 #if 0
2229 	if (IEEE80211_IS_CHAN_HT20(chan))
2230 		status |= IFM_IEEE80211_HT20;
2231 	if (IEEE80211_IS_CHAN_HT40(chan))
2232 		status |= IFM_IEEE80211_HT40;
2233 #endif
2234 	return status;
2235 }
2236 
2237 void
2238 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2239 {
2240 	struct ieee80211vap *vap = ifp->if_softc;
2241 	struct ieee80211com *ic = vap->iv_ic;
2242 	enum ieee80211_phymode mode;
2243 
2244 	imr->ifm_status = IFM_AVALID;
2245 	/*
2246 	 * NB: use the current channel's mode to lock down a xmit
2247 	 * rate only when running; otherwise we may have a mismatch
2248 	 * in which case the rate will not be convertible.
2249 	 */
2250 	if (vap->iv_state == IEEE80211_S_RUN ||
2251 	    vap->iv_state == IEEE80211_S_SLEEP) {
2252 		imr->ifm_status |= IFM_ACTIVE;
2253 		mode = ieee80211_chan2mode(ic->ic_curchan);
2254 	} else
2255 		mode = IEEE80211_MODE_AUTO;
2256 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2257 	/*
2258 	 * Calculate a current rate if possible.
2259 	 */
2260 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2261 		/*
2262 		 * A fixed rate is set, report that.
2263 		 */
2264 		imr->ifm_active |= ieee80211_rate2media(ic,
2265 			vap->iv_txparms[mode].ucastrate, mode);
2266 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2267 		/*
2268 		 * In station mode report the current transmit rate.
2269 		 */
2270 		imr->ifm_active |= ieee80211_rate2media(ic,
2271 			vap->iv_bss->ni_txrate, mode);
2272 	} else
2273 		imr->ifm_active |= IFM_AUTO;
2274 	if (imr->ifm_status & IFM_ACTIVE)
2275 		imr->ifm_current = imr->ifm_active;
2276 }
2277 
2278 /*
2279  * Set the current phy mode and recalculate the active channel
2280  * set based on the available channels for this mode.  Also
2281  * select a new default/current channel if the current one is
2282  * inappropriate for this mode.
2283  */
2284 int
2285 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2286 {
2287 	/*
2288 	 * Adjust basic rates in 11b/11g supported rate set.
2289 	 * Note that if operating on a hal/quarter rate channel
2290 	 * this is a noop as those rates sets are different
2291 	 * and used instead.
2292 	 */
2293 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2294 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2295 
2296 	ic->ic_curmode = mode;
2297 	ieee80211_reset_erp(ic);	/* reset global ERP state */
2298 
2299 	return 0;
2300 }
2301 
2302 /*
2303  * Return the phy mode for with the specified channel.
2304  */
2305 enum ieee80211_phymode
2306 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2307 {
2308 
2309 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2310 		return IEEE80211_MODE_VHT_2GHZ;
2311 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2312 		return IEEE80211_MODE_VHT_5GHZ;
2313 	else if (IEEE80211_IS_CHAN_HTA(chan))
2314 		return IEEE80211_MODE_11NA;
2315 	else if (IEEE80211_IS_CHAN_HTG(chan))
2316 		return IEEE80211_MODE_11NG;
2317 	else if (IEEE80211_IS_CHAN_108G(chan))
2318 		return IEEE80211_MODE_TURBO_G;
2319 	else if (IEEE80211_IS_CHAN_ST(chan))
2320 		return IEEE80211_MODE_STURBO_A;
2321 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2322 		return IEEE80211_MODE_TURBO_A;
2323 	else if (IEEE80211_IS_CHAN_HALF(chan))
2324 		return IEEE80211_MODE_HALF;
2325 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2326 		return IEEE80211_MODE_QUARTER;
2327 	else if (IEEE80211_IS_CHAN_A(chan))
2328 		return IEEE80211_MODE_11A;
2329 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2330 		return IEEE80211_MODE_11G;
2331 	else if (IEEE80211_IS_CHAN_B(chan))
2332 		return IEEE80211_MODE_11B;
2333 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2334 		return IEEE80211_MODE_FH;
2335 
2336 	/* NB: should not get here */
2337 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2338 		__func__, chan->ic_freq, chan->ic_flags);
2339 	return IEEE80211_MODE_11B;
2340 }
2341 
2342 struct ratemedia {
2343 	u_int	match;	/* rate + mode */
2344 	u_int	media;	/* if_media rate */
2345 };
2346 
2347 static int
2348 findmedia(const struct ratemedia rates[], int n, u_int match)
2349 {
2350 	int i;
2351 
2352 	for (i = 0; i < n; i++)
2353 		if (rates[i].match == match)
2354 			return rates[i].media;
2355 	return IFM_AUTO;
2356 }
2357 
2358 /*
2359  * Convert IEEE80211 rate value to ifmedia subtype.
2360  * Rate is either a legacy rate in units of 0.5Mbps
2361  * or an MCS index.
2362  */
2363 int
2364 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2365 {
2366 	static const struct ratemedia rates[] = {
2367 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2368 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2369 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2370 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2371 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2372 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2373 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2374 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2375 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2376 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2377 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2378 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2379 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2380 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2381 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2382 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2383 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2384 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2385 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2386 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2387 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2388 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2389 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2390 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2391 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2392 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2393 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2394 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2395 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2396 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2397 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2398 	};
2399 	static const struct ratemedia htrates[] = {
2400 		{   0, IFM_IEEE80211_MCS },
2401 		{   1, IFM_IEEE80211_MCS },
2402 		{   2, IFM_IEEE80211_MCS },
2403 		{   3, IFM_IEEE80211_MCS },
2404 		{   4, IFM_IEEE80211_MCS },
2405 		{   5, IFM_IEEE80211_MCS },
2406 		{   6, IFM_IEEE80211_MCS },
2407 		{   7, IFM_IEEE80211_MCS },
2408 		{   8, IFM_IEEE80211_MCS },
2409 		{   9, IFM_IEEE80211_MCS },
2410 		{  10, IFM_IEEE80211_MCS },
2411 		{  11, IFM_IEEE80211_MCS },
2412 		{  12, IFM_IEEE80211_MCS },
2413 		{  13, IFM_IEEE80211_MCS },
2414 		{  14, IFM_IEEE80211_MCS },
2415 		{  15, IFM_IEEE80211_MCS },
2416 		{  16, IFM_IEEE80211_MCS },
2417 		{  17, IFM_IEEE80211_MCS },
2418 		{  18, IFM_IEEE80211_MCS },
2419 		{  19, IFM_IEEE80211_MCS },
2420 		{  20, IFM_IEEE80211_MCS },
2421 		{  21, IFM_IEEE80211_MCS },
2422 		{  22, IFM_IEEE80211_MCS },
2423 		{  23, IFM_IEEE80211_MCS },
2424 		{  24, IFM_IEEE80211_MCS },
2425 		{  25, IFM_IEEE80211_MCS },
2426 		{  26, IFM_IEEE80211_MCS },
2427 		{  27, IFM_IEEE80211_MCS },
2428 		{  28, IFM_IEEE80211_MCS },
2429 		{  29, IFM_IEEE80211_MCS },
2430 		{  30, IFM_IEEE80211_MCS },
2431 		{  31, IFM_IEEE80211_MCS },
2432 		{  32, IFM_IEEE80211_MCS },
2433 		{  33, IFM_IEEE80211_MCS },
2434 		{  34, IFM_IEEE80211_MCS },
2435 		{  35, IFM_IEEE80211_MCS },
2436 		{  36, IFM_IEEE80211_MCS },
2437 		{  37, IFM_IEEE80211_MCS },
2438 		{  38, IFM_IEEE80211_MCS },
2439 		{  39, IFM_IEEE80211_MCS },
2440 		{  40, IFM_IEEE80211_MCS },
2441 		{  41, IFM_IEEE80211_MCS },
2442 		{  42, IFM_IEEE80211_MCS },
2443 		{  43, IFM_IEEE80211_MCS },
2444 		{  44, IFM_IEEE80211_MCS },
2445 		{  45, IFM_IEEE80211_MCS },
2446 		{  46, IFM_IEEE80211_MCS },
2447 		{  47, IFM_IEEE80211_MCS },
2448 		{  48, IFM_IEEE80211_MCS },
2449 		{  49, IFM_IEEE80211_MCS },
2450 		{  50, IFM_IEEE80211_MCS },
2451 		{  51, IFM_IEEE80211_MCS },
2452 		{  52, IFM_IEEE80211_MCS },
2453 		{  53, IFM_IEEE80211_MCS },
2454 		{  54, IFM_IEEE80211_MCS },
2455 		{  55, IFM_IEEE80211_MCS },
2456 		{  56, IFM_IEEE80211_MCS },
2457 		{  57, IFM_IEEE80211_MCS },
2458 		{  58, IFM_IEEE80211_MCS },
2459 		{  59, IFM_IEEE80211_MCS },
2460 		{  60, IFM_IEEE80211_MCS },
2461 		{  61, IFM_IEEE80211_MCS },
2462 		{  62, IFM_IEEE80211_MCS },
2463 		{  63, IFM_IEEE80211_MCS },
2464 		{  64, IFM_IEEE80211_MCS },
2465 		{  65, IFM_IEEE80211_MCS },
2466 		{  66, IFM_IEEE80211_MCS },
2467 		{  67, IFM_IEEE80211_MCS },
2468 		{  68, IFM_IEEE80211_MCS },
2469 		{  69, IFM_IEEE80211_MCS },
2470 		{  70, IFM_IEEE80211_MCS },
2471 		{  71, IFM_IEEE80211_MCS },
2472 		{  72, IFM_IEEE80211_MCS },
2473 		{  73, IFM_IEEE80211_MCS },
2474 		{  74, IFM_IEEE80211_MCS },
2475 		{  75, IFM_IEEE80211_MCS },
2476 		{  76, IFM_IEEE80211_MCS },
2477 	};
2478 	static const struct ratemedia vhtrates[] = {
2479 		{   0, IFM_IEEE80211_VHT },
2480 		{   1, IFM_IEEE80211_VHT },
2481 		{   2, IFM_IEEE80211_VHT },
2482 		{   3, IFM_IEEE80211_VHT },
2483 		{   4, IFM_IEEE80211_VHT },
2484 		{   5, IFM_IEEE80211_VHT },
2485 		{   6, IFM_IEEE80211_VHT },
2486 		{   7, IFM_IEEE80211_VHT },
2487 		{   8, IFM_IEEE80211_VHT },	/* Optional. */
2488 		{   9, IFM_IEEE80211_VHT },	/* Optional. */
2489 #if 0
2490 		/* Some QCA and BRCM seem to support this; offspec. */
2491 		{  10, IFM_IEEE80211_VHT },
2492 		{  11, IFM_IEEE80211_VHT },
2493 #endif
2494 	};
2495 	int m;
2496 
2497 	/*
2498 	 * Check 11ac/11n rates first for match as an MCS.
2499 	 */
2500 	if (mode == IEEE80211_MODE_VHT_5GHZ) {
2501 		if (rate & IFM_IEEE80211_VHT) {
2502 			rate &= ~IFM_IEEE80211_VHT;
2503 			m = findmedia(vhtrates, nitems(vhtrates), rate);
2504 			if (m != IFM_AUTO)
2505 				return (m | IFM_IEEE80211_VHT);
2506 		}
2507 	} else if (mode == IEEE80211_MODE_11NA) {
2508 		if (rate & IEEE80211_RATE_MCS) {
2509 			rate &= ~IEEE80211_RATE_MCS;
2510 			m = findmedia(htrates, nitems(htrates), rate);
2511 			if (m != IFM_AUTO)
2512 				return m | IFM_IEEE80211_11NA;
2513 		}
2514 	} else if (mode == IEEE80211_MODE_11NG) {
2515 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2516 		if (rate & IEEE80211_RATE_MCS) {
2517 			rate &= ~IEEE80211_RATE_MCS;
2518 			m = findmedia(htrates, nitems(htrates), rate);
2519 			if (m != IFM_AUTO)
2520 				return m | IFM_IEEE80211_11NG;
2521 		}
2522 	}
2523 	rate &= IEEE80211_RATE_VAL;
2524 	switch (mode) {
2525 	case IEEE80211_MODE_11A:
2526 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2527 	case IEEE80211_MODE_QUARTER:
2528 	case IEEE80211_MODE_11NA:
2529 	case IEEE80211_MODE_TURBO_A:
2530 	case IEEE80211_MODE_STURBO_A:
2531 		return findmedia(rates, nitems(rates),
2532 		    rate | IFM_IEEE80211_11A);
2533 	case IEEE80211_MODE_11B:
2534 		return findmedia(rates, nitems(rates),
2535 		    rate | IFM_IEEE80211_11B);
2536 	case IEEE80211_MODE_FH:
2537 		return findmedia(rates, nitems(rates),
2538 		    rate | IFM_IEEE80211_FH);
2539 	case IEEE80211_MODE_AUTO:
2540 		/* NB: ic may be NULL for some drivers */
2541 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2542 			return findmedia(rates, nitems(rates),
2543 			    rate | IFM_IEEE80211_FH);
2544 		/* NB: hack, 11g matches both 11b+11a rates */
2545 		/* fall thru... */
2546 	case IEEE80211_MODE_11G:
2547 	case IEEE80211_MODE_11NG:
2548 	case IEEE80211_MODE_TURBO_G:
2549 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2550 	case IEEE80211_MODE_VHT_2GHZ:
2551 	case IEEE80211_MODE_VHT_5GHZ:
2552 		/* XXX TODO: need to figure out mapping for VHT rates */
2553 		return IFM_AUTO;
2554 	}
2555 	return IFM_AUTO;
2556 }
2557 
2558 int
2559 ieee80211_media2rate(int mword)
2560 {
2561 	static const int ieeerates[] = {
2562 		-1,		/* IFM_AUTO */
2563 		0,		/* IFM_MANUAL */
2564 		0,		/* IFM_NONE */
2565 		2,		/* IFM_IEEE80211_FH1 */
2566 		4,		/* IFM_IEEE80211_FH2 */
2567 		2,		/* IFM_IEEE80211_DS1 */
2568 		4,		/* IFM_IEEE80211_DS2 */
2569 		11,		/* IFM_IEEE80211_DS5 */
2570 		22,		/* IFM_IEEE80211_DS11 */
2571 		44,		/* IFM_IEEE80211_DS22 */
2572 		12,		/* IFM_IEEE80211_OFDM6 */
2573 		18,		/* IFM_IEEE80211_OFDM9 */
2574 		24,		/* IFM_IEEE80211_OFDM12 */
2575 		36,		/* IFM_IEEE80211_OFDM18 */
2576 		48,		/* IFM_IEEE80211_OFDM24 */
2577 		72,		/* IFM_IEEE80211_OFDM36 */
2578 		96,		/* IFM_IEEE80211_OFDM48 */
2579 		108,		/* IFM_IEEE80211_OFDM54 */
2580 		144,		/* IFM_IEEE80211_OFDM72 */
2581 		0,		/* IFM_IEEE80211_DS354k */
2582 		0,		/* IFM_IEEE80211_DS512k */
2583 		6,		/* IFM_IEEE80211_OFDM3 */
2584 		9,		/* IFM_IEEE80211_OFDM4 */
2585 		54,		/* IFM_IEEE80211_OFDM27 */
2586 		-1,		/* IFM_IEEE80211_MCS */
2587 		-1,		/* IFM_IEEE80211_VHT */
2588 	};
2589 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2590 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2591 }
2592 
2593 /*
2594  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2595  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2596  */
2597 #define	mix(a, b, c)							\
2598 do {									\
2599 	a -= b; a -= c; a ^= (c >> 13);					\
2600 	b -= c; b -= a; b ^= (a << 8);					\
2601 	c -= a; c -= b; c ^= (b >> 13);					\
2602 	a -= b; a -= c; a ^= (c >> 12);					\
2603 	b -= c; b -= a; b ^= (a << 16);					\
2604 	c -= a; c -= b; c ^= (b >> 5);					\
2605 	a -= b; a -= c; a ^= (c >> 3);					\
2606 	b -= c; b -= a; b ^= (a << 10);					\
2607 	c -= a; c -= b; c ^= (b >> 15);					\
2608 } while (/*CONSTCOND*/0)
2609 
2610 uint32_t
2611 ieee80211_mac_hash(const struct ieee80211com *ic,
2612 	const uint8_t addr[IEEE80211_ADDR_LEN])
2613 {
2614 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2615 
2616 	b += addr[5] << 8;
2617 	b += addr[4];
2618 	a += addr[3] << 24;
2619 	a += addr[2] << 16;
2620 	a += addr[1] << 8;
2621 	a += addr[0];
2622 
2623 	mix(a, b, c);
2624 
2625 	return c;
2626 }
2627 #undef mix
2628 
2629 char
2630 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2631 {
2632 	if (IEEE80211_IS_CHAN_ST(c))
2633 		return 'S';
2634 	if (IEEE80211_IS_CHAN_108A(c))
2635 		return 'T';
2636 	if (IEEE80211_IS_CHAN_108G(c))
2637 		return 'G';
2638 	if (IEEE80211_IS_CHAN_VHT(c))
2639 		return 'v';
2640 	if (IEEE80211_IS_CHAN_HT(c))
2641 		return 'n';
2642 	if (IEEE80211_IS_CHAN_A(c))
2643 		return 'a';
2644 	if (IEEE80211_IS_CHAN_ANYG(c))
2645 		return 'g';
2646 	if (IEEE80211_IS_CHAN_B(c))
2647 		return 'b';
2648 	return 'f';
2649 }
2650