1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2004-2009 University of Zagreb 5 * Copyright (c) 2006-2009 FreeBSD Foundation 6 * All rights reserved. 7 * 8 * This software was developed by the University of Zagreb and the 9 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 10 * FreeBSD Foundation. 11 * 12 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 13 * Copyright (c) 2009 Robert N. M. Watson 14 * All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 #include "opt_ddb.h" 40 #include "opt_kdb.h" 41 42 #include <sys/param.h> 43 #include <sys/kdb.h> 44 #include <sys/kernel.h> 45 #include <sys/jail.h> 46 #include <sys/sdt.h> 47 #include <sys/systm.h> 48 #include <sys/sysctl.h> 49 #include <sys/eventhandler.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/proc.h> 53 #include <sys/socket.h> 54 #include <sys/sx.h> 55 #include <sys/sysctl.h> 56 57 #include <machine/stdarg.h> 58 59 #ifdef DDB 60 #include <ddb/ddb.h> 61 #include <ddb/db_sym.h> 62 #endif 63 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/vnet.h> 67 68 /*- 69 * This file implements core functions for virtual network stacks: 70 * 71 * - Virtual network stack management functions. 72 * 73 * - Virtual network stack memory allocator, which virtualizes global 74 * variables in the network stack 75 * 76 * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems 77 * to register startup/shutdown events to be run for each virtual network 78 * stack instance. 79 */ 80 81 FEATURE(vimage, "VIMAGE kernel virtualization"); 82 83 static MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); 84 85 /* 86 * The virtual network stack list has two read-write locks, one sleepable and 87 * the other not, so that the list can be stablized and walked in a variety 88 * of network stack contexts. Both must be acquired exclusively to modify 89 * the list, but a read lock of either lock is sufficient to walk the list. 90 */ 91 struct rwlock vnet_rwlock; 92 struct sx vnet_sxlock; 93 94 #define VNET_LIST_WLOCK() do { \ 95 sx_xlock(&vnet_sxlock); \ 96 rw_wlock(&vnet_rwlock); \ 97 } while (0) 98 99 #define VNET_LIST_WUNLOCK() do { \ 100 rw_wunlock(&vnet_rwlock); \ 101 sx_xunlock(&vnet_sxlock); \ 102 } while (0) 103 104 struct vnet_list_head vnet_head; 105 struct vnet *vnet0; 106 107 /* 108 * The virtual network stack allocator provides storage for virtualized 109 * global variables. These variables are defined/declared using the 110 * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' 111 * linker set. The details of the implementation are somewhat subtle, but 112 * allow the majority of most network subsystems to maintain 113 * virtualization-agnostic. 114 * 115 * The virtual network stack allocator handles variables in the base kernel 116 * vs. modules in similar but different ways. In both cases, virtualized 117 * global variables are marked as such by being declared to be part of the 118 * vnet linker set. These "master" copies of global variables serve two 119 * functions: 120 * 121 * (1) They contain static initialization or "default" values for global 122 * variables which will be propagated to each virtual network stack 123 * instance when created. As with normal global variables, they default 124 * to zero-filled. 125 * 126 * (2) They act as unique global names by which the variable can be referred 127 * to, regardless of network stack instance. The single global symbol 128 * will be used to calculate the location of a per-virtual instance 129 * variable at run-time. 130 * 131 * Each virtual network stack instance has a complete copy of each 132 * virtualized global variable, stored in a malloc'd block of memory 133 * referred to by vnet->vnet_data_mem. Critical to the design is that each 134 * per-instance memory block is laid out identically to the master block so 135 * that the offset of each global variable is the same across all blocks. To 136 * optimize run-time access, a precalculated 'base' address, 137 * vnet->vnet_data_base, is stored in each vnet, and is the amount that can 138 * be added to the address of a 'master' instance of a variable to get to the 139 * per-vnet instance. 140 * 141 * Virtualized global variables are handled in a similar manner, but as each 142 * module has its own 'set_vnet' linker set, and we want to keep all 143 * virtualized globals togther, we reserve space in the kernel's linker set 144 * for potential module variables using a per-vnet character array, 145 * 'modspace'. The virtual network stack allocator maintains a free list to 146 * track what space in the array is free (all, initially) and as modules are 147 * linked, allocates portions of the space to specific globals. The kernel 148 * module linker queries the virtual network stack allocator and will 149 * bind references of the global to the location during linking. It also 150 * calls into the virtual network stack allocator, once the memory is 151 * initialized, in order to propagate the new static initializations to all 152 * existing virtual network stack instances so that the soon-to-be executing 153 * module will find every network stack instance with proper default values. 154 */ 155 156 /* 157 * Number of bytes of data in the 'set_vnet' linker set, and hence the total 158 * size of all kernel virtualized global variables, and the malloc(9) type 159 * that will be used to allocate it. 160 */ 161 #define VNET_BYTES (VNET_STOP - VNET_START) 162 163 static MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); 164 165 /* 166 * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of 167 * global variables across all loaded modules. As this actually sizes an 168 * array declared as a virtualized global variable in the kernel itself, and 169 * we want the virtualized global variable space to be page-sized, we may 170 * have more space than that in practice. 171 */ 172 #define VNET_MODMIN (8 * PAGE_SIZE) 173 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) 174 175 /* 176 * Space to store virtualized global variables from loadable kernel modules, 177 * and the free list to manage it. 178 */ 179 VNET_DEFINE_STATIC(char, modspace[VNET_MODMIN] __aligned(__alignof(void *))); 180 181 /* 182 * Global lists of subsystem constructor and destructors for vnets. They are 183 * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are 184 * protected by the vnet_sysinit_sxlock global lock. 185 */ 186 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = 187 TAILQ_HEAD_INITIALIZER(vnet_constructors); 188 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = 189 TAILQ_HEAD_INITIALIZER(vnet_destructors); 190 191 struct sx vnet_sysinit_sxlock; 192 193 #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); 194 #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); 195 #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); 196 #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); 197 198 struct vnet_data_free { 199 uintptr_t vnd_start; 200 int vnd_len; 201 TAILQ_ENTRY(vnet_data_free) vnd_link; 202 }; 203 204 static MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", 205 "VNET resource accounting"); 206 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = 207 TAILQ_HEAD_INITIALIZER(vnet_data_free_head); 208 static struct sx vnet_data_free_lock; 209 210 SDT_PROVIDER_DEFINE(vnet); 211 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int"); 212 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int", 213 "struct vnet *"); 214 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return, 215 "int", "struct vnet *"); 216 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry, 217 "int", "struct vnet *"); 218 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return, 219 "int"); 220 221 /* 222 * Run per-vnet sysinits or sysuninits during vnet creation/destruction. 223 */ 224 static void vnet_sysinit(void); 225 static void vnet_sysuninit(void); 226 227 #ifdef DDB 228 static void db_show_vnet_print_vs(struct vnet_sysinit *, int); 229 #endif 230 231 /* 232 * Allocate a virtual network stack. 233 */ 234 struct vnet * 235 vnet_alloc(void) 236 { 237 struct vnet *vnet; 238 239 SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__); 240 vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); 241 vnet->vnet_magic_n = VNET_MAGIC_N; 242 SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet); 243 244 /* 245 * Allocate storage for virtualized global variables and copy in 246 * initial values from our 'master' copy. 247 */ 248 vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); 249 memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); 250 251 /* 252 * All use of vnet-specific data will immediately subtract VNET_START 253 * from the base memory pointer, so pre-calculate that now to avoid 254 * it on each use. 255 */ 256 vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; 257 258 /* Initialize / attach vnet module instances. */ 259 CURVNET_SET_QUIET(vnet); 260 vnet_sysinit(); 261 CURVNET_RESTORE(); 262 263 VNET_LIST_WLOCK(); 264 LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); 265 VNET_LIST_WUNLOCK(); 266 267 SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet); 268 return (vnet); 269 } 270 271 /* 272 * Destroy a virtual network stack. 273 */ 274 void 275 vnet_destroy(struct vnet *vnet) 276 { 277 278 SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet); 279 KASSERT(vnet->vnet_sockcnt == 0, 280 ("%s: vnet still has sockets", __func__)); 281 282 VNET_LIST_WLOCK(); 283 LIST_REMOVE(vnet, vnet_le); 284 VNET_LIST_WUNLOCK(); 285 286 /* Signal that VNET is being shutdown. */ 287 vnet->vnet_shutdown = true; 288 289 CURVNET_SET_QUIET(vnet); 290 sx_xlock(&ifnet_detach_sxlock); 291 vnet_sysuninit(); 292 sx_xunlock(&ifnet_detach_sxlock); 293 CURVNET_RESTORE(); 294 295 /* 296 * Release storage for the virtual network stack instance. 297 */ 298 free(vnet->vnet_data_mem, M_VNET_DATA); 299 vnet->vnet_data_mem = NULL; 300 vnet->vnet_data_base = 0; 301 vnet->vnet_magic_n = 0xdeadbeef; 302 free(vnet, M_VNET); 303 SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__); 304 } 305 306 /* 307 * Boot time initialization and allocation of virtual network stacks. 308 */ 309 static void 310 vnet_init_prelink(void *arg __unused) 311 { 312 313 rw_init(&vnet_rwlock, "vnet_rwlock"); 314 sx_init(&vnet_sxlock, "vnet_sxlock"); 315 sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); 316 LIST_INIT(&vnet_head); 317 } 318 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, 319 vnet_init_prelink, NULL); 320 321 static void 322 vnet0_init(void *arg __unused) 323 { 324 325 if (bootverbose) 326 printf("VIMAGE (virtualized network stack) enabled\n"); 327 328 /* 329 * We MUST clear curvnet in vi_init_done() before going SMP, 330 * otherwise CURVNET_SET() macros would scream about unnecessary 331 * curvnet recursions. 332 */ 333 curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); 334 } 335 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); 336 337 static void 338 vnet_init_done(void *unused __unused) 339 { 340 341 curvnet = NULL; 342 } 343 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, vnet_init_done, 344 NULL); 345 346 /* 347 * Once on boot, initialize the modspace freelist to entirely cover modspace. 348 */ 349 static void 350 vnet_data_startup(void *dummy __unused) 351 { 352 struct vnet_data_free *df; 353 354 df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 355 df->vnd_start = (uintptr_t)&VNET_NAME(modspace); 356 df->vnd_len = VNET_MODMIN; 357 TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); 358 sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); 359 } 360 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, NULL); 361 362 /* Dummy VNET_SYSINIT to make sure we always reach the final end state. */ 363 static void 364 vnet_sysinit_done(void *unused __unused) 365 { 366 367 return; 368 } 369 VNET_SYSINIT(vnet_sysinit_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, 370 vnet_sysinit_done, NULL); 371 372 /* 373 * When a module is loaded and requires storage for a virtualized global 374 * variable, allocate space from the modspace free list. This interface 375 * should be used only by the kernel linker. 376 */ 377 void * 378 vnet_data_alloc(int size) 379 { 380 struct vnet_data_free *df; 381 void *s; 382 383 s = NULL; 384 size = roundup2(size, sizeof(void *)); 385 sx_xlock(&vnet_data_free_lock); 386 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 387 if (df->vnd_len < size) 388 continue; 389 if (df->vnd_len == size) { 390 s = (void *)df->vnd_start; 391 TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); 392 free(df, M_VNET_DATA_FREE); 393 break; 394 } 395 s = (void *)df->vnd_start; 396 df->vnd_len -= size; 397 df->vnd_start = df->vnd_start + size; 398 break; 399 } 400 sx_xunlock(&vnet_data_free_lock); 401 402 return (s); 403 } 404 405 /* 406 * Free space for a virtualized global variable on module unload. 407 */ 408 void 409 vnet_data_free(void *start_arg, int size) 410 { 411 struct vnet_data_free *df; 412 struct vnet_data_free *dn; 413 uintptr_t start; 414 uintptr_t end; 415 416 size = roundup2(size, sizeof(void *)); 417 start = (uintptr_t)start_arg; 418 end = start + size; 419 /* 420 * Free a region of space and merge it with as many neighbors as 421 * possible. Keeping the list sorted simplifies this operation. 422 */ 423 sx_xlock(&vnet_data_free_lock); 424 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 425 if (df->vnd_start > end) 426 break; 427 /* 428 * If we expand at the end of an entry we may have to merge 429 * it with the one following it as well. 430 */ 431 if (df->vnd_start + df->vnd_len == start) { 432 df->vnd_len += size; 433 dn = TAILQ_NEXT(df, vnd_link); 434 if (df->vnd_start + df->vnd_len == dn->vnd_start) { 435 df->vnd_len += dn->vnd_len; 436 TAILQ_REMOVE(&vnet_data_free_head, dn, 437 vnd_link); 438 free(dn, M_VNET_DATA_FREE); 439 } 440 sx_xunlock(&vnet_data_free_lock); 441 return; 442 } 443 if (df->vnd_start == end) { 444 df->vnd_start = start; 445 df->vnd_len += size; 446 sx_xunlock(&vnet_data_free_lock); 447 return; 448 } 449 } 450 dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 451 dn->vnd_start = start; 452 dn->vnd_len = size; 453 if (df) 454 TAILQ_INSERT_BEFORE(df, dn, vnd_link); 455 else 456 TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); 457 sx_xunlock(&vnet_data_free_lock); 458 } 459 460 /* 461 * When a new virtualized global variable has been allocated, propagate its 462 * initial value to each already-allocated virtual network stack instance. 463 */ 464 void 465 vnet_data_copy(void *start, int size) 466 { 467 struct vnet *vnet; 468 469 VNET_LIST_RLOCK(); 470 LIST_FOREACH(vnet, &vnet_head, vnet_le) 471 memcpy((void *)((uintptr_t)vnet->vnet_data_base + 472 (uintptr_t)start), start, size); 473 VNET_LIST_RUNLOCK(); 474 } 475 476 /* 477 * Support for special SYSINIT handlers registered via VNET_SYSINIT() 478 * and VNET_SYSUNINIT(). 479 */ 480 void 481 vnet_register_sysinit(void *arg) 482 { 483 struct vnet_sysinit *vs, *vs2; 484 struct vnet *vnet; 485 486 vs = arg; 487 KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); 488 489 /* Add the constructor to the global list of vnet constructors. */ 490 VNET_SYSINIT_WLOCK(); 491 TAILQ_FOREACH(vs2, &vnet_constructors, link) { 492 if (vs2->subsystem > vs->subsystem) 493 break; 494 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 495 break; 496 } 497 if (vs2 != NULL) 498 TAILQ_INSERT_BEFORE(vs2, vs, link); 499 else 500 TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); 501 502 /* 503 * Invoke the constructor on all the existing vnets when it is 504 * registered. 505 */ 506 VNET_FOREACH(vnet) { 507 CURVNET_SET_QUIET(vnet); 508 vs->func(vs->arg); 509 CURVNET_RESTORE(); 510 } 511 VNET_SYSINIT_WUNLOCK(); 512 } 513 514 void 515 vnet_deregister_sysinit(void *arg) 516 { 517 struct vnet_sysinit *vs; 518 519 vs = arg; 520 521 /* Remove the constructor from the global list of vnet constructors. */ 522 VNET_SYSINIT_WLOCK(); 523 TAILQ_REMOVE(&vnet_constructors, vs, link); 524 VNET_SYSINIT_WUNLOCK(); 525 } 526 527 void 528 vnet_register_sysuninit(void *arg) 529 { 530 struct vnet_sysinit *vs, *vs2; 531 532 vs = arg; 533 534 /* Add the destructor to the global list of vnet destructors. */ 535 VNET_SYSINIT_WLOCK(); 536 TAILQ_FOREACH(vs2, &vnet_destructors, link) { 537 if (vs2->subsystem > vs->subsystem) 538 break; 539 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 540 break; 541 } 542 if (vs2 != NULL) 543 TAILQ_INSERT_BEFORE(vs2, vs, link); 544 else 545 TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); 546 VNET_SYSINIT_WUNLOCK(); 547 } 548 549 void 550 vnet_deregister_sysuninit(void *arg) 551 { 552 struct vnet_sysinit *vs; 553 struct vnet *vnet; 554 555 vs = arg; 556 557 /* 558 * Invoke the destructor on all the existing vnets when it is 559 * deregistered. 560 */ 561 VNET_SYSINIT_WLOCK(); 562 VNET_FOREACH(vnet) { 563 CURVNET_SET_QUIET(vnet); 564 vs->func(vs->arg); 565 CURVNET_RESTORE(); 566 } 567 568 /* Remove the destructor from the global list of vnet destructors. */ 569 TAILQ_REMOVE(&vnet_destructors, vs, link); 570 VNET_SYSINIT_WUNLOCK(); 571 } 572 573 /* 574 * Invoke all registered vnet constructors on the current vnet. Used during 575 * vnet construction. The caller is responsible for ensuring the new vnet is 576 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 577 */ 578 static void 579 vnet_sysinit(void) 580 { 581 struct vnet_sysinit *vs; 582 583 VNET_SYSINIT_RLOCK(); 584 TAILQ_FOREACH(vs, &vnet_constructors, link) { 585 curvnet->vnet_state = vs->subsystem; 586 vs->func(vs->arg); 587 } 588 VNET_SYSINIT_RUNLOCK(); 589 } 590 591 /* 592 * Invoke all registered vnet destructors on the current vnet. Used during 593 * vnet destruction. The caller is responsible for ensuring the dying vnet 594 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 595 */ 596 static void 597 vnet_sysuninit(void) 598 { 599 struct vnet_sysinit *vs; 600 601 VNET_SYSINIT_RLOCK(); 602 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 603 link) { 604 curvnet->vnet_state = vs->subsystem; 605 vs->func(vs->arg); 606 } 607 VNET_SYSINIT_RUNLOCK(); 608 } 609 610 /* 611 * EVENTHANDLER(9) extensions. 612 */ 613 /* 614 * Invoke the eventhandler function originally registered with the possibly 615 * registered argument for all virtual network stack instances. 616 * 617 * This iterator can only be used for eventhandlers that do not take any 618 * additional arguments, as we do ignore the variadic arguments from the 619 * EVENTHANDLER_INVOKE() call. 620 */ 621 void 622 vnet_global_eventhandler_iterator_func(void *arg, ...) 623 { 624 VNET_ITERATOR_DECL(vnet_iter); 625 struct eventhandler_entry_vimage *v_ee; 626 627 /* 628 * There is a bug here in that we should actually cast things to 629 * (struct eventhandler_entry_ ## name *) but that's not easily 630 * possible in here so just re-using the variadic version we 631 * defined for the generic vimage case. 632 */ 633 v_ee = arg; 634 VNET_LIST_RLOCK(); 635 VNET_FOREACH(vnet_iter) { 636 CURVNET_SET(vnet_iter); 637 ((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg); 638 CURVNET_RESTORE(); 639 } 640 VNET_LIST_RUNLOCK(); 641 } 642 643 #ifdef VNET_DEBUG 644 struct vnet_recursion { 645 SLIST_ENTRY(vnet_recursion) vnr_le; 646 const char *prev_fn; 647 const char *where_fn; 648 int where_line; 649 struct vnet *old_vnet; 650 struct vnet *new_vnet; 651 }; 652 653 static SLIST_HEAD(, vnet_recursion) vnet_recursions = 654 SLIST_HEAD_INITIALIZER(vnet_recursions); 655 656 static void 657 vnet_print_recursion(struct vnet_recursion *vnr, int brief) 658 { 659 660 if (!brief) 661 printf("CURVNET_SET() recursion in "); 662 printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line, 663 vnr->prev_fn); 664 if (brief) 665 printf(", "); 666 else 667 printf("\n "); 668 printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet); 669 } 670 671 void 672 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line) 673 { 674 struct vnet_recursion *vnr; 675 676 /* Skip already logged recursion events. */ 677 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 678 if (vnr->prev_fn == old_fn && 679 vnr->where_fn == curthread->td_vnet_lpush && 680 vnr->where_line == line && 681 (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet)) 682 return; 683 684 vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO); 685 if (vnr == NULL) 686 panic("%s: malloc failed", __func__); 687 vnr->prev_fn = old_fn; 688 vnr->where_fn = curthread->td_vnet_lpush; 689 vnr->where_line = line; 690 vnr->old_vnet = old_vnet; 691 vnr->new_vnet = curvnet; 692 693 SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le); 694 695 vnet_print_recursion(vnr, 0); 696 #ifdef KDB 697 kdb_backtrace(); 698 #endif 699 } 700 #endif /* VNET_DEBUG */ 701 702 /* 703 * DDB(4). 704 */ 705 #ifdef DDB 706 static void 707 db_vnet_print(struct vnet *vnet) 708 { 709 710 db_printf("vnet = %p\n", vnet); 711 db_printf(" vnet_magic_n = %#08x (%s, orig %#08x)\n", 712 vnet->vnet_magic_n, 713 (vnet->vnet_magic_n == VNET_MAGIC_N) ? 714 "ok" : "mismatch", VNET_MAGIC_N); 715 db_printf(" vnet_ifcnt = %u\n", vnet->vnet_ifcnt); 716 db_printf(" vnet_sockcnt = %u\n", vnet->vnet_sockcnt); 717 db_printf(" vnet_data_mem = %p\n", vnet->vnet_data_mem); 718 db_printf(" vnet_data_base = %#jx\n", 719 (uintmax_t)vnet->vnet_data_base); 720 db_printf(" vnet_state = %#08x\n", vnet->vnet_state); 721 db_printf(" vnet_shutdown = %#03x\n", vnet->vnet_shutdown); 722 db_printf("\n"); 723 } 724 725 DB_SHOW_ALL_COMMAND(vnets, db_show_all_vnets) 726 { 727 VNET_ITERATOR_DECL(vnet_iter); 728 729 VNET_FOREACH(vnet_iter) { 730 db_vnet_print(vnet_iter); 731 if (db_pager_quit) 732 break; 733 } 734 } 735 736 DB_SHOW_COMMAND(vnet, db_show_vnet) 737 { 738 739 if (!have_addr) { 740 db_printf("usage: show vnet <struct vnet *>\n"); 741 return; 742 } 743 744 db_vnet_print((struct vnet *)addr); 745 } 746 747 static void 748 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb) 749 { 750 const char *vsname, *funcname; 751 c_db_sym_t sym; 752 db_expr_t offset; 753 754 #define xprint(...) \ 755 if (ddb) \ 756 db_printf(__VA_ARGS__); \ 757 else \ 758 printf(__VA_ARGS__) 759 760 if (vs == NULL) { 761 xprint("%s: no vnet_sysinit * given\n", __func__); 762 return; 763 } 764 765 sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset); 766 db_symbol_values(sym, &vsname, NULL); 767 sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset); 768 db_symbol_values(sym, &funcname, NULL); 769 xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs); 770 xprint(" %#08x %#08x\n", vs->subsystem, vs->order); 771 xprint(" %p(%s)(%p)\n", 772 vs->func, (funcname != NULL) ? funcname : "", vs->arg); 773 #undef xprint 774 } 775 776 DB_SHOW_COMMAND_FLAGS(vnet_sysinit, db_show_vnet_sysinit, DB_CMD_MEMSAFE) 777 { 778 struct vnet_sysinit *vs; 779 780 db_printf("VNET_SYSINIT vs Name(Ptr)\n"); 781 db_printf(" Subsystem Order\n"); 782 db_printf(" Function(Name)(Arg)\n"); 783 TAILQ_FOREACH(vs, &vnet_constructors, link) { 784 db_show_vnet_print_vs(vs, 1); 785 if (db_pager_quit) 786 break; 787 } 788 } 789 790 DB_SHOW_COMMAND_FLAGS(vnet_sysuninit, db_show_vnet_sysuninit, DB_CMD_MEMSAFE) 791 { 792 struct vnet_sysinit *vs; 793 794 db_printf("VNET_SYSUNINIT vs Name(Ptr)\n"); 795 db_printf(" Subsystem Order\n"); 796 db_printf(" Function(Name)(Arg)\n"); 797 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 798 link) { 799 db_show_vnet_print_vs(vs, 1); 800 if (db_pager_quit) 801 break; 802 } 803 } 804 805 #ifdef VNET_DEBUG 806 DB_SHOW_COMMAND_FLAGS(vnetrcrs, db_show_vnetrcrs, DB_CMD_MEMSAFE) 807 { 808 struct vnet_recursion *vnr; 809 810 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 811 vnet_print_recursion(vnr, 1); 812 } 813 #endif 814 #endif /* DDB */ 815