1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2004-2009 University of Zagreb 5 * Copyright (c) 2006-2009 FreeBSD Foundation 6 * All rights reserved. 7 * 8 * This software was developed by the University of Zagreb and the 9 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 10 * FreeBSD Foundation. 11 * 12 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 13 * Copyright (c) 2009 Robert N. M. Watson 14 * All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 #include "opt_ddb.h" 40 #include "opt_kdb.h" 41 42 #include <sys/param.h> 43 #include <sys/kdb.h> 44 #include <sys/kernel.h> 45 #include <sys/jail.h> 46 #include <sys/sdt.h> 47 #include <sys/stdarg.h> 48 #include <sys/systm.h> 49 #include <sys/sysctl.h> 50 #include <sys/eventhandler.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/proc.h> 54 #include <sys/socket.h> 55 #include <sys/sx.h> 56 #include <sys/sysctl.h> 57 58 #ifdef DDB 59 #include <ddb/ddb.h> 60 #include <ddb/db_sym.h> 61 #endif 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/vnet.h> 66 67 /*- 68 * This file implements core functions for virtual network stacks: 69 * 70 * - Virtual network stack management functions. 71 * 72 * - Virtual network stack memory allocator, which virtualizes global 73 * variables in the network stack 74 * 75 * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems 76 * to register startup/shutdown events to be run for each virtual network 77 * stack instance. 78 */ 79 80 FEATURE(vimage, "VIMAGE kernel virtualization"); 81 82 static MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); 83 84 /* 85 * The virtual network stack list has two read-write locks, one sleepable and 86 * the other not, so that the list can be stablized and walked in a variety 87 * of network stack contexts. Both must be acquired exclusively to modify 88 * the list, but a read lock of either lock is sufficient to walk the list. 89 */ 90 struct rwlock vnet_rwlock; 91 struct sx vnet_sxlock; 92 93 #define VNET_LIST_WLOCK() do { \ 94 sx_xlock(&vnet_sxlock); \ 95 rw_wlock(&vnet_rwlock); \ 96 } while (0) 97 98 #define VNET_LIST_WUNLOCK() do { \ 99 rw_wunlock(&vnet_rwlock); \ 100 sx_xunlock(&vnet_sxlock); \ 101 } while (0) 102 103 struct vnet_list_head vnet_head = LIST_HEAD_INITIALIZER(vnet_head); 104 struct vnet *vnet0; 105 106 /* 107 * The virtual network stack allocator provides storage for virtualized 108 * global variables. These variables are defined/declared using the 109 * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' 110 * linker set. The details of the implementation are somewhat subtle, but 111 * allow the majority of most network subsystems to maintain 112 * virtualization-agnostic. 113 * 114 * The virtual network stack allocator handles variables in the base kernel 115 * vs. modules in similar but different ways. In both cases, virtualized 116 * global variables are marked as such by being declared to be part of the 117 * vnet linker set. These "master" copies of global variables serve two 118 * functions: 119 * 120 * (1) They contain static initialization or "default" values for global 121 * variables which will be propagated to each virtual network stack 122 * instance when created. As with normal global variables, they default 123 * to zero-filled. 124 * 125 * (2) They act as unique global names by which the variable can be referred 126 * to, regardless of network stack instance. The single global symbol 127 * will be used to calculate the location of a per-virtual instance 128 * variable at run-time. 129 * 130 * Each virtual network stack instance has a complete copy of each 131 * virtualized global variable, stored in a malloc'd block of memory 132 * referred to by vnet->vnet_data_mem. Critical to the design is that each 133 * per-instance memory block is laid out identically to the master block so 134 * that the offset of each global variable is the same across all blocks. To 135 * optimize run-time access, a precalculated 'base' address, 136 * vnet->vnet_data_base, is stored in each vnet, and is the amount that can 137 * be added to the address of a 'master' instance of a variable to get to the 138 * per-vnet instance. 139 * 140 * Virtualized global variables are handled in a similar manner, but as each 141 * module has its own 'set_vnet' linker set, and we want to keep all 142 * virtualized globals togther, we reserve space in the kernel's linker set 143 * for potential module variables using a per-vnet character array, 144 * 'modspace'. The virtual network stack allocator maintains a free list to 145 * track what space in the array is free (all, initially) and as modules are 146 * linked, allocates portions of the space to specific globals. The kernel 147 * module linker queries the virtual network stack allocator and will 148 * bind references of the global to the location during linking. It also 149 * calls into the virtual network stack allocator, once the memory is 150 * initialized, in order to propagate the new static initializations to all 151 * existing virtual network stack instances so that the soon-to-be executing 152 * module will find every network stack instance with proper default values. 153 */ 154 155 /* 156 * Number of bytes of data in the 'set_vnet' linker set, and hence the total 157 * size of all kernel virtualized global variables, and the malloc(9) type 158 * that will be used to allocate it. 159 */ 160 #define VNET_BYTES (VNET_STOP - VNET_START) 161 162 static MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); 163 164 /* 165 * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of 166 * global variables across all loaded modules. As this actually sizes an 167 * array declared as a virtualized global variable in the kernel itself, and 168 * we want the virtualized global variable space to be page-sized, we may 169 * have more space than that in practice. 170 */ 171 #define VNET_MODMIN (8 * PAGE_SIZE) 172 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) 173 174 /* 175 * Space to store virtualized global variables from loadable kernel modules, 176 * and the free list to manage it. 177 */ 178 VNET_DEFINE_STATIC(char, modspace[VNET_MODMIN] __aligned(__alignof(void *))); 179 180 /* 181 * A copy of the initial values of all virtualized global variables. 182 */ 183 static uintptr_t vnet_init_var; 184 185 /* 186 * Global lists of subsystem constructor and destructors for vnets. They are 187 * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are 188 * protected by the vnet_sysinit_sxlock global lock. 189 */ 190 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = 191 TAILQ_HEAD_INITIALIZER(vnet_constructors); 192 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = 193 TAILQ_HEAD_INITIALIZER(vnet_destructors); 194 195 struct sx vnet_sysinit_sxlock; 196 197 #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); 198 #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); 199 #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); 200 #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); 201 202 struct vnet_data_free { 203 uintptr_t vnd_start; 204 int vnd_len; 205 TAILQ_ENTRY(vnet_data_free) vnd_link; 206 }; 207 208 static MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", 209 "VNET resource accounting"); 210 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = 211 TAILQ_HEAD_INITIALIZER(vnet_data_free_head); 212 static struct sx vnet_data_free_lock; 213 214 SDT_PROVIDER_DEFINE(vnet); 215 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int"); 216 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int", 217 "struct vnet *"); 218 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return, 219 "int", "struct vnet *"); 220 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry, 221 "int", "struct vnet *"); 222 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return, 223 "int"); 224 225 /* 226 * Run per-vnet sysinits or sysuninits during vnet creation/destruction. 227 */ 228 static void vnet_sysinit(void); 229 static void vnet_sysuninit(void); 230 231 #ifdef DDB 232 static void db_show_vnet_print_vs(struct vnet_sysinit *, int); 233 #endif 234 235 /* 236 * Allocate a virtual network stack. 237 */ 238 struct vnet * 239 vnet_alloc(void) 240 { 241 struct vnet *vnet; 242 243 SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__); 244 vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); 245 vnet->vnet_magic_n = VNET_MAGIC_N; 246 SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet); 247 248 /* 249 * Allocate storage for virtualized global variables and copy in 250 * initial values from our 'master' copy. 251 */ 252 vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); 253 memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); 254 255 /* 256 * All use of vnet-specific data will immediately subtract VNET_START 257 * from the base memory pointer, so pre-calculate that now to avoid 258 * it on each use. 259 */ 260 vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; 261 262 /* Initialize / attach vnet module instances. */ 263 CURVNET_SET_QUIET(vnet); 264 vnet_sysinit(); 265 CURVNET_RESTORE(); 266 267 VNET_LIST_WLOCK(); 268 LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); 269 VNET_LIST_WUNLOCK(); 270 271 SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet); 272 return (vnet); 273 } 274 275 /* 276 * Destroy a virtual network stack. 277 */ 278 void 279 vnet_destroy(struct vnet *vnet) 280 { 281 282 SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet); 283 KASSERT(vnet->vnet_sockcnt == 0, 284 ("%s: vnet still has sockets", __func__)); 285 286 VNET_LIST_WLOCK(); 287 LIST_REMOVE(vnet, vnet_le); 288 VNET_LIST_WUNLOCK(); 289 290 /* Signal that VNET is being shutdown. */ 291 vnet->vnet_shutdown = true; 292 293 CURVNET_SET_QUIET(vnet); 294 sx_xlock(&ifnet_detach_sxlock); 295 vnet_sysuninit(); 296 sx_xunlock(&ifnet_detach_sxlock); 297 CURVNET_RESTORE(); 298 299 /* 300 * Release storage for the virtual network stack instance. 301 */ 302 free(vnet->vnet_data_mem, M_VNET_DATA); 303 vnet->vnet_data_mem = NULL; 304 vnet->vnet_data_base = 0; 305 vnet->vnet_magic_n = 0xdeadbeef; 306 free(vnet, M_VNET); 307 SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__); 308 } 309 310 /* 311 * Boot time initialization and allocation of virtual network stacks. 312 */ 313 static void 314 vnet_init_prelink(void *arg __unused) 315 { 316 317 rw_init(&vnet_rwlock, "vnet_rwlock"); 318 sx_init(&vnet_sxlock, "vnet_sxlock"); 319 sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); 320 } 321 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, 322 vnet_init_prelink, NULL); 323 324 static void 325 vnet0_init(void *arg __unused) 326 { 327 328 if (bootverbose) 329 printf("VIMAGE (virtualized network stack) enabled\n"); 330 331 /* 332 * We MUST clear curvnet in vi_init_done() before going SMP, 333 * otherwise CURVNET_SET() macros would scream about unnecessary 334 * curvnet recursions. 335 */ 336 curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); 337 } 338 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); 339 340 static void 341 vnet_init_done(void *unused __unused) 342 { 343 344 curvnet = NULL; 345 } 346 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, vnet_init_done, 347 NULL); 348 349 /* 350 * Once on boot, initialize the modspace freelist to entirely cover modspace. 351 */ 352 static void 353 vnet_data_startup(void *dummy __unused) 354 { 355 struct vnet_data_free *df; 356 357 df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 358 df->vnd_start = (uintptr_t)&VNET_NAME(modspace); 359 df->vnd_len = VNET_MODMIN; 360 TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); 361 sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); 362 vnet_init_var = (uintptr_t)malloc(VNET_BYTES, M_VNET_DATA, M_WAITOK); 363 } 364 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, NULL); 365 366 /* Dummy VNET_SYSINIT to make sure we always reach the final end state. */ 367 static void 368 vnet_sysinit_done(void *unused __unused) 369 { 370 371 return; 372 } 373 VNET_SYSINIT(vnet_sysinit_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, 374 vnet_sysinit_done, NULL); 375 376 /* 377 * When a module is loaded and requires storage for a virtualized global 378 * variable, allocate space from the modspace free list. This interface 379 * should be used only by the kernel linker. 380 */ 381 void * 382 vnet_data_alloc(int size) 383 { 384 struct vnet_data_free *df; 385 void *s; 386 387 s = NULL; 388 size = roundup2(size, sizeof(void *)); 389 sx_xlock(&vnet_data_free_lock); 390 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 391 if (df->vnd_len < size) 392 continue; 393 if (df->vnd_len == size) { 394 s = (void *)df->vnd_start; 395 TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); 396 free(df, M_VNET_DATA_FREE); 397 break; 398 } 399 s = (void *)df->vnd_start; 400 df->vnd_len -= size; 401 df->vnd_start = df->vnd_start + size; 402 break; 403 } 404 sx_xunlock(&vnet_data_free_lock); 405 406 return (s); 407 } 408 409 /* 410 * Free space for a virtualized global variable on module unload. 411 */ 412 void 413 vnet_data_free(void *start_arg, int size) 414 { 415 struct vnet_data_free *df; 416 struct vnet_data_free *dn; 417 uintptr_t start; 418 uintptr_t end; 419 420 size = roundup2(size, sizeof(void *)); 421 start = (uintptr_t)start_arg; 422 end = start + size; 423 /* 424 * Free a region of space and merge it with as many neighbors as 425 * possible. Keeping the list sorted simplifies this operation. 426 */ 427 sx_xlock(&vnet_data_free_lock); 428 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 429 if (df->vnd_start > end) 430 break; 431 /* 432 * If we expand at the end of an entry we may have to merge 433 * it with the one following it as well. 434 */ 435 if (df->vnd_start + df->vnd_len == start) { 436 df->vnd_len += size; 437 dn = TAILQ_NEXT(df, vnd_link); 438 if (df->vnd_start + df->vnd_len == dn->vnd_start) { 439 df->vnd_len += dn->vnd_len; 440 TAILQ_REMOVE(&vnet_data_free_head, dn, 441 vnd_link); 442 free(dn, M_VNET_DATA_FREE); 443 } 444 sx_xunlock(&vnet_data_free_lock); 445 return; 446 } 447 if (df->vnd_start == end) { 448 df->vnd_start = start; 449 df->vnd_len += size; 450 sx_xunlock(&vnet_data_free_lock); 451 return; 452 } 453 } 454 dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 455 dn->vnd_start = start; 456 dn->vnd_len = size; 457 if (df) 458 TAILQ_INSERT_BEFORE(df, dn, vnd_link); 459 else 460 TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); 461 sx_xunlock(&vnet_data_free_lock); 462 } 463 464 /* 465 * When a new virtualized global variable has been allocated, propagate its 466 * initial value to each already-allocated virtual network stack instance. 467 */ 468 void 469 vnet_data_copy(void *start, int size) 470 { 471 struct vnet *vnet; 472 473 VNET_LIST_RLOCK(); 474 LIST_FOREACH(vnet, &vnet_head, vnet_le) 475 memcpy((void *)((uintptr_t)vnet->vnet_data_base + 476 (uintptr_t)start), start, size); 477 VNET_LIST_RUNLOCK(); 478 } 479 480 /* 481 * Save a copy of the initial values of virtualized global variables. 482 */ 483 void 484 vnet_save_init(void *start, size_t size) 485 { 486 MPASS(vnet_init_var != 0); 487 MPASS(VNET_START <= (uintptr_t)start && 488 (uintptr_t)start + size <= VNET_STOP); 489 memcpy((void *)(vnet_init_var + ((uintptr_t)start - VNET_START)), 490 start, size); 491 } 492 493 /* 494 * Restore the 'master' copies of virtualized global variables to theirs 495 * initial values. 496 */ 497 void 498 vnet_restore_init(void *start, size_t size) 499 { 500 MPASS(vnet_init_var != 0); 501 MPASS(VNET_START <= (uintptr_t)start && 502 (uintptr_t)start + size <= VNET_STOP); 503 memcpy(start, 504 (void *)(vnet_init_var + ((uintptr_t)start - VNET_START)), size); 505 } 506 507 /* 508 * Support for special SYSINIT handlers registered via VNET_SYSINIT() 509 * and VNET_SYSUNINIT(). 510 */ 511 void 512 vnet_register_sysinit(void *arg) 513 { 514 struct vnet_sysinit *vs, *vs2; 515 struct vnet *vnet; 516 517 vs = arg; 518 KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); 519 520 /* Add the constructor to the global list of vnet constructors. */ 521 VNET_SYSINIT_WLOCK(); 522 TAILQ_FOREACH(vs2, &vnet_constructors, link) { 523 if (vs2->subsystem > vs->subsystem) 524 break; 525 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 526 break; 527 } 528 if (vs2 != NULL) 529 TAILQ_INSERT_BEFORE(vs2, vs, link); 530 else 531 TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); 532 533 /* 534 * Invoke the constructor on all the existing vnets when it is 535 * registered. 536 */ 537 VNET_LIST_RLOCK(); 538 VNET_FOREACH(vnet) { 539 CURVNET_SET_QUIET(vnet); 540 vs->func(vs->arg); 541 CURVNET_RESTORE(); 542 } 543 VNET_LIST_RUNLOCK(); 544 VNET_SYSINIT_WUNLOCK(); 545 } 546 547 void 548 vnet_deregister_sysinit(void *arg) 549 { 550 struct vnet_sysinit *vs; 551 552 vs = arg; 553 554 /* Remove the constructor from the global list of vnet constructors. */ 555 VNET_SYSINIT_WLOCK(); 556 TAILQ_REMOVE(&vnet_constructors, vs, link); 557 VNET_SYSINIT_WUNLOCK(); 558 } 559 560 void 561 vnet_register_sysuninit(void *arg) 562 { 563 struct vnet_sysinit *vs, *vs2; 564 565 vs = arg; 566 567 /* Add the destructor to the global list of vnet destructors. */ 568 VNET_SYSINIT_WLOCK(); 569 TAILQ_FOREACH(vs2, &vnet_destructors, link) { 570 if (vs2->subsystem > vs->subsystem) 571 break; 572 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 573 break; 574 } 575 if (vs2 != NULL) 576 TAILQ_INSERT_BEFORE(vs2, vs, link); 577 else 578 TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); 579 VNET_SYSINIT_WUNLOCK(); 580 } 581 582 void 583 vnet_deregister_sysuninit(void *arg) 584 { 585 struct vnet_sysinit *vs; 586 struct vnet *vnet; 587 588 vs = arg; 589 590 /* 591 * Invoke the destructor on all the existing vnets when it is 592 * deregistered. 593 */ 594 VNET_SYSINIT_WLOCK(); 595 VNET_LIST_RLOCK(); 596 VNET_FOREACH(vnet) { 597 CURVNET_SET_QUIET(vnet); 598 vs->func(vs->arg); 599 CURVNET_RESTORE(); 600 } 601 602 /* Remove the destructor from the global list of vnet destructors. */ 603 TAILQ_REMOVE(&vnet_destructors, vs, link); 604 VNET_SYSINIT_WUNLOCK(); 605 VNET_LIST_RUNLOCK(); 606 } 607 608 /* 609 * Invoke all registered vnet constructors on the current vnet. Used during 610 * vnet construction. The caller is responsible for ensuring the new vnet is 611 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 612 */ 613 static void 614 vnet_sysinit(void) 615 { 616 struct vnet_sysinit *vs; 617 618 VNET_SYSINIT_RLOCK(); 619 TAILQ_FOREACH(vs, &vnet_constructors, link) { 620 curvnet->vnet_state = vs->subsystem; 621 vs->func(vs->arg); 622 } 623 VNET_SYSINIT_RUNLOCK(); 624 } 625 626 /* 627 * Invoke all registered vnet destructors on the current vnet. Used during 628 * vnet destruction. The caller is responsible for ensuring the dying vnet 629 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 630 */ 631 static void 632 vnet_sysuninit(void) 633 { 634 struct vnet_sysinit *vs; 635 636 VNET_SYSINIT_RLOCK(); 637 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 638 link) { 639 curvnet->vnet_state = vs->subsystem; 640 vs->func(vs->arg); 641 } 642 VNET_SYSINIT_RUNLOCK(); 643 } 644 645 /* 646 * EVENTHANDLER(9) extensions. 647 */ 648 /* 649 * Invoke the eventhandler function originally registered with the possibly 650 * registered argument for all virtual network stack instances. 651 * 652 * This iterator can only be used for eventhandlers that do not take any 653 * additional arguments, as we do ignore the variadic arguments from the 654 * EVENTHANDLER_INVOKE() call. 655 */ 656 void 657 vnet_global_eventhandler_iterator_func(void *arg, ...) 658 { 659 VNET_ITERATOR_DECL(vnet_iter); 660 struct eventhandler_entry_vimage *v_ee; 661 662 /* 663 * There is a bug here in that we should actually cast things to 664 * (struct eventhandler_entry_ ## name *) but that's not easily 665 * possible in here so just re-using the variadic version we 666 * defined for the generic vimage case. 667 */ 668 v_ee = arg; 669 VNET_LIST_RLOCK(); 670 VNET_FOREACH(vnet_iter) { 671 CURVNET_SET(vnet_iter); 672 ((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg); 673 CURVNET_RESTORE(); 674 } 675 VNET_LIST_RUNLOCK(); 676 } 677 678 #ifdef VNET_DEBUG 679 struct vnet_recursion { 680 SLIST_ENTRY(vnet_recursion) vnr_le; 681 const char *prev_fn; 682 const char *where_fn; 683 int where_line; 684 struct vnet *old_vnet; 685 struct vnet *new_vnet; 686 }; 687 688 static SLIST_HEAD(, vnet_recursion) vnet_recursions = 689 SLIST_HEAD_INITIALIZER(vnet_recursions); 690 691 static void 692 vnet_print_recursion(struct vnet_recursion *vnr, int brief) 693 { 694 695 if (!brief) 696 printf("CURVNET_SET() recursion in "); 697 printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line, 698 vnr->prev_fn); 699 if (brief) 700 printf(", "); 701 else 702 printf("\n "); 703 printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet); 704 } 705 706 void 707 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line) 708 { 709 struct vnet_recursion *vnr; 710 711 /* Skip already logged recursion events. */ 712 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 713 if (vnr->prev_fn == old_fn && 714 vnr->where_fn == curthread->td_vnet_lpush && 715 vnr->where_line == line && 716 (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet)) 717 return; 718 719 vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO); 720 if (vnr == NULL) 721 panic("%s: malloc failed", __func__); 722 vnr->prev_fn = old_fn; 723 vnr->where_fn = curthread->td_vnet_lpush; 724 vnr->where_line = line; 725 vnr->old_vnet = old_vnet; 726 vnr->new_vnet = curvnet; 727 728 SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le); 729 730 vnet_print_recursion(vnr, 0); 731 #ifdef KDB 732 kdb_backtrace(); 733 #endif 734 } 735 #endif /* VNET_DEBUG */ 736 737 /* 738 * DDB(4). 739 */ 740 #ifdef DDB 741 static void 742 db_vnet_print(struct vnet *vnet) 743 { 744 745 db_printf("vnet = %p\n", vnet); 746 db_printf(" vnet_magic_n = %#08x (%s, orig %#08x)\n", 747 vnet->vnet_magic_n, 748 (vnet->vnet_magic_n == VNET_MAGIC_N) ? 749 "ok" : "mismatch", VNET_MAGIC_N); 750 db_printf(" vnet_ifcnt = %u\n", vnet->vnet_ifcnt); 751 db_printf(" vnet_sockcnt = %u\n", vnet->vnet_sockcnt); 752 db_printf(" vnet_data_mem = %p\n", vnet->vnet_data_mem); 753 db_printf(" vnet_data_base = %#jx\n", 754 (uintmax_t)vnet->vnet_data_base); 755 db_printf(" vnet_state = %#08x\n", vnet->vnet_state); 756 db_printf(" vnet_shutdown = %#03x\n", vnet->vnet_shutdown); 757 db_printf("\n"); 758 } 759 760 DB_SHOW_ALL_COMMAND(vnets, db_show_all_vnets) 761 { 762 VNET_ITERATOR_DECL(vnet_iter); 763 764 VNET_FOREACH(vnet_iter) { 765 db_vnet_print(vnet_iter); 766 if (db_pager_quit) 767 break; 768 } 769 } 770 771 DB_SHOW_COMMAND(vnet, db_show_vnet) 772 { 773 774 if (!have_addr) { 775 db_printf("usage: show vnet <struct vnet *>\n"); 776 return; 777 } 778 779 db_vnet_print((struct vnet *)addr); 780 } 781 782 static void 783 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb) 784 { 785 const char *vsname, *funcname; 786 c_db_sym_t sym; 787 db_expr_t offset; 788 789 #define xprint(...) do { \ 790 if (ddb) \ 791 db_printf(__VA_ARGS__); \ 792 else \ 793 printf(__VA_ARGS__); \ 794 } while (0) 795 796 if (vs == NULL) { 797 xprint("%s: no vnet_sysinit * given\n", __func__); 798 return; 799 } 800 801 sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset); 802 db_symbol_values(sym, &vsname, NULL); 803 sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset); 804 db_symbol_values(sym, &funcname, NULL); 805 xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs); 806 xprint(" %#08x %#08x\n", vs->subsystem, vs->order); 807 xprint(" %p(%s)(%p)\n", 808 vs->func, (funcname != NULL) ? funcname : "", vs->arg); 809 #undef xprint 810 } 811 812 DB_SHOW_COMMAND_FLAGS(vnet_sysinit, db_show_vnet_sysinit, DB_CMD_MEMSAFE) 813 { 814 struct vnet_sysinit *vs; 815 816 db_printf("VNET_SYSINIT vs Name(Ptr)\n"); 817 db_printf(" Subsystem Order\n"); 818 db_printf(" Function(Name)(Arg)\n"); 819 TAILQ_FOREACH(vs, &vnet_constructors, link) { 820 db_show_vnet_print_vs(vs, 1); 821 if (db_pager_quit) 822 break; 823 } 824 } 825 826 DB_SHOW_COMMAND_FLAGS(vnet_sysuninit, db_show_vnet_sysuninit, DB_CMD_MEMSAFE) 827 { 828 struct vnet_sysinit *vs; 829 830 db_printf("VNET_SYSUNINIT vs Name(Ptr)\n"); 831 db_printf(" Subsystem Order\n"); 832 db_printf(" Function(Name)(Arg)\n"); 833 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 834 link) { 835 db_show_vnet_print_vs(vs, 1); 836 if (db_pager_quit) 837 break; 838 } 839 } 840 841 #ifdef VNET_DEBUG 842 DB_SHOW_COMMAND_FLAGS(vnetrcrs, db_show_vnetrcrs, DB_CMD_MEMSAFE) 843 { 844 struct vnet_recursion *vnr; 845 846 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 847 vnet_print_recursion(vnr, 1); 848 } 849 #endif 850 #endif /* DDB */ 851