1 /*- 2 * Copyright (c) 2004-2009 University of Zagreb 3 * Copyright (c) 2006-2009 FreeBSD Foundation 4 * All rights reserved. 5 * 6 * This software was developed by the University of Zagreb and the 7 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 8 * FreeBSD Foundation. 9 * 10 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 11 * Copyright (c) 2009 Robert N. M. Watson 12 * All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_ddb.h" 40 #include "opt_kdb.h" 41 #include "opt_kdtrace.h" 42 43 #include <sys/param.h> 44 #include <sys/kdb.h> 45 #include <sys/kernel.h> 46 #include <sys/jail.h> 47 #include <sys/sdt.h> 48 #include <sys/systm.h> 49 #include <sys/sysctl.h> 50 #include <sys/eventhandler.h> 51 #include <sys/linker_set.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/proc.h> 55 #include <sys/socket.h> 56 #include <sys/sx.h> 57 #include <sys/sysctl.h> 58 59 #include <machine/stdarg.h> 60 61 #ifdef DDB 62 #include <ddb/ddb.h> 63 #include <ddb/db_sym.h> 64 #endif 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/vnet.h> 69 70 /*- 71 * This file implements core functions for virtual network stacks: 72 * 73 * - Virtual network stack management functions. 74 * 75 * - Virtual network stack memory allocator, which virtualizes global 76 * variables in the network stack 77 * 78 * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems 79 * to register startup/shutdown events to be run for each virtual network 80 * stack instance. 81 */ 82 83 MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); 84 85 /* 86 * The virtual network stack list has two read-write locks, one sleepable and 87 * the other not, so that the list can be stablized and walked in a variety 88 * of network stack contexts. Both must be acquired exclusively to modify 89 * the list, but a read lock of either lock is sufficient to walk the list. 90 */ 91 struct rwlock vnet_rwlock; 92 struct sx vnet_sxlock; 93 94 #define VNET_LIST_WLOCK() do { \ 95 sx_xlock(&vnet_sxlock); \ 96 rw_wlock(&vnet_rwlock); \ 97 } while (0) 98 99 #define VNET_LIST_WUNLOCK() do { \ 100 rw_wunlock(&vnet_rwlock); \ 101 sx_xunlock(&vnet_sxlock); \ 102 } while (0) 103 104 struct vnet_list_head vnet_head; 105 struct vnet *vnet0; 106 107 /* 108 * The virtual network stack allocator provides storage for virtualized 109 * global variables. These variables are defined/declared using the 110 * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' 111 * linker set. The details of the implementation are somewhat subtle, but 112 * allow the majority of most network subsystems to maintain 113 * virtualization-agnostic. 114 * 115 * The virtual network stack allocator handles variables in the base kernel 116 * vs. modules in similar but different ways. In both cases, virtualized 117 * global variables are marked as such by being declared to be part of the 118 * vnet linker set. These "master" copies of global variables serve two 119 * functions: 120 * 121 * (1) They contain static initialization or "default" values for global 122 * variables which will be propagated to each virtual network stack 123 * instance when created. As with normal global variables, they default 124 * to zero-filled. 125 * 126 * (2) They act as unique global names by which the variable can be referred 127 * to, regardless of network stack instance. The single global symbol 128 * will be used to calculate the location of a per-virtual instance 129 * variable at run-time. 130 * 131 * Each virtual network stack instance has a complete copy of each 132 * virtualized global variable, stored in a malloc'd block of memory 133 * referred to by vnet->vnet_data_mem. Critical to the design is that each 134 * per-instance memory block is laid out identically to the master block so 135 * that the offset of each global variable is the same across all blocks. To 136 * optimize run-time access, a precalculated 'base' address, 137 * vnet->vnet_data_base, is stored in each vnet, and is the amount that can 138 * be added to the address of a 'master' instance of a variable to get to the 139 * per-vnet instance. 140 * 141 * Virtualized global variables are handled in a similar manner, but as each 142 * module has its own 'set_vnet' linker set, and we want to keep all 143 * virtualized globals togther, we reserve space in the kernel's linker set 144 * for potential module variables using a per-vnet character array, 145 * 'modspace'. The virtual network stack allocator maintains a free list to 146 * track what space in the array is free (all, initially) and as modules are 147 * linked, allocates portions of the space to specific globals. The kernel 148 * module linker queries the virtual network stack allocator and will 149 * bind references of the global to the location during linking. It also 150 * calls into the virtual network stack allocator, once the memory is 151 * initialized, in order to propagate the new static initializations to all 152 * existing virtual network stack instances so that the soon-to-be executing 153 * module will find every network stack instance with proper default values. 154 */ 155 156 /* 157 * Number of bytes of data in the 'set_vnet' linker set, and hence the total 158 * size of all kernel virtualized global variables, and the malloc(9) type 159 * that will be used to allocate it. 160 */ 161 #define VNET_BYTES (VNET_STOP - VNET_START) 162 163 MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); 164 165 /* 166 * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of 167 * global variables across all loaded modules. As this actually sizes an 168 * array declared as a virtualized global variable in the kernel itself, and 169 * we want the virtualized global variable space to be page-sized, we may 170 * have more space than that in practice. 171 */ 172 #define VNET_MODMIN 8192 173 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) 174 #define VNET_MODSIZE (VNET_SIZE - (VNET_BYTES - VNET_MODMIN)) 175 176 /* 177 * Space to store virtualized global variables from loadable kernel modules, 178 * and the free list to manage it. 179 */ 180 static VNET_DEFINE(char, modspace[VNET_MODMIN]); 181 182 /* 183 * Global lists of subsystem constructor and destructors for vnets. They are 184 * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are 185 * protected by the vnet_sysinit_sxlock global lock. 186 */ 187 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = 188 TAILQ_HEAD_INITIALIZER(vnet_constructors); 189 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = 190 TAILQ_HEAD_INITIALIZER(vnet_destructors); 191 192 struct sx vnet_sysinit_sxlock; 193 194 #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); 195 #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); 196 #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); 197 #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); 198 199 struct vnet_data_free { 200 uintptr_t vnd_start; 201 int vnd_len; 202 TAILQ_ENTRY(vnet_data_free) vnd_link; 203 }; 204 205 MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", "VNET resource accounting"); 206 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = 207 TAILQ_HEAD_INITIALIZER(vnet_data_free_head); 208 static struct sx vnet_data_free_lock; 209 210 SDT_PROVIDER_DEFINE(vnet); 211 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int"); 212 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int", "struct vnet *"); 213 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return, "int", "struct vnet *"); 214 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry, "int", "struct vnet *"); 215 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return, "int"); 216 217 #ifdef DDB 218 static void db_show_vnet_print_vs(struct vnet_sysinit *, int); 219 #endif 220 221 /* 222 * Allocate a virtual network stack. 223 */ 224 struct vnet * 225 vnet_alloc(void) 226 { 227 struct vnet *vnet; 228 229 SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__); 230 vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); 231 vnet->vnet_magic_n = VNET_MAGIC_N; 232 SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet); 233 234 /* 235 * Allocate storage for virtualized global variables and copy in 236 * initial values form our 'master' copy. 237 */ 238 vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); 239 memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); 240 241 /* 242 * All use of vnet-specific data will immediately subtract VNET_START 243 * from the base memory pointer, so pre-calculate that now to avoid 244 * it on each use. 245 */ 246 vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; 247 248 /* Initialize / attach vnet module instances. */ 249 CURVNET_SET_QUIET(vnet); 250 vnet_sysinit(); 251 CURVNET_RESTORE(); 252 253 VNET_LIST_WLOCK(); 254 LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); 255 VNET_LIST_WUNLOCK(); 256 257 SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet); 258 return (vnet); 259 } 260 261 /* 262 * Destroy a virtual network stack. 263 */ 264 void 265 vnet_destroy(struct vnet *vnet) 266 { 267 struct ifnet *ifp, *nifp; 268 269 SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet); 270 KASSERT(vnet->vnet_sockcnt == 0, 271 ("%s: vnet still has sockets", __func__)); 272 273 VNET_LIST_WLOCK(); 274 LIST_REMOVE(vnet, vnet_le); 275 VNET_LIST_WUNLOCK(); 276 277 CURVNET_SET_QUIET(vnet); 278 279 /* Return all inherited interfaces to their parent vnets. */ 280 TAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 281 if (ifp->if_home_vnet != ifp->if_vnet) 282 if_vmove(ifp, ifp->if_home_vnet); 283 } 284 285 vnet_sysuninit(); 286 CURVNET_RESTORE(); 287 288 /* 289 * Release storage for the virtual network stack instance. 290 */ 291 free(vnet->vnet_data_mem, M_VNET_DATA); 292 vnet->vnet_data_mem = NULL; 293 vnet->vnet_data_base = 0; 294 vnet->vnet_magic_n = 0xdeadbeef; 295 free(vnet, M_VNET); 296 SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__); 297 } 298 299 /* 300 * Boot time initialization and allocation of virtual network stacks. 301 */ 302 static void 303 vnet_init_prelink(void *arg) 304 { 305 306 rw_init(&vnet_rwlock, "vnet_rwlock"); 307 sx_init(&vnet_sxlock, "vnet_sxlock"); 308 sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); 309 LIST_INIT(&vnet_head); 310 } 311 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, 312 vnet_init_prelink, NULL); 313 314 static void 315 vnet0_init(void *arg) 316 { 317 318 /* Warn people before take off - in case we crash early. */ 319 printf("WARNING: VIMAGE (virtualized network stack) is a highly " 320 "experimental feature.\n"); 321 322 /* 323 * We MUST clear curvnet in vi_init_done() before going SMP, 324 * otherwise CURVNET_SET() macros would scream about unnecessary 325 * curvnet recursions. 326 */ 327 curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); 328 } 329 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); 330 331 static void 332 vnet_init_done(void *unused) 333 { 334 335 curvnet = NULL; 336 } 337 338 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_FIRST, vnet_init_done, 339 NULL); 340 341 /* 342 * Once on boot, initialize the modspace freelist to entirely cover modspace. 343 */ 344 static void 345 vnet_data_startup(void *dummy __unused) 346 { 347 struct vnet_data_free *df; 348 349 df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 350 df->vnd_start = (uintptr_t)&VNET_NAME(modspace); 351 df->vnd_len = VNET_MODMIN; 352 TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); 353 sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); 354 } 355 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, 0); 356 357 /* 358 * When a module is loaded and requires storage for a virtualized global 359 * variable, allocate space from the modspace free list. This interface 360 * should be used only by the kernel linker. 361 */ 362 void * 363 vnet_data_alloc(int size) 364 { 365 struct vnet_data_free *df; 366 void *s; 367 368 s = NULL; 369 size = roundup2(size, sizeof(void *)); 370 sx_xlock(&vnet_data_free_lock); 371 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 372 if (df->vnd_len < size) 373 continue; 374 if (df->vnd_len == size) { 375 s = (void *)df->vnd_start; 376 TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); 377 free(df, M_VNET_DATA_FREE); 378 break; 379 } 380 s = (void *)df->vnd_start; 381 df->vnd_len -= size; 382 df->vnd_start = df->vnd_start + size; 383 break; 384 } 385 sx_xunlock(&vnet_data_free_lock); 386 387 return (s); 388 } 389 390 /* 391 * Free space for a virtualized global variable on module unload. 392 */ 393 void 394 vnet_data_free(void *start_arg, int size) 395 { 396 struct vnet_data_free *df; 397 struct vnet_data_free *dn; 398 uintptr_t start; 399 uintptr_t end; 400 401 size = roundup2(size, sizeof(void *)); 402 start = (uintptr_t)start_arg; 403 end = start + size; 404 /* 405 * Free a region of space and merge it with as many neighbors as 406 * possible. Keeping the list sorted simplifies this operation. 407 */ 408 sx_xlock(&vnet_data_free_lock); 409 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 410 if (df->vnd_start > end) 411 break; 412 /* 413 * If we expand at the end of an entry we may have to merge 414 * it with the one following it as well. 415 */ 416 if (df->vnd_start + df->vnd_len == start) { 417 df->vnd_len += size; 418 dn = TAILQ_NEXT(df, vnd_link); 419 if (df->vnd_start + df->vnd_len == dn->vnd_start) { 420 df->vnd_len += dn->vnd_len; 421 TAILQ_REMOVE(&vnet_data_free_head, dn, 422 vnd_link); 423 free(dn, M_VNET_DATA_FREE); 424 } 425 sx_xunlock(&vnet_data_free_lock); 426 return; 427 } 428 if (df->vnd_start == end) { 429 df->vnd_start = start; 430 df->vnd_len += size; 431 sx_xunlock(&vnet_data_free_lock); 432 return; 433 } 434 } 435 dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 436 dn->vnd_start = start; 437 dn->vnd_len = size; 438 if (df) 439 TAILQ_INSERT_BEFORE(df, dn, vnd_link); 440 else 441 TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); 442 sx_xunlock(&vnet_data_free_lock); 443 } 444 445 /* 446 * When a new virtualized global variable has been allocated, propagate its 447 * initial value to each already-allocated virtual network stack instance. 448 */ 449 void 450 vnet_data_copy(void *start, int size) 451 { 452 struct vnet *vnet; 453 454 VNET_LIST_RLOCK(); 455 LIST_FOREACH(vnet, &vnet_head, vnet_le) 456 memcpy((void *)((uintptr_t)vnet->vnet_data_base + 457 (uintptr_t)start), start, size); 458 VNET_LIST_RUNLOCK(); 459 } 460 461 /* 462 * Variants on sysctl_handle_foo that know how to handle virtualized global 463 * variables: if 'arg1' is a pointer, then we transform it to the local vnet 464 * offset. 465 */ 466 int 467 vnet_sysctl_handle_int(SYSCTL_HANDLER_ARGS) 468 { 469 470 if (arg1 != NULL) 471 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 472 return (sysctl_handle_int(oidp, arg1, arg2, req)); 473 } 474 475 int 476 vnet_sysctl_handle_opaque(SYSCTL_HANDLER_ARGS) 477 { 478 479 if (arg1 != NULL) 480 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 481 return (sysctl_handle_opaque(oidp, arg1, arg2, req)); 482 } 483 484 int 485 vnet_sysctl_handle_string(SYSCTL_HANDLER_ARGS) 486 { 487 488 if (arg1 != NULL) 489 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 490 return (sysctl_handle_string(oidp, arg1, arg2, req)); 491 } 492 493 int 494 vnet_sysctl_handle_uint(SYSCTL_HANDLER_ARGS) 495 { 496 497 if (arg1 != NULL) 498 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 499 return (sysctl_handle_int(oidp, arg1, arg2, req)); 500 } 501 502 /* 503 * Support for special SYSINIT handlers registered via VNET_SYSINIT() 504 * and VNET_SYSUNINIT(). 505 */ 506 void 507 vnet_register_sysinit(void *arg) 508 { 509 struct vnet_sysinit *vs, *vs2; 510 struct vnet *vnet; 511 512 vs = arg; 513 KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); 514 515 /* Add the constructor to the global list of vnet constructors. */ 516 VNET_SYSINIT_WLOCK(); 517 TAILQ_FOREACH(vs2, &vnet_constructors, link) { 518 if (vs2->subsystem > vs->subsystem) 519 break; 520 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 521 break; 522 } 523 if (vs2 != NULL) 524 TAILQ_INSERT_BEFORE(vs2, vs, link); 525 else 526 TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); 527 528 /* 529 * Invoke the constructor on all the existing vnets when it is 530 * registered. 531 */ 532 VNET_FOREACH(vnet) { 533 CURVNET_SET_QUIET(vnet); 534 vs->func(vs->arg); 535 CURVNET_RESTORE(); 536 } 537 VNET_SYSINIT_WUNLOCK(); 538 } 539 540 void 541 vnet_deregister_sysinit(void *arg) 542 { 543 struct vnet_sysinit *vs; 544 545 vs = arg; 546 547 /* Remove the constructor from the global list of vnet constructors. */ 548 VNET_SYSINIT_WLOCK(); 549 TAILQ_REMOVE(&vnet_constructors, vs, link); 550 VNET_SYSINIT_WUNLOCK(); 551 } 552 553 void 554 vnet_register_sysuninit(void *arg) 555 { 556 struct vnet_sysinit *vs, *vs2; 557 558 vs = arg; 559 560 /* Add the destructor to the global list of vnet destructors. */ 561 VNET_SYSINIT_WLOCK(); 562 TAILQ_FOREACH(vs2, &vnet_destructors, link) { 563 if (vs2->subsystem > vs->subsystem) 564 break; 565 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 566 break; 567 } 568 if (vs2 != NULL) 569 TAILQ_INSERT_BEFORE(vs2, vs, link); 570 else 571 TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); 572 VNET_SYSINIT_WUNLOCK(); 573 } 574 575 void 576 vnet_deregister_sysuninit(void *arg) 577 { 578 struct vnet_sysinit *vs; 579 struct vnet *vnet; 580 581 vs = arg; 582 583 /* 584 * Invoke the destructor on all the existing vnets when it is 585 * deregistered. 586 */ 587 VNET_SYSINIT_WLOCK(); 588 VNET_FOREACH(vnet) { 589 CURVNET_SET_QUIET(vnet); 590 vs->func(vs->arg); 591 CURVNET_RESTORE(); 592 } 593 594 /* Remove the destructor from the global list of vnet destructors. */ 595 TAILQ_REMOVE(&vnet_destructors, vs, link); 596 VNET_SYSINIT_WUNLOCK(); 597 } 598 599 /* 600 * Invoke all registered vnet constructors on the current vnet. Used during 601 * vnet construction. The caller is responsible for ensuring the new vnet is 602 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 603 */ 604 void 605 vnet_sysinit(void) 606 { 607 struct vnet_sysinit *vs; 608 609 VNET_SYSINIT_RLOCK(); 610 TAILQ_FOREACH(vs, &vnet_constructors, link) { 611 vs->func(vs->arg); 612 } 613 VNET_SYSINIT_RUNLOCK(); 614 } 615 616 /* 617 * Invoke all registered vnet destructors on the current vnet. Used during 618 * vnet destruction. The caller is responsible for ensuring the dying vnet 619 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 620 */ 621 void 622 vnet_sysuninit(void) 623 { 624 struct vnet_sysinit *vs; 625 626 VNET_SYSINIT_RLOCK(); 627 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 628 link) { 629 vs->func(vs->arg); 630 } 631 VNET_SYSINIT_RUNLOCK(); 632 } 633 634 /* 635 * EVENTHANDLER(9) extensions. 636 */ 637 /* 638 * Invoke the eventhandler function originally registered with the possibly 639 * registered argument for all virtual network stack instances. 640 * 641 * This iterator can only be used for eventhandlers that do not take any 642 * additional arguments, as we do ignore the variadic arguments from the 643 * EVENTHANDLER_INVOKE() call. 644 */ 645 void 646 vnet_global_eventhandler_iterator_func(void *arg, ...) 647 { 648 VNET_ITERATOR_DECL(vnet_iter); 649 struct eventhandler_entry_vimage *v_ee; 650 651 /* 652 * There is a bug here in that we should actually cast things to 653 * (struct eventhandler_entry_ ## name *) but that's not easily 654 * possible in here so just re-using the variadic version we 655 * defined for the generic vimage case. 656 */ 657 v_ee = arg; 658 VNET_LIST_RLOCK(); 659 VNET_FOREACH(vnet_iter) { 660 CURVNET_SET(vnet_iter); 661 ((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg); 662 CURVNET_RESTORE(); 663 } 664 VNET_LIST_RUNLOCK(); 665 } 666 667 #ifdef VNET_DEBUG 668 struct vnet_recursion { 669 SLIST_ENTRY(vnet_recursion) vnr_le; 670 const char *prev_fn; 671 const char *where_fn; 672 int where_line; 673 struct vnet *old_vnet; 674 struct vnet *new_vnet; 675 }; 676 677 static SLIST_HEAD(, vnet_recursion) vnet_recursions = 678 SLIST_HEAD_INITIALIZER(vnet_recursions); 679 680 static void 681 vnet_print_recursion(struct vnet_recursion *vnr, int brief) 682 { 683 684 if (!brief) 685 printf("CURVNET_SET() recursion in "); 686 printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line, 687 vnr->prev_fn); 688 if (brief) 689 printf(", "); 690 else 691 printf("\n "); 692 printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet); 693 } 694 695 void 696 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line) 697 { 698 struct vnet_recursion *vnr; 699 700 /* Skip already logged recursion events. */ 701 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 702 if (vnr->prev_fn == old_fn && 703 vnr->where_fn == curthread->td_vnet_lpush && 704 vnr->where_line == line && 705 (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet)) 706 return; 707 708 vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO); 709 if (vnr == NULL) 710 panic("%s: malloc failed", __func__); 711 vnr->prev_fn = old_fn; 712 vnr->where_fn = curthread->td_vnet_lpush; 713 vnr->where_line = line; 714 vnr->old_vnet = old_vnet; 715 vnr->new_vnet = curvnet; 716 717 SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le); 718 719 vnet_print_recursion(vnr, 0); 720 #ifdef KDB 721 kdb_backtrace(); 722 #endif 723 } 724 #endif /* VNET_DEBUG */ 725 726 /* 727 * DDB(4). 728 */ 729 #ifdef DDB 730 DB_SHOW_COMMAND(vnets, db_show_vnets) 731 { 732 VNET_ITERATOR_DECL(vnet_iter); 733 734 VNET_FOREACH(vnet_iter) { 735 db_printf("vnet = %p\n", vnet_iter); 736 db_printf(" vnet_magic_n = 0x%x (%s, orig 0x%x)\n", 737 vnet_iter->vnet_magic_n, 738 (vnet_iter->vnet_magic_n == VNET_MAGIC_N) ? 739 "ok" : "mismatch", VNET_MAGIC_N); 740 db_printf(" vnet_ifcnt = %u\n", vnet_iter->vnet_ifcnt); 741 db_printf(" vnet_sockcnt = %u\n", vnet_iter->vnet_sockcnt); 742 db_printf(" vnet_data_mem = %p\n", vnet_iter->vnet_data_mem); 743 db_printf(" vnet_data_base = 0x%jx\n", 744 (uintmax_t)vnet_iter->vnet_data_base); 745 db_printf("\n"); 746 if (db_pager_quit) 747 break; 748 } 749 } 750 751 static void 752 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb) 753 { 754 const char *vsname, *funcname; 755 c_db_sym_t sym; 756 db_expr_t offset; 757 758 #define xprint(...) \ 759 if (ddb) \ 760 db_printf(__VA_ARGS__); \ 761 else \ 762 printf(__VA_ARGS__) 763 764 if (vs == NULL) { 765 xprint("%s: no vnet_sysinit * given\n", __func__); 766 return; 767 } 768 769 sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset); 770 db_symbol_values(sym, &vsname, NULL); 771 sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset); 772 db_symbol_values(sym, &funcname, NULL); 773 xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs); 774 xprint(" 0x%08x 0x%08x\n", vs->subsystem, vs->order); 775 xprint(" %p(%s)(%p)\n", 776 vs->func, (funcname != NULL) ? funcname : "", vs->arg); 777 #undef xprint 778 } 779 780 DB_SHOW_COMMAND(vnet_sysinit, db_show_vnet_sysinit) 781 { 782 struct vnet_sysinit *vs; 783 784 db_printf("VNET_SYSINIT vs Name(Ptr)\n"); 785 db_printf(" Subsystem Order\n"); 786 db_printf(" Function(Name)(Arg)\n"); 787 TAILQ_FOREACH(vs, &vnet_constructors, link) { 788 db_show_vnet_print_vs(vs, 1); 789 if (db_pager_quit) 790 break; 791 } 792 } 793 794 DB_SHOW_COMMAND(vnet_sysuninit, db_show_vnet_sysuninit) 795 { 796 struct vnet_sysinit *vs; 797 798 db_printf("VNET_SYSUNINIT vs Name(Ptr)\n"); 799 db_printf(" Subsystem Order\n"); 800 db_printf(" Function(Name)(Arg)\n"); 801 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 802 link) { 803 db_show_vnet_print_vs(vs, 1); 804 if (db_pager_quit) 805 break; 806 } 807 } 808 809 #ifdef VNET_DEBUG 810 DB_SHOW_COMMAND(vnetrcrs, db_show_vnetrcrs) 811 { 812 struct vnet_recursion *vnr; 813 814 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 815 vnet_print_recursion(vnr, 1); 816 } 817 #endif 818 #endif /* DDB */ 819