1 /*- 2 * Copyright (c) 2004-2009 University of Zagreb 3 * Copyright (c) 2006-2009 FreeBSD Foundation 4 * All rights reserved. 5 * 6 * This software was developed by the University of Zagreb and the 7 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 8 * FreeBSD Foundation. 9 * 10 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 11 * Copyright (c) 2009 Robert N. M. Watson 12 * All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_ddb.h" 40 41 #include <sys/param.h> 42 #include <sys/kernel.h> 43 #include <sys/jail.h> 44 #include <sys/systm.h> 45 #include <sys/sysctl.h> 46 #include <sys/linker_set.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/proc.h> 50 #include <sys/socket.h> 51 #include <sys/sx.h> 52 #include <sys/sysctl.h> 53 54 #ifdef DDB 55 #include <ddb/ddb.h> 56 #endif 57 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #include <net/vnet.h> 61 62 /*- 63 * This file implements core functions for virtual network stacks: 64 * 65 * - Virtual network stack management functions. 66 * 67 * - Virtual network stack memory allocator, which virtualizes global 68 * variables in the network stack 69 * 70 * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems 71 * to register startup/shutdown events to be run for each virtual network 72 * stack instance. 73 */ 74 75 MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); 76 77 /* 78 * The virtual network stack list has two read-write locks, one sleepable and 79 * the other not, so that the list can be stablized and walked in a variety 80 * of network stack contexts. Both must be acquired exclusively to modify 81 * the list, but a read lock of either lock is sufficient to walk the list. 82 */ 83 struct rwlock vnet_rwlock; 84 struct sx vnet_sxlock; 85 86 #define VNET_LIST_WLOCK() do { \ 87 sx_xlock(&vnet_sxlock); \ 88 rw_wlock(&vnet_rwlock); \ 89 } while (0) 90 91 #define VNET_LIST_WUNLOCK() do { \ 92 rw_wunlock(&vnet_rwlock); \ 93 sx_xunlock(&vnet_sxlock); \ 94 } while (0) 95 96 struct vnet_list_head vnet_head; 97 struct vnet *vnet0; 98 99 /* 100 * The virtual network stack allocator provides storage for virtualized 101 * global variables. These variables are defined/declared using the 102 * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' 103 * linker set. The details of the implementation are somewhat subtle, but 104 * allow the majority of most network subsystems to maintain 105 * virtualization-agnostic. 106 * 107 * The virtual network stack allocator handles variables in the base kernel 108 * vs. modules in similar but different ways. In both cases, virtualized 109 * global variables are marked as such by being declared to be part of the 110 * vnet linker set. These "master" copies of global variables serve two 111 * functions: 112 * 113 * (1) They contain static initialization or "default" values for global 114 * variables which will be propagated to each virtual network stack 115 * instance when created. As with normal global variables, they default 116 * to zero-filled. 117 * 118 * (2) They act as unique global names by which the variable can be referred 119 * to, regardless of network stack instance. The single global symbol 120 * will be used to calculate the location of a per-virtual instance 121 * variable at run-time. 122 * 123 * Each virtual network stack instance has a complete copy of each 124 * virtualized global variable, stored in a malloc'd block of memory 125 * referred to by vnet->vnet_data_mem. Critical to the design is that each 126 * per-instance memory block is laid out identically to the master block so 127 * that the offset of each global variable is the same across all blocks. To 128 * optimize run-time access, a precalculated 'base' address, 129 * vnet->vnet_data_base, is stored in each vnet, and is the amount that can 130 * be added to the address of a 'master' instance of a variable to get to the 131 * per-vnet instance. 132 * 133 * Virtualized global variables are handled in a similar manner, but as each 134 * module has its own 'set_vnet' linker set, and we want to keep all 135 * virtualized globals togther, we reserve space in the kernel's linker set 136 * for potential module variables using a per-vnet character array, 137 * 'modspace'. The virtual network stack allocator maintains a free list to 138 * track what space in the array is free (all, initially) and as modules are 139 * linked, allocates portions of the space to specific globals. The kernel 140 * module linker queries the virtual network stack allocator and will 141 * bind references of the global to the location during linking. It also 142 * calls into the virtual network stack allocator, once the memory is 143 * initialized, in order to propagate the new static initializations to all 144 * existing virtual network stack instances so that the soon-to-be executing 145 * module will find every network stack instance with proper default values. 146 */ 147 148 /* 149 * Location of the kernel's 'set_vnet' linker set. 150 */ 151 extern uintptr_t *__start_set_vnet; 152 extern uintptr_t *__stop_set_vnet; 153 154 #define VNET_START (uintptr_t)&__start_set_vnet 155 #define VNET_STOP (uintptr_t)&__stop_set_vnet 156 157 /* 158 * Number of bytes of data in the 'set_vnet' linker set, and hence the total 159 * size of all kernel virtualized global variables, and the malloc(9) type 160 * that will be used to allocate it. 161 */ 162 #define VNET_BYTES (VNET_STOP - VNET_START) 163 164 MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); 165 166 /* 167 * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of 168 * global variables across all loaded modules. As this actually sizes an 169 * array declared as a virtualized global variable in the kernel itself, and 170 * we want the virtualized global variable space to be page-sized, we may 171 * have more space than that in practice. 172 */ 173 #define VNET_MODMIN 8192 174 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) 175 #define VNET_MODSIZE (VNET_SIZE - (VNET_BYTES - VNET_MODMIN)) 176 177 /* 178 * Space to store virtualized global variables from loadable kernel modules, 179 * and the free list to manage it. 180 */ 181 static VNET_DEFINE(char, modspace[VNET_MODMIN]); 182 183 /* 184 * Global lists of subsystem constructor and destructors for vnets. They are 185 * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are 186 * protected by the vnet_sysinit_sxlock global lock. 187 */ 188 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = 189 TAILQ_HEAD_INITIALIZER(vnet_constructors); 190 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = 191 TAILQ_HEAD_INITIALIZER(vnet_destructors); 192 193 struct sx vnet_sysinit_sxlock; 194 195 #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); 196 #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); 197 #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); 198 #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); 199 200 struct vnet_data_free { 201 uintptr_t vnd_start; 202 int vnd_len; 203 TAILQ_ENTRY(vnet_data_free) vnd_link; 204 }; 205 206 MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", "VNET resource accounting"); 207 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = 208 TAILQ_HEAD_INITIALIZER(vnet_data_free_head); 209 static struct sx vnet_data_free_lock; 210 211 /* 212 * Allocate a virtual network stack. 213 */ 214 struct vnet * 215 vnet_alloc(void) 216 { 217 struct vnet *vnet; 218 219 vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); 220 vnet->vnet_magic_n = VNET_MAGIC_N; 221 222 /* 223 * Allocate storage for virtualized global variables and copy in 224 * initial values form our 'master' copy. 225 */ 226 vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); 227 memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); 228 229 /* 230 * All use of vnet-specific data will immediately subtract VNET_START 231 * from the base memory pointer, so pre-calculate that now to avoid 232 * it on each use. 233 */ 234 vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; 235 236 /* Initialize / attach vnet module instances. */ 237 CURVNET_SET_QUIET(vnet); 238 vnet_sysinit(); 239 CURVNET_RESTORE(); 240 241 VNET_LIST_WLOCK(); 242 LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); 243 VNET_LIST_WUNLOCK(); 244 245 return (vnet); 246 } 247 248 /* 249 * Destroy a virtual network stack. 250 */ 251 void 252 vnet_destroy(struct vnet *vnet) 253 { 254 struct ifnet *ifp, *nifp; 255 256 KASSERT(vnet->vnet_sockcnt == 0, 257 ("%s: vnet still has sockets", __func__)); 258 259 VNET_LIST_WLOCK(); 260 LIST_REMOVE(vnet, vnet_le); 261 VNET_LIST_WUNLOCK(); 262 263 CURVNET_SET_QUIET(vnet); 264 265 /* Return all inherited interfaces to their parent vnets. */ 266 TAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 267 if (ifp->if_home_vnet != ifp->if_vnet) 268 if_vmove(ifp, ifp->if_home_vnet); 269 } 270 271 vnet_sysuninit(); 272 CURVNET_RESTORE(); 273 274 /* 275 * Release storage for the virtual network stack instance. 276 */ 277 free(vnet->vnet_data_mem, M_VNET_DATA); 278 vnet->vnet_data_mem = NULL; 279 vnet->vnet_data_base = 0; 280 vnet->vnet_magic_n = 0xdeadbeef; 281 free(vnet, M_VNET); 282 } 283 284 /* 285 * Boot time initialization and allocation of virtual network stacks. 286 */ 287 static void 288 vnet_init_prelink(void *arg) 289 { 290 291 rw_init(&vnet_rwlock, "vnet_rwlock"); 292 sx_init(&vnet_sxlock, "vnet_sxlock"); 293 sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); 294 LIST_INIT(&vnet_head); 295 } 296 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, 297 vnet_init_prelink, NULL); 298 299 static void 300 vnet0_init(void *arg) 301 { 302 303 /* Warn people before take off - in case we crash early. */ 304 printf("WARNING: VIMAGE (virtualized network stack) is a highly " 305 "experimental feature.\n"); 306 307 /* 308 * We MUST clear curvnet in vi_init_done() before going SMP, 309 * otherwise CURVNET_SET() macros would scream about unnecessary 310 * curvnet recursions. 311 */ 312 curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); 313 } 314 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); 315 316 static void 317 vnet_init_done(void *unused) 318 { 319 320 curvnet = NULL; 321 } 322 323 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_FIRST, vnet_init_done, 324 NULL); 325 326 /* 327 * Once on boot, initialize the modspace freelist to entirely cover modspace. 328 */ 329 static void 330 vnet_data_startup(void *dummy __unused) 331 { 332 struct vnet_data_free *df; 333 334 df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 335 df->vnd_start = (uintptr_t)&VNET_NAME(modspace); 336 df->vnd_len = VNET_MODSIZE; 337 TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); 338 sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); 339 } 340 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, 0); 341 342 /* 343 * When a module is loaded and requires storage for a virtualized global 344 * variable, allocate space from the modspace free list. This interface 345 * should be used only by the kernel linker. 346 */ 347 void * 348 vnet_data_alloc(int size) 349 { 350 struct vnet_data_free *df; 351 void *s; 352 353 s = NULL; 354 size = roundup2(size, sizeof(void *)); 355 sx_xlock(&vnet_data_free_lock); 356 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 357 if (df->vnd_len < size) 358 continue; 359 if (df->vnd_len == size) { 360 s = (void *)df->vnd_start; 361 TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); 362 free(df, M_VNET_DATA_FREE); 363 break; 364 } 365 s = (void *)df->vnd_start; 366 df->vnd_len -= size; 367 df->vnd_start = df->vnd_start + size; 368 break; 369 } 370 sx_xunlock(&vnet_data_free_lock); 371 372 return (s); 373 } 374 375 /* 376 * Free space for a virtualized global variable on module unload. 377 */ 378 void 379 vnet_data_free(void *start_arg, int size) 380 { 381 struct vnet_data_free *df; 382 struct vnet_data_free *dn; 383 uintptr_t start; 384 uintptr_t end; 385 386 size = roundup2(size, sizeof(void *)); 387 start = (uintptr_t)start_arg; 388 end = start + size; 389 /* 390 * Free a region of space and merge it with as many neighbors as 391 * possible. Keeping the list sorted simplifies this operation. 392 */ 393 sx_xlock(&vnet_data_free_lock); 394 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 395 if (df->vnd_start > end) 396 break; 397 /* 398 * If we expand at the end of an entry we may have to merge 399 * it with the one following it as well. 400 */ 401 if (df->vnd_start + df->vnd_len == start) { 402 df->vnd_len += size; 403 dn = TAILQ_NEXT(df, vnd_link); 404 if (df->vnd_start + df->vnd_len == dn->vnd_start) { 405 df->vnd_len += dn->vnd_len; 406 TAILQ_REMOVE(&vnet_data_free_head, dn, 407 vnd_link); 408 free(dn, M_VNET_DATA_FREE); 409 } 410 sx_xunlock(&vnet_data_free_lock); 411 return; 412 } 413 if (df->vnd_start == end) { 414 df->vnd_start = start; 415 df->vnd_len += size; 416 sx_xunlock(&vnet_data_free_lock); 417 return; 418 } 419 } 420 dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 421 dn->vnd_start = start; 422 dn->vnd_len = size; 423 if (df) 424 TAILQ_INSERT_BEFORE(df, dn, vnd_link); 425 else 426 TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); 427 sx_xunlock(&vnet_data_free_lock); 428 } 429 430 /* 431 * When a new virtualized global variable has been allocated, propagate its 432 * initial value to each already-allocated virtual network stack instance. 433 */ 434 void 435 vnet_data_copy(void *start, int size) 436 { 437 struct vnet *vnet; 438 439 VNET_LIST_RLOCK(); 440 LIST_FOREACH(vnet, &vnet_head, vnet_le) 441 memcpy((void *)((uintptr_t)vnet->vnet_data_base + 442 (uintptr_t)start), start, size); 443 VNET_LIST_RUNLOCK(); 444 } 445 446 /* 447 * Variants on sysctl_handle_foo that know how to handle virtualized global 448 * variables: if 'arg1' is a pointer, then we transform it to the local vnet 449 * offset. 450 */ 451 int 452 vnet_sysctl_handle_int(SYSCTL_HANDLER_ARGS) 453 { 454 455 if (arg1 != NULL) 456 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 457 return (sysctl_handle_int(oidp, arg1, arg2, req)); 458 } 459 460 int 461 vnet_sysctl_handle_opaque(SYSCTL_HANDLER_ARGS) 462 { 463 464 if (arg1 != NULL) 465 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 466 return (sysctl_handle_opaque(oidp, arg1, arg2, req)); 467 } 468 469 int 470 vnet_sysctl_handle_string(SYSCTL_HANDLER_ARGS) 471 { 472 473 if (arg1 != NULL) 474 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 475 return (sysctl_handle_string(oidp, arg1, arg2, req)); 476 } 477 478 int 479 vnet_sysctl_handle_uint(SYSCTL_HANDLER_ARGS) 480 { 481 482 if (arg1 != NULL) 483 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 484 return (sysctl_handle_int(oidp, arg1, arg2, req)); 485 } 486 487 /* 488 * Support for special SYSINIT handlers registered via VNET_SYSINIT() 489 * and VNET_SYSUNINIT(). 490 */ 491 void 492 vnet_register_sysinit(void *arg) 493 { 494 struct vnet_sysinit *vs, *vs2; 495 struct vnet *vnet; 496 497 vs = arg; 498 KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); 499 500 /* Add the constructor to the global list of vnet constructors. */ 501 VNET_SYSINIT_WLOCK(); 502 TAILQ_FOREACH(vs2, &vnet_constructors, link) { 503 if (vs2->subsystem > vs->subsystem) 504 break; 505 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 506 break; 507 } 508 if (vs2 != NULL) 509 TAILQ_INSERT_BEFORE(vs2, vs, link); 510 else 511 TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); 512 513 /* 514 * Invoke the constructor on all the existing vnets when it is 515 * registered. 516 */ 517 VNET_FOREACH(vnet) { 518 CURVNET_SET_QUIET(vnet); 519 vs->func(vs->arg); 520 CURVNET_RESTORE(); 521 } 522 VNET_SYSINIT_WUNLOCK(); 523 } 524 525 void 526 vnet_deregister_sysinit(void *arg) 527 { 528 struct vnet_sysinit *vs; 529 530 vs = arg; 531 532 /* Remove the constructor from the global list of vnet constructors. */ 533 VNET_SYSINIT_WLOCK(); 534 TAILQ_REMOVE(&vnet_constructors, vs, link); 535 VNET_SYSINIT_WUNLOCK(); 536 } 537 538 void 539 vnet_register_sysuninit(void *arg) 540 { 541 struct vnet_sysinit *vs, *vs2; 542 543 vs = arg; 544 545 /* Add the destructor to the global list of vnet destructors. */ 546 VNET_SYSINIT_WLOCK(); 547 TAILQ_FOREACH(vs2, &vnet_destructors, link) { 548 if (vs2->subsystem > vs->subsystem) 549 break; 550 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 551 break; 552 } 553 if (vs2 != NULL) 554 TAILQ_INSERT_BEFORE(vs2, vs, link); 555 else 556 TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); 557 VNET_SYSINIT_WUNLOCK(); 558 } 559 560 void 561 vnet_deregister_sysuninit(void *arg) 562 { 563 struct vnet_sysinit *vs; 564 struct vnet *vnet; 565 566 vs = arg; 567 568 /* 569 * Invoke the destructor on all the existing vnets when it is 570 * deregistered. 571 */ 572 VNET_SYSINIT_WLOCK(); 573 VNET_FOREACH(vnet) { 574 CURVNET_SET_QUIET(vnet); 575 vs->func(vs->arg); 576 CURVNET_RESTORE(); 577 } 578 579 /* Remove the destructor from the global list of vnet destructors. */ 580 TAILQ_REMOVE(&vnet_destructors, vs, link); 581 VNET_SYSINIT_WUNLOCK(); 582 } 583 584 /* 585 * Invoke all registered vnet constructors on the current vnet. Used during 586 * vnet construction. The caller is responsible for ensuring the new vnet is 587 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 588 */ 589 void 590 vnet_sysinit(void) 591 { 592 struct vnet_sysinit *vs; 593 594 VNET_SYSINIT_RLOCK(); 595 TAILQ_FOREACH(vs, &vnet_constructors, link) { 596 vs->func(vs->arg); 597 } 598 VNET_SYSINIT_RUNLOCK(); 599 } 600 601 /* 602 * Invoke all registered vnet destructors on the current vnet. Used during 603 * vnet destruction. The caller is responsible for ensuring the dying vnet 604 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 605 */ 606 void 607 vnet_sysuninit(void) 608 { 609 struct vnet_sysinit *vs; 610 611 VNET_SYSINIT_RLOCK(); 612 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 613 link) { 614 vs->func(vs->arg); 615 } 616 VNET_SYSINIT_RUNLOCK(); 617 } 618 619 #ifdef DDB 620 DB_SHOW_COMMAND(vnets, db_show_vnets) 621 { 622 VNET_ITERATOR_DECL(vnet_iter); 623 624 VNET_FOREACH(vnet_iter) { 625 db_printf("vnet = %p\n", vnet_iter); 626 db_printf(" vnet_magic_n = 0x%x (%s, orig 0x%x)\n", 627 vnet_iter->vnet_magic_n, 628 (vnet_iter->vnet_magic_n == VNET_MAGIC_N) ? 629 "ok" : "mismatch", VNET_MAGIC_N); 630 db_printf(" vnet_ifcnt = %u\n", vnet_iter->vnet_ifcnt); 631 db_printf(" vnet_sockcnt = %u\n", vnet_iter->vnet_sockcnt); 632 db_printf(" vnet_data_mem = %p\n", vnet_iter->vnet_data_mem); 633 db_printf(" vnet_data_base = 0x%jx\n", 634 (uintmax_t)vnet_iter->vnet_data_base); 635 db_printf("\n"); 636 if (db_pager_quit) 637 break; 638 } 639 } 640 #endif 641