1 /*- 2 * Copyright (c) 2004-2009 University of Zagreb 3 * Copyright (c) 2006-2009 FreeBSD Foundation 4 * All rights reserved. 5 * 6 * This software was developed by the University of Zagreb and the 7 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 8 * FreeBSD Foundation. 9 * 10 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 11 * Copyright (c) 2009 Robert N. M. Watson 12 * All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_ddb.h" 40 #include "opt_kdb.h" 41 #include "opt_kdtrace.h" 42 43 #include <sys/param.h> 44 #include <sys/kdb.h> 45 #include <sys/kernel.h> 46 #include <sys/jail.h> 47 #include <sys/sdt.h> 48 #include <sys/systm.h> 49 #include <sys/sysctl.h> 50 #include <sys/eventhandler.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/proc.h> 54 #include <sys/socket.h> 55 #include <sys/sx.h> 56 #include <sys/sysctl.h> 57 58 #include <machine/stdarg.h> 59 60 #ifdef DDB 61 #include <ddb/ddb.h> 62 #include <ddb/db_sym.h> 63 #endif 64 65 #include <net/if.h> 66 #include <net/if_var.h> 67 #include <net/vnet.h> 68 69 /*- 70 * This file implements core functions for virtual network stacks: 71 * 72 * - Virtual network stack management functions. 73 * 74 * - Virtual network stack memory allocator, which virtualizes global 75 * variables in the network stack 76 * 77 * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems 78 * to register startup/shutdown events to be run for each virtual network 79 * stack instance. 80 */ 81 82 FEATURE(vimage, "VIMAGE kernel virtualization"); 83 84 MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); 85 86 /* 87 * The virtual network stack list has two read-write locks, one sleepable and 88 * the other not, so that the list can be stablized and walked in a variety 89 * of network stack contexts. Both must be acquired exclusively to modify 90 * the list, but a read lock of either lock is sufficient to walk the list. 91 */ 92 struct rwlock vnet_rwlock; 93 struct sx vnet_sxlock; 94 95 #define VNET_LIST_WLOCK() do { \ 96 sx_xlock(&vnet_sxlock); \ 97 rw_wlock(&vnet_rwlock); \ 98 } while (0) 99 100 #define VNET_LIST_WUNLOCK() do { \ 101 rw_wunlock(&vnet_rwlock); \ 102 sx_xunlock(&vnet_sxlock); \ 103 } while (0) 104 105 struct vnet_list_head vnet_head; 106 struct vnet *vnet0; 107 108 /* 109 * The virtual network stack allocator provides storage for virtualized 110 * global variables. These variables are defined/declared using the 111 * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' 112 * linker set. The details of the implementation are somewhat subtle, but 113 * allow the majority of most network subsystems to maintain 114 * virtualization-agnostic. 115 * 116 * The virtual network stack allocator handles variables in the base kernel 117 * vs. modules in similar but different ways. In both cases, virtualized 118 * global variables are marked as such by being declared to be part of the 119 * vnet linker set. These "master" copies of global variables serve two 120 * functions: 121 * 122 * (1) They contain static initialization or "default" values for global 123 * variables which will be propagated to each virtual network stack 124 * instance when created. As with normal global variables, they default 125 * to zero-filled. 126 * 127 * (2) They act as unique global names by which the variable can be referred 128 * to, regardless of network stack instance. The single global symbol 129 * will be used to calculate the location of a per-virtual instance 130 * variable at run-time. 131 * 132 * Each virtual network stack instance has a complete copy of each 133 * virtualized global variable, stored in a malloc'd block of memory 134 * referred to by vnet->vnet_data_mem. Critical to the design is that each 135 * per-instance memory block is laid out identically to the master block so 136 * that the offset of each global variable is the same across all blocks. To 137 * optimize run-time access, a precalculated 'base' address, 138 * vnet->vnet_data_base, is stored in each vnet, and is the amount that can 139 * be added to the address of a 'master' instance of a variable to get to the 140 * per-vnet instance. 141 * 142 * Virtualized global variables are handled in a similar manner, but as each 143 * module has its own 'set_vnet' linker set, and we want to keep all 144 * virtualized globals togther, we reserve space in the kernel's linker set 145 * for potential module variables using a per-vnet character array, 146 * 'modspace'. The virtual network stack allocator maintains a free list to 147 * track what space in the array is free (all, initially) and as modules are 148 * linked, allocates portions of the space to specific globals. The kernel 149 * module linker queries the virtual network stack allocator and will 150 * bind references of the global to the location during linking. It also 151 * calls into the virtual network stack allocator, once the memory is 152 * initialized, in order to propagate the new static initializations to all 153 * existing virtual network stack instances so that the soon-to-be executing 154 * module will find every network stack instance with proper default values. 155 */ 156 157 /* 158 * Number of bytes of data in the 'set_vnet' linker set, and hence the total 159 * size of all kernel virtualized global variables, and the malloc(9) type 160 * that will be used to allocate it. 161 */ 162 #define VNET_BYTES (VNET_STOP - VNET_START) 163 164 MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); 165 166 /* 167 * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of 168 * global variables across all loaded modules. As this actually sizes an 169 * array declared as a virtualized global variable in the kernel itself, and 170 * we want the virtualized global variable space to be page-sized, we may 171 * have more space than that in practice. 172 */ 173 #define VNET_MODMIN 8192 174 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) 175 #define VNET_MODSIZE (VNET_SIZE - (VNET_BYTES - VNET_MODMIN)) 176 177 /* 178 * Space to store virtualized global variables from loadable kernel modules, 179 * and the free list to manage it. 180 */ 181 static VNET_DEFINE(char, modspace[VNET_MODMIN]); 182 183 /* 184 * Global lists of subsystem constructor and destructors for vnets. They are 185 * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are 186 * protected by the vnet_sysinit_sxlock global lock. 187 */ 188 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = 189 TAILQ_HEAD_INITIALIZER(vnet_constructors); 190 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = 191 TAILQ_HEAD_INITIALIZER(vnet_destructors); 192 193 struct sx vnet_sysinit_sxlock; 194 195 #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); 196 #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); 197 #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); 198 #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); 199 200 struct vnet_data_free { 201 uintptr_t vnd_start; 202 int vnd_len; 203 TAILQ_ENTRY(vnet_data_free) vnd_link; 204 }; 205 206 MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", "VNET resource accounting"); 207 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = 208 TAILQ_HEAD_INITIALIZER(vnet_data_free_head); 209 static struct sx vnet_data_free_lock; 210 211 SDT_PROVIDER_DEFINE(vnet); 212 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, entry, "int"); 213 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, alloc, "int", 214 "struct vnet *"); 215 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return, return, 216 "int", "struct vnet *"); 217 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry, entry, 218 "int", "struct vnet *"); 219 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return, entry, 220 "int"); 221 222 #ifdef DDB 223 static void db_show_vnet_print_vs(struct vnet_sysinit *, int); 224 #endif 225 226 /* 227 * Allocate a virtual network stack. 228 */ 229 struct vnet * 230 vnet_alloc(void) 231 { 232 struct vnet *vnet; 233 234 SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__); 235 vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); 236 vnet->vnet_magic_n = VNET_MAGIC_N; 237 SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet); 238 239 /* 240 * Allocate storage for virtualized global variables and copy in 241 * initial values form our 'master' copy. 242 */ 243 vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); 244 memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); 245 246 /* 247 * All use of vnet-specific data will immediately subtract VNET_START 248 * from the base memory pointer, so pre-calculate that now to avoid 249 * it on each use. 250 */ 251 vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; 252 253 /* Initialize / attach vnet module instances. */ 254 CURVNET_SET_QUIET(vnet); 255 vnet_sysinit(); 256 CURVNET_RESTORE(); 257 258 VNET_LIST_WLOCK(); 259 LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); 260 VNET_LIST_WUNLOCK(); 261 262 SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet); 263 return (vnet); 264 } 265 266 /* 267 * Destroy a virtual network stack. 268 */ 269 void 270 vnet_destroy(struct vnet *vnet) 271 { 272 struct ifnet *ifp, *nifp; 273 274 SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet); 275 KASSERT(vnet->vnet_sockcnt == 0, 276 ("%s: vnet still has sockets", __func__)); 277 278 VNET_LIST_WLOCK(); 279 LIST_REMOVE(vnet, vnet_le); 280 VNET_LIST_WUNLOCK(); 281 282 CURVNET_SET_QUIET(vnet); 283 284 /* Return all inherited interfaces to their parent vnets. */ 285 TAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 286 if (ifp->if_home_vnet != ifp->if_vnet) 287 if_vmove(ifp, ifp->if_home_vnet); 288 } 289 290 vnet_sysuninit(); 291 CURVNET_RESTORE(); 292 293 /* 294 * Release storage for the virtual network stack instance. 295 */ 296 free(vnet->vnet_data_mem, M_VNET_DATA); 297 vnet->vnet_data_mem = NULL; 298 vnet->vnet_data_base = 0; 299 vnet->vnet_magic_n = 0xdeadbeef; 300 free(vnet, M_VNET); 301 SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__); 302 } 303 304 /* 305 * Boot time initialization and allocation of virtual network stacks. 306 */ 307 static void 308 vnet_init_prelink(void *arg) 309 { 310 311 rw_init(&vnet_rwlock, "vnet_rwlock"); 312 sx_init(&vnet_sxlock, "vnet_sxlock"); 313 sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); 314 LIST_INIT(&vnet_head); 315 } 316 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, 317 vnet_init_prelink, NULL); 318 319 static void 320 vnet0_init(void *arg) 321 { 322 323 /* Warn people before take off - in case we crash early. */ 324 printf("WARNING: VIMAGE (virtualized network stack) is a highly " 325 "experimental feature.\n"); 326 327 /* 328 * We MUST clear curvnet in vi_init_done() before going SMP, 329 * otherwise CURVNET_SET() macros would scream about unnecessary 330 * curvnet recursions. 331 */ 332 curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); 333 } 334 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); 335 336 static void 337 vnet_init_done(void *unused) 338 { 339 340 curvnet = NULL; 341 } 342 343 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_FIRST, vnet_init_done, 344 NULL); 345 346 /* 347 * Once on boot, initialize the modspace freelist to entirely cover modspace. 348 */ 349 static void 350 vnet_data_startup(void *dummy __unused) 351 { 352 struct vnet_data_free *df; 353 354 df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 355 df->vnd_start = (uintptr_t)&VNET_NAME(modspace); 356 df->vnd_len = VNET_MODMIN; 357 TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); 358 sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); 359 } 360 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, 0); 361 362 /* 363 * When a module is loaded and requires storage for a virtualized global 364 * variable, allocate space from the modspace free list. This interface 365 * should be used only by the kernel linker. 366 */ 367 void * 368 vnet_data_alloc(int size) 369 { 370 struct vnet_data_free *df; 371 void *s; 372 373 s = NULL; 374 size = roundup2(size, sizeof(void *)); 375 sx_xlock(&vnet_data_free_lock); 376 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 377 if (df->vnd_len < size) 378 continue; 379 if (df->vnd_len == size) { 380 s = (void *)df->vnd_start; 381 TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); 382 free(df, M_VNET_DATA_FREE); 383 break; 384 } 385 s = (void *)df->vnd_start; 386 df->vnd_len -= size; 387 df->vnd_start = df->vnd_start + size; 388 break; 389 } 390 sx_xunlock(&vnet_data_free_lock); 391 392 return (s); 393 } 394 395 /* 396 * Free space for a virtualized global variable on module unload. 397 */ 398 void 399 vnet_data_free(void *start_arg, int size) 400 { 401 struct vnet_data_free *df; 402 struct vnet_data_free *dn; 403 uintptr_t start; 404 uintptr_t end; 405 406 size = roundup2(size, sizeof(void *)); 407 start = (uintptr_t)start_arg; 408 end = start + size; 409 /* 410 * Free a region of space and merge it with as many neighbors as 411 * possible. Keeping the list sorted simplifies this operation. 412 */ 413 sx_xlock(&vnet_data_free_lock); 414 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 415 if (df->vnd_start > end) 416 break; 417 /* 418 * If we expand at the end of an entry we may have to merge 419 * it with the one following it as well. 420 */ 421 if (df->vnd_start + df->vnd_len == start) { 422 df->vnd_len += size; 423 dn = TAILQ_NEXT(df, vnd_link); 424 if (df->vnd_start + df->vnd_len == dn->vnd_start) { 425 df->vnd_len += dn->vnd_len; 426 TAILQ_REMOVE(&vnet_data_free_head, dn, 427 vnd_link); 428 free(dn, M_VNET_DATA_FREE); 429 } 430 sx_xunlock(&vnet_data_free_lock); 431 return; 432 } 433 if (df->vnd_start == end) { 434 df->vnd_start = start; 435 df->vnd_len += size; 436 sx_xunlock(&vnet_data_free_lock); 437 return; 438 } 439 } 440 dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 441 dn->vnd_start = start; 442 dn->vnd_len = size; 443 if (df) 444 TAILQ_INSERT_BEFORE(df, dn, vnd_link); 445 else 446 TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); 447 sx_xunlock(&vnet_data_free_lock); 448 } 449 450 /* 451 * When a new virtualized global variable has been allocated, propagate its 452 * initial value to each already-allocated virtual network stack instance. 453 */ 454 void 455 vnet_data_copy(void *start, int size) 456 { 457 struct vnet *vnet; 458 459 VNET_LIST_RLOCK(); 460 LIST_FOREACH(vnet, &vnet_head, vnet_le) 461 memcpy((void *)((uintptr_t)vnet->vnet_data_base + 462 (uintptr_t)start), start, size); 463 VNET_LIST_RUNLOCK(); 464 } 465 466 /* 467 * Variants on sysctl_handle_foo that know how to handle virtualized global 468 * variables: if 'arg1' is a pointer, then we transform it to the local vnet 469 * offset. 470 */ 471 int 472 vnet_sysctl_handle_int(SYSCTL_HANDLER_ARGS) 473 { 474 475 if (arg1 != NULL) 476 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 477 return (sysctl_handle_int(oidp, arg1, arg2, req)); 478 } 479 480 int 481 vnet_sysctl_handle_opaque(SYSCTL_HANDLER_ARGS) 482 { 483 484 if (arg1 != NULL) 485 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 486 return (sysctl_handle_opaque(oidp, arg1, arg2, req)); 487 } 488 489 int 490 vnet_sysctl_handle_string(SYSCTL_HANDLER_ARGS) 491 { 492 493 if (arg1 != NULL) 494 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 495 return (sysctl_handle_string(oidp, arg1, arg2, req)); 496 } 497 498 int 499 vnet_sysctl_handle_uint(SYSCTL_HANDLER_ARGS) 500 { 501 502 if (arg1 != NULL) 503 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 504 return (sysctl_handle_int(oidp, arg1, arg2, req)); 505 } 506 507 /* 508 * Support for special SYSINIT handlers registered via VNET_SYSINIT() 509 * and VNET_SYSUNINIT(). 510 */ 511 void 512 vnet_register_sysinit(void *arg) 513 { 514 struct vnet_sysinit *vs, *vs2; 515 struct vnet *vnet; 516 517 vs = arg; 518 KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); 519 520 /* Add the constructor to the global list of vnet constructors. */ 521 VNET_SYSINIT_WLOCK(); 522 TAILQ_FOREACH(vs2, &vnet_constructors, link) { 523 if (vs2->subsystem > vs->subsystem) 524 break; 525 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 526 break; 527 } 528 if (vs2 != NULL) 529 TAILQ_INSERT_BEFORE(vs2, vs, link); 530 else 531 TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); 532 533 /* 534 * Invoke the constructor on all the existing vnets when it is 535 * registered. 536 */ 537 VNET_FOREACH(vnet) { 538 CURVNET_SET_QUIET(vnet); 539 vs->func(vs->arg); 540 CURVNET_RESTORE(); 541 } 542 VNET_SYSINIT_WUNLOCK(); 543 } 544 545 void 546 vnet_deregister_sysinit(void *arg) 547 { 548 struct vnet_sysinit *vs; 549 550 vs = arg; 551 552 /* Remove the constructor from the global list of vnet constructors. */ 553 VNET_SYSINIT_WLOCK(); 554 TAILQ_REMOVE(&vnet_constructors, vs, link); 555 VNET_SYSINIT_WUNLOCK(); 556 } 557 558 void 559 vnet_register_sysuninit(void *arg) 560 { 561 struct vnet_sysinit *vs, *vs2; 562 563 vs = arg; 564 565 /* Add the destructor to the global list of vnet destructors. */ 566 VNET_SYSINIT_WLOCK(); 567 TAILQ_FOREACH(vs2, &vnet_destructors, link) { 568 if (vs2->subsystem > vs->subsystem) 569 break; 570 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 571 break; 572 } 573 if (vs2 != NULL) 574 TAILQ_INSERT_BEFORE(vs2, vs, link); 575 else 576 TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); 577 VNET_SYSINIT_WUNLOCK(); 578 } 579 580 void 581 vnet_deregister_sysuninit(void *arg) 582 { 583 struct vnet_sysinit *vs; 584 struct vnet *vnet; 585 586 vs = arg; 587 588 /* 589 * Invoke the destructor on all the existing vnets when it is 590 * deregistered. 591 */ 592 VNET_SYSINIT_WLOCK(); 593 VNET_FOREACH(vnet) { 594 CURVNET_SET_QUIET(vnet); 595 vs->func(vs->arg); 596 CURVNET_RESTORE(); 597 } 598 599 /* Remove the destructor from the global list of vnet destructors. */ 600 TAILQ_REMOVE(&vnet_destructors, vs, link); 601 VNET_SYSINIT_WUNLOCK(); 602 } 603 604 /* 605 * Invoke all registered vnet constructors on the current vnet. Used during 606 * vnet construction. The caller is responsible for ensuring the new vnet is 607 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 608 */ 609 void 610 vnet_sysinit(void) 611 { 612 struct vnet_sysinit *vs; 613 614 VNET_SYSINIT_RLOCK(); 615 TAILQ_FOREACH(vs, &vnet_constructors, link) { 616 vs->func(vs->arg); 617 } 618 VNET_SYSINIT_RUNLOCK(); 619 } 620 621 /* 622 * Invoke all registered vnet destructors on the current vnet. Used during 623 * vnet destruction. The caller is responsible for ensuring the dying vnet 624 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 625 */ 626 void 627 vnet_sysuninit(void) 628 { 629 struct vnet_sysinit *vs; 630 631 VNET_SYSINIT_RLOCK(); 632 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 633 link) { 634 vs->func(vs->arg); 635 } 636 VNET_SYSINIT_RUNLOCK(); 637 } 638 639 /* 640 * EVENTHANDLER(9) extensions. 641 */ 642 /* 643 * Invoke the eventhandler function originally registered with the possibly 644 * registered argument for all virtual network stack instances. 645 * 646 * This iterator can only be used for eventhandlers that do not take any 647 * additional arguments, as we do ignore the variadic arguments from the 648 * EVENTHANDLER_INVOKE() call. 649 */ 650 void 651 vnet_global_eventhandler_iterator_func(void *arg, ...) 652 { 653 VNET_ITERATOR_DECL(vnet_iter); 654 struct eventhandler_entry_vimage *v_ee; 655 656 /* 657 * There is a bug here in that we should actually cast things to 658 * (struct eventhandler_entry_ ## name *) but that's not easily 659 * possible in here so just re-using the variadic version we 660 * defined for the generic vimage case. 661 */ 662 v_ee = arg; 663 VNET_LIST_RLOCK(); 664 VNET_FOREACH(vnet_iter) { 665 CURVNET_SET(vnet_iter); 666 ((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg); 667 CURVNET_RESTORE(); 668 } 669 VNET_LIST_RUNLOCK(); 670 } 671 672 #ifdef VNET_DEBUG 673 struct vnet_recursion { 674 SLIST_ENTRY(vnet_recursion) vnr_le; 675 const char *prev_fn; 676 const char *where_fn; 677 int where_line; 678 struct vnet *old_vnet; 679 struct vnet *new_vnet; 680 }; 681 682 static SLIST_HEAD(, vnet_recursion) vnet_recursions = 683 SLIST_HEAD_INITIALIZER(vnet_recursions); 684 685 static void 686 vnet_print_recursion(struct vnet_recursion *vnr, int brief) 687 { 688 689 if (!brief) 690 printf("CURVNET_SET() recursion in "); 691 printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line, 692 vnr->prev_fn); 693 if (brief) 694 printf(", "); 695 else 696 printf("\n "); 697 printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet); 698 } 699 700 void 701 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line) 702 { 703 struct vnet_recursion *vnr; 704 705 /* Skip already logged recursion events. */ 706 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 707 if (vnr->prev_fn == old_fn && 708 vnr->where_fn == curthread->td_vnet_lpush && 709 vnr->where_line == line && 710 (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet)) 711 return; 712 713 vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO); 714 if (vnr == NULL) 715 panic("%s: malloc failed", __func__); 716 vnr->prev_fn = old_fn; 717 vnr->where_fn = curthread->td_vnet_lpush; 718 vnr->where_line = line; 719 vnr->old_vnet = old_vnet; 720 vnr->new_vnet = curvnet; 721 722 SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le); 723 724 vnet_print_recursion(vnr, 0); 725 #ifdef KDB 726 kdb_backtrace(); 727 #endif 728 } 729 #endif /* VNET_DEBUG */ 730 731 /* 732 * DDB(4). 733 */ 734 #ifdef DDB 735 DB_SHOW_COMMAND(vnets, db_show_vnets) 736 { 737 VNET_ITERATOR_DECL(vnet_iter); 738 739 VNET_FOREACH(vnet_iter) { 740 db_printf("vnet = %p\n", vnet_iter); 741 db_printf(" vnet_magic_n = 0x%x (%s, orig 0x%x)\n", 742 vnet_iter->vnet_magic_n, 743 (vnet_iter->vnet_magic_n == VNET_MAGIC_N) ? 744 "ok" : "mismatch", VNET_MAGIC_N); 745 db_printf(" vnet_ifcnt = %u\n", vnet_iter->vnet_ifcnt); 746 db_printf(" vnet_sockcnt = %u\n", vnet_iter->vnet_sockcnt); 747 db_printf(" vnet_data_mem = %p\n", vnet_iter->vnet_data_mem); 748 db_printf(" vnet_data_base = 0x%jx\n", 749 (uintmax_t)vnet_iter->vnet_data_base); 750 db_printf("\n"); 751 if (db_pager_quit) 752 break; 753 } 754 } 755 756 static void 757 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb) 758 { 759 const char *vsname, *funcname; 760 c_db_sym_t sym; 761 db_expr_t offset; 762 763 #define xprint(...) \ 764 if (ddb) \ 765 db_printf(__VA_ARGS__); \ 766 else \ 767 printf(__VA_ARGS__) 768 769 if (vs == NULL) { 770 xprint("%s: no vnet_sysinit * given\n", __func__); 771 return; 772 } 773 774 sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset); 775 db_symbol_values(sym, &vsname, NULL); 776 sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset); 777 db_symbol_values(sym, &funcname, NULL); 778 xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs); 779 xprint(" 0x%08x 0x%08x\n", vs->subsystem, vs->order); 780 xprint(" %p(%s)(%p)\n", 781 vs->func, (funcname != NULL) ? funcname : "", vs->arg); 782 #undef xprint 783 } 784 785 DB_SHOW_COMMAND(vnet_sysinit, db_show_vnet_sysinit) 786 { 787 struct vnet_sysinit *vs; 788 789 db_printf("VNET_SYSINIT vs Name(Ptr)\n"); 790 db_printf(" Subsystem Order\n"); 791 db_printf(" Function(Name)(Arg)\n"); 792 TAILQ_FOREACH(vs, &vnet_constructors, link) { 793 db_show_vnet_print_vs(vs, 1); 794 if (db_pager_quit) 795 break; 796 } 797 } 798 799 DB_SHOW_COMMAND(vnet_sysuninit, db_show_vnet_sysuninit) 800 { 801 struct vnet_sysinit *vs; 802 803 db_printf("VNET_SYSUNINIT vs Name(Ptr)\n"); 804 db_printf(" Subsystem Order\n"); 805 db_printf(" Function(Name)(Arg)\n"); 806 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 807 link) { 808 db_show_vnet_print_vs(vs, 1); 809 if (db_pager_quit) 810 break; 811 } 812 } 813 814 #ifdef VNET_DEBUG 815 DB_SHOW_COMMAND(vnetrcrs, db_show_vnetrcrs) 816 { 817 struct vnet_recursion *vnr; 818 819 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 820 vnet_print_recursion(vnr, 1); 821 } 822 #endif 823 #endif /* DDB */ 824