1 /*- 2 * Copyright (c) 2004-2009 University of Zagreb 3 * Copyright (c) 2006-2009 FreeBSD Foundation 4 * All rights reserved. 5 * 6 * This software was developed by the University of Zagreb and the 7 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 8 * FreeBSD Foundation. 9 * 10 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 11 * Copyright (c) 2009 Robert N. M. Watson 12 * All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_ddb.h" 40 #include "opt_kdb.h" 41 #include "opt_kdtrace.h" 42 43 #include <sys/param.h> 44 #include <sys/kdb.h> 45 #include <sys/kernel.h> 46 #include <sys/jail.h> 47 #include <sys/sdt.h> 48 #include <sys/systm.h> 49 #include <sys/sysctl.h> 50 #include <sys/eventhandler.h> 51 #include <sys/linker_set.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/proc.h> 55 #include <sys/socket.h> 56 #include <sys/sx.h> 57 #include <sys/sysctl.h> 58 59 #include <machine/stdarg.h> 60 61 #ifdef DDB 62 #include <ddb/ddb.h> 63 #include <ddb/db_sym.h> 64 #endif 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/vnet.h> 69 70 /*- 71 * This file implements core functions for virtual network stacks: 72 * 73 * - Virtual network stack management functions. 74 * 75 * - Virtual network stack memory allocator, which virtualizes global 76 * variables in the network stack 77 * 78 * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems 79 * to register startup/shutdown events to be run for each virtual network 80 * stack instance. 81 */ 82 83 MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); 84 85 /* 86 * The virtual network stack list has two read-write locks, one sleepable and 87 * the other not, so that the list can be stablized and walked in a variety 88 * of network stack contexts. Both must be acquired exclusively to modify 89 * the list, but a read lock of either lock is sufficient to walk the list. 90 */ 91 struct rwlock vnet_rwlock; 92 struct sx vnet_sxlock; 93 94 #define VNET_LIST_WLOCK() do { \ 95 sx_xlock(&vnet_sxlock); \ 96 rw_wlock(&vnet_rwlock); \ 97 } while (0) 98 99 #define VNET_LIST_WUNLOCK() do { \ 100 rw_wunlock(&vnet_rwlock); \ 101 sx_xunlock(&vnet_sxlock); \ 102 } while (0) 103 104 struct vnet_list_head vnet_head; 105 struct vnet *vnet0; 106 107 /* 108 * The virtual network stack allocator provides storage for virtualized 109 * global variables. These variables are defined/declared using the 110 * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' 111 * linker set. The details of the implementation are somewhat subtle, but 112 * allow the majority of most network subsystems to maintain 113 * virtualization-agnostic. 114 * 115 * The virtual network stack allocator handles variables in the base kernel 116 * vs. modules in similar but different ways. In both cases, virtualized 117 * global variables are marked as such by being declared to be part of the 118 * vnet linker set. These "master" copies of global variables serve two 119 * functions: 120 * 121 * (1) They contain static initialization or "default" values for global 122 * variables which will be propagated to each virtual network stack 123 * instance when created. As with normal global variables, they default 124 * to zero-filled. 125 * 126 * (2) They act as unique global names by which the variable can be referred 127 * to, regardless of network stack instance. The single global symbol 128 * will be used to calculate the location of a per-virtual instance 129 * variable at run-time. 130 * 131 * Each virtual network stack instance has a complete copy of each 132 * virtualized global variable, stored in a malloc'd block of memory 133 * referred to by vnet->vnet_data_mem. Critical to the design is that each 134 * per-instance memory block is laid out identically to the master block so 135 * that the offset of each global variable is the same across all blocks. To 136 * optimize run-time access, a precalculated 'base' address, 137 * vnet->vnet_data_base, is stored in each vnet, and is the amount that can 138 * be added to the address of a 'master' instance of a variable to get to the 139 * per-vnet instance. 140 * 141 * Virtualized global variables are handled in a similar manner, but as each 142 * module has its own 'set_vnet' linker set, and we want to keep all 143 * virtualized globals togther, we reserve space in the kernel's linker set 144 * for potential module variables using a per-vnet character array, 145 * 'modspace'. The virtual network stack allocator maintains a free list to 146 * track what space in the array is free (all, initially) and as modules are 147 * linked, allocates portions of the space to specific globals. The kernel 148 * module linker queries the virtual network stack allocator and will 149 * bind references of the global to the location during linking. It also 150 * calls into the virtual network stack allocator, once the memory is 151 * initialized, in order to propagate the new static initializations to all 152 * existing virtual network stack instances so that the soon-to-be executing 153 * module will find every network stack instance with proper default values. 154 */ 155 156 /* 157 * Location of the kernel's 'set_vnet' linker set. 158 */ 159 extern uintptr_t *__start_set_vnet; 160 extern uintptr_t *__stop_set_vnet; 161 162 #define VNET_START (uintptr_t)&__start_set_vnet 163 #define VNET_STOP (uintptr_t)&__stop_set_vnet 164 165 /* 166 * Number of bytes of data in the 'set_vnet' linker set, and hence the total 167 * size of all kernel virtualized global variables, and the malloc(9) type 168 * that will be used to allocate it. 169 */ 170 #define VNET_BYTES (VNET_STOP - VNET_START) 171 172 MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); 173 174 /* 175 * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of 176 * global variables across all loaded modules. As this actually sizes an 177 * array declared as a virtualized global variable in the kernel itself, and 178 * we want the virtualized global variable space to be page-sized, we may 179 * have more space than that in practice. 180 */ 181 #define VNET_MODMIN 8192 182 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) 183 #define VNET_MODSIZE (VNET_SIZE - (VNET_BYTES - VNET_MODMIN)) 184 185 /* 186 * Space to store virtualized global variables from loadable kernel modules, 187 * and the free list to manage it. 188 */ 189 static VNET_DEFINE(char, modspace[VNET_MODMIN]); 190 191 /* 192 * Global lists of subsystem constructor and destructors for vnets. They are 193 * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are 194 * protected by the vnet_sysinit_sxlock global lock. 195 */ 196 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = 197 TAILQ_HEAD_INITIALIZER(vnet_constructors); 198 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = 199 TAILQ_HEAD_INITIALIZER(vnet_destructors); 200 201 struct sx vnet_sysinit_sxlock; 202 203 #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); 204 #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); 205 #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); 206 #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); 207 208 struct vnet_data_free { 209 uintptr_t vnd_start; 210 int vnd_len; 211 TAILQ_ENTRY(vnet_data_free) vnd_link; 212 }; 213 214 MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", "VNET resource accounting"); 215 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = 216 TAILQ_HEAD_INITIALIZER(vnet_data_free_head); 217 static struct sx vnet_data_free_lock; 218 219 SDT_PROVIDER_DEFINE(vnet); 220 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int"); 221 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int", "struct vnet *"); 222 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return, "int", "struct vnet *"); 223 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry, "int", "struct vnet *"); 224 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return, "int"); 225 226 #ifdef DDB 227 static void db_show_vnet_print_vs(struct vnet_sysinit *, int); 228 #endif 229 230 /* 231 * Allocate a virtual network stack. 232 */ 233 struct vnet * 234 vnet_alloc(void) 235 { 236 struct vnet *vnet; 237 238 SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__); 239 vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); 240 vnet->vnet_magic_n = VNET_MAGIC_N; 241 SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet); 242 243 /* 244 * Allocate storage for virtualized global variables and copy in 245 * initial values form our 'master' copy. 246 */ 247 vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); 248 memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); 249 250 /* 251 * All use of vnet-specific data will immediately subtract VNET_START 252 * from the base memory pointer, so pre-calculate that now to avoid 253 * it on each use. 254 */ 255 vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; 256 257 /* Initialize / attach vnet module instances. */ 258 CURVNET_SET_QUIET(vnet); 259 vnet_sysinit(); 260 CURVNET_RESTORE(); 261 262 VNET_LIST_WLOCK(); 263 LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); 264 VNET_LIST_WUNLOCK(); 265 266 SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet); 267 return (vnet); 268 } 269 270 /* 271 * Destroy a virtual network stack. 272 */ 273 void 274 vnet_destroy(struct vnet *vnet) 275 { 276 struct ifnet *ifp, *nifp; 277 278 SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet); 279 KASSERT(vnet->vnet_sockcnt == 0, 280 ("%s: vnet still has sockets", __func__)); 281 282 VNET_LIST_WLOCK(); 283 LIST_REMOVE(vnet, vnet_le); 284 VNET_LIST_WUNLOCK(); 285 286 CURVNET_SET_QUIET(vnet); 287 288 /* Return all inherited interfaces to their parent vnets. */ 289 TAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 290 if (ifp->if_home_vnet != ifp->if_vnet) 291 if_vmove(ifp, ifp->if_home_vnet); 292 } 293 294 vnet_sysuninit(); 295 CURVNET_RESTORE(); 296 297 /* 298 * Release storage for the virtual network stack instance. 299 */ 300 free(vnet->vnet_data_mem, M_VNET_DATA); 301 vnet->vnet_data_mem = NULL; 302 vnet->vnet_data_base = 0; 303 vnet->vnet_magic_n = 0xdeadbeef; 304 free(vnet, M_VNET); 305 SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__); 306 } 307 308 /* 309 * Boot time initialization and allocation of virtual network stacks. 310 */ 311 static void 312 vnet_init_prelink(void *arg) 313 { 314 315 rw_init(&vnet_rwlock, "vnet_rwlock"); 316 sx_init(&vnet_sxlock, "vnet_sxlock"); 317 sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); 318 LIST_INIT(&vnet_head); 319 } 320 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, 321 vnet_init_prelink, NULL); 322 323 static void 324 vnet0_init(void *arg) 325 { 326 327 /* Warn people before take off - in case we crash early. */ 328 printf("WARNING: VIMAGE (virtualized network stack) is a highly " 329 "experimental feature.\n"); 330 331 /* 332 * We MUST clear curvnet in vi_init_done() before going SMP, 333 * otherwise CURVNET_SET() macros would scream about unnecessary 334 * curvnet recursions. 335 */ 336 curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); 337 } 338 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); 339 340 static void 341 vnet_init_done(void *unused) 342 { 343 344 curvnet = NULL; 345 } 346 347 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_FIRST, vnet_init_done, 348 NULL); 349 350 /* 351 * Once on boot, initialize the modspace freelist to entirely cover modspace. 352 */ 353 static void 354 vnet_data_startup(void *dummy __unused) 355 { 356 struct vnet_data_free *df; 357 358 df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 359 df->vnd_start = (uintptr_t)&VNET_NAME(modspace); 360 df->vnd_len = VNET_MODSIZE; 361 TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); 362 sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); 363 } 364 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, 0); 365 366 /* 367 * When a module is loaded and requires storage for a virtualized global 368 * variable, allocate space from the modspace free list. This interface 369 * should be used only by the kernel linker. 370 */ 371 void * 372 vnet_data_alloc(int size) 373 { 374 struct vnet_data_free *df; 375 void *s; 376 377 s = NULL; 378 size = roundup2(size, sizeof(void *)); 379 sx_xlock(&vnet_data_free_lock); 380 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 381 if (df->vnd_len < size) 382 continue; 383 if (df->vnd_len == size) { 384 s = (void *)df->vnd_start; 385 TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); 386 free(df, M_VNET_DATA_FREE); 387 break; 388 } 389 s = (void *)df->vnd_start; 390 df->vnd_len -= size; 391 df->vnd_start = df->vnd_start + size; 392 break; 393 } 394 sx_xunlock(&vnet_data_free_lock); 395 396 return (s); 397 } 398 399 /* 400 * Free space for a virtualized global variable on module unload. 401 */ 402 void 403 vnet_data_free(void *start_arg, int size) 404 { 405 struct vnet_data_free *df; 406 struct vnet_data_free *dn; 407 uintptr_t start; 408 uintptr_t end; 409 410 size = roundup2(size, sizeof(void *)); 411 start = (uintptr_t)start_arg; 412 end = start + size; 413 /* 414 * Free a region of space and merge it with as many neighbors as 415 * possible. Keeping the list sorted simplifies this operation. 416 */ 417 sx_xlock(&vnet_data_free_lock); 418 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 419 if (df->vnd_start > end) 420 break; 421 /* 422 * If we expand at the end of an entry we may have to merge 423 * it with the one following it as well. 424 */ 425 if (df->vnd_start + df->vnd_len == start) { 426 df->vnd_len += size; 427 dn = TAILQ_NEXT(df, vnd_link); 428 if (df->vnd_start + df->vnd_len == dn->vnd_start) { 429 df->vnd_len += dn->vnd_len; 430 TAILQ_REMOVE(&vnet_data_free_head, dn, 431 vnd_link); 432 free(dn, M_VNET_DATA_FREE); 433 } 434 sx_xunlock(&vnet_data_free_lock); 435 return; 436 } 437 if (df->vnd_start == end) { 438 df->vnd_start = start; 439 df->vnd_len += size; 440 sx_xunlock(&vnet_data_free_lock); 441 return; 442 } 443 } 444 dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 445 dn->vnd_start = start; 446 dn->vnd_len = size; 447 if (df) 448 TAILQ_INSERT_BEFORE(df, dn, vnd_link); 449 else 450 TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); 451 sx_xunlock(&vnet_data_free_lock); 452 } 453 454 /* 455 * When a new virtualized global variable has been allocated, propagate its 456 * initial value to each already-allocated virtual network stack instance. 457 */ 458 void 459 vnet_data_copy(void *start, int size) 460 { 461 struct vnet *vnet; 462 463 VNET_LIST_RLOCK(); 464 LIST_FOREACH(vnet, &vnet_head, vnet_le) 465 memcpy((void *)((uintptr_t)vnet->vnet_data_base + 466 (uintptr_t)start), start, size); 467 VNET_LIST_RUNLOCK(); 468 } 469 470 /* 471 * Variants on sysctl_handle_foo that know how to handle virtualized global 472 * variables: if 'arg1' is a pointer, then we transform it to the local vnet 473 * offset. 474 */ 475 int 476 vnet_sysctl_handle_int(SYSCTL_HANDLER_ARGS) 477 { 478 479 if (arg1 != NULL) 480 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 481 return (sysctl_handle_int(oidp, arg1, arg2, req)); 482 } 483 484 int 485 vnet_sysctl_handle_opaque(SYSCTL_HANDLER_ARGS) 486 { 487 488 if (arg1 != NULL) 489 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 490 return (sysctl_handle_opaque(oidp, arg1, arg2, req)); 491 } 492 493 int 494 vnet_sysctl_handle_string(SYSCTL_HANDLER_ARGS) 495 { 496 497 if (arg1 != NULL) 498 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 499 return (sysctl_handle_string(oidp, arg1, arg2, req)); 500 } 501 502 int 503 vnet_sysctl_handle_uint(SYSCTL_HANDLER_ARGS) 504 { 505 506 if (arg1 != NULL) 507 arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); 508 return (sysctl_handle_int(oidp, arg1, arg2, req)); 509 } 510 511 /* 512 * Support for special SYSINIT handlers registered via VNET_SYSINIT() 513 * and VNET_SYSUNINIT(). 514 */ 515 void 516 vnet_register_sysinit(void *arg) 517 { 518 struct vnet_sysinit *vs, *vs2; 519 struct vnet *vnet; 520 521 vs = arg; 522 KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); 523 524 /* Add the constructor to the global list of vnet constructors. */ 525 VNET_SYSINIT_WLOCK(); 526 TAILQ_FOREACH(vs2, &vnet_constructors, link) { 527 if (vs2->subsystem > vs->subsystem) 528 break; 529 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 530 break; 531 } 532 if (vs2 != NULL) 533 TAILQ_INSERT_BEFORE(vs2, vs, link); 534 else 535 TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); 536 537 /* 538 * Invoke the constructor on all the existing vnets when it is 539 * registered. 540 */ 541 VNET_FOREACH(vnet) { 542 CURVNET_SET_QUIET(vnet); 543 vs->func(vs->arg); 544 CURVNET_RESTORE(); 545 } 546 VNET_SYSINIT_WUNLOCK(); 547 } 548 549 void 550 vnet_deregister_sysinit(void *arg) 551 { 552 struct vnet_sysinit *vs; 553 554 vs = arg; 555 556 /* Remove the constructor from the global list of vnet constructors. */ 557 VNET_SYSINIT_WLOCK(); 558 TAILQ_REMOVE(&vnet_constructors, vs, link); 559 VNET_SYSINIT_WUNLOCK(); 560 } 561 562 void 563 vnet_register_sysuninit(void *arg) 564 { 565 struct vnet_sysinit *vs, *vs2; 566 567 vs = arg; 568 569 /* Add the destructor to the global list of vnet destructors. */ 570 VNET_SYSINIT_WLOCK(); 571 TAILQ_FOREACH(vs2, &vnet_destructors, link) { 572 if (vs2->subsystem > vs->subsystem) 573 break; 574 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 575 break; 576 } 577 if (vs2 != NULL) 578 TAILQ_INSERT_BEFORE(vs2, vs, link); 579 else 580 TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); 581 VNET_SYSINIT_WUNLOCK(); 582 } 583 584 void 585 vnet_deregister_sysuninit(void *arg) 586 { 587 struct vnet_sysinit *vs; 588 struct vnet *vnet; 589 590 vs = arg; 591 592 /* 593 * Invoke the destructor on all the existing vnets when it is 594 * deregistered. 595 */ 596 VNET_SYSINIT_WLOCK(); 597 VNET_FOREACH(vnet) { 598 CURVNET_SET_QUIET(vnet); 599 vs->func(vs->arg); 600 CURVNET_RESTORE(); 601 } 602 603 /* Remove the destructor from the global list of vnet destructors. */ 604 TAILQ_REMOVE(&vnet_destructors, vs, link); 605 VNET_SYSINIT_WUNLOCK(); 606 } 607 608 /* 609 * Invoke all registered vnet constructors on the current vnet. Used during 610 * vnet construction. The caller is responsible for ensuring the new vnet is 611 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 612 */ 613 void 614 vnet_sysinit(void) 615 { 616 struct vnet_sysinit *vs; 617 618 VNET_SYSINIT_RLOCK(); 619 TAILQ_FOREACH(vs, &vnet_constructors, link) { 620 vs->func(vs->arg); 621 } 622 VNET_SYSINIT_RUNLOCK(); 623 } 624 625 /* 626 * Invoke all registered vnet destructors on the current vnet. Used during 627 * vnet destruction. The caller is responsible for ensuring the dying vnet 628 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 629 */ 630 void 631 vnet_sysuninit(void) 632 { 633 struct vnet_sysinit *vs; 634 635 VNET_SYSINIT_RLOCK(); 636 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 637 link) { 638 vs->func(vs->arg); 639 } 640 VNET_SYSINIT_RUNLOCK(); 641 } 642 643 /* 644 * EVENTHANDLER(9) extensions. 645 */ 646 /* 647 * Invoke the eventhandler function originally registered with the possibly 648 * registered argument for all virtual network stack instances. 649 * 650 * This iterator can only be used for eventhandlers that do not take any 651 * additional arguments, as we do ignore the variadic arguments from the 652 * EVENTHANDLER_INVOKE() call. 653 */ 654 void 655 vnet_global_eventhandler_iterator_func(void *arg, ...) 656 { 657 VNET_ITERATOR_DECL(vnet_iter); 658 struct eventhandler_entry_vimage *v_ee; 659 660 /* 661 * There is a bug here in that we should actually cast things to 662 * (struct eventhandler_entry_ ## name *) but that's not easily 663 * possible in here so just re-using the variadic version we 664 * defined for the generic vimage case. 665 */ 666 v_ee = arg; 667 VNET_LIST_RLOCK(); 668 VNET_FOREACH(vnet_iter) { 669 CURVNET_SET(vnet_iter); 670 ((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg); 671 CURVNET_RESTORE(); 672 } 673 VNET_LIST_RUNLOCK(); 674 } 675 676 #ifdef VNET_DEBUG 677 struct vnet_recursion { 678 SLIST_ENTRY(vnet_recursion) vnr_le; 679 const char *prev_fn; 680 const char *where_fn; 681 int where_line; 682 struct vnet *old_vnet; 683 struct vnet *new_vnet; 684 }; 685 686 static SLIST_HEAD(, vnet_recursion) vnet_recursions = 687 SLIST_HEAD_INITIALIZER(vnet_recursions); 688 689 static void 690 vnet_print_recursion(struct vnet_recursion *vnr, int brief) 691 { 692 693 if (!brief) 694 printf("CURVNET_SET() recursion in "); 695 printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line, 696 vnr->prev_fn); 697 if (brief) 698 printf(", "); 699 else 700 printf("\n "); 701 printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet); 702 } 703 704 void 705 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line) 706 { 707 struct vnet_recursion *vnr; 708 709 /* Skip already logged recursion events. */ 710 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 711 if (vnr->prev_fn == old_fn && 712 vnr->where_fn == curthread->td_vnet_lpush && 713 vnr->where_line == line && 714 (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet)) 715 return; 716 717 vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO); 718 if (vnr == NULL) 719 panic("%s: malloc failed", __func__); 720 vnr->prev_fn = old_fn; 721 vnr->where_fn = curthread->td_vnet_lpush; 722 vnr->where_line = line; 723 vnr->old_vnet = old_vnet; 724 vnr->new_vnet = curvnet; 725 726 SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le); 727 728 vnet_print_recursion(vnr, 0); 729 #ifdef KDB 730 kdb_backtrace(); 731 #endif 732 } 733 #endif /* VNET_DEBUG */ 734 735 /* 736 * DDB(4). 737 */ 738 #ifdef DDB 739 DB_SHOW_COMMAND(vnets, db_show_vnets) 740 { 741 VNET_ITERATOR_DECL(vnet_iter); 742 743 VNET_FOREACH(vnet_iter) { 744 db_printf("vnet = %p\n", vnet_iter); 745 db_printf(" vnet_magic_n = 0x%x (%s, orig 0x%x)\n", 746 vnet_iter->vnet_magic_n, 747 (vnet_iter->vnet_magic_n == VNET_MAGIC_N) ? 748 "ok" : "mismatch", VNET_MAGIC_N); 749 db_printf(" vnet_ifcnt = %u\n", vnet_iter->vnet_ifcnt); 750 db_printf(" vnet_sockcnt = %u\n", vnet_iter->vnet_sockcnt); 751 db_printf(" vnet_data_mem = %p\n", vnet_iter->vnet_data_mem); 752 db_printf(" vnet_data_base = 0x%jx\n", 753 (uintmax_t)vnet_iter->vnet_data_base); 754 db_printf("\n"); 755 if (db_pager_quit) 756 break; 757 } 758 } 759 760 static void 761 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb) 762 { 763 const char *vsname, *funcname; 764 c_db_sym_t sym; 765 db_expr_t offset; 766 767 #define xprint(...) \ 768 if (ddb) \ 769 db_printf(__VA_ARGS__); \ 770 else \ 771 printf(__VA_ARGS__) 772 773 if (vs == NULL) { 774 xprint("%s: no vnet_sysinit * given\n", __func__); 775 return; 776 } 777 778 sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset); 779 db_symbol_values(sym, &vsname, NULL); 780 sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset); 781 db_symbol_values(sym, &funcname, NULL); 782 xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs); 783 xprint(" 0x%08x 0x%08x\n", vs->subsystem, vs->order); 784 xprint(" %p(%s)(%p)\n", 785 vs->func, (funcname != NULL) ? funcname : "", vs->arg); 786 #undef xprint 787 } 788 789 DB_SHOW_COMMAND(vnet_sysinit, db_show_vnet_sysinit) 790 { 791 struct vnet_sysinit *vs; 792 793 db_printf("VNET_SYSINIT vs Name(Ptr)\n"); 794 db_printf(" Subsystem Order\n"); 795 db_printf(" Function(Name)(Arg)\n"); 796 TAILQ_FOREACH(vs, &vnet_constructors, link) { 797 db_show_vnet_print_vs(vs, 1); 798 if (db_pager_quit) 799 break; 800 } 801 } 802 803 DB_SHOW_COMMAND(vnet_sysuninit, db_show_vnet_sysuninit) 804 { 805 struct vnet_sysinit *vs; 806 807 db_printf("VNET_SYSUNINIT vs Name(Ptr)\n"); 808 db_printf(" Subsystem Order\n"); 809 db_printf(" Function(Name)(Arg)\n"); 810 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 811 link) { 812 db_show_vnet_print_vs(vs, 1); 813 if (db_pager_quit) 814 break; 815 } 816 } 817 818 #ifdef VNET_DEBUG 819 DB_SHOW_COMMAND(vnetrcrs, db_show_vnetrcrs) 820 { 821 struct vnet_recursion *vnr; 822 823 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 824 vnet_print_recursion(vnr, 1); 825 } 826 #endif 827 #endif /* DDB */ 828