1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004-2009 University of Zagreb 5 * Copyright (c) 2006-2009 FreeBSD Foundation 6 * All rights reserved. 7 * 8 * This software was developed by the University of Zagreb and the 9 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 10 * FreeBSD Foundation. 11 * 12 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 13 * Copyright (c) 2009 Robert N. M. Watson 14 * All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_ddb.h" 42 #include "opt_kdb.h" 43 44 #include <sys/param.h> 45 #include <sys/kdb.h> 46 #include <sys/kernel.h> 47 #include <sys/jail.h> 48 #include <sys/sdt.h> 49 #include <sys/systm.h> 50 #include <sys/sysctl.h> 51 #include <sys/eventhandler.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/proc.h> 55 #include <sys/socket.h> 56 #include <sys/sx.h> 57 #include <sys/sysctl.h> 58 59 #include <machine/stdarg.h> 60 61 #ifdef DDB 62 #include <ddb/ddb.h> 63 #include <ddb/db_sym.h> 64 #endif 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/vnet.h> 69 70 /*- 71 * This file implements core functions for virtual network stacks: 72 * 73 * - Virtual network stack management functions. 74 * 75 * - Virtual network stack memory allocator, which virtualizes global 76 * variables in the network stack 77 * 78 * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems 79 * to register startup/shutdown events to be run for each virtual network 80 * stack instance. 81 */ 82 83 FEATURE(vimage, "VIMAGE kernel virtualization"); 84 85 static MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); 86 87 /* 88 * The virtual network stack list has two read-write locks, one sleepable and 89 * the other not, so that the list can be stablized and walked in a variety 90 * of network stack contexts. Both must be acquired exclusively to modify 91 * the list, but a read lock of either lock is sufficient to walk the list. 92 */ 93 struct rwlock vnet_rwlock; 94 struct sx vnet_sxlock; 95 96 #define VNET_LIST_WLOCK() do { \ 97 sx_xlock(&vnet_sxlock); \ 98 rw_wlock(&vnet_rwlock); \ 99 } while (0) 100 101 #define VNET_LIST_WUNLOCK() do { \ 102 rw_wunlock(&vnet_rwlock); \ 103 sx_xunlock(&vnet_sxlock); \ 104 } while (0) 105 106 struct vnet_list_head vnet_head; 107 struct vnet *vnet0; 108 109 /* 110 * The virtual network stack allocator provides storage for virtualized 111 * global variables. These variables are defined/declared using the 112 * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' 113 * linker set. The details of the implementation are somewhat subtle, but 114 * allow the majority of most network subsystems to maintain 115 * virtualization-agnostic. 116 * 117 * The virtual network stack allocator handles variables in the base kernel 118 * vs. modules in similar but different ways. In both cases, virtualized 119 * global variables are marked as such by being declared to be part of the 120 * vnet linker set. These "master" copies of global variables serve two 121 * functions: 122 * 123 * (1) They contain static initialization or "default" values for global 124 * variables which will be propagated to each virtual network stack 125 * instance when created. As with normal global variables, they default 126 * to zero-filled. 127 * 128 * (2) They act as unique global names by which the variable can be referred 129 * to, regardless of network stack instance. The single global symbol 130 * will be used to calculate the location of a per-virtual instance 131 * variable at run-time. 132 * 133 * Each virtual network stack instance has a complete copy of each 134 * virtualized global variable, stored in a malloc'd block of memory 135 * referred to by vnet->vnet_data_mem. Critical to the design is that each 136 * per-instance memory block is laid out identically to the master block so 137 * that the offset of each global variable is the same across all blocks. To 138 * optimize run-time access, a precalculated 'base' address, 139 * vnet->vnet_data_base, is stored in each vnet, and is the amount that can 140 * be added to the address of a 'master' instance of a variable to get to the 141 * per-vnet instance. 142 * 143 * Virtualized global variables are handled in a similar manner, but as each 144 * module has its own 'set_vnet' linker set, and we want to keep all 145 * virtualized globals togther, we reserve space in the kernel's linker set 146 * for potential module variables using a per-vnet character array, 147 * 'modspace'. The virtual network stack allocator maintains a free list to 148 * track what space in the array is free (all, initially) and as modules are 149 * linked, allocates portions of the space to specific globals. The kernel 150 * module linker queries the virtual network stack allocator and will 151 * bind references of the global to the location during linking. It also 152 * calls into the virtual network stack allocator, once the memory is 153 * initialized, in order to propagate the new static initializations to all 154 * existing virtual network stack instances so that the soon-to-be executing 155 * module will find every network stack instance with proper default values. 156 */ 157 158 /* 159 * Number of bytes of data in the 'set_vnet' linker set, and hence the total 160 * size of all kernel virtualized global variables, and the malloc(9) type 161 * that will be used to allocate it. 162 */ 163 #define VNET_BYTES (VNET_STOP - VNET_START) 164 165 static MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); 166 167 /* 168 * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of 169 * global variables across all loaded modules. As this actually sizes an 170 * array declared as a virtualized global variable in the kernel itself, and 171 * we want the virtualized global variable space to be page-sized, we may 172 * have more space than that in practice. 173 */ 174 #define VNET_MODMIN (8 * PAGE_SIZE) 175 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) 176 177 /* 178 * Space to store virtualized global variables from loadable kernel modules, 179 * and the free list to manage it. 180 */ 181 VNET_DEFINE_STATIC(char, modspace[VNET_MODMIN] __aligned(__alignof(void *))); 182 183 /* 184 * Global lists of subsystem constructor and destructors for vnets. They are 185 * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are 186 * protected by the vnet_sysinit_sxlock global lock. 187 */ 188 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = 189 TAILQ_HEAD_INITIALIZER(vnet_constructors); 190 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = 191 TAILQ_HEAD_INITIALIZER(vnet_destructors); 192 193 struct sx vnet_sysinit_sxlock; 194 195 #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); 196 #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); 197 #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); 198 #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); 199 200 struct vnet_data_free { 201 uintptr_t vnd_start; 202 int vnd_len; 203 TAILQ_ENTRY(vnet_data_free) vnd_link; 204 }; 205 206 static MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", 207 "VNET resource accounting"); 208 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = 209 TAILQ_HEAD_INITIALIZER(vnet_data_free_head); 210 static struct sx vnet_data_free_lock; 211 212 SDT_PROVIDER_DEFINE(vnet); 213 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int"); 214 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int", 215 "struct vnet *"); 216 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return, 217 "int", "struct vnet *"); 218 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry, 219 "int", "struct vnet *"); 220 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return, 221 "int"); 222 223 #ifdef DDB 224 static void db_show_vnet_print_vs(struct vnet_sysinit *, int); 225 #endif 226 227 /* 228 * Allocate a virtual network stack. 229 */ 230 struct vnet * 231 vnet_alloc(void) 232 { 233 struct vnet *vnet; 234 235 SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__); 236 vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); 237 vnet->vnet_magic_n = VNET_MAGIC_N; 238 vnet->vnet_state = 0; 239 SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet); 240 241 /* 242 * Allocate storage for virtualized global variables and copy in 243 * initial values form our 'master' copy. 244 */ 245 vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); 246 memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); 247 248 /* 249 * All use of vnet-specific data will immediately subtract VNET_START 250 * from the base memory pointer, so pre-calculate that now to avoid 251 * it on each use. 252 */ 253 vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; 254 255 /* Initialize / attach vnet module instances. */ 256 CURVNET_SET_QUIET(vnet); 257 vnet_sysinit(); 258 CURVNET_RESTORE(); 259 260 VNET_LIST_WLOCK(); 261 LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); 262 VNET_LIST_WUNLOCK(); 263 264 SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet); 265 return (vnet); 266 } 267 268 /* 269 * Destroy a virtual network stack. 270 */ 271 void 272 vnet_destroy(struct vnet *vnet) 273 { 274 275 SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet); 276 KASSERT(vnet->vnet_sockcnt == 0, 277 ("%s: vnet still has sockets", __func__)); 278 279 VNET_LIST_WLOCK(); 280 LIST_REMOVE(vnet, vnet_le); 281 VNET_LIST_WUNLOCK(); 282 283 CURVNET_SET_QUIET(vnet); 284 vnet_sysuninit(); 285 CURVNET_RESTORE(); 286 287 /* 288 * Release storage for the virtual network stack instance. 289 */ 290 free(vnet->vnet_data_mem, M_VNET_DATA); 291 vnet->vnet_data_mem = NULL; 292 vnet->vnet_data_base = 0; 293 vnet->vnet_magic_n = 0xdeadbeef; 294 free(vnet, M_VNET); 295 SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__); 296 } 297 298 /* 299 * Boot time initialization and allocation of virtual network stacks. 300 */ 301 static void 302 vnet_init_prelink(void *arg __unused) 303 { 304 305 rw_init(&vnet_rwlock, "vnet_rwlock"); 306 sx_init(&vnet_sxlock, "vnet_sxlock"); 307 sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); 308 LIST_INIT(&vnet_head); 309 } 310 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, 311 vnet_init_prelink, NULL); 312 313 static void 314 vnet0_init(void *arg __unused) 315 { 316 317 if (bootverbose) 318 printf("VIMAGE (virtualized network stack) enabled\n"); 319 320 /* 321 * We MUST clear curvnet in vi_init_done() before going SMP, 322 * otherwise CURVNET_SET() macros would scream about unnecessary 323 * curvnet recursions. 324 */ 325 curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); 326 } 327 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); 328 329 static void 330 vnet_init_done(void *unused __unused) 331 { 332 333 curvnet = NULL; 334 } 335 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, vnet_init_done, 336 NULL); 337 338 /* 339 * Once on boot, initialize the modspace freelist to entirely cover modspace. 340 */ 341 static void 342 vnet_data_startup(void *dummy __unused) 343 { 344 struct vnet_data_free *df; 345 346 df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 347 df->vnd_start = (uintptr_t)&VNET_NAME(modspace); 348 df->vnd_len = VNET_MODMIN; 349 TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); 350 sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); 351 } 352 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, NULL); 353 354 /* Dummy VNET_SYSINIT to make sure we always reach the final end state. */ 355 static void 356 vnet_sysinit_done(void *unused __unused) 357 { 358 359 return; 360 } 361 VNET_SYSINIT(vnet_sysinit_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, 362 vnet_sysinit_done, NULL); 363 364 /* 365 * When a module is loaded and requires storage for a virtualized global 366 * variable, allocate space from the modspace free list. This interface 367 * should be used only by the kernel linker. 368 */ 369 void * 370 vnet_data_alloc(int size) 371 { 372 struct vnet_data_free *df; 373 void *s; 374 375 s = NULL; 376 size = roundup2(size, sizeof(void *)); 377 sx_xlock(&vnet_data_free_lock); 378 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 379 if (df->vnd_len < size) 380 continue; 381 if (df->vnd_len == size) { 382 s = (void *)df->vnd_start; 383 TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); 384 free(df, M_VNET_DATA_FREE); 385 break; 386 } 387 s = (void *)df->vnd_start; 388 df->vnd_len -= size; 389 df->vnd_start = df->vnd_start + size; 390 break; 391 } 392 sx_xunlock(&vnet_data_free_lock); 393 394 return (s); 395 } 396 397 /* 398 * Free space for a virtualized global variable on module unload. 399 */ 400 void 401 vnet_data_free(void *start_arg, int size) 402 { 403 struct vnet_data_free *df; 404 struct vnet_data_free *dn; 405 uintptr_t start; 406 uintptr_t end; 407 408 size = roundup2(size, sizeof(void *)); 409 start = (uintptr_t)start_arg; 410 end = start + size; 411 /* 412 * Free a region of space and merge it with as many neighbors as 413 * possible. Keeping the list sorted simplifies this operation. 414 */ 415 sx_xlock(&vnet_data_free_lock); 416 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 417 if (df->vnd_start > end) 418 break; 419 /* 420 * If we expand at the end of an entry we may have to merge 421 * it with the one following it as well. 422 */ 423 if (df->vnd_start + df->vnd_len == start) { 424 df->vnd_len += size; 425 dn = TAILQ_NEXT(df, vnd_link); 426 if (df->vnd_start + df->vnd_len == dn->vnd_start) { 427 df->vnd_len += dn->vnd_len; 428 TAILQ_REMOVE(&vnet_data_free_head, dn, 429 vnd_link); 430 free(dn, M_VNET_DATA_FREE); 431 } 432 sx_xunlock(&vnet_data_free_lock); 433 return; 434 } 435 if (df->vnd_start == end) { 436 df->vnd_start = start; 437 df->vnd_len += size; 438 sx_xunlock(&vnet_data_free_lock); 439 return; 440 } 441 } 442 dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 443 dn->vnd_start = start; 444 dn->vnd_len = size; 445 if (df) 446 TAILQ_INSERT_BEFORE(df, dn, vnd_link); 447 else 448 TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); 449 sx_xunlock(&vnet_data_free_lock); 450 } 451 452 /* 453 * When a new virtualized global variable has been allocated, propagate its 454 * initial value to each already-allocated virtual network stack instance. 455 */ 456 void 457 vnet_data_copy(void *start, int size) 458 { 459 struct vnet *vnet; 460 461 VNET_LIST_RLOCK(); 462 LIST_FOREACH(vnet, &vnet_head, vnet_le) 463 memcpy((void *)((uintptr_t)vnet->vnet_data_base + 464 (uintptr_t)start), start, size); 465 VNET_LIST_RUNLOCK(); 466 } 467 468 /* 469 * Support for special SYSINIT handlers registered via VNET_SYSINIT() 470 * and VNET_SYSUNINIT(). 471 */ 472 void 473 vnet_register_sysinit(void *arg) 474 { 475 struct vnet_sysinit *vs, *vs2; 476 struct vnet *vnet; 477 478 vs = arg; 479 KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); 480 481 /* Add the constructor to the global list of vnet constructors. */ 482 VNET_SYSINIT_WLOCK(); 483 TAILQ_FOREACH(vs2, &vnet_constructors, link) { 484 if (vs2->subsystem > vs->subsystem) 485 break; 486 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 487 break; 488 } 489 if (vs2 != NULL) 490 TAILQ_INSERT_BEFORE(vs2, vs, link); 491 else 492 TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); 493 494 /* 495 * Invoke the constructor on all the existing vnets when it is 496 * registered. 497 */ 498 VNET_FOREACH(vnet) { 499 CURVNET_SET_QUIET(vnet); 500 vs->func(vs->arg); 501 CURVNET_RESTORE(); 502 } 503 VNET_SYSINIT_WUNLOCK(); 504 } 505 506 void 507 vnet_deregister_sysinit(void *arg) 508 { 509 struct vnet_sysinit *vs; 510 511 vs = arg; 512 513 /* Remove the constructor from the global list of vnet constructors. */ 514 VNET_SYSINIT_WLOCK(); 515 TAILQ_REMOVE(&vnet_constructors, vs, link); 516 VNET_SYSINIT_WUNLOCK(); 517 } 518 519 void 520 vnet_register_sysuninit(void *arg) 521 { 522 struct vnet_sysinit *vs, *vs2; 523 524 vs = arg; 525 526 /* Add the destructor to the global list of vnet destructors. */ 527 VNET_SYSINIT_WLOCK(); 528 TAILQ_FOREACH(vs2, &vnet_destructors, link) { 529 if (vs2->subsystem > vs->subsystem) 530 break; 531 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 532 break; 533 } 534 if (vs2 != NULL) 535 TAILQ_INSERT_BEFORE(vs2, vs, link); 536 else 537 TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); 538 VNET_SYSINIT_WUNLOCK(); 539 } 540 541 void 542 vnet_deregister_sysuninit(void *arg) 543 { 544 struct vnet_sysinit *vs; 545 struct vnet *vnet; 546 547 vs = arg; 548 549 /* 550 * Invoke the destructor on all the existing vnets when it is 551 * deregistered. 552 */ 553 VNET_SYSINIT_WLOCK(); 554 VNET_FOREACH(vnet) { 555 CURVNET_SET_QUIET(vnet); 556 vs->func(vs->arg); 557 CURVNET_RESTORE(); 558 } 559 560 /* Remove the destructor from the global list of vnet destructors. */ 561 TAILQ_REMOVE(&vnet_destructors, vs, link); 562 VNET_SYSINIT_WUNLOCK(); 563 } 564 565 /* 566 * Invoke all registered vnet constructors on the current vnet. Used during 567 * vnet construction. The caller is responsible for ensuring the new vnet is 568 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 569 */ 570 void 571 vnet_sysinit(void) 572 { 573 struct vnet_sysinit *vs; 574 575 VNET_SYSINIT_RLOCK(); 576 TAILQ_FOREACH(vs, &vnet_constructors, link) { 577 curvnet->vnet_state = vs->subsystem; 578 vs->func(vs->arg); 579 } 580 VNET_SYSINIT_RUNLOCK(); 581 } 582 583 /* 584 * Invoke all registered vnet destructors on the current vnet. Used during 585 * vnet destruction. The caller is responsible for ensuring the dying vnet 586 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 587 */ 588 void 589 vnet_sysuninit(void) 590 { 591 struct vnet_sysinit *vs; 592 593 VNET_SYSINIT_RLOCK(); 594 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 595 link) { 596 curvnet->vnet_state = vs->subsystem; 597 vs->func(vs->arg); 598 } 599 VNET_SYSINIT_RUNLOCK(); 600 } 601 602 /* 603 * EVENTHANDLER(9) extensions. 604 */ 605 /* 606 * Invoke the eventhandler function originally registered with the possibly 607 * registered argument for all virtual network stack instances. 608 * 609 * This iterator can only be used for eventhandlers that do not take any 610 * additional arguments, as we do ignore the variadic arguments from the 611 * EVENTHANDLER_INVOKE() call. 612 */ 613 void 614 vnet_global_eventhandler_iterator_func(void *arg, ...) 615 { 616 VNET_ITERATOR_DECL(vnet_iter); 617 struct eventhandler_entry_vimage *v_ee; 618 619 /* 620 * There is a bug here in that we should actually cast things to 621 * (struct eventhandler_entry_ ## name *) but that's not easily 622 * possible in here so just re-using the variadic version we 623 * defined for the generic vimage case. 624 */ 625 v_ee = arg; 626 VNET_LIST_RLOCK(); 627 VNET_FOREACH(vnet_iter) { 628 CURVNET_SET(vnet_iter); 629 ((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg); 630 CURVNET_RESTORE(); 631 } 632 VNET_LIST_RUNLOCK(); 633 } 634 635 #ifdef VNET_DEBUG 636 struct vnet_recursion { 637 SLIST_ENTRY(vnet_recursion) vnr_le; 638 const char *prev_fn; 639 const char *where_fn; 640 int where_line; 641 struct vnet *old_vnet; 642 struct vnet *new_vnet; 643 }; 644 645 static SLIST_HEAD(, vnet_recursion) vnet_recursions = 646 SLIST_HEAD_INITIALIZER(vnet_recursions); 647 648 static void 649 vnet_print_recursion(struct vnet_recursion *vnr, int brief) 650 { 651 652 if (!brief) 653 printf("CURVNET_SET() recursion in "); 654 printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line, 655 vnr->prev_fn); 656 if (brief) 657 printf(", "); 658 else 659 printf("\n "); 660 printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet); 661 } 662 663 void 664 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line) 665 { 666 struct vnet_recursion *vnr; 667 668 /* Skip already logged recursion events. */ 669 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 670 if (vnr->prev_fn == old_fn && 671 vnr->where_fn == curthread->td_vnet_lpush && 672 vnr->where_line == line && 673 (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet)) 674 return; 675 676 vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO); 677 if (vnr == NULL) 678 panic("%s: malloc failed", __func__); 679 vnr->prev_fn = old_fn; 680 vnr->where_fn = curthread->td_vnet_lpush; 681 vnr->where_line = line; 682 vnr->old_vnet = old_vnet; 683 vnr->new_vnet = curvnet; 684 685 SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le); 686 687 vnet_print_recursion(vnr, 0); 688 #ifdef KDB 689 kdb_backtrace(); 690 #endif 691 } 692 #endif /* VNET_DEBUG */ 693 694 /* 695 * DDB(4). 696 */ 697 #ifdef DDB 698 static void 699 db_vnet_print(struct vnet *vnet) 700 { 701 702 db_printf("vnet = %p\n", vnet); 703 db_printf(" vnet_magic_n = %#08x (%s, orig %#08x)\n", 704 vnet->vnet_magic_n, 705 (vnet->vnet_magic_n == VNET_MAGIC_N) ? 706 "ok" : "mismatch", VNET_MAGIC_N); 707 db_printf(" vnet_ifcnt = %u\n", vnet->vnet_ifcnt); 708 db_printf(" vnet_sockcnt = %u\n", vnet->vnet_sockcnt); 709 db_printf(" vnet_data_mem = %p\n", vnet->vnet_data_mem); 710 db_printf(" vnet_data_base = %#jx\n", 711 (uintmax_t)vnet->vnet_data_base); 712 db_printf(" vnet_state = %#08x\n", vnet->vnet_state); 713 db_printf("\n"); 714 } 715 716 DB_SHOW_ALL_COMMAND(vnets, db_show_all_vnets) 717 { 718 VNET_ITERATOR_DECL(vnet_iter); 719 720 VNET_FOREACH(vnet_iter) { 721 db_vnet_print(vnet_iter); 722 if (db_pager_quit) 723 break; 724 } 725 } 726 727 DB_SHOW_COMMAND(vnet, db_show_vnet) 728 { 729 730 if (!have_addr) { 731 db_printf("usage: show vnet <struct vnet *>\n"); 732 return; 733 } 734 735 db_vnet_print((struct vnet *)addr); 736 } 737 738 static void 739 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb) 740 { 741 const char *vsname, *funcname; 742 c_db_sym_t sym; 743 db_expr_t offset; 744 745 #define xprint(...) \ 746 if (ddb) \ 747 db_printf(__VA_ARGS__); \ 748 else \ 749 printf(__VA_ARGS__) 750 751 if (vs == NULL) { 752 xprint("%s: no vnet_sysinit * given\n", __func__); 753 return; 754 } 755 756 sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset); 757 db_symbol_values(sym, &vsname, NULL); 758 sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset); 759 db_symbol_values(sym, &funcname, NULL); 760 xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs); 761 xprint(" %#08x %#08x\n", vs->subsystem, vs->order); 762 xprint(" %p(%s)(%p)\n", 763 vs->func, (funcname != NULL) ? funcname : "", vs->arg); 764 #undef xprint 765 } 766 767 DB_SHOW_COMMAND(vnet_sysinit, db_show_vnet_sysinit) 768 { 769 struct vnet_sysinit *vs; 770 771 db_printf("VNET_SYSINIT vs Name(Ptr)\n"); 772 db_printf(" Subsystem Order\n"); 773 db_printf(" Function(Name)(Arg)\n"); 774 TAILQ_FOREACH(vs, &vnet_constructors, link) { 775 db_show_vnet_print_vs(vs, 1); 776 if (db_pager_quit) 777 break; 778 } 779 } 780 781 DB_SHOW_COMMAND(vnet_sysuninit, db_show_vnet_sysuninit) 782 { 783 struct vnet_sysinit *vs; 784 785 db_printf("VNET_SYSUNINIT vs Name(Ptr)\n"); 786 db_printf(" Subsystem Order\n"); 787 db_printf(" Function(Name)(Arg)\n"); 788 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 789 link) { 790 db_show_vnet_print_vs(vs, 1); 791 if (db_pager_quit) 792 break; 793 } 794 } 795 796 #ifdef VNET_DEBUG 797 DB_SHOW_COMMAND(vnetrcrs, db_show_vnetrcrs) 798 { 799 struct vnet_recursion *vnr; 800 801 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 802 vnet_print_recursion(vnr, 1); 803 } 804 #endif 805 #endif /* DDB */ 806