1 /*- 2 * Copyright (c) 2004-2009 University of Zagreb 3 * Copyright (c) 2006-2009 FreeBSD Foundation 4 * All rights reserved. 5 * 6 * This software was developed by the University of Zagreb and the 7 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 8 * FreeBSD Foundation. 9 * 10 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 11 * Copyright (c) 2009 Robert N. M. Watson 12 * All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_ddb.h" 40 #include "opt_kdb.h" 41 42 #include <sys/param.h> 43 #include <sys/kdb.h> 44 #include <sys/kernel.h> 45 #include <sys/jail.h> 46 #include <sys/sdt.h> 47 #include <sys/systm.h> 48 #include <sys/sysctl.h> 49 #include <sys/eventhandler.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/proc.h> 53 #include <sys/socket.h> 54 #include <sys/sx.h> 55 #include <sys/sysctl.h> 56 57 #include <machine/stdarg.h> 58 59 #ifdef DDB 60 #include <ddb/ddb.h> 61 #include <ddb/db_sym.h> 62 #endif 63 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/vnet.h> 67 68 /*- 69 * This file implements core functions for virtual network stacks: 70 * 71 * - Virtual network stack management functions. 72 * 73 * - Virtual network stack memory allocator, which virtualizes global 74 * variables in the network stack 75 * 76 * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems 77 * to register startup/shutdown events to be run for each virtual network 78 * stack instance. 79 */ 80 81 FEATURE(vimage, "VIMAGE kernel virtualization"); 82 83 static MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); 84 85 /* 86 * The virtual network stack list has two read-write locks, one sleepable and 87 * the other not, so that the list can be stablized and walked in a variety 88 * of network stack contexts. Both must be acquired exclusively to modify 89 * the list, but a read lock of either lock is sufficient to walk the list. 90 */ 91 struct rwlock vnet_rwlock; 92 struct sx vnet_sxlock; 93 94 #define VNET_LIST_WLOCK() do { \ 95 sx_xlock(&vnet_sxlock); \ 96 rw_wlock(&vnet_rwlock); \ 97 } while (0) 98 99 #define VNET_LIST_WUNLOCK() do { \ 100 rw_wunlock(&vnet_rwlock); \ 101 sx_xunlock(&vnet_sxlock); \ 102 } while (0) 103 104 struct vnet_list_head vnet_head; 105 struct vnet *vnet0; 106 107 /* 108 * The virtual network stack allocator provides storage for virtualized 109 * global variables. These variables are defined/declared using the 110 * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' 111 * linker set. The details of the implementation are somewhat subtle, but 112 * allow the majority of most network subsystems to maintain 113 * virtualization-agnostic. 114 * 115 * The virtual network stack allocator handles variables in the base kernel 116 * vs. modules in similar but different ways. In both cases, virtualized 117 * global variables are marked as such by being declared to be part of the 118 * vnet linker set. These "master" copies of global variables serve two 119 * functions: 120 * 121 * (1) They contain static initialization or "default" values for global 122 * variables which will be propagated to each virtual network stack 123 * instance when created. As with normal global variables, they default 124 * to zero-filled. 125 * 126 * (2) They act as unique global names by which the variable can be referred 127 * to, regardless of network stack instance. The single global symbol 128 * will be used to calculate the location of a per-virtual instance 129 * variable at run-time. 130 * 131 * Each virtual network stack instance has a complete copy of each 132 * virtualized global variable, stored in a malloc'd block of memory 133 * referred to by vnet->vnet_data_mem. Critical to the design is that each 134 * per-instance memory block is laid out identically to the master block so 135 * that the offset of each global variable is the same across all blocks. To 136 * optimize run-time access, a precalculated 'base' address, 137 * vnet->vnet_data_base, is stored in each vnet, and is the amount that can 138 * be added to the address of a 'master' instance of a variable to get to the 139 * per-vnet instance. 140 * 141 * Virtualized global variables are handled in a similar manner, but as each 142 * module has its own 'set_vnet' linker set, and we want to keep all 143 * virtualized globals togther, we reserve space in the kernel's linker set 144 * for potential module variables using a per-vnet character array, 145 * 'modspace'. The virtual network stack allocator maintains a free list to 146 * track what space in the array is free (all, initially) and as modules are 147 * linked, allocates portions of the space to specific globals. The kernel 148 * module linker queries the virtual network stack allocator and will 149 * bind references of the global to the location during linking. It also 150 * calls into the virtual network stack allocator, once the memory is 151 * initialized, in order to propagate the new static initializations to all 152 * existing virtual network stack instances so that the soon-to-be executing 153 * module will find every network stack instance with proper default values. 154 */ 155 156 /* 157 * Number of bytes of data in the 'set_vnet' linker set, and hence the total 158 * size of all kernel virtualized global variables, and the malloc(9) type 159 * that will be used to allocate it. 160 */ 161 #define VNET_BYTES (VNET_STOP - VNET_START) 162 163 static MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); 164 165 /* 166 * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of 167 * global variables across all loaded modules. As this actually sizes an 168 * array declared as a virtualized global variable in the kernel itself, and 169 * we want the virtualized global variable space to be page-sized, we may 170 * have more space than that in practice. 171 */ 172 #define VNET_MODMIN 8192 173 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) 174 175 /* 176 * Space to store virtualized global variables from loadable kernel modules, 177 * and the free list to manage it. 178 */ 179 static VNET_DEFINE(char, modspace[VNET_MODMIN]); 180 181 /* 182 * Global lists of subsystem constructor and destructors for vnets. They are 183 * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are 184 * protected by the vnet_sysinit_sxlock global lock. 185 */ 186 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = 187 TAILQ_HEAD_INITIALIZER(vnet_constructors); 188 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = 189 TAILQ_HEAD_INITIALIZER(vnet_destructors); 190 191 struct sx vnet_sysinit_sxlock; 192 193 #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); 194 #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); 195 #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); 196 #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); 197 198 struct vnet_data_free { 199 uintptr_t vnd_start; 200 int vnd_len; 201 TAILQ_ENTRY(vnet_data_free) vnd_link; 202 }; 203 204 static MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", 205 "VNET resource accounting"); 206 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = 207 TAILQ_HEAD_INITIALIZER(vnet_data_free_head); 208 static struct sx vnet_data_free_lock; 209 210 SDT_PROVIDER_DEFINE(vnet); 211 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int"); 212 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int", 213 "struct vnet *"); 214 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return, 215 "int", "struct vnet *"); 216 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry, 217 "int", "struct vnet *"); 218 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return, 219 "int"); 220 221 #ifdef DDB 222 static void db_show_vnet_print_vs(struct vnet_sysinit *, int); 223 #endif 224 225 /* 226 * Allocate a virtual network stack. 227 */ 228 struct vnet * 229 vnet_alloc(void) 230 { 231 struct vnet *vnet; 232 233 SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__); 234 vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); 235 vnet->vnet_magic_n = VNET_MAGIC_N; 236 SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet); 237 238 /* 239 * Allocate storage for virtualized global variables and copy in 240 * initial values form our 'master' copy. 241 */ 242 vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); 243 memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); 244 245 /* 246 * All use of vnet-specific data will immediately subtract VNET_START 247 * from the base memory pointer, so pre-calculate that now to avoid 248 * it on each use. 249 */ 250 vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; 251 252 /* Initialize / attach vnet module instances. */ 253 CURVNET_SET_QUIET(vnet); 254 vnet_sysinit(); 255 CURVNET_RESTORE(); 256 257 VNET_LIST_WLOCK(); 258 LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); 259 VNET_LIST_WUNLOCK(); 260 261 SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet); 262 return (vnet); 263 } 264 265 /* 266 * Destroy a virtual network stack. 267 */ 268 void 269 vnet_destroy(struct vnet *vnet) 270 { 271 struct ifnet *ifp, *nifp; 272 273 SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet); 274 KASSERT(vnet->vnet_sockcnt == 0, 275 ("%s: vnet still has sockets", __func__)); 276 277 VNET_LIST_WLOCK(); 278 LIST_REMOVE(vnet, vnet_le); 279 VNET_LIST_WUNLOCK(); 280 281 CURVNET_SET_QUIET(vnet); 282 283 /* Return all inherited interfaces to their parent vnets. */ 284 TAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 285 if (ifp->if_home_vnet != ifp->if_vnet) 286 if_vmove(ifp, ifp->if_home_vnet); 287 } 288 289 vnet_sysuninit(); 290 CURVNET_RESTORE(); 291 292 /* 293 * Release storage for the virtual network stack instance. 294 */ 295 free(vnet->vnet_data_mem, M_VNET_DATA); 296 vnet->vnet_data_mem = NULL; 297 vnet->vnet_data_base = 0; 298 vnet->vnet_magic_n = 0xdeadbeef; 299 free(vnet, M_VNET); 300 SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__); 301 } 302 303 /* 304 * Boot time initialization and allocation of virtual network stacks. 305 */ 306 static void 307 vnet_init_prelink(void *arg) 308 { 309 310 rw_init(&vnet_rwlock, "vnet_rwlock"); 311 sx_init(&vnet_sxlock, "vnet_sxlock"); 312 sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); 313 LIST_INIT(&vnet_head); 314 } 315 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, 316 vnet_init_prelink, NULL); 317 318 static void 319 vnet0_init(void *arg) 320 { 321 322 /* Warn people before take off - in case we crash early. */ 323 printf("WARNING: VIMAGE (virtualized network stack) is a highly " 324 "experimental feature.\n"); 325 326 /* 327 * We MUST clear curvnet in vi_init_done() before going SMP, 328 * otherwise CURVNET_SET() macros would scream about unnecessary 329 * curvnet recursions. 330 */ 331 curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); 332 } 333 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); 334 335 static void 336 vnet_init_done(void *unused) 337 { 338 339 curvnet = NULL; 340 } 341 342 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_FIRST, vnet_init_done, 343 NULL); 344 345 /* 346 * Once on boot, initialize the modspace freelist to entirely cover modspace. 347 */ 348 static void 349 vnet_data_startup(void *dummy __unused) 350 { 351 struct vnet_data_free *df; 352 353 df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 354 df->vnd_start = (uintptr_t)&VNET_NAME(modspace); 355 df->vnd_len = VNET_MODMIN; 356 TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); 357 sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); 358 } 359 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, 0); 360 361 /* 362 * When a module is loaded and requires storage for a virtualized global 363 * variable, allocate space from the modspace free list. This interface 364 * should be used only by the kernel linker. 365 */ 366 void * 367 vnet_data_alloc(int size) 368 { 369 struct vnet_data_free *df; 370 void *s; 371 372 s = NULL; 373 size = roundup2(size, sizeof(void *)); 374 sx_xlock(&vnet_data_free_lock); 375 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 376 if (df->vnd_len < size) 377 continue; 378 if (df->vnd_len == size) { 379 s = (void *)df->vnd_start; 380 TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); 381 free(df, M_VNET_DATA_FREE); 382 break; 383 } 384 s = (void *)df->vnd_start; 385 df->vnd_len -= size; 386 df->vnd_start = df->vnd_start + size; 387 break; 388 } 389 sx_xunlock(&vnet_data_free_lock); 390 391 return (s); 392 } 393 394 /* 395 * Free space for a virtualized global variable on module unload. 396 */ 397 void 398 vnet_data_free(void *start_arg, int size) 399 { 400 struct vnet_data_free *df; 401 struct vnet_data_free *dn; 402 uintptr_t start; 403 uintptr_t end; 404 405 size = roundup2(size, sizeof(void *)); 406 start = (uintptr_t)start_arg; 407 end = start + size; 408 /* 409 * Free a region of space and merge it with as many neighbors as 410 * possible. Keeping the list sorted simplifies this operation. 411 */ 412 sx_xlock(&vnet_data_free_lock); 413 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 414 if (df->vnd_start > end) 415 break; 416 /* 417 * If we expand at the end of an entry we may have to merge 418 * it with the one following it as well. 419 */ 420 if (df->vnd_start + df->vnd_len == start) { 421 df->vnd_len += size; 422 dn = TAILQ_NEXT(df, vnd_link); 423 if (df->vnd_start + df->vnd_len == dn->vnd_start) { 424 df->vnd_len += dn->vnd_len; 425 TAILQ_REMOVE(&vnet_data_free_head, dn, 426 vnd_link); 427 free(dn, M_VNET_DATA_FREE); 428 } 429 sx_xunlock(&vnet_data_free_lock); 430 return; 431 } 432 if (df->vnd_start == end) { 433 df->vnd_start = start; 434 df->vnd_len += size; 435 sx_xunlock(&vnet_data_free_lock); 436 return; 437 } 438 } 439 dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 440 dn->vnd_start = start; 441 dn->vnd_len = size; 442 if (df) 443 TAILQ_INSERT_BEFORE(df, dn, vnd_link); 444 else 445 TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); 446 sx_xunlock(&vnet_data_free_lock); 447 } 448 449 /* 450 * When a new virtualized global variable has been allocated, propagate its 451 * initial value to each already-allocated virtual network stack instance. 452 */ 453 void 454 vnet_data_copy(void *start, int size) 455 { 456 struct vnet *vnet; 457 458 VNET_LIST_RLOCK(); 459 LIST_FOREACH(vnet, &vnet_head, vnet_le) 460 memcpy((void *)((uintptr_t)vnet->vnet_data_base + 461 (uintptr_t)start), start, size); 462 VNET_LIST_RUNLOCK(); 463 } 464 465 /* 466 * Support for special SYSINIT handlers registered via VNET_SYSINIT() 467 * and VNET_SYSUNINIT(). 468 */ 469 void 470 vnet_register_sysinit(void *arg) 471 { 472 struct vnet_sysinit *vs, *vs2; 473 struct vnet *vnet; 474 475 vs = arg; 476 KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); 477 478 /* Add the constructor to the global list of vnet constructors. */ 479 VNET_SYSINIT_WLOCK(); 480 TAILQ_FOREACH(vs2, &vnet_constructors, link) { 481 if (vs2->subsystem > vs->subsystem) 482 break; 483 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 484 break; 485 } 486 if (vs2 != NULL) 487 TAILQ_INSERT_BEFORE(vs2, vs, link); 488 else 489 TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); 490 491 /* 492 * Invoke the constructor on all the existing vnets when it is 493 * registered. 494 */ 495 VNET_FOREACH(vnet) { 496 CURVNET_SET_QUIET(vnet); 497 vs->func(vs->arg); 498 CURVNET_RESTORE(); 499 } 500 VNET_SYSINIT_WUNLOCK(); 501 } 502 503 void 504 vnet_deregister_sysinit(void *arg) 505 { 506 struct vnet_sysinit *vs; 507 508 vs = arg; 509 510 /* Remove the constructor from the global list of vnet constructors. */ 511 VNET_SYSINIT_WLOCK(); 512 TAILQ_REMOVE(&vnet_constructors, vs, link); 513 VNET_SYSINIT_WUNLOCK(); 514 } 515 516 void 517 vnet_register_sysuninit(void *arg) 518 { 519 struct vnet_sysinit *vs, *vs2; 520 521 vs = arg; 522 523 /* Add the destructor to the global list of vnet destructors. */ 524 VNET_SYSINIT_WLOCK(); 525 TAILQ_FOREACH(vs2, &vnet_destructors, link) { 526 if (vs2->subsystem > vs->subsystem) 527 break; 528 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 529 break; 530 } 531 if (vs2 != NULL) 532 TAILQ_INSERT_BEFORE(vs2, vs, link); 533 else 534 TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); 535 VNET_SYSINIT_WUNLOCK(); 536 } 537 538 void 539 vnet_deregister_sysuninit(void *arg) 540 { 541 struct vnet_sysinit *vs; 542 struct vnet *vnet; 543 544 vs = arg; 545 546 /* 547 * Invoke the destructor on all the existing vnets when it is 548 * deregistered. 549 */ 550 VNET_SYSINIT_WLOCK(); 551 VNET_FOREACH(vnet) { 552 CURVNET_SET_QUIET(vnet); 553 vs->func(vs->arg); 554 CURVNET_RESTORE(); 555 } 556 557 /* Remove the destructor from the global list of vnet destructors. */ 558 TAILQ_REMOVE(&vnet_destructors, vs, link); 559 VNET_SYSINIT_WUNLOCK(); 560 } 561 562 /* 563 * Invoke all registered vnet constructors on the current vnet. Used during 564 * vnet construction. The caller is responsible for ensuring the new vnet is 565 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 566 */ 567 void 568 vnet_sysinit(void) 569 { 570 struct vnet_sysinit *vs; 571 572 VNET_SYSINIT_RLOCK(); 573 TAILQ_FOREACH(vs, &vnet_constructors, link) { 574 vs->func(vs->arg); 575 } 576 VNET_SYSINIT_RUNLOCK(); 577 } 578 579 /* 580 * Invoke all registered vnet destructors on the current vnet. Used during 581 * vnet destruction. The caller is responsible for ensuring the dying vnet 582 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 583 */ 584 void 585 vnet_sysuninit(void) 586 { 587 struct vnet_sysinit *vs; 588 589 VNET_SYSINIT_RLOCK(); 590 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 591 link) { 592 vs->func(vs->arg); 593 } 594 VNET_SYSINIT_RUNLOCK(); 595 } 596 597 /* 598 * EVENTHANDLER(9) extensions. 599 */ 600 /* 601 * Invoke the eventhandler function originally registered with the possibly 602 * registered argument for all virtual network stack instances. 603 * 604 * This iterator can only be used for eventhandlers that do not take any 605 * additional arguments, as we do ignore the variadic arguments from the 606 * EVENTHANDLER_INVOKE() call. 607 */ 608 void 609 vnet_global_eventhandler_iterator_func(void *arg, ...) 610 { 611 VNET_ITERATOR_DECL(vnet_iter); 612 struct eventhandler_entry_vimage *v_ee; 613 614 /* 615 * There is a bug here in that we should actually cast things to 616 * (struct eventhandler_entry_ ## name *) but that's not easily 617 * possible in here so just re-using the variadic version we 618 * defined for the generic vimage case. 619 */ 620 v_ee = arg; 621 VNET_LIST_RLOCK(); 622 VNET_FOREACH(vnet_iter) { 623 CURVNET_SET(vnet_iter); 624 ((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg); 625 CURVNET_RESTORE(); 626 } 627 VNET_LIST_RUNLOCK(); 628 } 629 630 #ifdef VNET_DEBUG 631 struct vnet_recursion { 632 SLIST_ENTRY(vnet_recursion) vnr_le; 633 const char *prev_fn; 634 const char *where_fn; 635 int where_line; 636 struct vnet *old_vnet; 637 struct vnet *new_vnet; 638 }; 639 640 static SLIST_HEAD(, vnet_recursion) vnet_recursions = 641 SLIST_HEAD_INITIALIZER(vnet_recursions); 642 643 static void 644 vnet_print_recursion(struct vnet_recursion *vnr, int brief) 645 { 646 647 if (!brief) 648 printf("CURVNET_SET() recursion in "); 649 printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line, 650 vnr->prev_fn); 651 if (brief) 652 printf(", "); 653 else 654 printf("\n "); 655 printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet); 656 } 657 658 void 659 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line) 660 { 661 struct vnet_recursion *vnr; 662 663 /* Skip already logged recursion events. */ 664 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 665 if (vnr->prev_fn == old_fn && 666 vnr->where_fn == curthread->td_vnet_lpush && 667 vnr->where_line == line && 668 (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet)) 669 return; 670 671 vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO); 672 if (vnr == NULL) 673 panic("%s: malloc failed", __func__); 674 vnr->prev_fn = old_fn; 675 vnr->where_fn = curthread->td_vnet_lpush; 676 vnr->where_line = line; 677 vnr->old_vnet = old_vnet; 678 vnr->new_vnet = curvnet; 679 680 SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le); 681 682 vnet_print_recursion(vnr, 0); 683 #ifdef KDB 684 kdb_backtrace(); 685 #endif 686 } 687 #endif /* VNET_DEBUG */ 688 689 /* 690 * DDB(4). 691 */ 692 #ifdef DDB 693 DB_SHOW_COMMAND(vnets, db_show_vnets) 694 { 695 VNET_ITERATOR_DECL(vnet_iter); 696 697 VNET_FOREACH(vnet_iter) { 698 db_printf("vnet = %p\n", vnet_iter); 699 db_printf(" vnet_magic_n = 0x%x (%s, orig 0x%x)\n", 700 vnet_iter->vnet_magic_n, 701 (vnet_iter->vnet_magic_n == VNET_MAGIC_N) ? 702 "ok" : "mismatch", VNET_MAGIC_N); 703 db_printf(" vnet_ifcnt = %u\n", vnet_iter->vnet_ifcnt); 704 db_printf(" vnet_sockcnt = %u\n", vnet_iter->vnet_sockcnt); 705 db_printf(" vnet_data_mem = %p\n", vnet_iter->vnet_data_mem); 706 db_printf(" vnet_data_base = 0x%jx\n", 707 (uintmax_t)vnet_iter->vnet_data_base); 708 db_printf("\n"); 709 if (db_pager_quit) 710 break; 711 } 712 } 713 714 static void 715 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb) 716 { 717 const char *vsname, *funcname; 718 c_db_sym_t sym; 719 db_expr_t offset; 720 721 #define xprint(...) \ 722 if (ddb) \ 723 db_printf(__VA_ARGS__); \ 724 else \ 725 printf(__VA_ARGS__) 726 727 if (vs == NULL) { 728 xprint("%s: no vnet_sysinit * given\n", __func__); 729 return; 730 } 731 732 sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset); 733 db_symbol_values(sym, &vsname, NULL); 734 sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset); 735 db_symbol_values(sym, &funcname, NULL); 736 xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs); 737 xprint(" 0x%08x 0x%08x\n", vs->subsystem, vs->order); 738 xprint(" %p(%s)(%p)\n", 739 vs->func, (funcname != NULL) ? funcname : "", vs->arg); 740 #undef xprint 741 } 742 743 DB_SHOW_COMMAND(vnet_sysinit, db_show_vnet_sysinit) 744 { 745 struct vnet_sysinit *vs; 746 747 db_printf("VNET_SYSINIT vs Name(Ptr)\n"); 748 db_printf(" Subsystem Order\n"); 749 db_printf(" Function(Name)(Arg)\n"); 750 TAILQ_FOREACH(vs, &vnet_constructors, link) { 751 db_show_vnet_print_vs(vs, 1); 752 if (db_pager_quit) 753 break; 754 } 755 } 756 757 DB_SHOW_COMMAND(vnet_sysuninit, db_show_vnet_sysuninit) 758 { 759 struct vnet_sysinit *vs; 760 761 db_printf("VNET_SYSUNINIT vs Name(Ptr)\n"); 762 db_printf(" Subsystem Order\n"); 763 db_printf(" Function(Name)(Arg)\n"); 764 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 765 link) { 766 db_show_vnet_print_vs(vs, 1); 767 if (db_pager_quit) 768 break; 769 } 770 } 771 772 #ifdef VNET_DEBUG 773 DB_SHOW_COMMAND(vnetrcrs, db_show_vnetrcrs) 774 { 775 struct vnet_recursion *vnr; 776 777 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 778 vnet_print_recursion(vnr, 1); 779 } 780 #endif 781 #endif /* DDB */ 782