1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004-2009 University of Zagreb 5 * Copyright (c) 2006-2009 FreeBSD Foundation 6 * All rights reserved. 7 * 8 * This software was developed by the University of Zagreb and the 9 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 10 * FreeBSD Foundation. 11 * 12 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 13 * Copyright (c) 2009 Robert N. M. Watson 14 * All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_ddb.h" 42 #include "opt_kdb.h" 43 44 #include <sys/param.h> 45 #include <sys/kdb.h> 46 #include <sys/kernel.h> 47 #include <sys/jail.h> 48 #include <sys/sdt.h> 49 #include <sys/systm.h> 50 #include <sys/sysctl.h> 51 #include <sys/eventhandler.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/proc.h> 55 #include <sys/socket.h> 56 #include <sys/sx.h> 57 #include <sys/sysctl.h> 58 59 #include <machine/stdarg.h> 60 61 #ifdef DDB 62 #include <ddb/ddb.h> 63 #include <ddb/db_sym.h> 64 #endif 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/vnet.h> 69 70 /*- 71 * This file implements core functions for virtual network stacks: 72 * 73 * - Virtual network stack management functions. 74 * 75 * - Virtual network stack memory allocator, which virtualizes global 76 * variables in the network stack 77 * 78 * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems 79 * to register startup/shutdown events to be run for each virtual network 80 * stack instance. 81 */ 82 83 FEATURE(vimage, "VIMAGE kernel virtualization"); 84 85 static MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); 86 87 /* 88 * The virtual network stack list has two read-write locks, one sleepable and 89 * the other not, so that the list can be stablized and walked in a variety 90 * of network stack contexts. Both must be acquired exclusively to modify 91 * the list, but a read lock of either lock is sufficient to walk the list. 92 */ 93 struct rwlock vnet_rwlock; 94 struct sx vnet_sxlock; 95 96 #define VNET_LIST_WLOCK() do { \ 97 sx_xlock(&vnet_sxlock); \ 98 rw_wlock(&vnet_rwlock); \ 99 } while (0) 100 101 #define VNET_LIST_WUNLOCK() do { \ 102 rw_wunlock(&vnet_rwlock); \ 103 sx_xunlock(&vnet_sxlock); \ 104 } while (0) 105 106 struct vnet_list_head vnet_head; 107 struct vnet *vnet0; 108 109 /* 110 * The virtual network stack allocator provides storage for virtualized 111 * global variables. These variables are defined/declared using the 112 * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' 113 * linker set. The details of the implementation are somewhat subtle, but 114 * allow the majority of most network subsystems to maintain 115 * virtualization-agnostic. 116 * 117 * The virtual network stack allocator handles variables in the base kernel 118 * vs. modules in similar but different ways. In both cases, virtualized 119 * global variables are marked as such by being declared to be part of the 120 * vnet linker set. These "master" copies of global variables serve two 121 * functions: 122 * 123 * (1) They contain static initialization or "default" values for global 124 * variables which will be propagated to each virtual network stack 125 * instance when created. As with normal global variables, they default 126 * to zero-filled. 127 * 128 * (2) They act as unique global names by which the variable can be referred 129 * to, regardless of network stack instance. The single global symbol 130 * will be used to calculate the location of a per-virtual instance 131 * variable at run-time. 132 * 133 * Each virtual network stack instance has a complete copy of each 134 * virtualized global variable, stored in a malloc'd block of memory 135 * referred to by vnet->vnet_data_mem. Critical to the design is that each 136 * per-instance memory block is laid out identically to the master block so 137 * that the offset of each global variable is the same across all blocks. To 138 * optimize run-time access, a precalculated 'base' address, 139 * vnet->vnet_data_base, is stored in each vnet, and is the amount that can 140 * be added to the address of a 'master' instance of a variable to get to the 141 * per-vnet instance. 142 * 143 * Virtualized global variables are handled in a similar manner, but as each 144 * module has its own 'set_vnet' linker set, and we want to keep all 145 * virtualized globals togther, we reserve space in the kernel's linker set 146 * for potential module variables using a per-vnet character array, 147 * 'modspace'. The virtual network stack allocator maintains a free list to 148 * track what space in the array is free (all, initially) and as modules are 149 * linked, allocates portions of the space to specific globals. The kernel 150 * module linker queries the virtual network stack allocator and will 151 * bind references of the global to the location during linking. It also 152 * calls into the virtual network stack allocator, once the memory is 153 * initialized, in order to propagate the new static initializations to all 154 * existing virtual network stack instances so that the soon-to-be executing 155 * module will find every network stack instance with proper default values. 156 */ 157 158 /* 159 * Number of bytes of data in the 'set_vnet' linker set, and hence the total 160 * size of all kernel virtualized global variables, and the malloc(9) type 161 * that will be used to allocate it. 162 */ 163 #define VNET_BYTES (VNET_STOP - VNET_START) 164 165 static MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); 166 167 /* 168 * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of 169 * global variables across all loaded modules. As this actually sizes an 170 * array declared as a virtualized global variable in the kernel itself, and 171 * we want the virtualized global variable space to be page-sized, we may 172 * have more space than that in practice. 173 */ 174 #define VNET_MODMIN (8 * PAGE_SIZE) 175 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) 176 177 /* 178 * Space to store virtualized global variables from loadable kernel modules, 179 * and the free list to manage it. 180 */ 181 VNET_DEFINE_STATIC(char, modspace[VNET_MODMIN] __aligned(__alignof(void *))); 182 183 /* 184 * Global lists of subsystem constructor and destructors for vnets. They are 185 * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are 186 * protected by the vnet_sysinit_sxlock global lock. 187 */ 188 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = 189 TAILQ_HEAD_INITIALIZER(vnet_constructors); 190 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = 191 TAILQ_HEAD_INITIALIZER(vnet_destructors); 192 193 struct sx vnet_sysinit_sxlock; 194 195 #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); 196 #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); 197 #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); 198 #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); 199 200 struct vnet_data_free { 201 uintptr_t vnd_start; 202 int vnd_len; 203 TAILQ_ENTRY(vnet_data_free) vnd_link; 204 }; 205 206 static MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", 207 "VNET resource accounting"); 208 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = 209 TAILQ_HEAD_INITIALIZER(vnet_data_free_head); 210 static struct sx vnet_data_free_lock; 211 212 SDT_PROVIDER_DEFINE(vnet); 213 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int"); 214 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int", 215 "struct vnet *"); 216 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return, 217 "int", "struct vnet *"); 218 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry, 219 "int", "struct vnet *"); 220 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return, 221 "int"); 222 223 #ifdef DDB 224 static void db_show_vnet_print_vs(struct vnet_sysinit *, int); 225 #endif 226 227 /* 228 * Allocate a virtual network stack. 229 */ 230 struct vnet * 231 vnet_alloc(void) 232 { 233 struct vnet *vnet; 234 235 SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__); 236 vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); 237 vnet->vnet_magic_n = VNET_MAGIC_N; 238 SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet); 239 240 /* 241 * Allocate storage for virtualized global variables and copy in 242 * initial values form our 'master' copy. 243 */ 244 vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); 245 memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); 246 247 /* 248 * All use of vnet-specific data will immediately subtract VNET_START 249 * from the base memory pointer, so pre-calculate that now to avoid 250 * it on each use. 251 */ 252 vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; 253 254 /* Initialize / attach vnet module instances. */ 255 CURVNET_SET_QUIET(vnet); 256 vnet_sysinit(); 257 CURVNET_RESTORE(); 258 259 VNET_LIST_WLOCK(); 260 LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); 261 VNET_LIST_WUNLOCK(); 262 263 SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet); 264 return (vnet); 265 } 266 267 /* 268 * Destroy a virtual network stack. 269 */ 270 void 271 vnet_destroy(struct vnet *vnet) 272 { 273 274 SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet); 275 KASSERT(vnet->vnet_sockcnt == 0, 276 ("%s: vnet still has sockets", __func__)); 277 278 VNET_LIST_WLOCK(); 279 LIST_REMOVE(vnet, vnet_le); 280 VNET_LIST_WUNLOCK(); 281 282 /* Signal that VNET is being shutdown. */ 283 vnet->vnet_shutdown = true; 284 285 CURVNET_SET_QUIET(vnet); 286 vnet_sysuninit(); 287 CURVNET_RESTORE(); 288 289 /* 290 * Release storage for the virtual network stack instance. 291 */ 292 free(vnet->vnet_data_mem, M_VNET_DATA); 293 vnet->vnet_data_mem = NULL; 294 vnet->vnet_data_base = 0; 295 vnet->vnet_magic_n = 0xdeadbeef; 296 free(vnet, M_VNET); 297 SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__); 298 } 299 300 /* 301 * Boot time initialization and allocation of virtual network stacks. 302 */ 303 static void 304 vnet_init_prelink(void *arg __unused) 305 { 306 307 rw_init(&vnet_rwlock, "vnet_rwlock"); 308 sx_init(&vnet_sxlock, "vnet_sxlock"); 309 sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); 310 LIST_INIT(&vnet_head); 311 } 312 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, 313 vnet_init_prelink, NULL); 314 315 static void 316 vnet0_init(void *arg __unused) 317 { 318 319 if (bootverbose) 320 printf("VIMAGE (virtualized network stack) enabled\n"); 321 322 /* 323 * We MUST clear curvnet in vi_init_done() before going SMP, 324 * otherwise CURVNET_SET() macros would scream about unnecessary 325 * curvnet recursions. 326 */ 327 curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); 328 } 329 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); 330 331 static void 332 vnet_init_done(void *unused __unused) 333 { 334 335 curvnet = NULL; 336 } 337 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, vnet_init_done, 338 NULL); 339 340 /* 341 * Once on boot, initialize the modspace freelist to entirely cover modspace. 342 */ 343 static void 344 vnet_data_startup(void *dummy __unused) 345 { 346 struct vnet_data_free *df; 347 348 df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 349 df->vnd_start = (uintptr_t)&VNET_NAME(modspace); 350 df->vnd_len = VNET_MODMIN; 351 TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); 352 sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); 353 } 354 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, NULL); 355 356 /* Dummy VNET_SYSINIT to make sure we always reach the final end state. */ 357 static void 358 vnet_sysinit_done(void *unused __unused) 359 { 360 361 return; 362 } 363 VNET_SYSINIT(vnet_sysinit_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, 364 vnet_sysinit_done, NULL); 365 366 /* 367 * When a module is loaded and requires storage for a virtualized global 368 * variable, allocate space from the modspace free list. This interface 369 * should be used only by the kernel linker. 370 */ 371 void * 372 vnet_data_alloc(int size) 373 { 374 struct vnet_data_free *df; 375 void *s; 376 377 s = NULL; 378 size = roundup2(size, sizeof(void *)); 379 sx_xlock(&vnet_data_free_lock); 380 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 381 if (df->vnd_len < size) 382 continue; 383 if (df->vnd_len == size) { 384 s = (void *)df->vnd_start; 385 TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); 386 free(df, M_VNET_DATA_FREE); 387 break; 388 } 389 s = (void *)df->vnd_start; 390 df->vnd_len -= size; 391 df->vnd_start = df->vnd_start + size; 392 break; 393 } 394 sx_xunlock(&vnet_data_free_lock); 395 396 return (s); 397 } 398 399 /* 400 * Free space for a virtualized global variable on module unload. 401 */ 402 void 403 vnet_data_free(void *start_arg, int size) 404 { 405 struct vnet_data_free *df; 406 struct vnet_data_free *dn; 407 uintptr_t start; 408 uintptr_t end; 409 410 size = roundup2(size, sizeof(void *)); 411 start = (uintptr_t)start_arg; 412 end = start + size; 413 /* 414 * Free a region of space and merge it with as many neighbors as 415 * possible. Keeping the list sorted simplifies this operation. 416 */ 417 sx_xlock(&vnet_data_free_lock); 418 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 419 if (df->vnd_start > end) 420 break; 421 /* 422 * If we expand at the end of an entry we may have to merge 423 * it with the one following it as well. 424 */ 425 if (df->vnd_start + df->vnd_len == start) { 426 df->vnd_len += size; 427 dn = TAILQ_NEXT(df, vnd_link); 428 if (df->vnd_start + df->vnd_len == dn->vnd_start) { 429 df->vnd_len += dn->vnd_len; 430 TAILQ_REMOVE(&vnet_data_free_head, dn, 431 vnd_link); 432 free(dn, M_VNET_DATA_FREE); 433 } 434 sx_xunlock(&vnet_data_free_lock); 435 return; 436 } 437 if (df->vnd_start == end) { 438 df->vnd_start = start; 439 df->vnd_len += size; 440 sx_xunlock(&vnet_data_free_lock); 441 return; 442 } 443 } 444 dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 445 dn->vnd_start = start; 446 dn->vnd_len = size; 447 if (df) 448 TAILQ_INSERT_BEFORE(df, dn, vnd_link); 449 else 450 TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); 451 sx_xunlock(&vnet_data_free_lock); 452 } 453 454 /* 455 * When a new virtualized global variable has been allocated, propagate its 456 * initial value to each already-allocated virtual network stack instance. 457 */ 458 void 459 vnet_data_copy(void *start, int size) 460 { 461 struct vnet *vnet; 462 463 VNET_LIST_RLOCK(); 464 LIST_FOREACH(vnet, &vnet_head, vnet_le) 465 memcpy((void *)((uintptr_t)vnet->vnet_data_base + 466 (uintptr_t)start), start, size); 467 VNET_LIST_RUNLOCK(); 468 } 469 470 /* 471 * Support for special SYSINIT handlers registered via VNET_SYSINIT() 472 * and VNET_SYSUNINIT(). 473 */ 474 void 475 vnet_register_sysinit(void *arg) 476 { 477 struct vnet_sysinit *vs, *vs2; 478 struct vnet *vnet; 479 480 vs = arg; 481 KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); 482 483 /* Add the constructor to the global list of vnet constructors. */ 484 VNET_SYSINIT_WLOCK(); 485 TAILQ_FOREACH(vs2, &vnet_constructors, link) { 486 if (vs2->subsystem > vs->subsystem) 487 break; 488 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 489 break; 490 } 491 if (vs2 != NULL) 492 TAILQ_INSERT_BEFORE(vs2, vs, link); 493 else 494 TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); 495 496 /* 497 * Invoke the constructor on all the existing vnets when it is 498 * registered. 499 */ 500 VNET_FOREACH(vnet) { 501 CURVNET_SET_QUIET(vnet); 502 vs->func(vs->arg); 503 CURVNET_RESTORE(); 504 } 505 VNET_SYSINIT_WUNLOCK(); 506 } 507 508 void 509 vnet_deregister_sysinit(void *arg) 510 { 511 struct vnet_sysinit *vs; 512 513 vs = arg; 514 515 /* Remove the constructor from the global list of vnet constructors. */ 516 VNET_SYSINIT_WLOCK(); 517 TAILQ_REMOVE(&vnet_constructors, vs, link); 518 VNET_SYSINIT_WUNLOCK(); 519 } 520 521 void 522 vnet_register_sysuninit(void *arg) 523 { 524 struct vnet_sysinit *vs, *vs2; 525 526 vs = arg; 527 528 /* Add the destructor to the global list of vnet destructors. */ 529 VNET_SYSINIT_WLOCK(); 530 TAILQ_FOREACH(vs2, &vnet_destructors, link) { 531 if (vs2->subsystem > vs->subsystem) 532 break; 533 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 534 break; 535 } 536 if (vs2 != NULL) 537 TAILQ_INSERT_BEFORE(vs2, vs, link); 538 else 539 TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); 540 VNET_SYSINIT_WUNLOCK(); 541 } 542 543 void 544 vnet_deregister_sysuninit(void *arg) 545 { 546 struct vnet_sysinit *vs; 547 struct vnet *vnet; 548 549 vs = arg; 550 551 /* 552 * Invoke the destructor on all the existing vnets when it is 553 * deregistered. 554 */ 555 VNET_SYSINIT_WLOCK(); 556 VNET_FOREACH(vnet) { 557 CURVNET_SET_QUIET(vnet); 558 vs->func(vs->arg); 559 CURVNET_RESTORE(); 560 } 561 562 /* Remove the destructor from the global list of vnet destructors. */ 563 TAILQ_REMOVE(&vnet_destructors, vs, link); 564 VNET_SYSINIT_WUNLOCK(); 565 } 566 567 /* 568 * Invoke all registered vnet constructors on the current vnet. Used during 569 * vnet construction. The caller is responsible for ensuring the new vnet is 570 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 571 */ 572 void 573 vnet_sysinit(void) 574 { 575 struct vnet_sysinit *vs; 576 577 VNET_SYSINIT_RLOCK(); 578 TAILQ_FOREACH(vs, &vnet_constructors, link) { 579 curvnet->vnet_state = vs->subsystem; 580 vs->func(vs->arg); 581 } 582 VNET_SYSINIT_RUNLOCK(); 583 } 584 585 /* 586 * Invoke all registered vnet destructors on the current vnet. Used during 587 * vnet destruction. The caller is responsible for ensuring the dying vnet 588 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 589 */ 590 void 591 vnet_sysuninit(void) 592 { 593 struct vnet_sysinit *vs; 594 595 VNET_SYSINIT_RLOCK(); 596 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 597 link) { 598 curvnet->vnet_state = vs->subsystem; 599 vs->func(vs->arg); 600 } 601 VNET_SYSINIT_RUNLOCK(); 602 } 603 604 /* 605 * EVENTHANDLER(9) extensions. 606 */ 607 /* 608 * Invoke the eventhandler function originally registered with the possibly 609 * registered argument for all virtual network stack instances. 610 * 611 * This iterator can only be used for eventhandlers that do not take any 612 * additional arguments, as we do ignore the variadic arguments from the 613 * EVENTHANDLER_INVOKE() call. 614 */ 615 void 616 vnet_global_eventhandler_iterator_func(void *arg, ...) 617 { 618 VNET_ITERATOR_DECL(vnet_iter); 619 struct eventhandler_entry_vimage *v_ee; 620 621 /* 622 * There is a bug here in that we should actually cast things to 623 * (struct eventhandler_entry_ ## name *) but that's not easily 624 * possible in here so just re-using the variadic version we 625 * defined for the generic vimage case. 626 */ 627 v_ee = arg; 628 VNET_LIST_RLOCK(); 629 VNET_FOREACH(vnet_iter) { 630 CURVNET_SET(vnet_iter); 631 ((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg); 632 CURVNET_RESTORE(); 633 } 634 VNET_LIST_RUNLOCK(); 635 } 636 637 #ifdef VNET_DEBUG 638 struct vnet_recursion { 639 SLIST_ENTRY(vnet_recursion) vnr_le; 640 const char *prev_fn; 641 const char *where_fn; 642 int where_line; 643 struct vnet *old_vnet; 644 struct vnet *new_vnet; 645 }; 646 647 static SLIST_HEAD(, vnet_recursion) vnet_recursions = 648 SLIST_HEAD_INITIALIZER(vnet_recursions); 649 650 static void 651 vnet_print_recursion(struct vnet_recursion *vnr, int brief) 652 { 653 654 if (!brief) 655 printf("CURVNET_SET() recursion in "); 656 printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line, 657 vnr->prev_fn); 658 if (brief) 659 printf(", "); 660 else 661 printf("\n "); 662 printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet); 663 } 664 665 void 666 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line) 667 { 668 struct vnet_recursion *vnr; 669 670 /* Skip already logged recursion events. */ 671 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 672 if (vnr->prev_fn == old_fn && 673 vnr->where_fn == curthread->td_vnet_lpush && 674 vnr->where_line == line && 675 (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet)) 676 return; 677 678 vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO); 679 if (vnr == NULL) 680 panic("%s: malloc failed", __func__); 681 vnr->prev_fn = old_fn; 682 vnr->where_fn = curthread->td_vnet_lpush; 683 vnr->where_line = line; 684 vnr->old_vnet = old_vnet; 685 vnr->new_vnet = curvnet; 686 687 SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le); 688 689 vnet_print_recursion(vnr, 0); 690 #ifdef KDB 691 kdb_backtrace(); 692 #endif 693 } 694 #endif /* VNET_DEBUG */ 695 696 /* 697 * DDB(4). 698 */ 699 #ifdef DDB 700 static void 701 db_vnet_print(struct vnet *vnet) 702 { 703 704 db_printf("vnet = %p\n", vnet); 705 db_printf(" vnet_magic_n = %#08x (%s, orig %#08x)\n", 706 vnet->vnet_magic_n, 707 (vnet->vnet_magic_n == VNET_MAGIC_N) ? 708 "ok" : "mismatch", VNET_MAGIC_N); 709 db_printf(" vnet_ifcnt = %u\n", vnet->vnet_ifcnt); 710 db_printf(" vnet_sockcnt = %u\n", vnet->vnet_sockcnt); 711 db_printf(" vnet_data_mem = %p\n", vnet->vnet_data_mem); 712 db_printf(" vnet_data_base = %#jx\n", 713 (uintmax_t)vnet->vnet_data_base); 714 db_printf(" vnet_state = %#08x\n", vnet->vnet_state); 715 db_printf(" vnet_shutdown = %#03x\n", vnet->vnet_shutdown); 716 db_printf("\n"); 717 } 718 719 DB_SHOW_ALL_COMMAND(vnets, db_show_all_vnets) 720 { 721 VNET_ITERATOR_DECL(vnet_iter); 722 723 VNET_FOREACH(vnet_iter) { 724 db_vnet_print(vnet_iter); 725 if (db_pager_quit) 726 break; 727 } 728 } 729 730 DB_SHOW_COMMAND(vnet, db_show_vnet) 731 { 732 733 if (!have_addr) { 734 db_printf("usage: show vnet <struct vnet *>\n"); 735 return; 736 } 737 738 db_vnet_print((struct vnet *)addr); 739 } 740 741 static void 742 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb) 743 { 744 const char *vsname, *funcname; 745 c_db_sym_t sym; 746 db_expr_t offset; 747 748 #define xprint(...) \ 749 if (ddb) \ 750 db_printf(__VA_ARGS__); \ 751 else \ 752 printf(__VA_ARGS__) 753 754 if (vs == NULL) { 755 xprint("%s: no vnet_sysinit * given\n", __func__); 756 return; 757 } 758 759 sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset); 760 db_symbol_values(sym, &vsname, NULL); 761 sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset); 762 db_symbol_values(sym, &funcname, NULL); 763 xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs); 764 xprint(" %#08x %#08x\n", vs->subsystem, vs->order); 765 xprint(" %p(%s)(%p)\n", 766 vs->func, (funcname != NULL) ? funcname : "", vs->arg); 767 #undef xprint 768 } 769 770 DB_SHOW_COMMAND(vnet_sysinit, db_show_vnet_sysinit) 771 { 772 struct vnet_sysinit *vs; 773 774 db_printf("VNET_SYSINIT vs Name(Ptr)\n"); 775 db_printf(" Subsystem Order\n"); 776 db_printf(" Function(Name)(Arg)\n"); 777 TAILQ_FOREACH(vs, &vnet_constructors, link) { 778 db_show_vnet_print_vs(vs, 1); 779 if (db_pager_quit) 780 break; 781 } 782 } 783 784 DB_SHOW_COMMAND(vnet_sysuninit, db_show_vnet_sysuninit) 785 { 786 struct vnet_sysinit *vs; 787 788 db_printf("VNET_SYSUNINIT vs Name(Ptr)\n"); 789 db_printf(" Subsystem Order\n"); 790 db_printf(" Function(Name)(Arg)\n"); 791 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 792 link) { 793 db_show_vnet_print_vs(vs, 1); 794 if (db_pager_quit) 795 break; 796 } 797 } 798 799 #ifdef VNET_DEBUG 800 DB_SHOW_COMMAND(vnetrcrs, db_show_vnetrcrs) 801 { 802 struct vnet_recursion *vnr; 803 804 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 805 vnet_print_recursion(vnr, 1); 806 } 807 #endif 808 #endif /* DDB */ 809