1 /*- 2 * Copyright (c) 2004-2009 University of Zagreb 3 * Copyright (c) 2006-2009 FreeBSD Foundation 4 * All rights reserved. 5 * 6 * This software was developed by the University of Zagreb and the 7 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 8 * FreeBSD Foundation. 9 * 10 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 11 * Copyright (c) 2009 Robert N. M. Watson 12 * All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_ddb.h" 40 #include "opt_kdb.h" 41 42 #include <sys/param.h> 43 #include <sys/kdb.h> 44 #include <sys/kernel.h> 45 #include <sys/jail.h> 46 #include <sys/sdt.h> 47 #include <sys/systm.h> 48 #include <sys/sysctl.h> 49 #include <sys/eventhandler.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/proc.h> 53 #include <sys/socket.h> 54 #include <sys/sx.h> 55 #include <sys/sysctl.h> 56 57 #include <machine/stdarg.h> 58 59 #ifdef DDB 60 #include <ddb/ddb.h> 61 #include <ddb/db_sym.h> 62 #endif 63 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/vnet.h> 67 68 /*- 69 * This file implements core functions for virtual network stacks: 70 * 71 * - Virtual network stack management functions. 72 * 73 * - Virtual network stack memory allocator, which virtualizes global 74 * variables in the network stack 75 * 76 * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems 77 * to register startup/shutdown events to be run for each virtual network 78 * stack instance. 79 */ 80 81 FEATURE(vimage, "VIMAGE kernel virtualization"); 82 83 static MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); 84 85 /* 86 * The virtual network stack list has two read-write locks, one sleepable and 87 * the other not, so that the list can be stablized and walked in a variety 88 * of network stack contexts. Both must be acquired exclusively to modify 89 * the list, but a read lock of either lock is sufficient to walk the list. 90 */ 91 struct rwlock vnet_rwlock; 92 struct sx vnet_sxlock; 93 94 #define VNET_LIST_WLOCK() do { \ 95 sx_xlock(&vnet_sxlock); \ 96 rw_wlock(&vnet_rwlock); \ 97 } while (0) 98 99 #define VNET_LIST_WUNLOCK() do { \ 100 rw_wunlock(&vnet_rwlock); \ 101 sx_xunlock(&vnet_sxlock); \ 102 } while (0) 103 104 struct vnet_list_head vnet_head; 105 struct vnet *vnet0; 106 107 /* 108 * The virtual network stack allocator provides storage for virtualized 109 * global variables. These variables are defined/declared using the 110 * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' 111 * linker set. The details of the implementation are somewhat subtle, but 112 * allow the majority of most network subsystems to maintain 113 * virtualization-agnostic. 114 * 115 * The virtual network stack allocator handles variables in the base kernel 116 * vs. modules in similar but different ways. In both cases, virtualized 117 * global variables are marked as such by being declared to be part of the 118 * vnet linker set. These "master" copies of global variables serve two 119 * functions: 120 * 121 * (1) They contain static initialization or "default" values for global 122 * variables which will be propagated to each virtual network stack 123 * instance when created. As with normal global variables, they default 124 * to zero-filled. 125 * 126 * (2) They act as unique global names by which the variable can be referred 127 * to, regardless of network stack instance. The single global symbol 128 * will be used to calculate the location of a per-virtual instance 129 * variable at run-time. 130 * 131 * Each virtual network stack instance has a complete copy of each 132 * virtualized global variable, stored in a malloc'd block of memory 133 * referred to by vnet->vnet_data_mem. Critical to the design is that each 134 * per-instance memory block is laid out identically to the master block so 135 * that the offset of each global variable is the same across all blocks. To 136 * optimize run-time access, a precalculated 'base' address, 137 * vnet->vnet_data_base, is stored in each vnet, and is the amount that can 138 * be added to the address of a 'master' instance of a variable to get to the 139 * per-vnet instance. 140 * 141 * Virtualized global variables are handled in a similar manner, but as each 142 * module has its own 'set_vnet' linker set, and we want to keep all 143 * virtualized globals togther, we reserve space in the kernel's linker set 144 * for potential module variables using a per-vnet character array, 145 * 'modspace'. The virtual network stack allocator maintains a free list to 146 * track what space in the array is free (all, initially) and as modules are 147 * linked, allocates portions of the space to specific globals. The kernel 148 * module linker queries the virtual network stack allocator and will 149 * bind references of the global to the location during linking. It also 150 * calls into the virtual network stack allocator, once the memory is 151 * initialized, in order to propagate the new static initializations to all 152 * existing virtual network stack instances so that the soon-to-be executing 153 * module will find every network stack instance with proper default values. 154 */ 155 156 /* 157 * Number of bytes of data in the 'set_vnet' linker set, and hence the total 158 * size of all kernel virtualized global variables, and the malloc(9) type 159 * that will be used to allocate it. 160 */ 161 #define VNET_BYTES (VNET_STOP - VNET_START) 162 163 static MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); 164 165 /* 166 * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of 167 * global variables across all loaded modules. As this actually sizes an 168 * array declared as a virtualized global variable in the kernel itself, and 169 * we want the virtualized global variable space to be page-sized, we may 170 * have more space than that in practice. 171 */ 172 #define VNET_MODMIN 8192 173 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) 174 #define VNET_MODSIZE (VNET_SIZE - (VNET_BYTES - VNET_MODMIN)) 175 176 /* 177 * Space to store virtualized global variables from loadable kernel modules, 178 * and the free list to manage it. 179 */ 180 static VNET_DEFINE(char, modspace[VNET_MODMIN]); 181 182 /* 183 * Global lists of subsystem constructor and destructors for vnets. They are 184 * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are 185 * protected by the vnet_sysinit_sxlock global lock. 186 */ 187 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = 188 TAILQ_HEAD_INITIALIZER(vnet_constructors); 189 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = 190 TAILQ_HEAD_INITIALIZER(vnet_destructors); 191 192 struct sx vnet_sysinit_sxlock; 193 194 #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); 195 #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); 196 #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); 197 #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); 198 199 struct vnet_data_free { 200 uintptr_t vnd_start; 201 int vnd_len; 202 TAILQ_ENTRY(vnet_data_free) vnd_link; 203 }; 204 205 static MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", 206 "VNET resource accounting"); 207 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = 208 TAILQ_HEAD_INITIALIZER(vnet_data_free_head); 209 static struct sx vnet_data_free_lock; 210 211 SDT_PROVIDER_DEFINE(vnet); 212 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int"); 213 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int", 214 "struct vnet *"); 215 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return, 216 "int", "struct vnet *"); 217 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry, 218 "int", "struct vnet *"); 219 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return, 220 "int"); 221 222 #ifdef DDB 223 static void db_show_vnet_print_vs(struct vnet_sysinit *, int); 224 #endif 225 226 /* 227 * Allocate a virtual network stack. 228 */ 229 struct vnet * 230 vnet_alloc(void) 231 { 232 struct vnet *vnet; 233 234 SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__); 235 vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); 236 vnet->vnet_magic_n = VNET_MAGIC_N; 237 SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet); 238 239 /* 240 * Allocate storage for virtualized global variables and copy in 241 * initial values form our 'master' copy. 242 */ 243 vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); 244 memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); 245 246 /* 247 * All use of vnet-specific data will immediately subtract VNET_START 248 * from the base memory pointer, so pre-calculate that now to avoid 249 * it on each use. 250 */ 251 vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; 252 253 /* Initialize / attach vnet module instances. */ 254 CURVNET_SET_QUIET(vnet); 255 vnet_sysinit(); 256 CURVNET_RESTORE(); 257 258 VNET_LIST_WLOCK(); 259 LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); 260 VNET_LIST_WUNLOCK(); 261 262 SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet); 263 return (vnet); 264 } 265 266 /* 267 * Destroy a virtual network stack. 268 */ 269 void 270 vnet_destroy(struct vnet *vnet) 271 { 272 struct ifnet *ifp, *nifp; 273 274 SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet); 275 KASSERT(vnet->vnet_sockcnt == 0, 276 ("%s: vnet still has sockets", __func__)); 277 278 VNET_LIST_WLOCK(); 279 LIST_REMOVE(vnet, vnet_le); 280 VNET_LIST_WUNLOCK(); 281 282 CURVNET_SET_QUIET(vnet); 283 284 /* Return all inherited interfaces to their parent vnets. */ 285 TAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 286 if (ifp->if_home_vnet != ifp->if_vnet) 287 if_vmove(ifp, ifp->if_home_vnet); 288 } 289 290 vnet_sysuninit(); 291 CURVNET_RESTORE(); 292 293 /* 294 * Release storage for the virtual network stack instance. 295 */ 296 free(vnet->vnet_data_mem, M_VNET_DATA); 297 vnet->vnet_data_mem = NULL; 298 vnet->vnet_data_base = 0; 299 vnet->vnet_magic_n = 0xdeadbeef; 300 free(vnet, M_VNET); 301 SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__); 302 } 303 304 /* 305 * Boot time initialization and allocation of virtual network stacks. 306 */ 307 static void 308 vnet_init_prelink(void *arg) 309 { 310 311 rw_init(&vnet_rwlock, "vnet_rwlock"); 312 sx_init(&vnet_sxlock, "vnet_sxlock"); 313 sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); 314 LIST_INIT(&vnet_head); 315 } 316 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, 317 vnet_init_prelink, NULL); 318 319 static void 320 vnet0_init(void *arg) 321 { 322 323 /* Warn people before take off - in case we crash early. */ 324 printf("WARNING: VIMAGE (virtualized network stack) is a highly " 325 "experimental feature.\n"); 326 327 /* 328 * We MUST clear curvnet in vi_init_done() before going SMP, 329 * otherwise CURVNET_SET() macros would scream about unnecessary 330 * curvnet recursions. 331 */ 332 curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); 333 } 334 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); 335 336 static void 337 vnet_init_done(void *unused) 338 { 339 340 curvnet = NULL; 341 } 342 343 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_FIRST, vnet_init_done, 344 NULL); 345 346 /* 347 * Once on boot, initialize the modspace freelist to entirely cover modspace. 348 */ 349 static void 350 vnet_data_startup(void *dummy __unused) 351 { 352 struct vnet_data_free *df; 353 354 df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 355 df->vnd_start = (uintptr_t)&VNET_NAME(modspace); 356 df->vnd_len = VNET_MODMIN; 357 TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); 358 sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); 359 } 360 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, 0); 361 362 /* 363 * When a module is loaded and requires storage for a virtualized global 364 * variable, allocate space from the modspace free list. This interface 365 * should be used only by the kernel linker. 366 */ 367 void * 368 vnet_data_alloc(int size) 369 { 370 struct vnet_data_free *df; 371 void *s; 372 373 s = NULL; 374 size = roundup2(size, sizeof(void *)); 375 sx_xlock(&vnet_data_free_lock); 376 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 377 if (df->vnd_len < size) 378 continue; 379 if (df->vnd_len == size) { 380 s = (void *)df->vnd_start; 381 TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); 382 free(df, M_VNET_DATA_FREE); 383 break; 384 } 385 s = (void *)df->vnd_start; 386 df->vnd_len -= size; 387 df->vnd_start = df->vnd_start + size; 388 break; 389 } 390 sx_xunlock(&vnet_data_free_lock); 391 392 return (s); 393 } 394 395 /* 396 * Free space for a virtualized global variable on module unload. 397 */ 398 void 399 vnet_data_free(void *start_arg, int size) 400 { 401 struct vnet_data_free *df; 402 struct vnet_data_free *dn; 403 uintptr_t start; 404 uintptr_t end; 405 406 size = roundup2(size, sizeof(void *)); 407 start = (uintptr_t)start_arg; 408 end = start + size; 409 /* 410 * Free a region of space and merge it with as many neighbors as 411 * possible. Keeping the list sorted simplifies this operation. 412 */ 413 sx_xlock(&vnet_data_free_lock); 414 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 415 if (df->vnd_start > end) 416 break; 417 /* 418 * If we expand at the end of an entry we may have to merge 419 * it with the one following it as well. 420 */ 421 if (df->vnd_start + df->vnd_len == start) { 422 df->vnd_len += size; 423 dn = TAILQ_NEXT(df, vnd_link); 424 if (df->vnd_start + df->vnd_len == dn->vnd_start) { 425 df->vnd_len += dn->vnd_len; 426 TAILQ_REMOVE(&vnet_data_free_head, dn, 427 vnd_link); 428 free(dn, M_VNET_DATA_FREE); 429 } 430 sx_xunlock(&vnet_data_free_lock); 431 return; 432 } 433 if (df->vnd_start == end) { 434 df->vnd_start = start; 435 df->vnd_len += size; 436 sx_xunlock(&vnet_data_free_lock); 437 return; 438 } 439 } 440 dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 441 dn->vnd_start = start; 442 dn->vnd_len = size; 443 if (df) 444 TAILQ_INSERT_BEFORE(df, dn, vnd_link); 445 else 446 TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); 447 sx_xunlock(&vnet_data_free_lock); 448 } 449 450 /* 451 * When a new virtualized global variable has been allocated, propagate its 452 * initial value to each already-allocated virtual network stack instance. 453 */ 454 void 455 vnet_data_copy(void *start, int size) 456 { 457 struct vnet *vnet; 458 459 VNET_LIST_RLOCK(); 460 LIST_FOREACH(vnet, &vnet_head, vnet_le) 461 memcpy((void *)((uintptr_t)vnet->vnet_data_base + 462 (uintptr_t)start), start, size); 463 VNET_LIST_RUNLOCK(); 464 } 465 466 /* 467 * Support for special SYSINIT handlers registered via VNET_SYSINIT() 468 * and VNET_SYSUNINIT(). 469 */ 470 void 471 vnet_register_sysinit(void *arg) 472 { 473 struct vnet_sysinit *vs, *vs2; 474 struct vnet *vnet; 475 476 vs = arg; 477 KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); 478 479 /* Add the constructor to the global list of vnet constructors. */ 480 VNET_SYSINIT_WLOCK(); 481 TAILQ_FOREACH(vs2, &vnet_constructors, link) { 482 if (vs2->subsystem > vs->subsystem) 483 break; 484 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 485 break; 486 } 487 if (vs2 != NULL) 488 TAILQ_INSERT_BEFORE(vs2, vs, link); 489 else 490 TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); 491 492 /* 493 * Invoke the constructor on all the existing vnets when it is 494 * registered. 495 */ 496 VNET_FOREACH(vnet) { 497 CURVNET_SET_QUIET(vnet); 498 vs->func(vs->arg); 499 CURVNET_RESTORE(); 500 } 501 VNET_SYSINIT_WUNLOCK(); 502 } 503 504 void 505 vnet_deregister_sysinit(void *arg) 506 { 507 struct vnet_sysinit *vs; 508 509 vs = arg; 510 511 /* Remove the constructor from the global list of vnet constructors. */ 512 VNET_SYSINIT_WLOCK(); 513 TAILQ_REMOVE(&vnet_constructors, vs, link); 514 VNET_SYSINIT_WUNLOCK(); 515 } 516 517 void 518 vnet_register_sysuninit(void *arg) 519 { 520 struct vnet_sysinit *vs, *vs2; 521 522 vs = arg; 523 524 /* Add the destructor to the global list of vnet destructors. */ 525 VNET_SYSINIT_WLOCK(); 526 TAILQ_FOREACH(vs2, &vnet_destructors, link) { 527 if (vs2->subsystem > vs->subsystem) 528 break; 529 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 530 break; 531 } 532 if (vs2 != NULL) 533 TAILQ_INSERT_BEFORE(vs2, vs, link); 534 else 535 TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); 536 VNET_SYSINIT_WUNLOCK(); 537 } 538 539 void 540 vnet_deregister_sysuninit(void *arg) 541 { 542 struct vnet_sysinit *vs; 543 struct vnet *vnet; 544 545 vs = arg; 546 547 /* 548 * Invoke the destructor on all the existing vnets when it is 549 * deregistered. 550 */ 551 VNET_SYSINIT_WLOCK(); 552 VNET_FOREACH(vnet) { 553 CURVNET_SET_QUIET(vnet); 554 vs->func(vs->arg); 555 CURVNET_RESTORE(); 556 } 557 558 /* Remove the destructor from the global list of vnet destructors. */ 559 TAILQ_REMOVE(&vnet_destructors, vs, link); 560 VNET_SYSINIT_WUNLOCK(); 561 } 562 563 /* 564 * Invoke all registered vnet constructors on the current vnet. Used during 565 * vnet construction. The caller is responsible for ensuring the new vnet is 566 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 567 */ 568 void 569 vnet_sysinit(void) 570 { 571 struct vnet_sysinit *vs; 572 573 VNET_SYSINIT_RLOCK(); 574 TAILQ_FOREACH(vs, &vnet_constructors, link) { 575 vs->func(vs->arg); 576 } 577 VNET_SYSINIT_RUNLOCK(); 578 } 579 580 /* 581 * Invoke all registered vnet destructors on the current vnet. Used during 582 * vnet destruction. The caller is responsible for ensuring the dying vnet 583 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 584 */ 585 void 586 vnet_sysuninit(void) 587 { 588 struct vnet_sysinit *vs; 589 590 VNET_SYSINIT_RLOCK(); 591 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 592 link) { 593 vs->func(vs->arg); 594 } 595 VNET_SYSINIT_RUNLOCK(); 596 } 597 598 /* 599 * EVENTHANDLER(9) extensions. 600 */ 601 /* 602 * Invoke the eventhandler function originally registered with the possibly 603 * registered argument for all virtual network stack instances. 604 * 605 * This iterator can only be used for eventhandlers that do not take any 606 * additional arguments, as we do ignore the variadic arguments from the 607 * EVENTHANDLER_INVOKE() call. 608 */ 609 void 610 vnet_global_eventhandler_iterator_func(void *arg, ...) 611 { 612 VNET_ITERATOR_DECL(vnet_iter); 613 struct eventhandler_entry_vimage *v_ee; 614 615 /* 616 * There is a bug here in that we should actually cast things to 617 * (struct eventhandler_entry_ ## name *) but that's not easily 618 * possible in here so just re-using the variadic version we 619 * defined for the generic vimage case. 620 */ 621 v_ee = arg; 622 VNET_LIST_RLOCK(); 623 VNET_FOREACH(vnet_iter) { 624 CURVNET_SET(vnet_iter); 625 ((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg); 626 CURVNET_RESTORE(); 627 } 628 VNET_LIST_RUNLOCK(); 629 } 630 631 #ifdef VNET_DEBUG 632 struct vnet_recursion { 633 SLIST_ENTRY(vnet_recursion) vnr_le; 634 const char *prev_fn; 635 const char *where_fn; 636 int where_line; 637 struct vnet *old_vnet; 638 struct vnet *new_vnet; 639 }; 640 641 static SLIST_HEAD(, vnet_recursion) vnet_recursions = 642 SLIST_HEAD_INITIALIZER(vnet_recursions); 643 644 static void 645 vnet_print_recursion(struct vnet_recursion *vnr, int brief) 646 { 647 648 if (!brief) 649 printf("CURVNET_SET() recursion in "); 650 printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line, 651 vnr->prev_fn); 652 if (brief) 653 printf(", "); 654 else 655 printf("\n "); 656 printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet); 657 } 658 659 void 660 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line) 661 { 662 struct vnet_recursion *vnr; 663 664 /* Skip already logged recursion events. */ 665 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 666 if (vnr->prev_fn == old_fn && 667 vnr->where_fn == curthread->td_vnet_lpush && 668 vnr->where_line == line && 669 (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet)) 670 return; 671 672 vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO); 673 if (vnr == NULL) 674 panic("%s: malloc failed", __func__); 675 vnr->prev_fn = old_fn; 676 vnr->where_fn = curthread->td_vnet_lpush; 677 vnr->where_line = line; 678 vnr->old_vnet = old_vnet; 679 vnr->new_vnet = curvnet; 680 681 SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le); 682 683 vnet_print_recursion(vnr, 0); 684 #ifdef KDB 685 kdb_backtrace(); 686 #endif 687 } 688 #endif /* VNET_DEBUG */ 689 690 /* 691 * DDB(4). 692 */ 693 #ifdef DDB 694 DB_SHOW_COMMAND(vnets, db_show_vnets) 695 { 696 VNET_ITERATOR_DECL(vnet_iter); 697 698 VNET_FOREACH(vnet_iter) { 699 db_printf("vnet = %p\n", vnet_iter); 700 db_printf(" vnet_magic_n = 0x%x (%s, orig 0x%x)\n", 701 vnet_iter->vnet_magic_n, 702 (vnet_iter->vnet_magic_n == VNET_MAGIC_N) ? 703 "ok" : "mismatch", VNET_MAGIC_N); 704 db_printf(" vnet_ifcnt = %u\n", vnet_iter->vnet_ifcnt); 705 db_printf(" vnet_sockcnt = %u\n", vnet_iter->vnet_sockcnt); 706 db_printf(" vnet_data_mem = %p\n", vnet_iter->vnet_data_mem); 707 db_printf(" vnet_data_base = 0x%jx\n", 708 (uintmax_t)vnet_iter->vnet_data_base); 709 db_printf("\n"); 710 if (db_pager_quit) 711 break; 712 } 713 } 714 715 static void 716 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb) 717 { 718 const char *vsname, *funcname; 719 c_db_sym_t sym; 720 db_expr_t offset; 721 722 #define xprint(...) \ 723 if (ddb) \ 724 db_printf(__VA_ARGS__); \ 725 else \ 726 printf(__VA_ARGS__) 727 728 if (vs == NULL) { 729 xprint("%s: no vnet_sysinit * given\n", __func__); 730 return; 731 } 732 733 sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset); 734 db_symbol_values(sym, &vsname, NULL); 735 sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset); 736 db_symbol_values(sym, &funcname, NULL); 737 xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs); 738 xprint(" 0x%08x 0x%08x\n", vs->subsystem, vs->order); 739 xprint(" %p(%s)(%p)\n", 740 vs->func, (funcname != NULL) ? funcname : "", vs->arg); 741 #undef xprint 742 } 743 744 DB_SHOW_COMMAND(vnet_sysinit, db_show_vnet_sysinit) 745 { 746 struct vnet_sysinit *vs; 747 748 db_printf("VNET_SYSINIT vs Name(Ptr)\n"); 749 db_printf(" Subsystem Order\n"); 750 db_printf(" Function(Name)(Arg)\n"); 751 TAILQ_FOREACH(vs, &vnet_constructors, link) { 752 db_show_vnet_print_vs(vs, 1); 753 if (db_pager_quit) 754 break; 755 } 756 } 757 758 DB_SHOW_COMMAND(vnet_sysuninit, db_show_vnet_sysuninit) 759 { 760 struct vnet_sysinit *vs; 761 762 db_printf("VNET_SYSUNINIT vs Name(Ptr)\n"); 763 db_printf(" Subsystem Order\n"); 764 db_printf(" Function(Name)(Arg)\n"); 765 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 766 link) { 767 db_show_vnet_print_vs(vs, 1); 768 if (db_pager_quit) 769 break; 770 } 771 } 772 773 #ifdef VNET_DEBUG 774 DB_SHOW_COMMAND(vnetrcrs, db_show_vnetrcrs) 775 { 776 struct vnet_recursion *vnr; 777 778 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 779 vnet_print_recursion(vnr, 1); 780 } 781 #endif 782 #endif /* DDB */ 783