1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2004-2009 University of Zagreb 5 * Copyright (c) 2006-2009 FreeBSD Foundation 6 * All rights reserved. 7 * 8 * This software was developed by the University of Zagreb and the 9 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 10 * FreeBSD Foundation. 11 * 12 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 13 * Copyright (c) 2009 Robert N. M. Watson 14 * All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 #include "opt_ddb.h" 40 #include "opt_kdb.h" 41 42 #include <sys/param.h> 43 #include <sys/kdb.h> 44 #include <sys/kernel.h> 45 #include <sys/jail.h> 46 #include <sys/sdt.h> 47 #include <sys/systm.h> 48 #include <sys/sysctl.h> 49 #include <sys/eventhandler.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/proc.h> 53 #include <sys/socket.h> 54 #include <sys/sx.h> 55 #include <sys/sysctl.h> 56 57 #include <machine/stdarg.h> 58 59 #ifdef DDB 60 #include <ddb/ddb.h> 61 #include <ddb/db_sym.h> 62 #endif 63 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/vnet.h> 67 68 /*- 69 * This file implements core functions for virtual network stacks: 70 * 71 * - Virtual network stack management functions. 72 * 73 * - Virtual network stack memory allocator, which virtualizes global 74 * variables in the network stack 75 * 76 * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems 77 * to register startup/shutdown events to be run for each virtual network 78 * stack instance. 79 */ 80 81 FEATURE(vimage, "VIMAGE kernel virtualization"); 82 83 static MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); 84 85 /* 86 * The virtual network stack list has two read-write locks, one sleepable and 87 * the other not, so that the list can be stablized and walked in a variety 88 * of network stack contexts. Both must be acquired exclusively to modify 89 * the list, but a read lock of either lock is sufficient to walk the list. 90 */ 91 struct rwlock vnet_rwlock; 92 struct sx vnet_sxlock; 93 94 #define VNET_LIST_WLOCK() do { \ 95 sx_xlock(&vnet_sxlock); \ 96 rw_wlock(&vnet_rwlock); \ 97 } while (0) 98 99 #define VNET_LIST_WUNLOCK() do { \ 100 rw_wunlock(&vnet_rwlock); \ 101 sx_xunlock(&vnet_sxlock); \ 102 } while (0) 103 104 struct vnet_list_head vnet_head; 105 struct vnet *vnet0; 106 107 /* 108 * The virtual network stack allocator provides storage for virtualized 109 * global variables. These variables are defined/declared using the 110 * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' 111 * linker set. The details of the implementation are somewhat subtle, but 112 * allow the majority of most network subsystems to maintain 113 * virtualization-agnostic. 114 * 115 * The virtual network stack allocator handles variables in the base kernel 116 * vs. modules in similar but different ways. In both cases, virtualized 117 * global variables are marked as such by being declared to be part of the 118 * vnet linker set. These "master" copies of global variables serve two 119 * functions: 120 * 121 * (1) They contain static initialization or "default" values for global 122 * variables which will be propagated to each virtual network stack 123 * instance when created. As with normal global variables, they default 124 * to zero-filled. 125 * 126 * (2) They act as unique global names by which the variable can be referred 127 * to, regardless of network stack instance. The single global symbol 128 * will be used to calculate the location of a per-virtual instance 129 * variable at run-time. 130 * 131 * Each virtual network stack instance has a complete copy of each 132 * virtualized global variable, stored in a malloc'd block of memory 133 * referred to by vnet->vnet_data_mem. Critical to the design is that each 134 * per-instance memory block is laid out identically to the master block so 135 * that the offset of each global variable is the same across all blocks. To 136 * optimize run-time access, a precalculated 'base' address, 137 * vnet->vnet_data_base, is stored in each vnet, and is the amount that can 138 * be added to the address of a 'master' instance of a variable to get to the 139 * per-vnet instance. 140 * 141 * Virtualized global variables are handled in a similar manner, but as each 142 * module has its own 'set_vnet' linker set, and we want to keep all 143 * virtualized globals togther, we reserve space in the kernel's linker set 144 * for potential module variables using a per-vnet character array, 145 * 'modspace'. The virtual network stack allocator maintains a free list to 146 * track what space in the array is free (all, initially) and as modules are 147 * linked, allocates portions of the space to specific globals. The kernel 148 * module linker queries the virtual network stack allocator and will 149 * bind references of the global to the location during linking. It also 150 * calls into the virtual network stack allocator, once the memory is 151 * initialized, in order to propagate the new static initializations to all 152 * existing virtual network stack instances so that the soon-to-be executing 153 * module will find every network stack instance with proper default values. 154 */ 155 156 /* 157 * Number of bytes of data in the 'set_vnet' linker set, and hence the total 158 * size of all kernel virtualized global variables, and the malloc(9) type 159 * that will be used to allocate it. 160 */ 161 #define VNET_BYTES (VNET_STOP - VNET_START) 162 163 static MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); 164 165 /* 166 * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of 167 * global variables across all loaded modules. As this actually sizes an 168 * array declared as a virtualized global variable in the kernel itself, and 169 * we want the virtualized global variable space to be page-sized, we may 170 * have more space than that in practice. 171 */ 172 #define VNET_MODMIN (8 * PAGE_SIZE) 173 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) 174 175 /* 176 * Space to store virtualized global variables from loadable kernel modules, 177 * and the free list to manage it. 178 */ 179 VNET_DEFINE_STATIC(char, modspace[VNET_MODMIN] __aligned(__alignof(void *))); 180 181 /* 182 * A copy of the initial values of all virtualized global variables. 183 */ 184 static uintptr_t vnet_init_var; 185 186 /* 187 * Global lists of subsystem constructor and destructors for vnets. They are 188 * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are 189 * protected by the vnet_sysinit_sxlock global lock. 190 */ 191 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = 192 TAILQ_HEAD_INITIALIZER(vnet_constructors); 193 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = 194 TAILQ_HEAD_INITIALIZER(vnet_destructors); 195 196 struct sx vnet_sysinit_sxlock; 197 198 #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); 199 #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); 200 #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); 201 #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); 202 203 struct vnet_data_free { 204 uintptr_t vnd_start; 205 int vnd_len; 206 TAILQ_ENTRY(vnet_data_free) vnd_link; 207 }; 208 209 static MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", 210 "VNET resource accounting"); 211 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = 212 TAILQ_HEAD_INITIALIZER(vnet_data_free_head); 213 static struct sx vnet_data_free_lock; 214 215 SDT_PROVIDER_DEFINE(vnet); 216 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int"); 217 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int", 218 "struct vnet *"); 219 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return, 220 "int", "struct vnet *"); 221 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry, 222 "int", "struct vnet *"); 223 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return, 224 "int"); 225 226 /* 227 * Run per-vnet sysinits or sysuninits during vnet creation/destruction. 228 */ 229 static void vnet_sysinit(void); 230 static void vnet_sysuninit(void); 231 232 #ifdef DDB 233 static void db_show_vnet_print_vs(struct vnet_sysinit *, int); 234 #endif 235 236 /* 237 * Allocate a virtual network stack. 238 */ 239 struct vnet * 240 vnet_alloc(void) 241 { 242 struct vnet *vnet; 243 244 SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__); 245 vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); 246 vnet->vnet_magic_n = VNET_MAGIC_N; 247 SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet); 248 249 /* 250 * Allocate storage for virtualized global variables and copy in 251 * initial values from our 'master' copy. 252 */ 253 vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); 254 memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); 255 256 /* 257 * All use of vnet-specific data will immediately subtract VNET_START 258 * from the base memory pointer, so pre-calculate that now to avoid 259 * it on each use. 260 */ 261 vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; 262 263 /* Initialize / attach vnet module instances. */ 264 CURVNET_SET_QUIET(vnet); 265 vnet_sysinit(); 266 CURVNET_RESTORE(); 267 268 VNET_LIST_WLOCK(); 269 LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); 270 VNET_LIST_WUNLOCK(); 271 272 SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet); 273 return (vnet); 274 } 275 276 /* 277 * Destroy a virtual network stack. 278 */ 279 void 280 vnet_destroy(struct vnet *vnet) 281 { 282 283 SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet); 284 KASSERT(vnet->vnet_sockcnt == 0, 285 ("%s: vnet still has sockets", __func__)); 286 287 VNET_LIST_WLOCK(); 288 LIST_REMOVE(vnet, vnet_le); 289 VNET_LIST_WUNLOCK(); 290 291 /* Signal that VNET is being shutdown. */ 292 vnet->vnet_shutdown = true; 293 294 CURVNET_SET_QUIET(vnet); 295 sx_xlock(&ifnet_detach_sxlock); 296 vnet_sysuninit(); 297 sx_xunlock(&ifnet_detach_sxlock); 298 CURVNET_RESTORE(); 299 300 /* 301 * Release storage for the virtual network stack instance. 302 */ 303 free(vnet->vnet_data_mem, M_VNET_DATA); 304 vnet->vnet_data_mem = NULL; 305 vnet->vnet_data_base = 0; 306 vnet->vnet_magic_n = 0xdeadbeef; 307 free(vnet, M_VNET); 308 SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__); 309 } 310 311 /* 312 * Boot time initialization and allocation of virtual network stacks. 313 */ 314 static void 315 vnet_init_prelink(void *arg __unused) 316 { 317 318 rw_init(&vnet_rwlock, "vnet_rwlock"); 319 sx_init(&vnet_sxlock, "vnet_sxlock"); 320 sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); 321 LIST_INIT(&vnet_head); 322 } 323 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, 324 vnet_init_prelink, NULL); 325 326 static void 327 vnet0_init(void *arg __unused) 328 { 329 330 if (bootverbose) 331 printf("VIMAGE (virtualized network stack) enabled\n"); 332 333 /* 334 * We MUST clear curvnet in vi_init_done() before going SMP, 335 * otherwise CURVNET_SET() macros would scream about unnecessary 336 * curvnet recursions. 337 */ 338 curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); 339 } 340 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); 341 342 static void 343 vnet_init_done(void *unused __unused) 344 { 345 346 curvnet = NULL; 347 } 348 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, vnet_init_done, 349 NULL); 350 351 /* 352 * Once on boot, initialize the modspace freelist to entirely cover modspace. 353 */ 354 static void 355 vnet_data_startup(void *dummy __unused) 356 { 357 struct vnet_data_free *df; 358 359 df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 360 df->vnd_start = (uintptr_t)&VNET_NAME(modspace); 361 df->vnd_len = VNET_MODMIN; 362 TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); 363 sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); 364 vnet_init_var = (uintptr_t)malloc(VNET_BYTES, M_VNET_DATA, M_WAITOK); 365 } 366 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, NULL); 367 368 /* Dummy VNET_SYSINIT to make sure we always reach the final end state. */ 369 static void 370 vnet_sysinit_done(void *unused __unused) 371 { 372 373 return; 374 } 375 VNET_SYSINIT(vnet_sysinit_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, 376 vnet_sysinit_done, NULL); 377 378 /* 379 * When a module is loaded and requires storage for a virtualized global 380 * variable, allocate space from the modspace free list. This interface 381 * should be used only by the kernel linker. 382 */ 383 void * 384 vnet_data_alloc(int size) 385 { 386 struct vnet_data_free *df; 387 void *s; 388 389 s = NULL; 390 size = roundup2(size, sizeof(void *)); 391 sx_xlock(&vnet_data_free_lock); 392 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 393 if (df->vnd_len < size) 394 continue; 395 if (df->vnd_len == size) { 396 s = (void *)df->vnd_start; 397 TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); 398 free(df, M_VNET_DATA_FREE); 399 break; 400 } 401 s = (void *)df->vnd_start; 402 df->vnd_len -= size; 403 df->vnd_start = df->vnd_start + size; 404 break; 405 } 406 sx_xunlock(&vnet_data_free_lock); 407 408 return (s); 409 } 410 411 /* 412 * Free space for a virtualized global variable on module unload. 413 */ 414 void 415 vnet_data_free(void *start_arg, int size) 416 { 417 struct vnet_data_free *df; 418 struct vnet_data_free *dn; 419 uintptr_t start; 420 uintptr_t end; 421 422 size = roundup2(size, sizeof(void *)); 423 start = (uintptr_t)start_arg; 424 end = start + size; 425 /* 426 * Free a region of space and merge it with as many neighbors as 427 * possible. Keeping the list sorted simplifies this operation. 428 */ 429 sx_xlock(&vnet_data_free_lock); 430 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 431 if (df->vnd_start > end) 432 break; 433 /* 434 * If we expand at the end of an entry we may have to merge 435 * it with the one following it as well. 436 */ 437 if (df->vnd_start + df->vnd_len == start) { 438 df->vnd_len += size; 439 dn = TAILQ_NEXT(df, vnd_link); 440 if (df->vnd_start + df->vnd_len == dn->vnd_start) { 441 df->vnd_len += dn->vnd_len; 442 TAILQ_REMOVE(&vnet_data_free_head, dn, 443 vnd_link); 444 free(dn, M_VNET_DATA_FREE); 445 } 446 sx_xunlock(&vnet_data_free_lock); 447 return; 448 } 449 if (df->vnd_start == end) { 450 df->vnd_start = start; 451 df->vnd_len += size; 452 sx_xunlock(&vnet_data_free_lock); 453 return; 454 } 455 } 456 dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 457 dn->vnd_start = start; 458 dn->vnd_len = size; 459 if (df) 460 TAILQ_INSERT_BEFORE(df, dn, vnd_link); 461 else 462 TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); 463 sx_xunlock(&vnet_data_free_lock); 464 } 465 466 /* 467 * When a new virtualized global variable has been allocated, propagate its 468 * initial value to each already-allocated virtual network stack instance. 469 */ 470 void 471 vnet_data_copy(void *start, int size) 472 { 473 struct vnet *vnet; 474 475 VNET_LIST_RLOCK(); 476 LIST_FOREACH(vnet, &vnet_head, vnet_le) 477 memcpy((void *)((uintptr_t)vnet->vnet_data_base + 478 (uintptr_t)start), start, size); 479 VNET_LIST_RUNLOCK(); 480 } 481 482 /* 483 * Save a copy of the initial values of virtualized global variables. 484 */ 485 void 486 vnet_save_init(void *start, size_t size) 487 { 488 MPASS(vnet_init_var != 0); 489 MPASS(VNET_START <= (uintptr_t)start && 490 (uintptr_t)start + size <= VNET_STOP); 491 memcpy((void *)(vnet_init_var + ((uintptr_t)start - VNET_START)), 492 start, size); 493 } 494 495 /* 496 * Restore the 'master' copies of virtualized global variables to theirs 497 * initial values. 498 */ 499 void 500 vnet_restore_init(void *start, size_t size) 501 { 502 MPASS(vnet_init_var != 0); 503 MPASS(VNET_START <= (uintptr_t)start && 504 (uintptr_t)start + size <= VNET_STOP); 505 memcpy(start, 506 (void *)(vnet_init_var + ((uintptr_t)start - VNET_START)), size); 507 } 508 509 /* 510 * Support for special SYSINIT handlers registered via VNET_SYSINIT() 511 * and VNET_SYSUNINIT(). 512 */ 513 void 514 vnet_register_sysinit(void *arg) 515 { 516 struct vnet_sysinit *vs, *vs2; 517 struct vnet *vnet; 518 519 vs = arg; 520 KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); 521 522 /* Add the constructor to the global list of vnet constructors. */ 523 VNET_SYSINIT_WLOCK(); 524 TAILQ_FOREACH(vs2, &vnet_constructors, link) { 525 if (vs2->subsystem > vs->subsystem) 526 break; 527 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 528 break; 529 } 530 if (vs2 != NULL) 531 TAILQ_INSERT_BEFORE(vs2, vs, link); 532 else 533 TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); 534 535 /* 536 * Invoke the constructor on all the existing vnets when it is 537 * registered. 538 */ 539 VNET_LIST_RLOCK(); 540 VNET_FOREACH(vnet) { 541 CURVNET_SET_QUIET(vnet); 542 vs->func(vs->arg); 543 CURVNET_RESTORE(); 544 } 545 VNET_LIST_RUNLOCK(); 546 VNET_SYSINIT_WUNLOCK(); 547 } 548 549 void 550 vnet_deregister_sysinit(void *arg) 551 { 552 struct vnet_sysinit *vs; 553 554 vs = arg; 555 556 /* Remove the constructor from the global list of vnet constructors. */ 557 VNET_SYSINIT_WLOCK(); 558 TAILQ_REMOVE(&vnet_constructors, vs, link); 559 VNET_SYSINIT_WUNLOCK(); 560 } 561 562 void 563 vnet_register_sysuninit(void *arg) 564 { 565 struct vnet_sysinit *vs, *vs2; 566 567 vs = arg; 568 569 /* Add the destructor to the global list of vnet destructors. */ 570 VNET_SYSINIT_WLOCK(); 571 TAILQ_FOREACH(vs2, &vnet_destructors, link) { 572 if (vs2->subsystem > vs->subsystem) 573 break; 574 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 575 break; 576 } 577 if (vs2 != NULL) 578 TAILQ_INSERT_BEFORE(vs2, vs, link); 579 else 580 TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); 581 VNET_SYSINIT_WUNLOCK(); 582 } 583 584 void 585 vnet_deregister_sysuninit(void *arg) 586 { 587 struct vnet_sysinit *vs; 588 struct vnet *vnet; 589 590 vs = arg; 591 592 /* 593 * Invoke the destructor on all the existing vnets when it is 594 * deregistered. 595 */ 596 VNET_SYSINIT_WLOCK(); 597 VNET_LIST_RLOCK(); 598 VNET_FOREACH(vnet) { 599 CURVNET_SET_QUIET(vnet); 600 vs->func(vs->arg); 601 CURVNET_RESTORE(); 602 } 603 604 /* Remove the destructor from the global list of vnet destructors. */ 605 TAILQ_REMOVE(&vnet_destructors, vs, link); 606 VNET_SYSINIT_WUNLOCK(); 607 VNET_LIST_RUNLOCK(); 608 } 609 610 /* 611 * Invoke all registered vnet constructors on the current vnet. Used during 612 * vnet construction. The caller is responsible for ensuring the new vnet is 613 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 614 */ 615 static void 616 vnet_sysinit(void) 617 { 618 struct vnet_sysinit *vs; 619 620 VNET_SYSINIT_RLOCK(); 621 TAILQ_FOREACH(vs, &vnet_constructors, link) { 622 curvnet->vnet_state = vs->subsystem; 623 vs->func(vs->arg); 624 } 625 VNET_SYSINIT_RUNLOCK(); 626 } 627 628 /* 629 * Invoke all registered vnet destructors on the current vnet. Used during 630 * vnet destruction. The caller is responsible for ensuring the dying vnet 631 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 632 */ 633 static void 634 vnet_sysuninit(void) 635 { 636 struct vnet_sysinit *vs; 637 638 VNET_SYSINIT_RLOCK(); 639 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 640 link) { 641 curvnet->vnet_state = vs->subsystem; 642 vs->func(vs->arg); 643 } 644 VNET_SYSINIT_RUNLOCK(); 645 } 646 647 /* 648 * EVENTHANDLER(9) extensions. 649 */ 650 /* 651 * Invoke the eventhandler function originally registered with the possibly 652 * registered argument for all virtual network stack instances. 653 * 654 * This iterator can only be used for eventhandlers that do not take any 655 * additional arguments, as we do ignore the variadic arguments from the 656 * EVENTHANDLER_INVOKE() call. 657 */ 658 void 659 vnet_global_eventhandler_iterator_func(void *arg, ...) 660 { 661 VNET_ITERATOR_DECL(vnet_iter); 662 struct eventhandler_entry_vimage *v_ee; 663 664 /* 665 * There is a bug here in that we should actually cast things to 666 * (struct eventhandler_entry_ ## name *) but that's not easily 667 * possible in here so just re-using the variadic version we 668 * defined for the generic vimage case. 669 */ 670 v_ee = arg; 671 VNET_LIST_RLOCK(); 672 VNET_FOREACH(vnet_iter) { 673 CURVNET_SET(vnet_iter); 674 ((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg); 675 CURVNET_RESTORE(); 676 } 677 VNET_LIST_RUNLOCK(); 678 } 679 680 #ifdef VNET_DEBUG 681 struct vnet_recursion { 682 SLIST_ENTRY(vnet_recursion) vnr_le; 683 const char *prev_fn; 684 const char *where_fn; 685 int where_line; 686 struct vnet *old_vnet; 687 struct vnet *new_vnet; 688 }; 689 690 static SLIST_HEAD(, vnet_recursion) vnet_recursions = 691 SLIST_HEAD_INITIALIZER(vnet_recursions); 692 693 static void 694 vnet_print_recursion(struct vnet_recursion *vnr, int brief) 695 { 696 697 if (!brief) 698 printf("CURVNET_SET() recursion in "); 699 printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line, 700 vnr->prev_fn); 701 if (brief) 702 printf(", "); 703 else 704 printf("\n "); 705 printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet); 706 } 707 708 void 709 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line) 710 { 711 struct vnet_recursion *vnr; 712 713 /* Skip already logged recursion events. */ 714 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 715 if (vnr->prev_fn == old_fn && 716 vnr->where_fn == curthread->td_vnet_lpush && 717 vnr->where_line == line && 718 (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet)) 719 return; 720 721 vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO); 722 if (vnr == NULL) 723 panic("%s: malloc failed", __func__); 724 vnr->prev_fn = old_fn; 725 vnr->where_fn = curthread->td_vnet_lpush; 726 vnr->where_line = line; 727 vnr->old_vnet = old_vnet; 728 vnr->new_vnet = curvnet; 729 730 SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le); 731 732 vnet_print_recursion(vnr, 0); 733 #ifdef KDB 734 kdb_backtrace(); 735 #endif 736 } 737 #endif /* VNET_DEBUG */ 738 739 /* 740 * DDB(4). 741 */ 742 #ifdef DDB 743 static void 744 db_vnet_print(struct vnet *vnet) 745 { 746 747 db_printf("vnet = %p\n", vnet); 748 db_printf(" vnet_magic_n = %#08x (%s, orig %#08x)\n", 749 vnet->vnet_magic_n, 750 (vnet->vnet_magic_n == VNET_MAGIC_N) ? 751 "ok" : "mismatch", VNET_MAGIC_N); 752 db_printf(" vnet_ifcnt = %u\n", vnet->vnet_ifcnt); 753 db_printf(" vnet_sockcnt = %u\n", vnet->vnet_sockcnt); 754 db_printf(" vnet_data_mem = %p\n", vnet->vnet_data_mem); 755 db_printf(" vnet_data_base = %#jx\n", 756 (uintmax_t)vnet->vnet_data_base); 757 db_printf(" vnet_state = %#08x\n", vnet->vnet_state); 758 db_printf(" vnet_shutdown = %#03x\n", vnet->vnet_shutdown); 759 db_printf("\n"); 760 } 761 762 DB_SHOW_ALL_COMMAND(vnets, db_show_all_vnets) 763 { 764 VNET_ITERATOR_DECL(vnet_iter); 765 766 VNET_FOREACH(vnet_iter) { 767 db_vnet_print(vnet_iter); 768 if (db_pager_quit) 769 break; 770 } 771 } 772 773 DB_SHOW_COMMAND(vnet, db_show_vnet) 774 { 775 776 if (!have_addr) { 777 db_printf("usage: show vnet <struct vnet *>\n"); 778 return; 779 } 780 781 db_vnet_print((struct vnet *)addr); 782 } 783 784 static void 785 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb) 786 { 787 const char *vsname, *funcname; 788 c_db_sym_t sym; 789 db_expr_t offset; 790 791 #define xprint(...) \ 792 if (ddb) \ 793 db_printf(__VA_ARGS__); \ 794 else \ 795 printf(__VA_ARGS__) 796 797 if (vs == NULL) { 798 xprint("%s: no vnet_sysinit * given\n", __func__); 799 return; 800 } 801 802 sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset); 803 db_symbol_values(sym, &vsname, NULL); 804 sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset); 805 db_symbol_values(sym, &funcname, NULL); 806 xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs); 807 xprint(" %#08x %#08x\n", vs->subsystem, vs->order); 808 xprint(" %p(%s)(%p)\n", 809 vs->func, (funcname != NULL) ? funcname : "", vs->arg); 810 #undef xprint 811 } 812 813 DB_SHOW_COMMAND_FLAGS(vnet_sysinit, db_show_vnet_sysinit, DB_CMD_MEMSAFE) 814 { 815 struct vnet_sysinit *vs; 816 817 db_printf("VNET_SYSINIT vs Name(Ptr)\n"); 818 db_printf(" Subsystem Order\n"); 819 db_printf(" Function(Name)(Arg)\n"); 820 TAILQ_FOREACH(vs, &vnet_constructors, link) { 821 db_show_vnet_print_vs(vs, 1); 822 if (db_pager_quit) 823 break; 824 } 825 } 826 827 DB_SHOW_COMMAND_FLAGS(vnet_sysuninit, db_show_vnet_sysuninit, DB_CMD_MEMSAFE) 828 { 829 struct vnet_sysinit *vs; 830 831 db_printf("VNET_SYSUNINIT vs Name(Ptr)\n"); 832 db_printf(" Subsystem Order\n"); 833 db_printf(" Function(Name)(Arg)\n"); 834 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 835 link) { 836 db_show_vnet_print_vs(vs, 1); 837 if (db_pager_quit) 838 break; 839 } 840 } 841 842 #ifdef VNET_DEBUG 843 DB_SHOW_COMMAND_FLAGS(vnetrcrs, db_show_vnetrcrs, DB_CMD_MEMSAFE) 844 { 845 struct vnet_recursion *vnr; 846 847 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 848 vnet_print_recursion(vnr, 1); 849 } 850 #endif 851 #endif /* DDB */ 852