1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004-2009 University of Zagreb 5 * Copyright (c) 2006-2009 FreeBSD Foundation 6 * All rights reserved. 7 * 8 * This software was developed by the University of Zagreb and the 9 * FreeBSD Foundation under sponsorship by the Stichting NLnet and the 10 * FreeBSD Foundation. 11 * 12 * Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org> 13 * Copyright (c) 2009 Robert N. M. Watson 14 * All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_ddb.h" 42 #include "opt_kdb.h" 43 44 #include <sys/param.h> 45 #include <sys/kdb.h> 46 #include <sys/kernel.h> 47 #include <sys/jail.h> 48 #include <sys/sdt.h> 49 #include <sys/systm.h> 50 #include <sys/sysctl.h> 51 #include <sys/eventhandler.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/proc.h> 55 #include <sys/socket.h> 56 #include <sys/sx.h> 57 #include <sys/sysctl.h> 58 59 #include <machine/stdarg.h> 60 61 #ifdef DDB 62 #include <ddb/ddb.h> 63 #include <ddb/db_sym.h> 64 #endif 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/vnet.h> 69 70 /*- 71 * This file implements core functions for virtual network stacks: 72 * 73 * - Virtual network stack management functions. 74 * 75 * - Virtual network stack memory allocator, which virtualizes global 76 * variables in the network stack 77 * 78 * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems 79 * to register startup/shutdown events to be run for each virtual network 80 * stack instance. 81 */ 82 83 FEATURE(vimage, "VIMAGE kernel virtualization"); 84 85 static MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); 86 87 /* 88 * The virtual network stack list has two read-write locks, one sleepable and 89 * the other not, so that the list can be stablized and walked in a variety 90 * of network stack contexts. Both must be acquired exclusively to modify 91 * the list, but a read lock of either lock is sufficient to walk the list. 92 */ 93 struct rwlock vnet_rwlock; 94 struct sx vnet_sxlock; 95 96 #define VNET_LIST_WLOCK() do { \ 97 sx_xlock(&vnet_sxlock); \ 98 rw_wlock(&vnet_rwlock); \ 99 } while (0) 100 101 #define VNET_LIST_WUNLOCK() do { \ 102 rw_wunlock(&vnet_rwlock); \ 103 sx_xunlock(&vnet_sxlock); \ 104 } while (0) 105 106 struct vnet_list_head vnet_head; 107 struct vnet *vnet0; 108 109 /* 110 * The virtual network stack allocator provides storage for virtualized 111 * global variables. These variables are defined/declared using the 112 * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' 113 * linker set. The details of the implementation are somewhat subtle, but 114 * allow the majority of most network subsystems to maintain 115 * virtualization-agnostic. 116 * 117 * The virtual network stack allocator handles variables in the base kernel 118 * vs. modules in similar but different ways. In both cases, virtualized 119 * global variables are marked as such by being declared to be part of the 120 * vnet linker set. These "master" copies of global variables serve two 121 * functions: 122 * 123 * (1) They contain static initialization or "default" values for global 124 * variables which will be propagated to each virtual network stack 125 * instance when created. As with normal global variables, they default 126 * to zero-filled. 127 * 128 * (2) They act as unique global names by which the variable can be referred 129 * to, regardless of network stack instance. The single global symbol 130 * will be used to calculate the location of a per-virtual instance 131 * variable at run-time. 132 * 133 * Each virtual network stack instance has a complete copy of each 134 * virtualized global variable, stored in a malloc'd block of memory 135 * referred to by vnet->vnet_data_mem. Critical to the design is that each 136 * per-instance memory block is laid out identically to the master block so 137 * that the offset of each global variable is the same across all blocks. To 138 * optimize run-time access, a precalculated 'base' address, 139 * vnet->vnet_data_base, is stored in each vnet, and is the amount that can 140 * be added to the address of a 'master' instance of a variable to get to the 141 * per-vnet instance. 142 * 143 * Virtualized global variables are handled in a similar manner, but as each 144 * module has its own 'set_vnet' linker set, and we want to keep all 145 * virtualized globals togther, we reserve space in the kernel's linker set 146 * for potential module variables using a per-vnet character array, 147 * 'modspace'. The virtual network stack allocator maintains a free list to 148 * track what space in the array is free (all, initially) and as modules are 149 * linked, allocates portions of the space to specific globals. The kernel 150 * module linker queries the virtual network stack allocator and will 151 * bind references of the global to the location during linking. It also 152 * calls into the virtual network stack allocator, once the memory is 153 * initialized, in order to propagate the new static initializations to all 154 * existing virtual network stack instances so that the soon-to-be executing 155 * module will find every network stack instance with proper default values. 156 */ 157 158 /* 159 * Number of bytes of data in the 'set_vnet' linker set, and hence the total 160 * size of all kernel virtualized global variables, and the malloc(9) type 161 * that will be used to allocate it. 162 */ 163 #define VNET_BYTES (VNET_STOP - VNET_START) 164 165 static MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); 166 167 /* 168 * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of 169 * global variables across all loaded modules. As this actually sizes an 170 * array declared as a virtualized global variable in the kernel itself, and 171 * we want the virtualized global variable space to be page-sized, we may 172 * have more space than that in practice. 173 */ 174 #define VNET_MODMIN (8 * PAGE_SIZE) 175 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) 176 177 /* 178 * Space to store virtualized global variables from loadable kernel modules, 179 * and the free list to manage it. 180 */ 181 VNET_DEFINE_STATIC(char, modspace[VNET_MODMIN] __aligned(__alignof(void *))); 182 183 /* 184 * Global lists of subsystem constructor and destructors for vnets. They are 185 * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are 186 * protected by the vnet_sysinit_sxlock global lock. 187 */ 188 static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = 189 TAILQ_HEAD_INITIALIZER(vnet_constructors); 190 static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = 191 TAILQ_HEAD_INITIALIZER(vnet_destructors); 192 193 struct sx vnet_sysinit_sxlock; 194 195 #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); 196 #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); 197 #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); 198 #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); 199 200 struct vnet_data_free { 201 uintptr_t vnd_start; 202 int vnd_len; 203 TAILQ_ENTRY(vnet_data_free) vnd_link; 204 }; 205 206 static MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", 207 "VNET resource accounting"); 208 static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = 209 TAILQ_HEAD_INITIALIZER(vnet_data_free_head); 210 static struct sx vnet_data_free_lock; 211 212 SDT_PROVIDER_DEFINE(vnet); 213 SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int"); 214 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int", 215 "struct vnet *"); 216 SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return, 217 "int", "struct vnet *"); 218 SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry, 219 "int", "struct vnet *"); 220 SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return, 221 "int"); 222 223 #ifdef DDB 224 static void db_show_vnet_print_vs(struct vnet_sysinit *, int); 225 #endif 226 227 /* 228 * Allocate a virtual network stack. 229 */ 230 struct vnet * 231 vnet_alloc(void) 232 { 233 struct vnet *vnet; 234 235 SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__); 236 vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); 237 vnet->vnet_magic_n = VNET_MAGIC_N; 238 SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet); 239 240 /* 241 * Allocate storage for virtualized global variables and copy in 242 * initial values form our 'master' copy. 243 */ 244 vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); 245 memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); 246 247 /* 248 * All use of vnet-specific data will immediately subtract VNET_START 249 * from the base memory pointer, so pre-calculate that now to avoid 250 * it on each use. 251 */ 252 vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; 253 254 /* Initialize / attach vnet module instances. */ 255 CURVNET_SET_QUIET(vnet); 256 vnet_sysinit(); 257 CURVNET_RESTORE(); 258 259 VNET_LIST_WLOCK(); 260 LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); 261 VNET_LIST_WUNLOCK(); 262 263 SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet); 264 return (vnet); 265 } 266 267 /* 268 * Destroy a virtual network stack. 269 */ 270 void 271 vnet_destroy(struct vnet *vnet) 272 { 273 274 SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet); 275 KASSERT(vnet->vnet_sockcnt == 0, 276 ("%s: vnet still has sockets", __func__)); 277 278 VNET_LIST_WLOCK(); 279 LIST_REMOVE(vnet, vnet_le); 280 VNET_LIST_WUNLOCK(); 281 282 CURVNET_SET_QUIET(vnet); 283 vnet_sysuninit(); 284 CURVNET_RESTORE(); 285 286 /* 287 * Release storage for the virtual network stack instance. 288 */ 289 free(vnet->vnet_data_mem, M_VNET_DATA); 290 vnet->vnet_data_mem = NULL; 291 vnet->vnet_data_base = 0; 292 vnet->vnet_magic_n = 0xdeadbeef; 293 free(vnet, M_VNET); 294 SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__); 295 } 296 297 /* 298 * Boot time initialization and allocation of virtual network stacks. 299 */ 300 static void 301 vnet_init_prelink(void *arg __unused) 302 { 303 304 rw_init(&vnet_rwlock, "vnet_rwlock"); 305 sx_init(&vnet_sxlock, "vnet_sxlock"); 306 sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); 307 LIST_INIT(&vnet_head); 308 } 309 SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, 310 vnet_init_prelink, NULL); 311 312 static void 313 vnet0_init(void *arg __unused) 314 { 315 316 if (bootverbose) 317 printf("VIMAGE (virtualized network stack) enabled\n"); 318 319 /* 320 * We MUST clear curvnet in vi_init_done() before going SMP, 321 * otherwise CURVNET_SET() macros would scream about unnecessary 322 * curvnet recursions. 323 */ 324 curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); 325 } 326 SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); 327 328 static void 329 vnet_init_done(void *unused __unused) 330 { 331 332 curvnet = NULL; 333 } 334 SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, vnet_init_done, 335 NULL); 336 337 /* 338 * Once on boot, initialize the modspace freelist to entirely cover modspace. 339 */ 340 static void 341 vnet_data_startup(void *dummy __unused) 342 { 343 struct vnet_data_free *df; 344 345 df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 346 df->vnd_start = (uintptr_t)&VNET_NAME(modspace); 347 df->vnd_len = VNET_MODMIN; 348 TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); 349 sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); 350 } 351 SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, NULL); 352 353 static void 354 vnet_sysuninit_shutdown(void *unused __unused) 355 { 356 357 /* Signal that VNET is being shutdown. */ 358 curvnet->vnet_shutdown = 1; 359 } 360 VNET_SYSUNINIT(vnet_sysuninit_shutdown, SI_SUB_VNET_DONE, SI_ORDER_FIRST, 361 vnet_sysuninit_shutdown, NULL); 362 363 /* 364 * When a module is loaded and requires storage for a virtualized global 365 * variable, allocate space from the modspace free list. This interface 366 * should be used only by the kernel linker. 367 */ 368 void * 369 vnet_data_alloc(int size) 370 { 371 struct vnet_data_free *df; 372 void *s; 373 374 s = NULL; 375 size = roundup2(size, sizeof(void *)); 376 sx_xlock(&vnet_data_free_lock); 377 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 378 if (df->vnd_len < size) 379 continue; 380 if (df->vnd_len == size) { 381 s = (void *)df->vnd_start; 382 TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); 383 free(df, M_VNET_DATA_FREE); 384 break; 385 } 386 s = (void *)df->vnd_start; 387 df->vnd_len -= size; 388 df->vnd_start = df->vnd_start + size; 389 break; 390 } 391 sx_xunlock(&vnet_data_free_lock); 392 393 return (s); 394 } 395 396 /* 397 * Free space for a virtualized global variable on module unload. 398 */ 399 void 400 vnet_data_free(void *start_arg, int size) 401 { 402 struct vnet_data_free *df; 403 struct vnet_data_free *dn; 404 uintptr_t start; 405 uintptr_t end; 406 407 size = roundup2(size, sizeof(void *)); 408 start = (uintptr_t)start_arg; 409 end = start + size; 410 /* 411 * Free a region of space and merge it with as many neighbors as 412 * possible. Keeping the list sorted simplifies this operation. 413 */ 414 sx_xlock(&vnet_data_free_lock); 415 TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { 416 if (df->vnd_start > end) 417 break; 418 /* 419 * If we expand at the end of an entry we may have to merge 420 * it with the one following it as well. 421 */ 422 if (df->vnd_start + df->vnd_len == start) { 423 df->vnd_len += size; 424 dn = TAILQ_NEXT(df, vnd_link); 425 if (df->vnd_start + df->vnd_len == dn->vnd_start) { 426 df->vnd_len += dn->vnd_len; 427 TAILQ_REMOVE(&vnet_data_free_head, dn, 428 vnd_link); 429 free(dn, M_VNET_DATA_FREE); 430 } 431 sx_xunlock(&vnet_data_free_lock); 432 return; 433 } 434 if (df->vnd_start == end) { 435 df->vnd_start = start; 436 df->vnd_len += size; 437 sx_xunlock(&vnet_data_free_lock); 438 return; 439 } 440 } 441 dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); 442 dn->vnd_start = start; 443 dn->vnd_len = size; 444 if (df) 445 TAILQ_INSERT_BEFORE(df, dn, vnd_link); 446 else 447 TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); 448 sx_xunlock(&vnet_data_free_lock); 449 } 450 451 /* 452 * When a new virtualized global variable has been allocated, propagate its 453 * initial value to each already-allocated virtual network stack instance. 454 */ 455 void 456 vnet_data_copy(void *start, int size) 457 { 458 struct vnet *vnet; 459 460 VNET_LIST_RLOCK(); 461 LIST_FOREACH(vnet, &vnet_head, vnet_le) 462 memcpy((void *)((uintptr_t)vnet->vnet_data_base + 463 (uintptr_t)start), start, size); 464 VNET_LIST_RUNLOCK(); 465 } 466 467 /* 468 * Support for special SYSINIT handlers registered via VNET_SYSINIT() 469 * and VNET_SYSUNINIT(). 470 */ 471 void 472 vnet_register_sysinit(void *arg) 473 { 474 struct vnet_sysinit *vs, *vs2; 475 struct vnet *vnet; 476 477 vs = arg; 478 KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); 479 480 /* Add the constructor to the global list of vnet constructors. */ 481 VNET_SYSINIT_WLOCK(); 482 TAILQ_FOREACH(vs2, &vnet_constructors, link) { 483 if (vs2->subsystem > vs->subsystem) 484 break; 485 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 486 break; 487 } 488 if (vs2 != NULL) 489 TAILQ_INSERT_BEFORE(vs2, vs, link); 490 else 491 TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); 492 493 /* 494 * Invoke the constructor on all the existing vnets when it is 495 * registered. 496 */ 497 VNET_FOREACH(vnet) { 498 CURVNET_SET_QUIET(vnet); 499 vs->func(vs->arg); 500 CURVNET_RESTORE(); 501 } 502 VNET_SYSINIT_WUNLOCK(); 503 } 504 505 void 506 vnet_deregister_sysinit(void *arg) 507 { 508 struct vnet_sysinit *vs; 509 510 vs = arg; 511 512 /* Remove the constructor from the global list of vnet constructors. */ 513 VNET_SYSINIT_WLOCK(); 514 TAILQ_REMOVE(&vnet_constructors, vs, link); 515 VNET_SYSINIT_WUNLOCK(); 516 } 517 518 void 519 vnet_register_sysuninit(void *arg) 520 { 521 struct vnet_sysinit *vs, *vs2; 522 523 vs = arg; 524 525 /* Add the destructor to the global list of vnet destructors. */ 526 VNET_SYSINIT_WLOCK(); 527 TAILQ_FOREACH(vs2, &vnet_destructors, link) { 528 if (vs2->subsystem > vs->subsystem) 529 break; 530 if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) 531 break; 532 } 533 if (vs2 != NULL) 534 TAILQ_INSERT_BEFORE(vs2, vs, link); 535 else 536 TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); 537 VNET_SYSINIT_WUNLOCK(); 538 } 539 540 void 541 vnet_deregister_sysuninit(void *arg) 542 { 543 struct vnet_sysinit *vs; 544 struct vnet *vnet; 545 546 vs = arg; 547 548 /* 549 * Invoke the destructor on all the existing vnets when it is 550 * deregistered. 551 */ 552 VNET_SYSINIT_WLOCK(); 553 VNET_FOREACH(vnet) { 554 CURVNET_SET_QUIET(vnet); 555 vs->func(vs->arg); 556 CURVNET_RESTORE(); 557 } 558 559 /* Remove the destructor from the global list of vnet destructors. */ 560 TAILQ_REMOVE(&vnet_destructors, vs, link); 561 VNET_SYSINIT_WUNLOCK(); 562 } 563 564 /* 565 * Invoke all registered vnet constructors on the current vnet. Used during 566 * vnet construction. The caller is responsible for ensuring the new vnet is 567 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 568 */ 569 void 570 vnet_sysinit(void) 571 { 572 struct vnet_sysinit *vs; 573 574 VNET_SYSINIT_RLOCK(); 575 TAILQ_FOREACH(vs, &vnet_constructors, link) 576 vs->func(vs->arg); 577 VNET_SYSINIT_RUNLOCK(); 578 } 579 580 /* 581 * Invoke all registered vnet destructors on the current vnet. Used during 582 * vnet destruction. The caller is responsible for ensuring the dying vnet 583 * the current vnet and that the vnet_sysinit_sxlock lock is locked. 584 */ 585 void 586 vnet_sysuninit(void) 587 { 588 struct vnet_sysinit *vs; 589 590 VNET_SYSINIT_RLOCK(); 591 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 592 link) 593 vs->func(vs->arg); 594 VNET_SYSINIT_RUNLOCK(); 595 } 596 597 /* 598 * EVENTHANDLER(9) extensions. 599 */ 600 /* 601 * Invoke the eventhandler function originally registered with the possibly 602 * registered argument for all virtual network stack instances. 603 * 604 * This iterator can only be used for eventhandlers that do not take any 605 * additional arguments, as we do ignore the variadic arguments from the 606 * EVENTHANDLER_INVOKE() call. 607 */ 608 void 609 vnet_global_eventhandler_iterator_func(void *arg, ...) 610 { 611 VNET_ITERATOR_DECL(vnet_iter); 612 struct eventhandler_entry_vimage *v_ee; 613 614 /* 615 * There is a bug here in that we should actually cast things to 616 * (struct eventhandler_entry_ ## name *) but that's not easily 617 * possible in here so just re-using the variadic version we 618 * defined for the generic vimage case. 619 */ 620 v_ee = arg; 621 VNET_LIST_RLOCK(); 622 VNET_FOREACH(vnet_iter) { 623 CURVNET_SET(vnet_iter); 624 ((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg); 625 CURVNET_RESTORE(); 626 } 627 VNET_LIST_RUNLOCK(); 628 } 629 630 #ifdef VNET_DEBUG 631 struct vnet_recursion { 632 SLIST_ENTRY(vnet_recursion) vnr_le; 633 const char *prev_fn; 634 const char *where_fn; 635 int where_line; 636 struct vnet *old_vnet; 637 struct vnet *new_vnet; 638 }; 639 640 static SLIST_HEAD(, vnet_recursion) vnet_recursions = 641 SLIST_HEAD_INITIALIZER(vnet_recursions); 642 643 static void 644 vnet_print_recursion(struct vnet_recursion *vnr, int brief) 645 { 646 647 if (!brief) 648 printf("CURVNET_SET() recursion in "); 649 printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line, 650 vnr->prev_fn); 651 if (brief) 652 printf(", "); 653 else 654 printf("\n "); 655 printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet); 656 } 657 658 void 659 vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line) 660 { 661 struct vnet_recursion *vnr; 662 663 /* Skip already logged recursion events. */ 664 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 665 if (vnr->prev_fn == old_fn && 666 vnr->where_fn == curthread->td_vnet_lpush && 667 vnr->where_line == line && 668 (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet)) 669 return; 670 671 vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO); 672 if (vnr == NULL) 673 panic("%s: malloc failed", __func__); 674 vnr->prev_fn = old_fn; 675 vnr->where_fn = curthread->td_vnet_lpush; 676 vnr->where_line = line; 677 vnr->old_vnet = old_vnet; 678 vnr->new_vnet = curvnet; 679 680 SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le); 681 682 vnet_print_recursion(vnr, 0); 683 #ifdef KDB 684 kdb_backtrace(); 685 #endif 686 } 687 #endif /* VNET_DEBUG */ 688 689 /* 690 * DDB(4). 691 */ 692 #ifdef DDB 693 static void 694 db_vnet_print(struct vnet *vnet) 695 { 696 697 db_printf("vnet = %p\n", vnet); 698 db_printf(" vnet_magic_n = %#08x (%s, orig %#08x)\n", 699 vnet->vnet_magic_n, 700 (vnet->vnet_magic_n == VNET_MAGIC_N) ? 701 "ok" : "mismatch", VNET_MAGIC_N); 702 db_printf(" vnet_ifcnt = %u\n", vnet->vnet_ifcnt); 703 db_printf(" vnet_sockcnt = %u\n", vnet->vnet_sockcnt); 704 db_printf(" vnet_data_mem = %p\n", vnet->vnet_data_mem); 705 db_printf(" vnet_data_base = %#jx\n", 706 (uintmax_t)vnet->vnet_data_base); 707 db_printf(" vnet_shutdown = %#08x\n", vnet->vnet_shutdown); 708 db_printf("\n"); 709 } 710 711 DB_SHOW_ALL_COMMAND(vnets, db_show_all_vnets) 712 { 713 VNET_ITERATOR_DECL(vnet_iter); 714 715 VNET_FOREACH(vnet_iter) { 716 db_vnet_print(vnet_iter); 717 if (db_pager_quit) 718 break; 719 } 720 } 721 722 DB_SHOW_COMMAND(vnet, db_show_vnet) 723 { 724 725 if (!have_addr) { 726 db_printf("usage: show vnet <struct vnet *>\n"); 727 return; 728 } 729 730 db_vnet_print((struct vnet *)addr); 731 } 732 733 static void 734 db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb) 735 { 736 const char *vsname, *funcname; 737 c_db_sym_t sym; 738 db_expr_t offset; 739 740 #define xprint(...) \ 741 if (ddb) \ 742 db_printf(__VA_ARGS__); \ 743 else \ 744 printf(__VA_ARGS__) 745 746 if (vs == NULL) { 747 xprint("%s: no vnet_sysinit * given\n", __func__); 748 return; 749 } 750 751 sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset); 752 db_symbol_values(sym, &vsname, NULL); 753 sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset); 754 db_symbol_values(sym, &funcname, NULL); 755 xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs); 756 xprint(" %#08x %#08x\n", vs->subsystem, vs->order); 757 xprint(" %p(%s)(%p)\n", 758 vs->func, (funcname != NULL) ? funcname : "", vs->arg); 759 #undef xprint 760 } 761 762 DB_SHOW_COMMAND(vnet_sysinit, db_show_vnet_sysinit) 763 { 764 struct vnet_sysinit *vs; 765 766 db_printf("VNET_SYSINIT vs Name(Ptr)\n"); 767 db_printf(" Subsystem Order\n"); 768 db_printf(" Function(Name)(Arg)\n"); 769 TAILQ_FOREACH(vs, &vnet_constructors, link) { 770 db_show_vnet_print_vs(vs, 1); 771 if (db_pager_quit) 772 break; 773 } 774 } 775 776 DB_SHOW_COMMAND(vnet_sysuninit, db_show_vnet_sysuninit) 777 { 778 struct vnet_sysinit *vs; 779 780 db_printf("VNET_SYSUNINIT vs Name(Ptr)\n"); 781 db_printf(" Subsystem Order\n"); 782 db_printf(" Function(Name)(Arg)\n"); 783 TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, 784 link) { 785 db_show_vnet_print_vs(vs, 1); 786 if (db_pager_quit) 787 break; 788 } 789 } 790 791 #ifdef VNET_DEBUG 792 DB_SHOW_COMMAND(vnetrcrs, db_show_vnetrcrs) 793 { 794 struct vnet_recursion *vnr; 795 796 SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) 797 vnet_print_recursion(vnr, 1); 798 } 799 #endif 800 #endif /* DDB */ 801