1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_sctp.h" 33 #include <sys/param.h> 34 #include <sys/domain.h> 35 #include <sys/kernel.h> 36 #include <sys/jail.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/priv.h> 40 #include <sys/proc.h> 41 #include <sys/protosw.h> 42 #include <sys/signalvar.h> 43 #include <sys/socket.h> 44 #include <sys/socketvar.h> 45 #include <sys/sysctl.h> 46 #include <sys/systm.h> 47 48 #include <net/if.h> 49 #include <net/netisr.h> 50 #include <net/raw_cb.h> 51 #include <net/route.h> 52 53 #include <netinet/in.h> 54 55 #ifdef SCTP 56 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 57 #endif /* SCTP */ 58 59 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 60 61 /* NB: these are not modified */ 62 static struct sockaddr route_dst = { 2, PF_ROUTE, }; 63 static struct sockaddr route_src = { 2, PF_ROUTE, }; 64 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 65 66 static struct { 67 int ip_count; /* attached w/ AF_INET */ 68 int ip6_count; /* attached w/ AF_INET6 */ 69 int ipx_count; /* attached w/ AF_IPX */ 70 int any_count; /* total attached */ 71 } route_cb; 72 73 struct mtx rtsock_mtx; 74 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 75 76 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 77 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 78 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 79 80 static struct ifqueue rtsintrq; 81 82 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 83 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW, 84 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length"); 85 86 struct walkarg { 87 int w_tmemsize; 88 int w_op, w_arg; 89 caddr_t w_tmem; 90 struct sysctl_req *w_req; 91 }; 92 93 static void rts_input(struct mbuf *m); 94 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 95 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 96 caddr_t cp, struct walkarg *w); 97 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 98 struct rt_addrinfo *rtinfo); 99 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 100 static int sysctl_iflist(int af, struct walkarg *w); 101 static int sysctl_ifmalist(int af, struct walkarg *w); 102 static int route_output(struct mbuf *m, struct socket *so); 103 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 104 struct rt_metrics_lite *out); 105 static void rt_getmetrics(const struct rt_metrics_lite *in, 106 struct rt_metrics *out); 107 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 108 109 static void 110 rts_init(void) 111 { 112 int tmp; 113 114 rtsintrq.ifq_maxlen = 256; 115 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 116 rtsintrq.ifq_maxlen = tmp; 117 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF); 118 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE); 119 } 120 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0) 121 122 static void 123 rts_input(struct mbuf *m) 124 { 125 struct sockproto route_proto; 126 unsigned short *family; 127 struct m_tag *tag; 128 129 route_proto.sp_family = PF_ROUTE; 130 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 131 if (tag != NULL) { 132 family = (unsigned short *)(tag + 1); 133 route_proto.sp_protocol = *family; 134 m_tag_delete(m, tag); 135 } else 136 route_proto.sp_protocol = 0; 137 138 raw_input(m, &route_proto, &route_src, &route_dst); 139 } 140 141 /* 142 * It really doesn't make any sense at all for this code to share much 143 * with raw_usrreq.c, since its functionality is so restricted. XXX 144 */ 145 static void 146 rts_abort(struct socket *so) 147 { 148 149 raw_usrreqs.pru_abort(so); 150 } 151 152 static void 153 rts_close(struct socket *so) 154 { 155 156 raw_usrreqs.pru_close(so); 157 } 158 159 /* pru_accept is EOPNOTSUPP */ 160 161 static int 162 rts_attach(struct socket *so, int proto, struct thread *td) 163 { 164 struct rawcb *rp; 165 int s, error; 166 167 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 168 169 /* XXX */ 170 MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 171 if (rp == NULL) 172 return ENOBUFS; 173 174 /* 175 * The splnet() is necessary to block protocols from sending 176 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 177 * this PCB is extant but incompletely initialized. 178 * Probably we should try to do more of this work beforehand and 179 * eliminate the spl. 180 */ 181 s = splnet(); 182 so->so_pcb = (caddr_t)rp; 183 error = raw_attach(so, proto); 184 rp = sotorawcb(so); 185 if (error) { 186 splx(s); 187 so->so_pcb = NULL; 188 free(rp, M_PCB); 189 return error; 190 } 191 RTSOCK_LOCK(); 192 switch(rp->rcb_proto.sp_protocol) { 193 case AF_INET: 194 route_cb.ip_count++; 195 break; 196 case AF_INET6: 197 route_cb.ip6_count++; 198 break; 199 case AF_IPX: 200 route_cb.ipx_count++; 201 break; 202 } 203 rp->rcb_faddr = &route_src; 204 route_cb.any_count++; 205 RTSOCK_UNLOCK(); 206 soisconnected(so); 207 so->so_options |= SO_USELOOPBACK; 208 splx(s); 209 return 0; 210 } 211 212 static int 213 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 214 { 215 216 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 217 } 218 219 static int 220 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 221 { 222 223 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 224 } 225 226 /* pru_connect2 is EOPNOTSUPP */ 227 /* pru_control is EOPNOTSUPP */ 228 229 static void 230 rts_detach(struct socket *so) 231 { 232 struct rawcb *rp = sotorawcb(so); 233 234 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 235 236 RTSOCK_LOCK(); 237 switch(rp->rcb_proto.sp_protocol) { 238 case AF_INET: 239 route_cb.ip_count--; 240 break; 241 case AF_INET6: 242 route_cb.ip6_count--; 243 break; 244 case AF_IPX: 245 route_cb.ipx_count--; 246 break; 247 } 248 route_cb.any_count--; 249 RTSOCK_UNLOCK(); 250 raw_usrreqs.pru_detach(so); 251 } 252 253 static int 254 rts_disconnect(struct socket *so) 255 { 256 257 return (raw_usrreqs.pru_disconnect(so)); 258 } 259 260 /* pru_listen is EOPNOTSUPP */ 261 262 static int 263 rts_peeraddr(struct socket *so, struct sockaddr **nam) 264 { 265 266 return (raw_usrreqs.pru_peeraddr(so, nam)); 267 } 268 269 /* pru_rcvd is EOPNOTSUPP */ 270 /* pru_rcvoob is EOPNOTSUPP */ 271 272 static int 273 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 274 struct mbuf *control, struct thread *td) 275 { 276 277 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 278 } 279 280 /* pru_sense is null */ 281 282 static int 283 rts_shutdown(struct socket *so) 284 { 285 286 return (raw_usrreqs.pru_shutdown(so)); 287 } 288 289 static int 290 rts_sockaddr(struct socket *so, struct sockaddr **nam) 291 { 292 293 return (raw_usrreqs.pru_sockaddr(so, nam)); 294 } 295 296 static struct pr_usrreqs route_usrreqs = { 297 .pru_abort = rts_abort, 298 .pru_attach = rts_attach, 299 .pru_bind = rts_bind, 300 .pru_connect = rts_connect, 301 .pru_detach = rts_detach, 302 .pru_disconnect = rts_disconnect, 303 .pru_peeraddr = rts_peeraddr, 304 .pru_send = rts_send, 305 .pru_shutdown = rts_shutdown, 306 .pru_sockaddr = rts_sockaddr, 307 .pru_close = rts_close, 308 }; 309 310 /*ARGSUSED*/ 311 static int 312 route_output(struct mbuf *m, struct socket *so) 313 { 314 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 315 struct rt_msghdr *rtm = NULL; 316 struct rtentry *rt = NULL; 317 struct radix_node_head *rnh; 318 struct rt_addrinfo info; 319 int len, error = 0; 320 struct ifnet *ifp = NULL; 321 struct ifaddr *ifa = NULL; 322 struct sockaddr_in jail; 323 324 #define senderr(e) { error = e; goto flush;} 325 if (m == NULL || ((m->m_len < sizeof(long)) && 326 (m = m_pullup(m, sizeof(long))) == NULL)) 327 return (ENOBUFS); 328 if ((m->m_flags & M_PKTHDR) == 0) 329 panic("route_output"); 330 len = m->m_pkthdr.len; 331 if (len < sizeof(*rtm) || 332 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 333 info.rti_info[RTAX_DST] = NULL; 334 senderr(EINVAL); 335 } 336 R_Malloc(rtm, struct rt_msghdr *, len); 337 if (rtm == NULL) { 338 info.rti_info[RTAX_DST] = NULL; 339 senderr(ENOBUFS); 340 } 341 m_copydata(m, 0, len, (caddr_t)rtm); 342 if (rtm->rtm_version != RTM_VERSION) { 343 info.rti_info[RTAX_DST] = NULL; 344 senderr(EPROTONOSUPPORT); 345 } 346 rtm->rtm_pid = curproc->p_pid; 347 bzero(&info, sizeof(info)); 348 info.rti_addrs = rtm->rtm_addrs; 349 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 350 info.rti_info[RTAX_DST] = NULL; 351 senderr(EINVAL); 352 } 353 info.rti_flags = rtm->rtm_flags; 354 if (info.rti_info[RTAX_DST] == NULL || 355 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 356 (info.rti_info[RTAX_GATEWAY] != NULL && 357 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 358 senderr(EINVAL); 359 if (info.rti_info[RTAX_GENMASK]) { 360 struct radix_node *t; 361 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1); 362 if (t != NULL && 363 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1, 364 (char *)(void *)t->rn_key + 1, 365 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0) 366 info.rti_info[RTAX_GENMASK] = 367 (struct sockaddr *)t->rn_key; 368 else 369 senderr(ENOBUFS); 370 } 371 372 /* 373 * Verify that the caller has the appropriate privilege; RTM_GET 374 * is the only operation the non-superuser is allowed. 375 */ 376 if (rtm->rtm_type != RTM_GET) { 377 error = priv_check(curthread, PRIV_NET_ROUTE); 378 if (error) 379 senderr(error); 380 } 381 382 switch (rtm->rtm_type) { 383 struct rtentry *saved_nrt; 384 385 case RTM_ADD: 386 if (info.rti_info[RTAX_GATEWAY] == NULL) 387 senderr(EINVAL); 388 saved_nrt = NULL; 389 error = rtrequest1(RTM_ADD, &info, &saved_nrt); 390 if (error == 0 && saved_nrt) { 391 RT_LOCK(saved_nrt); 392 rt_setmetrics(rtm->rtm_inits, 393 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 394 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 395 RT_REMREF(saved_nrt); 396 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; 397 RT_UNLOCK(saved_nrt); 398 } 399 break; 400 401 case RTM_DELETE: 402 saved_nrt = NULL; 403 error = rtrequest1(RTM_DELETE, &info, &saved_nrt); 404 if (error == 0) { 405 RT_LOCK(saved_nrt); 406 rt = saved_nrt; 407 goto report; 408 } 409 break; 410 411 case RTM_GET: 412 case RTM_CHANGE: 413 case RTM_LOCK: 414 rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family]; 415 if (rnh == NULL) 416 senderr(EAFNOSUPPORT); 417 RADIX_NODE_HEAD_LOCK(rnh); 418 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 419 info.rti_info[RTAX_NETMASK], rnh); 420 if (rt == NULL) { /* XXX looks bogus */ 421 RADIX_NODE_HEAD_UNLOCK(rnh); 422 senderr(ESRCH); 423 } 424 RT_LOCK(rt); 425 RT_ADDREF(rt); 426 RADIX_NODE_HEAD_UNLOCK(rnh); 427 428 /* 429 * Fix for PR: 82974 430 * 431 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 432 * returns a perfect match in case a netmask is 433 * specified. For host routes only a longest prefix 434 * match is returned so it is necessary to compare the 435 * existence of the netmask. If both have a netmask 436 * rnh_lookup() did a perfect match and if none of them 437 * have a netmask both are host routes which is also a 438 * perfect match. 439 */ 440 441 if (rtm->rtm_type != RTM_GET && 442 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 443 RT_UNLOCK(rt); 444 senderr(ESRCH); 445 } 446 447 switch(rtm->rtm_type) { 448 449 case RTM_GET: 450 report: 451 RT_LOCK_ASSERT(rt); 452 info.rti_info[RTAX_DST] = rt_key(rt); 453 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 454 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 455 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 456 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 457 ifp = rt->rt_ifp; 458 if (ifp) { 459 info.rti_info[RTAX_IFP] = 460 ifp->if_addr->ifa_addr; 461 if (jailed(so->so_cred)) { 462 bzero(&jail, sizeof(jail)); 463 jail.sin_family = PF_INET; 464 jail.sin_len = sizeof(jail); 465 jail.sin_addr.s_addr = 466 htonl(prison_getip(so->so_cred)); 467 info.rti_info[RTAX_IFA] = 468 (struct sockaddr *)&jail; 469 } else 470 info.rti_info[RTAX_IFA] = 471 rt->rt_ifa->ifa_addr; 472 if (ifp->if_flags & IFF_POINTOPOINT) 473 info.rti_info[RTAX_BRD] = 474 rt->rt_ifa->ifa_dstaddr; 475 rtm->rtm_index = ifp->if_index; 476 } else { 477 info.rti_info[RTAX_IFP] = NULL; 478 info.rti_info[RTAX_IFA] = NULL; 479 } 480 } else if ((ifp = rt->rt_ifp) != NULL) { 481 rtm->rtm_index = ifp->if_index; 482 } 483 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 484 if (len > rtm->rtm_msglen) { 485 struct rt_msghdr *new_rtm; 486 R_Malloc(new_rtm, struct rt_msghdr *, len); 487 if (new_rtm == NULL) { 488 RT_UNLOCK(rt); 489 senderr(ENOBUFS); 490 } 491 bcopy(rtm, new_rtm, rtm->rtm_msglen); 492 Free(rtm); rtm = new_rtm; 493 } 494 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 495 rtm->rtm_flags = rt->rt_flags; 496 rtm->rtm_use = 0; 497 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 498 rtm->rtm_addrs = info.rti_addrs; 499 break; 500 501 case RTM_CHANGE: 502 /* 503 * New gateway could require new ifaddr, ifp; 504 * flags may also be different; ifp may be specified 505 * by ll sockaddr when protocol address is ambiguous 506 */ 507 if (((rt->rt_flags & RTF_GATEWAY) && 508 info.rti_info[RTAX_GATEWAY] != NULL) || 509 info.rti_info[RTAX_IFP] != NULL || 510 (info.rti_info[RTAX_IFA] != NULL && 511 !sa_equal(info.rti_info[RTAX_IFA], 512 rt->rt_ifa->ifa_addr))) { 513 RT_UNLOCK(rt); 514 if ((error = rt_getifa(&info)) != 0) 515 senderr(error); 516 RT_LOCK(rt); 517 } 518 if (info.rti_info[RTAX_GATEWAY] != NULL && 519 (error = rt_setgate(rt, rt_key(rt), 520 info.rti_info[RTAX_GATEWAY])) != 0) { 521 RT_UNLOCK(rt); 522 senderr(error); 523 } 524 if ((ifa = info.rti_ifa) != NULL) { 525 struct ifaddr *oifa = rt->rt_ifa; 526 if (oifa != ifa) { 527 if (oifa) { 528 if (oifa->ifa_rtrequest) 529 oifa->ifa_rtrequest( 530 RTM_DELETE, rt, 531 &info); 532 IFAFREE(oifa); 533 } 534 IFAREF(ifa); 535 rt->rt_ifa = ifa; 536 rt->rt_ifp = info.rti_ifp; 537 } 538 } 539 /* Allow some flags to be toggled on change. */ 540 if (rtm->rtm_fmask & RTF_FMASK) 541 rt->rt_flags = (rt->rt_flags & 542 ~rtm->rtm_fmask) | 543 (rtm->rtm_flags & rtm->rtm_fmask); 544 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 545 &rt->rt_rmx); 546 rtm->rtm_index = rt->rt_ifp->if_index; 547 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 548 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 549 if (info.rti_info[RTAX_GENMASK]) 550 rt->rt_genmask = info.rti_info[RTAX_GENMASK]; 551 /* FALLTHROUGH */ 552 case RTM_LOCK: 553 /* We don't support locks anymore */ 554 break; 555 } 556 RT_UNLOCK(rt); 557 break; 558 559 default: 560 senderr(EOPNOTSUPP); 561 } 562 563 flush: 564 if (rtm) { 565 if (error) 566 rtm->rtm_errno = error; 567 else 568 rtm->rtm_flags |= RTF_DONE; 569 } 570 if (rt) /* XXX can this be true? */ 571 RTFREE(rt); 572 { 573 struct rawcb *rp = NULL; 574 /* 575 * Check to see if we don't want our own messages. 576 */ 577 if ((so->so_options & SO_USELOOPBACK) == 0) { 578 if (route_cb.any_count <= 1) { 579 if (rtm) 580 Free(rtm); 581 m_freem(m); 582 return (error); 583 } 584 /* There is another listener, so construct message */ 585 rp = sotorawcb(so); 586 } 587 if (rtm) { 588 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 589 if (m->m_pkthdr.len < rtm->rtm_msglen) { 590 m_freem(m); 591 m = NULL; 592 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 593 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 594 Free(rtm); 595 } 596 if (m) { 597 if (rp) { 598 /* 599 * XXX insure we don't get a copy by 600 * invalidating our protocol 601 */ 602 unsigned short family = rp->rcb_proto.sp_family; 603 rp->rcb_proto.sp_family = 0; 604 rt_dispatch(m, info.rti_info[RTAX_DST]); 605 rp->rcb_proto.sp_family = family; 606 } else 607 rt_dispatch(m, info.rti_info[RTAX_DST]); 608 } 609 } 610 return (error); 611 #undef sa_equal 612 } 613 614 static void 615 rt_setmetrics(u_long which, const struct rt_metrics *in, 616 struct rt_metrics_lite *out) 617 { 618 #define metric(f, e) if (which & (f)) out->e = in->e; 619 /* 620 * Only these are stored in the routing entry since introduction 621 * of tcp hostcache. The rest is ignored. 622 */ 623 metric(RTV_MTU, rmx_mtu); 624 /* Userland -> kernel timebase conversion. */ 625 if (which & RTV_EXPIRE) 626 out->rmx_expire = in->rmx_expire ? 627 in->rmx_expire - time_second + time_uptime : 0; 628 #undef metric 629 } 630 631 static void 632 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 633 { 634 #define metric(e) out->e = in->e; 635 bzero(out, sizeof(*out)); 636 metric(rmx_mtu); 637 /* Kernel -> userland timebase conversion. */ 638 out->rmx_expire = in->rmx_expire ? 639 in->rmx_expire - time_uptime + time_second : 0; 640 #undef metric 641 } 642 643 /* 644 * Extract the addresses of the passed sockaddrs. 645 * Do a little sanity checking so as to avoid bad memory references. 646 * This data is derived straight from userland. 647 */ 648 static int 649 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 650 { 651 struct sockaddr *sa; 652 int i; 653 654 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 655 if ((rtinfo->rti_addrs & (1 << i)) == 0) 656 continue; 657 sa = (struct sockaddr *)cp; 658 /* 659 * It won't fit. 660 */ 661 if (cp + sa->sa_len > cplim) 662 return (EINVAL); 663 /* 664 * there are no more.. quit now 665 * If there are more bits, they are in error. 666 * I've seen this. route(1) can evidently generate these. 667 * This causes kernel to core dump. 668 * for compatibility, If we see this, point to a safe address. 669 */ 670 if (sa->sa_len == 0) { 671 rtinfo->rti_info[i] = &sa_zero; 672 return (0); /* should be EINVAL but for compat */ 673 } 674 /* accept it */ 675 rtinfo->rti_info[i] = sa; 676 cp += SA_SIZE(sa); 677 } 678 return (0); 679 } 680 681 static struct mbuf * 682 rt_msg1(int type, struct rt_addrinfo *rtinfo) 683 { 684 struct rt_msghdr *rtm; 685 struct mbuf *m; 686 int i; 687 struct sockaddr *sa; 688 int len, dlen; 689 690 switch (type) { 691 692 case RTM_DELADDR: 693 case RTM_NEWADDR: 694 len = sizeof(struct ifa_msghdr); 695 break; 696 697 case RTM_DELMADDR: 698 case RTM_NEWMADDR: 699 len = sizeof(struct ifma_msghdr); 700 break; 701 702 case RTM_IFINFO: 703 len = sizeof(struct if_msghdr); 704 break; 705 706 case RTM_IFANNOUNCE: 707 case RTM_IEEE80211: 708 len = sizeof(struct if_announcemsghdr); 709 break; 710 711 default: 712 len = sizeof(struct rt_msghdr); 713 } 714 if (len > MCLBYTES) 715 panic("rt_msg1"); 716 m = m_gethdr(M_DONTWAIT, MT_DATA); 717 if (m && len > MHLEN) { 718 MCLGET(m, M_DONTWAIT); 719 if ((m->m_flags & M_EXT) == 0) { 720 m_free(m); 721 m = NULL; 722 } 723 } 724 if (m == NULL) 725 return (m); 726 m->m_pkthdr.len = m->m_len = len; 727 m->m_pkthdr.rcvif = NULL; 728 rtm = mtod(m, struct rt_msghdr *); 729 bzero((caddr_t)rtm, len); 730 for (i = 0; i < RTAX_MAX; i++) { 731 if ((sa = rtinfo->rti_info[i]) == NULL) 732 continue; 733 rtinfo->rti_addrs |= (1 << i); 734 dlen = SA_SIZE(sa); 735 m_copyback(m, len, dlen, (caddr_t)sa); 736 len += dlen; 737 } 738 if (m->m_pkthdr.len != len) { 739 m_freem(m); 740 return (NULL); 741 } 742 rtm->rtm_msglen = len; 743 rtm->rtm_version = RTM_VERSION; 744 rtm->rtm_type = type; 745 return (m); 746 } 747 748 static int 749 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 750 { 751 int i; 752 int len, dlen, second_time = 0; 753 caddr_t cp0; 754 755 rtinfo->rti_addrs = 0; 756 again: 757 switch (type) { 758 759 case RTM_DELADDR: 760 case RTM_NEWADDR: 761 len = sizeof(struct ifa_msghdr); 762 break; 763 764 case RTM_IFINFO: 765 len = sizeof(struct if_msghdr); 766 break; 767 768 case RTM_NEWMADDR: 769 len = sizeof(struct ifma_msghdr); 770 break; 771 772 default: 773 len = sizeof(struct rt_msghdr); 774 } 775 cp0 = cp; 776 if (cp0) 777 cp += len; 778 for (i = 0; i < RTAX_MAX; i++) { 779 struct sockaddr *sa; 780 781 if ((sa = rtinfo->rti_info[i]) == NULL) 782 continue; 783 rtinfo->rti_addrs |= (1 << i); 784 dlen = SA_SIZE(sa); 785 if (cp) { 786 bcopy((caddr_t)sa, cp, (unsigned)dlen); 787 cp += dlen; 788 } 789 len += dlen; 790 } 791 len = ALIGN(len); 792 if (cp == NULL && w != NULL && !second_time) { 793 struct walkarg *rw = w; 794 795 if (rw->w_req) { 796 if (rw->w_tmemsize < len) { 797 if (rw->w_tmem) 798 free(rw->w_tmem, M_RTABLE); 799 rw->w_tmem = (caddr_t) 800 malloc(len, M_RTABLE, M_NOWAIT); 801 if (rw->w_tmem) 802 rw->w_tmemsize = len; 803 } 804 if (rw->w_tmem) { 805 cp = rw->w_tmem; 806 second_time = 1; 807 goto again; 808 } 809 } 810 } 811 if (cp) { 812 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 813 814 rtm->rtm_version = RTM_VERSION; 815 rtm->rtm_type = type; 816 rtm->rtm_msglen = len; 817 } 818 return (len); 819 } 820 821 /* 822 * This routine is called to generate a message from the routing 823 * socket indicating that a redirect has occured, a routing lookup 824 * has failed, or that a protocol has detected timeouts to a particular 825 * destination. 826 */ 827 void 828 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 829 { 830 struct rt_msghdr *rtm; 831 struct mbuf *m; 832 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 833 834 if (route_cb.any_count == 0) 835 return; 836 m = rt_msg1(type, rtinfo); 837 if (m == NULL) 838 return; 839 rtm = mtod(m, struct rt_msghdr *); 840 rtm->rtm_flags = RTF_DONE | flags; 841 rtm->rtm_errno = error; 842 rtm->rtm_addrs = rtinfo->rti_addrs; 843 rt_dispatch(m, sa); 844 } 845 846 /* 847 * This routine is called to generate a message from the routing 848 * socket indicating that the status of a network interface has changed. 849 */ 850 void 851 rt_ifmsg(struct ifnet *ifp) 852 { 853 struct if_msghdr *ifm; 854 struct mbuf *m; 855 struct rt_addrinfo info; 856 857 if (route_cb.any_count == 0) 858 return; 859 bzero((caddr_t)&info, sizeof(info)); 860 m = rt_msg1(RTM_IFINFO, &info); 861 if (m == NULL) 862 return; 863 ifm = mtod(m, struct if_msghdr *); 864 ifm->ifm_index = ifp->if_index; 865 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 866 ifm->ifm_data = ifp->if_data; 867 ifm->ifm_addrs = 0; 868 rt_dispatch(m, NULL); 869 } 870 871 /* 872 * This is called to generate messages from the routing socket 873 * indicating a network interface has had addresses associated with it. 874 * if we ever reverse the logic and replace messages TO the routing 875 * socket indicate a request to configure interfaces, then it will 876 * be unnecessary as the routing socket will automatically generate 877 * copies of it. 878 */ 879 void 880 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 881 { 882 struct rt_addrinfo info; 883 struct sockaddr *sa = NULL; 884 int pass; 885 struct mbuf *m = NULL; 886 struct ifnet *ifp = ifa->ifa_ifp; 887 888 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 889 ("unexpected cmd %u", cmd)); 890 #ifdef SCTP 891 /* 892 * notify the SCTP stack 893 * this will only get called when an address is added/deleted 894 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 895 */ 896 sctp_addr_change(ifa, cmd); 897 #endif /* SCTP */ 898 if (route_cb.any_count == 0) 899 return; 900 for (pass = 1; pass < 3; pass++) { 901 bzero((caddr_t)&info, sizeof(info)); 902 if ((cmd == RTM_ADD && pass == 1) || 903 (cmd == RTM_DELETE && pass == 2)) { 904 struct ifa_msghdr *ifam; 905 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 906 907 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 908 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 909 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 910 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 911 if ((m = rt_msg1(ncmd, &info)) == NULL) 912 continue; 913 ifam = mtod(m, struct ifa_msghdr *); 914 ifam->ifam_index = ifp->if_index; 915 ifam->ifam_metric = ifa->ifa_metric; 916 ifam->ifam_flags = ifa->ifa_flags; 917 ifam->ifam_addrs = info.rti_addrs; 918 } 919 if ((cmd == RTM_ADD && pass == 2) || 920 (cmd == RTM_DELETE && pass == 1)) { 921 struct rt_msghdr *rtm; 922 923 if (rt == NULL) 924 continue; 925 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 926 info.rti_info[RTAX_DST] = sa = rt_key(rt); 927 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 928 if ((m = rt_msg1(cmd, &info)) == NULL) 929 continue; 930 rtm = mtod(m, struct rt_msghdr *); 931 rtm->rtm_index = ifp->if_index; 932 rtm->rtm_flags |= rt->rt_flags; 933 rtm->rtm_errno = error; 934 rtm->rtm_addrs = info.rti_addrs; 935 } 936 rt_dispatch(m, sa); 937 } 938 } 939 940 /* 941 * This is the analogue to the rt_newaddrmsg which performs the same 942 * function but for multicast group memberhips. This is easier since 943 * there is no route state to worry about. 944 */ 945 void 946 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 947 { 948 struct rt_addrinfo info; 949 struct mbuf *m = NULL; 950 struct ifnet *ifp = ifma->ifma_ifp; 951 struct ifma_msghdr *ifmam; 952 953 if (route_cb.any_count == 0) 954 return; 955 956 bzero((caddr_t)&info, sizeof(info)); 957 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 958 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 959 /* 960 * If a link-layer address is present, present it as a ``gateway'' 961 * (similarly to how ARP entries, e.g., are presented). 962 */ 963 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 964 m = rt_msg1(cmd, &info); 965 if (m == NULL) 966 return; 967 ifmam = mtod(m, struct ifma_msghdr *); 968 ifmam->ifmam_index = ifp->if_index; 969 ifmam->ifmam_addrs = info.rti_addrs; 970 rt_dispatch(m, ifma->ifma_addr); 971 } 972 973 static struct mbuf * 974 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 975 struct rt_addrinfo *info) 976 { 977 struct if_announcemsghdr *ifan; 978 struct mbuf *m; 979 980 if (route_cb.any_count == 0) 981 return NULL; 982 bzero((caddr_t)info, sizeof(*info)); 983 m = rt_msg1(type, info); 984 if (m != NULL) { 985 ifan = mtod(m, struct if_announcemsghdr *); 986 ifan->ifan_index = ifp->if_index; 987 strlcpy(ifan->ifan_name, ifp->if_xname, 988 sizeof(ifan->ifan_name)); 989 ifan->ifan_what = what; 990 } 991 return m; 992 } 993 994 /* 995 * This is called to generate routing socket messages indicating 996 * IEEE80211 wireless events. 997 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 998 */ 999 void 1000 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1001 { 1002 struct mbuf *m; 1003 struct rt_addrinfo info; 1004 1005 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1006 if (m != NULL) { 1007 /* 1008 * Append the ieee80211 data. Try to stick it in the 1009 * mbuf containing the ifannounce msg; otherwise allocate 1010 * a new mbuf and append. 1011 * 1012 * NB: we assume m is a single mbuf. 1013 */ 1014 if (data_len > M_TRAILINGSPACE(m)) { 1015 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1016 if (n == NULL) { 1017 m_freem(m); 1018 return; 1019 } 1020 bcopy(data, mtod(n, void *), data_len); 1021 n->m_len = data_len; 1022 m->m_next = n; 1023 } else if (data_len > 0) { 1024 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1025 m->m_len += data_len; 1026 } 1027 if (m->m_flags & M_PKTHDR) 1028 m->m_pkthdr.len += data_len; 1029 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1030 rt_dispatch(m, NULL); 1031 } 1032 } 1033 1034 /* 1035 * This is called to generate routing socket messages indicating 1036 * network interface arrival and departure. 1037 */ 1038 void 1039 rt_ifannouncemsg(struct ifnet *ifp, int what) 1040 { 1041 struct mbuf *m; 1042 struct rt_addrinfo info; 1043 1044 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1045 if (m != NULL) 1046 rt_dispatch(m, NULL); 1047 } 1048 1049 static void 1050 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 1051 { 1052 struct m_tag *tag; 1053 1054 /* 1055 * Preserve the family from the sockaddr, if any, in an m_tag for 1056 * use when injecting the mbuf into the routing socket buffer from 1057 * the netisr. 1058 */ 1059 if (sa != NULL) { 1060 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1061 M_NOWAIT); 1062 if (tag == NULL) { 1063 m_freem(m); 1064 return; 1065 } 1066 *(unsigned short *)(tag + 1) = sa->sa_family; 1067 m_tag_prepend(m, tag); 1068 } 1069 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1070 } 1071 1072 /* 1073 * This is used in dumping the kernel table via sysctl(). 1074 */ 1075 static int 1076 sysctl_dumpentry(struct radix_node *rn, void *vw) 1077 { 1078 struct walkarg *w = vw; 1079 struct rtentry *rt = (struct rtentry *)rn; 1080 int error = 0, size; 1081 struct rt_addrinfo info; 1082 1083 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1084 return 0; 1085 bzero((caddr_t)&info, sizeof(info)); 1086 info.rti_info[RTAX_DST] = rt_key(rt); 1087 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1088 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1089 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 1090 if (rt->rt_ifp) { 1091 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1092 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1093 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1094 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1095 } 1096 size = rt_msg2(RTM_GET, &info, NULL, w); 1097 if (w->w_req && w->w_tmem) { 1098 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1099 1100 rtm->rtm_flags = rt->rt_flags; 1101 rtm->rtm_use = rt->rt_rmx.rmx_pksent; 1102 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1103 rtm->rtm_index = rt->rt_ifp->if_index; 1104 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1105 rtm->rtm_addrs = info.rti_addrs; 1106 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1107 return (error); 1108 } 1109 return (error); 1110 } 1111 1112 static int 1113 sysctl_iflist(int af, struct walkarg *w) 1114 { 1115 struct ifnet *ifp; 1116 struct ifaddr *ifa; 1117 struct rt_addrinfo info; 1118 int len, error = 0; 1119 1120 bzero((caddr_t)&info, sizeof(info)); 1121 IFNET_RLOCK(); 1122 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1123 if (w->w_arg && w->w_arg != ifp->if_index) 1124 continue; 1125 ifa = ifp->if_addr; 1126 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1127 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1128 info.rti_info[RTAX_IFP] = NULL; 1129 if (w->w_req && w->w_tmem) { 1130 struct if_msghdr *ifm; 1131 1132 ifm = (struct if_msghdr *)w->w_tmem; 1133 ifm->ifm_index = ifp->if_index; 1134 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1135 ifm->ifm_data = ifp->if_data; 1136 ifm->ifm_addrs = info.rti_addrs; 1137 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); 1138 if (error) 1139 goto done; 1140 } 1141 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1142 if (af && af != ifa->ifa_addr->sa_family) 1143 continue; 1144 if (jailed(curthread->td_ucred) && 1145 prison_if(curthread->td_ucred, ifa->ifa_addr)) 1146 continue; 1147 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1148 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1149 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1150 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1151 if (w->w_req && w->w_tmem) { 1152 struct ifa_msghdr *ifam; 1153 1154 ifam = (struct ifa_msghdr *)w->w_tmem; 1155 ifam->ifam_index = ifa->ifa_ifp->if_index; 1156 ifam->ifam_flags = ifa->ifa_flags; 1157 ifam->ifam_metric = ifa->ifa_metric; 1158 ifam->ifam_addrs = info.rti_addrs; 1159 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1160 if (error) 1161 goto done; 1162 } 1163 } 1164 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1165 info.rti_info[RTAX_BRD] = NULL; 1166 } 1167 done: 1168 IFNET_RUNLOCK(); 1169 return (error); 1170 } 1171 1172 int 1173 sysctl_ifmalist(int af, struct walkarg *w) 1174 { 1175 struct ifnet *ifp; 1176 struct ifmultiaddr *ifma; 1177 struct rt_addrinfo info; 1178 int len, error = 0; 1179 struct ifaddr *ifa; 1180 1181 bzero((caddr_t)&info, sizeof(info)); 1182 IFNET_RLOCK(); 1183 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1184 if (w->w_arg && w->w_arg != ifp->if_index) 1185 continue; 1186 ifa = ifp->if_addr; 1187 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1188 IF_ADDR_LOCK(ifp); 1189 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1190 if (af && af != ifma->ifma_addr->sa_family) 1191 continue; 1192 if (jailed(curproc->p_ucred) && 1193 prison_if(curproc->p_ucred, ifma->ifma_addr)) 1194 continue; 1195 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1196 info.rti_info[RTAX_GATEWAY] = 1197 (ifma->ifma_addr->sa_family != AF_LINK) ? 1198 ifma->ifma_lladdr : NULL; 1199 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1200 if (w->w_req && w->w_tmem) { 1201 struct ifma_msghdr *ifmam; 1202 1203 ifmam = (struct ifma_msghdr *)w->w_tmem; 1204 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1205 ifmam->ifmam_flags = 0; 1206 ifmam->ifmam_addrs = info.rti_addrs; 1207 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1208 if (error) { 1209 IF_ADDR_UNLOCK(ifp); 1210 goto done; 1211 } 1212 } 1213 } 1214 IF_ADDR_UNLOCK(ifp); 1215 } 1216 done: 1217 IFNET_RUNLOCK(); 1218 return (error); 1219 } 1220 1221 static int 1222 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1223 { 1224 int *name = (int *)arg1; 1225 u_int namelen = arg2; 1226 struct radix_node_head *rnh; 1227 int i, lim, error = EINVAL; 1228 u_char af; 1229 struct walkarg w; 1230 1231 name ++; 1232 namelen--; 1233 if (req->newptr) 1234 return (EPERM); 1235 if (namelen != 3) 1236 return ((namelen < 3) ? EISDIR : ENOTDIR); 1237 af = name[0]; 1238 if (af > AF_MAX) 1239 return (EINVAL); 1240 bzero(&w, sizeof(w)); 1241 w.w_op = name[1]; 1242 w.w_arg = name[2]; 1243 w.w_req = req; 1244 1245 error = sysctl_wire_old_buffer(req, 0); 1246 if (error) 1247 return (error); 1248 switch (w.w_op) { 1249 1250 case NET_RT_DUMP: 1251 case NET_RT_FLAGS: 1252 if (af == 0) { /* dump all tables */ 1253 i = 1; 1254 lim = AF_MAX; 1255 } else /* dump only one table */ 1256 i = lim = af; 1257 for (error = 0; error == 0 && i <= lim; i++) 1258 if ((rnh = rt_tables[i]) != NULL) { 1259 RADIX_NODE_HEAD_LOCK(rnh); 1260 error = rnh->rnh_walktree(rnh, 1261 sysctl_dumpentry, &w); 1262 RADIX_NODE_HEAD_UNLOCK(rnh); 1263 } else if (af != 0) 1264 error = EAFNOSUPPORT; 1265 break; 1266 1267 case NET_RT_IFLIST: 1268 error = sysctl_iflist(af, &w); 1269 break; 1270 1271 case NET_RT_IFMALIST: 1272 error = sysctl_ifmalist(af, &w); 1273 break; 1274 } 1275 if (w.w_tmem) 1276 free(w.w_tmem, M_RTABLE); 1277 return (error); 1278 } 1279 1280 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1281 1282 /* 1283 * Definitions of protocols supported in the ROUTE domain. 1284 */ 1285 1286 static struct domain routedomain; /* or at least forward */ 1287 1288 static struct protosw routesw[] = { 1289 { 1290 .pr_type = SOCK_RAW, 1291 .pr_domain = &routedomain, 1292 .pr_flags = PR_ATOMIC|PR_ADDR, 1293 .pr_output = route_output, 1294 .pr_ctlinput = raw_ctlinput, 1295 .pr_init = raw_init, 1296 .pr_usrreqs = &route_usrreqs 1297 } 1298 }; 1299 1300 static struct domain routedomain = { 1301 .dom_family = PF_ROUTE, 1302 .dom_name = "route", 1303 .dom_protosw = routesw, 1304 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1305 }; 1306 1307 DOMAIN_SET(route); 1308