1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_mpath.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 37 #include <sys/param.h> 38 #include <sys/jail.h> 39 #include <sys/kernel.h> 40 #include <sys/domain.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rwlock.h> 48 #include <sys/signalvar.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 #include <netinet/ip_carp.h> 67 #ifdef INET6 68 #include <netinet6/ip6_var.h> 69 #include <netinet6/scope6_var.h> 70 #endif 71 72 #ifdef COMPAT_FREEBSD32 73 #include <sys/mount.h> 74 #include <compat/freebsd32/freebsd32.h> 75 76 struct if_data32 { 77 uint8_t ifi_type; 78 uint8_t ifi_physical; 79 uint8_t ifi_addrlen; 80 uint8_t ifi_hdrlen; 81 uint8_t ifi_link_state; 82 uint8_t ifi_vhid; 83 uint8_t ifi_baudrate_pf; 84 uint8_t ifi_datalen; 85 uint32_t ifi_mtu; 86 uint32_t ifi_metric; 87 uint32_t ifi_baudrate; 88 uint32_t ifi_ipackets; 89 uint32_t ifi_ierrors; 90 uint32_t ifi_opackets; 91 uint32_t ifi_oerrors; 92 uint32_t ifi_collisions; 93 uint32_t ifi_ibytes; 94 uint32_t ifi_obytes; 95 uint32_t ifi_imcasts; 96 uint32_t ifi_omcasts; 97 uint32_t ifi_iqdrops; 98 uint32_t ifi_noproto; 99 uint32_t ifi_hwassist; 100 int32_t ifi_epoch; 101 struct timeval32 ifi_lastchange; 102 }; 103 104 struct if_msghdr32 { 105 uint16_t ifm_msglen; 106 uint8_t ifm_version; 107 uint8_t ifm_type; 108 int32_t ifm_addrs; 109 int32_t ifm_flags; 110 uint16_t ifm_index; 111 struct if_data32 ifm_data; 112 }; 113 114 struct if_msghdrl32 { 115 uint16_t ifm_msglen; 116 uint8_t ifm_version; 117 uint8_t ifm_type; 118 int32_t ifm_addrs; 119 int32_t ifm_flags; 120 uint16_t ifm_index; 121 uint16_t _ifm_spare1; 122 uint16_t ifm_len; 123 uint16_t ifm_data_off; 124 struct if_data32 ifm_data; 125 }; 126 127 struct ifa_msghdrl32 { 128 uint16_t ifam_msglen; 129 uint8_t ifam_version; 130 uint8_t ifam_type; 131 int32_t ifam_addrs; 132 int32_t ifam_flags; 133 uint16_t ifam_index; 134 uint16_t _ifam_spare1; 135 uint16_t ifam_len; 136 uint16_t ifam_data_off; 137 int32_t ifam_metric; 138 struct if_data32 ifam_data; 139 }; 140 #endif /* COMPAT_FREEBSD32 */ 141 142 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 143 144 /* NB: these are not modified */ 145 static struct sockaddr route_src = { 2, PF_ROUTE, }; 146 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 147 148 /* These are external hooks for CARP. */ 149 int (*carp_get_vhid_p)(struct ifaddr *); 150 151 /* 152 * Used by rtsock/raw_input callback code to decide whether to filter the update 153 * notification to a socket bound to a particular FIB. 154 */ 155 #define RTS_FILTER_FIB M_PROTO8 156 157 static struct { 158 int ip_count; /* attached w/ AF_INET */ 159 int ip6_count; /* attached w/ AF_INET6 */ 160 int ipx_count; /* attached w/ AF_IPX */ 161 int any_count; /* total attached */ 162 } route_cb; 163 164 struct mtx rtsock_mtx; 165 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 166 167 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 168 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 169 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 170 171 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 172 173 struct walkarg { 174 int w_tmemsize; 175 int w_op, w_arg; 176 caddr_t w_tmem; 177 struct sysctl_req *w_req; 178 }; 179 180 static void rts_input(struct mbuf *m); 181 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 182 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 183 caddr_t cp, struct walkarg *w); 184 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 185 struct rt_addrinfo *rtinfo); 186 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 187 static int sysctl_iflist(int af, struct walkarg *w); 188 static int sysctl_ifmalist(int af, struct walkarg *w); 189 static int route_output(struct mbuf *m, struct socket *so); 190 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 191 struct rt_metrics_lite *out); 192 static void rt_getmetrics(const struct rt_metrics_lite *in, 193 struct rt_metrics *out); 194 static void rt_dispatch(struct mbuf *, sa_family_t); 195 196 static struct netisr_handler rtsock_nh = { 197 .nh_name = "rtsock", 198 .nh_handler = rts_input, 199 .nh_proto = NETISR_ROUTE, 200 .nh_policy = NETISR_POLICY_SOURCE, 201 }; 202 203 static int 204 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 205 { 206 int error, qlimit; 207 208 netisr_getqlimit(&rtsock_nh, &qlimit); 209 error = sysctl_handle_int(oidp, &qlimit, 0, req); 210 if (error || !req->newptr) 211 return (error); 212 if (qlimit < 1) 213 return (EINVAL); 214 return (netisr_setqlimit(&rtsock_nh, qlimit)); 215 } 216 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 217 0, 0, sysctl_route_netisr_maxqlen, "I", 218 "maximum routing socket dispatch queue length"); 219 220 static void 221 rts_init(void) 222 { 223 int tmp; 224 225 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 226 rtsock_nh.nh_qlimit = tmp; 227 netisr_register(&rtsock_nh); 228 } 229 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 230 231 static int 232 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 233 struct rawcb *rp) 234 { 235 int fibnum; 236 237 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 238 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 239 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 240 241 /* No filtering requested. */ 242 if ((m->m_flags & RTS_FILTER_FIB) == 0) 243 return (0); 244 245 /* Check if it is a rts and the fib matches the one of the socket. */ 246 fibnum = M_GETFIB(m); 247 if (proto->sp_family != PF_ROUTE || 248 rp->rcb_socket == NULL || 249 rp->rcb_socket->so_fibnum == fibnum) 250 return (0); 251 252 /* Filtering requested and no match, the socket shall be skipped. */ 253 return (1); 254 } 255 256 static void 257 rts_input(struct mbuf *m) 258 { 259 struct sockproto route_proto; 260 unsigned short *family; 261 struct m_tag *tag; 262 263 route_proto.sp_family = PF_ROUTE; 264 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 265 if (tag != NULL) { 266 family = (unsigned short *)(tag + 1); 267 route_proto.sp_protocol = *family; 268 m_tag_delete(m, tag); 269 } else 270 route_proto.sp_protocol = 0; 271 272 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 273 } 274 275 /* 276 * It really doesn't make any sense at all for this code to share much 277 * with raw_usrreq.c, since its functionality is so restricted. XXX 278 */ 279 static void 280 rts_abort(struct socket *so) 281 { 282 283 raw_usrreqs.pru_abort(so); 284 } 285 286 static void 287 rts_close(struct socket *so) 288 { 289 290 raw_usrreqs.pru_close(so); 291 } 292 293 /* pru_accept is EOPNOTSUPP */ 294 295 static int 296 rts_attach(struct socket *so, int proto, struct thread *td) 297 { 298 struct rawcb *rp; 299 int error; 300 301 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 302 303 /* XXX */ 304 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 305 if (rp == NULL) 306 return ENOBUFS; 307 308 so->so_pcb = (caddr_t)rp; 309 so->so_fibnum = td->td_proc->p_fibnum; 310 error = raw_attach(so, proto); 311 rp = sotorawcb(so); 312 if (error) { 313 so->so_pcb = NULL; 314 free(rp, M_PCB); 315 return error; 316 } 317 RTSOCK_LOCK(); 318 switch(rp->rcb_proto.sp_protocol) { 319 case AF_INET: 320 route_cb.ip_count++; 321 break; 322 case AF_INET6: 323 route_cb.ip6_count++; 324 break; 325 case AF_IPX: 326 route_cb.ipx_count++; 327 break; 328 } 329 route_cb.any_count++; 330 RTSOCK_UNLOCK(); 331 soisconnected(so); 332 so->so_options |= SO_USELOOPBACK; 333 return 0; 334 } 335 336 static int 337 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 338 { 339 340 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 341 } 342 343 static int 344 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 345 { 346 347 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 348 } 349 350 /* pru_connect2 is EOPNOTSUPP */ 351 /* pru_control is EOPNOTSUPP */ 352 353 static void 354 rts_detach(struct socket *so) 355 { 356 struct rawcb *rp = sotorawcb(so); 357 358 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 359 360 RTSOCK_LOCK(); 361 switch(rp->rcb_proto.sp_protocol) { 362 case AF_INET: 363 route_cb.ip_count--; 364 break; 365 case AF_INET6: 366 route_cb.ip6_count--; 367 break; 368 case AF_IPX: 369 route_cb.ipx_count--; 370 break; 371 } 372 route_cb.any_count--; 373 RTSOCK_UNLOCK(); 374 raw_usrreqs.pru_detach(so); 375 } 376 377 static int 378 rts_disconnect(struct socket *so) 379 { 380 381 return (raw_usrreqs.pru_disconnect(so)); 382 } 383 384 /* pru_listen is EOPNOTSUPP */ 385 386 static int 387 rts_peeraddr(struct socket *so, struct sockaddr **nam) 388 { 389 390 return (raw_usrreqs.pru_peeraddr(so, nam)); 391 } 392 393 /* pru_rcvd is EOPNOTSUPP */ 394 /* pru_rcvoob is EOPNOTSUPP */ 395 396 static int 397 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 398 struct mbuf *control, struct thread *td) 399 { 400 401 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 402 } 403 404 /* pru_sense is null */ 405 406 static int 407 rts_shutdown(struct socket *so) 408 { 409 410 return (raw_usrreqs.pru_shutdown(so)); 411 } 412 413 static int 414 rts_sockaddr(struct socket *so, struct sockaddr **nam) 415 { 416 417 return (raw_usrreqs.pru_sockaddr(so, nam)); 418 } 419 420 static struct pr_usrreqs route_usrreqs = { 421 .pru_abort = rts_abort, 422 .pru_attach = rts_attach, 423 .pru_bind = rts_bind, 424 .pru_connect = rts_connect, 425 .pru_detach = rts_detach, 426 .pru_disconnect = rts_disconnect, 427 .pru_peeraddr = rts_peeraddr, 428 .pru_send = rts_send, 429 .pru_shutdown = rts_shutdown, 430 .pru_sockaddr = rts_sockaddr, 431 .pru_close = rts_close, 432 }; 433 434 #ifndef _SOCKADDR_UNION_DEFINED 435 #define _SOCKADDR_UNION_DEFINED 436 /* 437 * The union of all possible address formats we handle. 438 */ 439 union sockaddr_union { 440 struct sockaddr sa; 441 struct sockaddr_in sin; 442 struct sockaddr_in6 sin6; 443 }; 444 #endif /* _SOCKADDR_UNION_DEFINED */ 445 446 static int 447 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 448 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 449 { 450 451 /* First, see if the returned address is part of the jail. */ 452 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 453 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 454 return (0); 455 } 456 457 switch (info->rti_info[RTAX_DST]->sa_family) { 458 #ifdef INET 459 case AF_INET: 460 { 461 struct in_addr ia; 462 struct ifaddr *ifa; 463 int found; 464 465 found = 0; 466 /* 467 * Try to find an address on the given outgoing interface 468 * that belongs to the jail. 469 */ 470 IF_ADDR_RLOCK(ifp); 471 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 472 struct sockaddr *sa; 473 sa = ifa->ifa_addr; 474 if (sa->sa_family != AF_INET) 475 continue; 476 ia = ((struct sockaddr_in *)sa)->sin_addr; 477 if (prison_check_ip4(cred, &ia) == 0) { 478 found = 1; 479 break; 480 } 481 } 482 IF_ADDR_RUNLOCK(ifp); 483 if (!found) { 484 /* 485 * As a last resort return the 'default' jail address. 486 */ 487 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 488 sin_addr; 489 if (prison_get_ip4(cred, &ia) != 0) 490 return (ESRCH); 491 } 492 bzero(&saun->sin, sizeof(struct sockaddr_in)); 493 saun->sin.sin_len = sizeof(struct sockaddr_in); 494 saun->sin.sin_family = AF_INET; 495 saun->sin.sin_addr.s_addr = ia.s_addr; 496 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 497 break; 498 } 499 #endif 500 #ifdef INET6 501 case AF_INET6: 502 { 503 struct in6_addr ia6; 504 struct ifaddr *ifa; 505 int found; 506 507 found = 0; 508 /* 509 * Try to find an address on the given outgoing interface 510 * that belongs to the jail. 511 */ 512 IF_ADDR_RLOCK(ifp); 513 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 514 struct sockaddr *sa; 515 sa = ifa->ifa_addr; 516 if (sa->sa_family != AF_INET6) 517 continue; 518 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 519 &ia6, sizeof(struct in6_addr)); 520 if (prison_check_ip6(cred, &ia6) == 0) { 521 found = 1; 522 break; 523 } 524 } 525 IF_ADDR_RUNLOCK(ifp); 526 if (!found) { 527 /* 528 * As a last resort return the 'default' jail address. 529 */ 530 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 531 sin6_addr; 532 if (prison_get_ip6(cred, &ia6) != 0) 533 return (ESRCH); 534 } 535 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 536 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 537 saun->sin6.sin6_family = AF_INET6; 538 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 539 if (sa6_recoverscope(&saun->sin6) != 0) 540 return (ESRCH); 541 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 542 break; 543 } 544 #endif 545 default: 546 return (ESRCH); 547 } 548 return (0); 549 } 550 551 /*ARGSUSED*/ 552 static int 553 route_output(struct mbuf *m, struct socket *so) 554 { 555 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 556 struct rt_msghdr *rtm = NULL; 557 struct rtentry *rt = NULL; 558 struct radix_node_head *rnh; 559 struct rt_addrinfo info; 560 #ifdef INET6 561 struct sockaddr_storage ss; 562 struct sockaddr_in6 *sin6; 563 int i, rti_need_deembed = 0; 564 #endif 565 int len, error = 0; 566 struct ifnet *ifp = NULL; 567 union sockaddr_union saun; 568 sa_family_t saf = AF_UNSPEC; 569 570 #define senderr(e) { error = e; goto flush;} 571 if (m == NULL || ((m->m_len < sizeof(long)) && 572 (m = m_pullup(m, sizeof(long))) == NULL)) 573 return (ENOBUFS); 574 if ((m->m_flags & M_PKTHDR) == 0) 575 panic("route_output"); 576 len = m->m_pkthdr.len; 577 if (len < sizeof(*rtm) || 578 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 579 info.rti_info[RTAX_DST] = NULL; 580 senderr(EINVAL); 581 } 582 R_Malloc(rtm, struct rt_msghdr *, len); 583 if (rtm == NULL) { 584 info.rti_info[RTAX_DST] = NULL; 585 senderr(ENOBUFS); 586 } 587 m_copydata(m, 0, len, (caddr_t)rtm); 588 if (rtm->rtm_version != RTM_VERSION) { 589 info.rti_info[RTAX_DST] = NULL; 590 senderr(EPROTONOSUPPORT); 591 } 592 rtm->rtm_pid = curproc->p_pid; 593 bzero(&info, sizeof(info)); 594 info.rti_addrs = rtm->rtm_addrs; 595 /* 596 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 597 * link-local address because rtrequest requires addresses with 598 * embedded scope id. 599 */ 600 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 601 info.rti_info[RTAX_DST] = NULL; 602 senderr(EINVAL); 603 } 604 info.rti_flags = rtm->rtm_flags; 605 if (info.rti_info[RTAX_DST] == NULL || 606 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 607 (info.rti_info[RTAX_GATEWAY] != NULL && 608 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 609 senderr(EINVAL); 610 saf = info.rti_info[RTAX_DST]->sa_family; 611 /* 612 * Verify that the caller has the appropriate privilege; RTM_GET 613 * is the only operation the non-superuser is allowed. 614 */ 615 if (rtm->rtm_type != RTM_GET) { 616 error = priv_check(curthread, PRIV_NET_ROUTE); 617 if (error) 618 senderr(error); 619 } 620 621 /* 622 * The given gateway address may be an interface address. 623 * For example, issuing a "route change" command on a route 624 * entry that was created from a tunnel, and the gateway 625 * address given is the local end point. In this case the 626 * RTF_GATEWAY flag must be cleared or the destination will 627 * not be reachable even though there is no error message. 628 */ 629 if (info.rti_info[RTAX_GATEWAY] != NULL && 630 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 631 struct route gw_ro; 632 633 bzero(&gw_ro, sizeof(gw_ro)); 634 gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY]; 635 rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum); 636 /* 637 * A host route through the loopback interface is 638 * installed for each interface adddress. In pre 8.0 639 * releases the interface address of a PPP link type 640 * is not reachable locally. This behavior is fixed as 641 * part of the new L2/L3 redesign and rewrite work. The 642 * signature of this interface address route is the 643 * AF_LINK sa_family type of the rt_gateway, and the 644 * rt_ifp has the IFF_LOOPBACK flag set. 645 */ 646 if (gw_ro.ro_rt != NULL && 647 gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK && 648 gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) { 649 info.rti_flags &= ~RTF_GATEWAY; 650 info.rti_flags |= RTF_GWFLAG_COMPAT; 651 } 652 if (gw_ro.ro_rt != NULL) 653 RTFREE(gw_ro.ro_rt); 654 } 655 656 switch (rtm->rtm_type) { 657 struct rtentry *saved_nrt; 658 659 case RTM_ADD: 660 if (info.rti_info[RTAX_GATEWAY] == NULL) 661 senderr(EINVAL); 662 saved_nrt = NULL; 663 664 /* support for new ARP code */ 665 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 666 (rtm->rtm_flags & RTF_LLDATA) != 0) { 667 error = lla_rt_output(rtm, &info); 668 #ifdef INET6 669 if (error == 0) 670 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 671 #endif 672 break; 673 } 674 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 675 so->so_fibnum); 676 if (error == 0 && saved_nrt) { 677 #ifdef INET6 678 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 679 #endif 680 RT_LOCK(saved_nrt); 681 rt_setmetrics(rtm->rtm_inits, 682 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 683 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 684 RT_REMREF(saved_nrt); 685 RT_UNLOCK(saved_nrt); 686 } 687 break; 688 689 case RTM_DELETE: 690 saved_nrt = NULL; 691 /* support for new ARP code */ 692 if (info.rti_info[RTAX_GATEWAY] && 693 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 694 (rtm->rtm_flags & RTF_LLDATA) != 0) { 695 error = lla_rt_output(rtm, &info); 696 #ifdef INET6 697 if (error == 0) 698 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 699 #endif 700 break; 701 } 702 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 703 so->so_fibnum); 704 if (error == 0) { 705 RT_LOCK(saved_nrt); 706 rt = saved_nrt; 707 goto report; 708 } 709 #ifdef INET6 710 /* rt_msg2() will not be used when RTM_DELETE fails. */ 711 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 712 #endif 713 break; 714 715 case RTM_GET: 716 case RTM_CHANGE: 717 case RTM_LOCK: 718 rnh = rt_tables_get_rnh(so->so_fibnum, 719 info.rti_info[RTAX_DST]->sa_family); 720 if (rnh == NULL) 721 senderr(EAFNOSUPPORT); 722 723 RADIX_NODE_HEAD_RLOCK(rnh); 724 725 if (info.rti_info[RTAX_NETMASK] == NULL && 726 rtm->rtm_type == RTM_GET) { 727 /* 728 * Provide logest prefix match for 729 * address lookup (no mask). 730 * 'route -n get addr' 731 */ 732 rt = (struct rtentry *) rnh->rnh_matchaddr( 733 info.rti_info[RTAX_DST], rnh); 734 } else 735 rt = (struct rtentry *) rnh->rnh_lookup( 736 info.rti_info[RTAX_DST], 737 info.rti_info[RTAX_NETMASK], rnh); 738 739 if (rt == NULL) { 740 RADIX_NODE_HEAD_RUNLOCK(rnh); 741 senderr(ESRCH); 742 } 743 #ifdef RADIX_MPATH 744 /* 745 * for RTM_CHANGE/LOCK, if we got multipath routes, 746 * we require users to specify a matching RTAX_GATEWAY. 747 * 748 * for RTM_GET, gate is optional even with multipath. 749 * if gate == NULL the first match is returned. 750 * (no need to call rt_mpath_matchgate if gate == NULL) 751 */ 752 if (rn_mpath_capable(rnh) && 753 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 754 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 755 if (!rt) { 756 RADIX_NODE_HEAD_RUNLOCK(rnh); 757 senderr(ESRCH); 758 } 759 } 760 #endif 761 /* 762 * If performing proxied L2 entry insertion, and 763 * the actual PPP host entry is found, perform 764 * another search to retrieve the prefix route of 765 * the local end point of the PPP link. 766 */ 767 if (rtm->rtm_flags & RTF_ANNOUNCE) { 768 struct sockaddr laddr; 769 770 if (rt->rt_ifp != NULL && 771 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 772 struct ifaddr *ifa; 773 774 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1); 775 if (ifa != NULL) 776 rt_maskedcopy(ifa->ifa_addr, 777 &laddr, 778 ifa->ifa_netmask); 779 } else 780 rt_maskedcopy(rt->rt_ifa->ifa_addr, 781 &laddr, 782 rt->rt_ifa->ifa_netmask); 783 /* 784 * refactor rt and no lock operation necessary 785 */ 786 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 787 if (rt == NULL) { 788 RADIX_NODE_HEAD_RUNLOCK(rnh); 789 senderr(ESRCH); 790 } 791 } 792 RT_LOCK(rt); 793 RT_ADDREF(rt); 794 RADIX_NODE_HEAD_RUNLOCK(rnh); 795 796 switch(rtm->rtm_type) { 797 798 case RTM_GET: 799 report: 800 RT_LOCK_ASSERT(rt); 801 if ((rt->rt_flags & RTF_HOST) == 0 802 ? jailed_without_vnet(curthread->td_ucred) 803 : prison_if(curthread->td_ucred, 804 rt_key(rt)) != 0) { 805 RT_UNLOCK(rt); 806 senderr(ESRCH); 807 } 808 info.rti_info[RTAX_DST] = rt_key(rt); 809 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 810 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 811 info.rti_info[RTAX_GENMASK] = 0; 812 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 813 ifp = rt->rt_ifp; 814 if (ifp) { 815 info.rti_info[RTAX_IFP] = 816 ifp->if_addr->ifa_addr; 817 error = rtm_get_jailed(&info, ifp, rt, 818 &saun, curthread->td_ucred); 819 if (error != 0) { 820 RT_UNLOCK(rt); 821 senderr(error); 822 } 823 if (ifp->if_flags & IFF_POINTOPOINT) 824 info.rti_info[RTAX_BRD] = 825 rt->rt_ifa->ifa_dstaddr; 826 rtm->rtm_index = ifp->if_index; 827 } else { 828 info.rti_info[RTAX_IFP] = NULL; 829 info.rti_info[RTAX_IFA] = NULL; 830 } 831 } else if ((ifp = rt->rt_ifp) != NULL) { 832 rtm->rtm_index = ifp->if_index; 833 } 834 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 835 if (len > rtm->rtm_msglen) { 836 struct rt_msghdr *new_rtm; 837 R_Malloc(new_rtm, struct rt_msghdr *, len); 838 if (new_rtm == NULL) { 839 RT_UNLOCK(rt); 840 senderr(ENOBUFS); 841 } 842 bcopy(rtm, new_rtm, rtm->rtm_msglen); 843 Free(rtm); rtm = new_rtm; 844 } 845 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 846 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 847 rtm->rtm_flags = RTF_GATEWAY | 848 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 849 else 850 rtm->rtm_flags = rt->rt_flags; 851 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 852 rtm->rtm_addrs = info.rti_addrs; 853 break; 854 855 case RTM_CHANGE: 856 /* 857 * New gateway could require new ifaddr, ifp; 858 * flags may also be different; ifp may be specified 859 * by ll sockaddr when protocol address is ambiguous 860 */ 861 if (((rt->rt_flags & RTF_GATEWAY) && 862 info.rti_info[RTAX_GATEWAY] != NULL) || 863 info.rti_info[RTAX_IFP] != NULL || 864 (info.rti_info[RTAX_IFA] != NULL && 865 !sa_equal(info.rti_info[RTAX_IFA], 866 rt->rt_ifa->ifa_addr))) { 867 RT_UNLOCK(rt); 868 RADIX_NODE_HEAD_LOCK(rnh); 869 error = rt_getifa_fib(&info, rt->rt_fibnum); 870 /* 871 * XXXRW: Really we should release this 872 * reference later, but this maintains 873 * historical behavior. 874 */ 875 if (info.rti_ifa != NULL) 876 ifa_free(info.rti_ifa); 877 RADIX_NODE_HEAD_UNLOCK(rnh); 878 if (error != 0) 879 senderr(error); 880 RT_LOCK(rt); 881 } 882 if (info.rti_ifa != NULL && 883 info.rti_ifa != rt->rt_ifa && 884 rt->rt_ifa != NULL && 885 rt->rt_ifa->ifa_rtrequest != NULL) { 886 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 887 &info); 888 ifa_free(rt->rt_ifa); 889 } 890 if (info.rti_info[RTAX_GATEWAY] != NULL) { 891 RT_UNLOCK(rt); 892 RADIX_NODE_HEAD_LOCK(rnh); 893 RT_LOCK(rt); 894 895 error = rt_setgate(rt, rt_key(rt), 896 info.rti_info[RTAX_GATEWAY]); 897 RADIX_NODE_HEAD_UNLOCK(rnh); 898 if (error != 0) { 899 RT_UNLOCK(rt); 900 senderr(error); 901 } 902 rt->rt_flags &= ~RTF_GATEWAY; 903 rt->rt_flags |= (RTF_GATEWAY & info.rti_flags); 904 } 905 if (info.rti_ifa != NULL && 906 info.rti_ifa != rt->rt_ifa) { 907 ifa_ref(info.rti_ifa); 908 rt->rt_ifa = info.rti_ifa; 909 rt->rt_ifp = info.rti_ifp; 910 } 911 /* Allow some flags to be toggled on change. */ 912 rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) | 913 (rtm->rtm_flags & RTF_FMASK); 914 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 915 &rt->rt_rmx); 916 rtm->rtm_index = rt->rt_ifp->if_index; 917 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 918 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 919 /* FALLTHROUGH */ 920 case RTM_LOCK: 921 /* We don't support locks anymore */ 922 break; 923 } 924 RT_UNLOCK(rt); 925 break; 926 927 default: 928 senderr(EOPNOTSUPP); 929 } 930 931 flush: 932 if (rtm) { 933 if (error) 934 rtm->rtm_errno = error; 935 else 936 rtm->rtm_flags |= RTF_DONE; 937 } 938 if (rt) /* XXX can this be true? */ 939 RTFREE(rt); 940 { 941 struct rawcb *rp = NULL; 942 /* 943 * Check to see if we don't want our own messages. 944 */ 945 if ((so->so_options & SO_USELOOPBACK) == 0) { 946 if (route_cb.any_count <= 1) { 947 if (rtm) 948 Free(rtm); 949 m_freem(m); 950 return (error); 951 } 952 /* There is another listener, so construct message */ 953 rp = sotorawcb(so); 954 } 955 if (rtm) { 956 #ifdef INET6 957 if (rti_need_deembed) { 958 /* sin6_scope_id is recovered before sending rtm. */ 959 sin6 = (struct sockaddr_in6 *)&ss; 960 for (i = 0; i < RTAX_MAX; i++) { 961 if (info.rti_info[i] == NULL) 962 continue; 963 if (info.rti_info[i]->sa_family != AF_INET6) 964 continue; 965 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 966 if (sa6_recoverscope(sin6) == 0) 967 bcopy(sin6, info.rti_info[i], 968 sizeof(*sin6)); 969 } 970 } 971 #endif 972 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 973 if (m->m_pkthdr.len < rtm->rtm_msglen) { 974 m_freem(m); 975 m = NULL; 976 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 977 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 978 } 979 if (m) { 980 M_SETFIB(m, so->so_fibnum); 981 m->m_flags |= RTS_FILTER_FIB; 982 if (rp) { 983 /* 984 * XXX insure we don't get a copy by 985 * invalidating our protocol 986 */ 987 unsigned short family = rp->rcb_proto.sp_family; 988 rp->rcb_proto.sp_family = 0; 989 rt_dispatch(m, saf); 990 rp->rcb_proto.sp_family = family; 991 } else 992 rt_dispatch(m, saf); 993 } 994 /* info.rti_info[RTAX_DST] (used above) can point inside of rtm */ 995 if (rtm) 996 Free(rtm); 997 } 998 return (error); 999 #undef sa_equal 1000 } 1001 1002 static void 1003 rt_setmetrics(u_long which, const struct rt_metrics *in, 1004 struct rt_metrics_lite *out) 1005 { 1006 #define metric(f, e) if (which & (f)) out->e = in->e; 1007 /* 1008 * Only these are stored in the routing entry since introduction 1009 * of tcp hostcache. The rest is ignored. 1010 */ 1011 metric(RTV_MTU, rmx_mtu); 1012 metric(RTV_WEIGHT, rmx_weight); 1013 /* Userland -> kernel timebase conversion. */ 1014 if (which & RTV_EXPIRE) 1015 out->rmx_expire = in->rmx_expire ? 1016 in->rmx_expire - time_second + time_uptime : 0; 1017 #undef metric 1018 } 1019 1020 static void 1021 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 1022 { 1023 #define metric(e) out->e = in->e; 1024 bzero(out, sizeof(*out)); 1025 metric(rmx_mtu); 1026 metric(rmx_weight); 1027 /* Kernel -> userland timebase conversion. */ 1028 out->rmx_expire = in->rmx_expire ? 1029 in->rmx_expire - time_uptime + time_second : 0; 1030 #undef metric 1031 } 1032 1033 /* 1034 * Extract the addresses of the passed sockaddrs. 1035 * Do a little sanity checking so as to avoid bad memory references. 1036 * This data is derived straight from userland. 1037 */ 1038 static int 1039 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1040 { 1041 struct sockaddr *sa; 1042 int i; 1043 1044 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1045 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1046 continue; 1047 sa = (struct sockaddr *)cp; 1048 /* 1049 * It won't fit. 1050 */ 1051 if (cp + sa->sa_len > cplim) 1052 return (EINVAL); 1053 /* 1054 * there are no more.. quit now 1055 * If there are more bits, they are in error. 1056 * I've seen this. route(1) can evidently generate these. 1057 * This causes kernel to core dump. 1058 * for compatibility, If we see this, point to a safe address. 1059 */ 1060 if (sa->sa_len == 0) { 1061 rtinfo->rti_info[i] = &sa_zero; 1062 return (0); /* should be EINVAL but for compat */ 1063 } 1064 /* accept it */ 1065 #ifdef INET6 1066 if (sa->sa_family == AF_INET6) 1067 sa6_embedscope((struct sockaddr_in6 *)sa, 1068 V_ip6_use_defzone); 1069 #endif 1070 rtinfo->rti_info[i] = sa; 1071 cp += SA_SIZE(sa); 1072 } 1073 return (0); 1074 } 1075 1076 /* 1077 * Used by the routing socket. 1078 */ 1079 static struct mbuf * 1080 rt_msg1(int type, struct rt_addrinfo *rtinfo) 1081 { 1082 struct rt_msghdr *rtm; 1083 struct mbuf *m; 1084 int i; 1085 struct sockaddr *sa; 1086 #ifdef INET6 1087 struct sockaddr_storage ss; 1088 struct sockaddr_in6 *sin6; 1089 #endif 1090 int len, dlen; 1091 1092 switch (type) { 1093 1094 case RTM_DELADDR: 1095 case RTM_NEWADDR: 1096 len = sizeof(struct ifa_msghdr); 1097 break; 1098 1099 case RTM_DELMADDR: 1100 case RTM_NEWMADDR: 1101 len = sizeof(struct ifma_msghdr); 1102 break; 1103 1104 case RTM_IFINFO: 1105 len = sizeof(struct if_msghdr); 1106 break; 1107 1108 case RTM_IFANNOUNCE: 1109 case RTM_IEEE80211: 1110 len = sizeof(struct if_announcemsghdr); 1111 break; 1112 1113 default: 1114 len = sizeof(struct rt_msghdr); 1115 } 1116 1117 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1118 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1119 if (len > MHLEN) 1120 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1121 else 1122 m = m_gethdr(M_NOWAIT, MT_DATA); 1123 if (m == NULL) 1124 return (m); 1125 1126 m->m_pkthdr.len = m->m_len = len; 1127 rtm = mtod(m, struct rt_msghdr *); 1128 bzero((caddr_t)rtm, len); 1129 for (i = 0; i < RTAX_MAX; i++) { 1130 if ((sa = rtinfo->rti_info[i]) == NULL) 1131 continue; 1132 rtinfo->rti_addrs |= (1 << i); 1133 dlen = SA_SIZE(sa); 1134 #ifdef INET6 1135 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1136 sin6 = (struct sockaddr_in6 *)&ss; 1137 bcopy(sa, sin6, sizeof(*sin6)); 1138 if (sa6_recoverscope(sin6) == 0) 1139 sa = (struct sockaddr *)sin6; 1140 } 1141 #endif 1142 m_copyback(m, len, dlen, (caddr_t)sa); 1143 len += dlen; 1144 } 1145 if (m->m_pkthdr.len != len) { 1146 m_freem(m); 1147 return (NULL); 1148 } 1149 rtm->rtm_msglen = len; 1150 rtm->rtm_version = RTM_VERSION; 1151 rtm->rtm_type = type; 1152 return (m); 1153 } 1154 1155 /* 1156 * Used by the sysctl code and routing socket. 1157 */ 1158 static int 1159 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 1160 { 1161 int i; 1162 int len, dlen, second_time = 0; 1163 caddr_t cp0; 1164 #ifdef INET6 1165 struct sockaddr_storage ss; 1166 struct sockaddr_in6 *sin6; 1167 #endif 1168 1169 rtinfo->rti_addrs = 0; 1170 again: 1171 switch (type) { 1172 1173 case RTM_DELADDR: 1174 case RTM_NEWADDR: 1175 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1176 #ifdef COMPAT_FREEBSD32 1177 if (w->w_req->flags & SCTL_MASK32) 1178 len = sizeof(struct ifa_msghdrl32); 1179 else 1180 #endif 1181 len = sizeof(struct ifa_msghdrl); 1182 } else 1183 len = sizeof(struct ifa_msghdr); 1184 break; 1185 1186 case RTM_IFINFO: 1187 #ifdef COMPAT_FREEBSD32 1188 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1189 if (w->w_op == NET_RT_IFLISTL) 1190 len = sizeof(struct if_msghdrl32); 1191 else 1192 len = sizeof(struct if_msghdr32); 1193 break; 1194 } 1195 #endif 1196 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1197 len = sizeof(struct if_msghdrl); 1198 else 1199 len = sizeof(struct if_msghdr); 1200 break; 1201 1202 case RTM_NEWMADDR: 1203 len = sizeof(struct ifma_msghdr); 1204 break; 1205 1206 default: 1207 len = sizeof(struct rt_msghdr); 1208 } 1209 cp0 = cp; 1210 if (cp0) 1211 cp += len; 1212 for (i = 0; i < RTAX_MAX; i++) { 1213 struct sockaddr *sa; 1214 1215 if ((sa = rtinfo->rti_info[i]) == NULL) 1216 continue; 1217 rtinfo->rti_addrs |= (1 << i); 1218 dlen = SA_SIZE(sa); 1219 if (cp) { 1220 #ifdef INET6 1221 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1222 sin6 = (struct sockaddr_in6 *)&ss; 1223 bcopy(sa, sin6, sizeof(*sin6)); 1224 if (sa6_recoverscope(sin6) == 0) 1225 sa = (struct sockaddr *)sin6; 1226 } 1227 #endif 1228 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1229 cp += dlen; 1230 } 1231 len += dlen; 1232 } 1233 len = ALIGN(len); 1234 if (cp == NULL && w != NULL && !second_time) { 1235 struct walkarg *rw = w; 1236 1237 if (rw->w_req) { 1238 if (rw->w_tmemsize < len) { 1239 if (rw->w_tmem) 1240 free(rw->w_tmem, M_RTABLE); 1241 rw->w_tmem = (caddr_t) 1242 malloc(len, M_RTABLE, M_NOWAIT); 1243 if (rw->w_tmem) 1244 rw->w_tmemsize = len; 1245 } 1246 if (rw->w_tmem) { 1247 cp = rw->w_tmem; 1248 second_time = 1; 1249 goto again; 1250 } 1251 } 1252 } 1253 if (cp) { 1254 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 1255 1256 rtm->rtm_version = RTM_VERSION; 1257 rtm->rtm_type = type; 1258 rtm->rtm_msglen = len; 1259 } 1260 return (len); 1261 } 1262 1263 /* 1264 * This routine is called to generate a message from the routing 1265 * socket indicating that a redirect has occured, a routing lookup 1266 * has failed, or that a protocol has detected timeouts to a particular 1267 * destination. 1268 */ 1269 void 1270 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1271 int fibnum) 1272 { 1273 struct rt_msghdr *rtm; 1274 struct mbuf *m; 1275 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1276 1277 if (route_cb.any_count == 0) 1278 return; 1279 m = rt_msg1(type, rtinfo); 1280 if (m == NULL) 1281 return; 1282 1283 if (fibnum != RT_ALL_FIBS) { 1284 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1285 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1286 M_SETFIB(m, fibnum); 1287 m->m_flags |= RTS_FILTER_FIB; 1288 } 1289 1290 rtm = mtod(m, struct rt_msghdr *); 1291 rtm->rtm_flags = RTF_DONE | flags; 1292 rtm->rtm_errno = error; 1293 rtm->rtm_addrs = rtinfo->rti_addrs; 1294 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1295 } 1296 1297 void 1298 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1299 { 1300 1301 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1302 } 1303 1304 /* 1305 * This routine is called to generate a message from the routing 1306 * socket indicating that the status of a network interface has changed. 1307 */ 1308 void 1309 rt_ifmsg(struct ifnet *ifp) 1310 { 1311 struct if_msghdr *ifm; 1312 struct mbuf *m; 1313 struct rt_addrinfo info; 1314 1315 if (route_cb.any_count == 0) 1316 return; 1317 bzero((caddr_t)&info, sizeof(info)); 1318 m = rt_msg1(RTM_IFINFO, &info); 1319 if (m == NULL) 1320 return; 1321 ifm = mtod(m, struct if_msghdr *); 1322 ifm->ifm_index = ifp->if_index; 1323 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1324 ifm->ifm_data = ifp->if_data; 1325 ifm->ifm_addrs = 0; 1326 rt_dispatch(m, AF_UNSPEC); 1327 } 1328 1329 /* 1330 * Announce interface address arrival/withdraw. 1331 * Please do not call directly, use rt_addrmsg(). 1332 * Assume input data to be valid. 1333 * Returns 0 on success. 1334 */ 1335 int 1336 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1337 { 1338 struct rt_addrinfo info; 1339 struct sockaddr *sa; 1340 int ncmd; 1341 struct mbuf *m; 1342 struct ifa_msghdr *ifam; 1343 struct ifnet *ifp = ifa->ifa_ifp; 1344 1345 if (route_cb.any_count == 0) 1346 return (0); 1347 1348 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1349 1350 bzero((caddr_t)&info, sizeof(info)); 1351 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1352 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1353 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1354 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1355 if ((m = rt_msg1(ncmd, &info)) == NULL) 1356 return (ENOBUFS); 1357 ifam = mtod(m, struct ifa_msghdr *); 1358 ifam->ifam_index = ifp->if_index; 1359 ifam->ifam_metric = ifa->ifa_metric; 1360 ifam->ifam_flags = ifa->ifa_flags; 1361 ifam->ifam_addrs = info.rti_addrs; 1362 1363 if (fibnum != RT_ALL_FIBS) { 1364 M_SETFIB(m, fibnum); 1365 m->m_flags |= RTS_FILTER_FIB; 1366 } 1367 1368 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1369 1370 return (0); 1371 } 1372 1373 /* 1374 * Announce route addition/removal. 1375 * Please do not call directly, use rt_routemsg(). 1376 * Note that @rt data MAY be inconsistent/invalid: 1377 * if some userland app sends us "invalid" route message (invalid mask, 1378 * no dst, wrong address families, etc...) we need to pass it back 1379 * to app (and any other rtsock consumers) with rtm_errno field set to 1380 * non-zero value. 1381 * 1382 * Returns 0 on success. 1383 */ 1384 int 1385 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1386 int fibnum) 1387 { 1388 struct rt_addrinfo info; 1389 struct sockaddr *sa; 1390 struct mbuf *m; 1391 struct rt_msghdr *rtm; 1392 1393 if (route_cb.any_count == 0) 1394 return (0); 1395 1396 bzero((caddr_t)&info, sizeof(info)); 1397 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1398 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1399 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1400 if ((m = rt_msg1(cmd, &info)) == NULL) 1401 return (ENOBUFS); 1402 rtm = mtod(m, struct rt_msghdr *); 1403 rtm->rtm_index = ifp->if_index; 1404 rtm->rtm_flags |= rt->rt_flags; 1405 rtm->rtm_errno = error; 1406 rtm->rtm_addrs = info.rti_addrs; 1407 1408 if (fibnum != RT_ALL_FIBS) { 1409 M_SETFIB(m, fibnum); 1410 m->m_flags |= RTS_FILTER_FIB; 1411 } 1412 1413 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1414 1415 return (0); 1416 } 1417 1418 /* 1419 * This is the analogue to the rt_newaddrmsg which performs the same 1420 * function but for multicast group memberhips. This is easier since 1421 * there is no route state to worry about. 1422 */ 1423 void 1424 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1425 { 1426 struct rt_addrinfo info; 1427 struct mbuf *m = NULL; 1428 struct ifnet *ifp = ifma->ifma_ifp; 1429 struct ifma_msghdr *ifmam; 1430 1431 if (route_cb.any_count == 0) 1432 return; 1433 1434 bzero((caddr_t)&info, sizeof(info)); 1435 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1436 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1437 /* 1438 * If a link-layer address is present, present it as a ``gateway'' 1439 * (similarly to how ARP entries, e.g., are presented). 1440 */ 1441 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1442 m = rt_msg1(cmd, &info); 1443 if (m == NULL) 1444 return; 1445 ifmam = mtod(m, struct ifma_msghdr *); 1446 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1447 __func__)); 1448 ifmam->ifmam_index = ifp->if_index; 1449 ifmam->ifmam_addrs = info.rti_addrs; 1450 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1451 } 1452 1453 static struct mbuf * 1454 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1455 struct rt_addrinfo *info) 1456 { 1457 struct if_announcemsghdr *ifan; 1458 struct mbuf *m; 1459 1460 if (route_cb.any_count == 0) 1461 return NULL; 1462 bzero((caddr_t)info, sizeof(*info)); 1463 m = rt_msg1(type, info); 1464 if (m != NULL) { 1465 ifan = mtod(m, struct if_announcemsghdr *); 1466 ifan->ifan_index = ifp->if_index; 1467 strlcpy(ifan->ifan_name, ifp->if_xname, 1468 sizeof(ifan->ifan_name)); 1469 ifan->ifan_what = what; 1470 } 1471 return m; 1472 } 1473 1474 /* 1475 * This is called to generate routing socket messages indicating 1476 * IEEE80211 wireless events. 1477 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1478 */ 1479 void 1480 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1481 { 1482 struct mbuf *m; 1483 struct rt_addrinfo info; 1484 1485 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1486 if (m != NULL) { 1487 /* 1488 * Append the ieee80211 data. Try to stick it in the 1489 * mbuf containing the ifannounce msg; otherwise allocate 1490 * a new mbuf and append. 1491 * 1492 * NB: we assume m is a single mbuf. 1493 */ 1494 if (data_len > M_TRAILINGSPACE(m)) { 1495 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1496 if (n == NULL) { 1497 m_freem(m); 1498 return; 1499 } 1500 bcopy(data, mtod(n, void *), data_len); 1501 n->m_len = data_len; 1502 m->m_next = n; 1503 } else if (data_len > 0) { 1504 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1505 m->m_len += data_len; 1506 } 1507 if (m->m_flags & M_PKTHDR) 1508 m->m_pkthdr.len += data_len; 1509 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1510 rt_dispatch(m, AF_UNSPEC); 1511 } 1512 } 1513 1514 /* 1515 * This is called to generate routing socket messages indicating 1516 * network interface arrival and departure. 1517 */ 1518 void 1519 rt_ifannouncemsg(struct ifnet *ifp, int what) 1520 { 1521 struct mbuf *m; 1522 struct rt_addrinfo info; 1523 1524 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1525 if (m != NULL) 1526 rt_dispatch(m, AF_UNSPEC); 1527 } 1528 1529 static void 1530 rt_dispatch(struct mbuf *m, sa_family_t saf) 1531 { 1532 struct m_tag *tag; 1533 1534 /* 1535 * Preserve the family from the sockaddr, if any, in an m_tag for 1536 * use when injecting the mbuf into the routing socket buffer from 1537 * the netisr. 1538 */ 1539 if (saf != AF_UNSPEC) { 1540 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1541 M_NOWAIT); 1542 if (tag == NULL) { 1543 m_freem(m); 1544 return; 1545 } 1546 *(unsigned short *)(tag + 1) = saf; 1547 m_tag_prepend(m, tag); 1548 } 1549 #ifdef VIMAGE 1550 if (V_loif) 1551 m->m_pkthdr.rcvif = V_loif; 1552 else { 1553 m_freem(m); 1554 return; 1555 } 1556 #endif 1557 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1558 } 1559 1560 /* 1561 * This is used in dumping the kernel table via sysctl(). 1562 */ 1563 static int 1564 sysctl_dumpentry(struct radix_node *rn, void *vw) 1565 { 1566 struct walkarg *w = vw; 1567 struct rtentry *rt = (struct rtentry *)rn; 1568 int error = 0, size; 1569 struct rt_addrinfo info; 1570 1571 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1572 return 0; 1573 if ((rt->rt_flags & RTF_HOST) == 0 1574 ? jailed_without_vnet(w->w_req->td->td_ucred) 1575 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1576 return (0); 1577 bzero((caddr_t)&info, sizeof(info)); 1578 info.rti_info[RTAX_DST] = rt_key(rt); 1579 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1580 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1581 info.rti_info[RTAX_GENMASK] = 0; 1582 if (rt->rt_ifp) { 1583 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1584 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1585 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1586 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1587 } 1588 size = rt_msg2(RTM_GET, &info, NULL, w); 1589 if (w->w_req && w->w_tmem) { 1590 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1591 1592 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1593 rtm->rtm_flags = RTF_GATEWAY | 1594 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1595 else 1596 rtm->rtm_flags = rt->rt_flags; 1597 /* 1598 * let's be honest about this being a retarded hack 1599 */ 1600 rtm->rtm_fmask = rt->rt_rmx.rmx_pksent; 1601 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1602 rtm->rtm_index = rt->rt_ifp->if_index; 1603 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1604 rtm->rtm_addrs = info.rti_addrs; 1605 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1606 return (error); 1607 } 1608 return (error); 1609 } 1610 1611 #ifdef COMPAT_FREEBSD32 1612 static void 1613 copy_ifdata32(struct if_data *src, struct if_data32 *dst) 1614 { 1615 1616 bzero(dst, sizeof(*dst)); 1617 CP(*src, *dst, ifi_type); 1618 CP(*src, *dst, ifi_physical); 1619 CP(*src, *dst, ifi_addrlen); 1620 CP(*src, *dst, ifi_hdrlen); 1621 CP(*src, *dst, ifi_link_state); 1622 CP(*src, *dst, ifi_vhid); 1623 CP(*src, *dst, ifi_baudrate_pf); 1624 dst->ifi_datalen = sizeof(struct if_data32); 1625 CP(*src, *dst, ifi_mtu); 1626 CP(*src, *dst, ifi_metric); 1627 CP(*src, *dst, ifi_baudrate); 1628 CP(*src, *dst, ifi_ipackets); 1629 CP(*src, *dst, ifi_ierrors); 1630 CP(*src, *dst, ifi_opackets); 1631 CP(*src, *dst, ifi_oerrors); 1632 CP(*src, *dst, ifi_collisions); 1633 CP(*src, *dst, ifi_ibytes); 1634 CP(*src, *dst, ifi_obytes); 1635 CP(*src, *dst, ifi_imcasts); 1636 CP(*src, *dst, ifi_omcasts); 1637 CP(*src, *dst, ifi_iqdrops); 1638 CP(*src, *dst, ifi_noproto); 1639 CP(*src, *dst, ifi_hwassist); 1640 CP(*src, *dst, ifi_epoch); 1641 TV_CP(*src, *dst, ifi_lastchange); 1642 } 1643 #endif 1644 1645 static int 1646 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info, 1647 struct walkarg *w, int len) 1648 { 1649 struct if_msghdrl *ifm; 1650 1651 #ifdef COMPAT_FREEBSD32 1652 if (w->w_req->flags & SCTL_MASK32) { 1653 struct if_msghdrl32 *ifm32; 1654 1655 ifm32 = (struct if_msghdrl32 *)w->w_tmem; 1656 ifm32->ifm_addrs = info->rti_addrs; 1657 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1658 ifm32->ifm_index = ifp->if_index; 1659 ifm32->_ifm_spare1 = 0; 1660 ifm32->ifm_len = sizeof(*ifm32); 1661 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1662 1663 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1664 /* Fixup if_data carp(4) vhid. */ 1665 if (carp_get_vhid_p != NULL) 1666 ifm32->ifm_data.ifi_vhid = 1667 (*carp_get_vhid_p)(ifp->if_addr); 1668 1669 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1670 } 1671 #endif 1672 ifm = (struct if_msghdrl *)w->w_tmem; 1673 ifm->ifm_addrs = info->rti_addrs; 1674 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1675 ifm->ifm_index = ifp->if_index; 1676 ifm->_ifm_spare1 = 0; 1677 ifm->ifm_len = sizeof(*ifm); 1678 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1679 1680 ifm->ifm_data = ifp->if_data; 1681 /* Fixup if_data carp(4) vhid. */ 1682 if (carp_get_vhid_p != NULL) 1683 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1684 1685 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1686 } 1687 1688 static int 1689 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info, 1690 struct walkarg *w, int len) 1691 { 1692 struct if_msghdr *ifm; 1693 1694 #ifdef COMPAT_FREEBSD32 1695 if (w->w_req->flags & SCTL_MASK32) { 1696 struct if_msghdr32 *ifm32; 1697 1698 ifm32 = (struct if_msghdr32 *)w->w_tmem; 1699 ifm32->ifm_addrs = info->rti_addrs; 1700 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1701 ifm32->ifm_index = ifp->if_index; 1702 1703 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1704 /* Fixup if_data carp(4) vhid. */ 1705 if (carp_get_vhid_p != NULL) 1706 ifm32->ifm_data.ifi_vhid = 1707 (*carp_get_vhid_p)(ifp->if_addr); 1708 1709 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1710 } 1711 #endif 1712 ifm = (struct if_msghdr *)w->w_tmem; 1713 ifm->ifm_addrs = info->rti_addrs; 1714 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1715 ifm->ifm_index = ifp->if_index; 1716 1717 ifm->ifm_data = ifp->if_data; 1718 /* Fixup if_data carp(4) vhid. */ 1719 if (carp_get_vhid_p != NULL) 1720 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1721 1722 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1723 } 1724 1725 static int 1726 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1727 struct walkarg *w, int len) 1728 { 1729 struct ifa_msghdrl *ifam; 1730 1731 #ifdef COMPAT_FREEBSD32 1732 if (w->w_req->flags & SCTL_MASK32) { 1733 struct ifa_msghdrl32 *ifam32; 1734 1735 ifam32 = (struct ifa_msghdrl32 *)w->w_tmem; 1736 ifam32->ifam_addrs = info->rti_addrs; 1737 ifam32->ifam_flags = ifa->ifa_flags; 1738 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1739 ifam32->_ifam_spare1 = 0; 1740 ifam32->ifam_len = sizeof(*ifam32); 1741 ifam32->ifam_data_off = 1742 offsetof(struct ifa_msghdrl32, ifam_data); 1743 ifam32->ifam_metric = ifa->ifa_metric; 1744 1745 bzero(&ifam32->ifam_data, sizeof(ifam32->ifam_data)); 1746 ifam32->ifam_data.ifi_datalen = sizeof(struct if_data32); 1747 ifam32->ifam_data.ifi_ipackets = 1748 counter_u64_fetch(ifa->ifa_ipackets); 1749 ifam32->ifam_data.ifi_opackets = 1750 counter_u64_fetch(ifa->ifa_opackets); 1751 ifam32->ifam_data.ifi_ibytes = 1752 counter_u64_fetch(ifa->ifa_ibytes); 1753 ifam32->ifam_data.ifi_obytes = 1754 counter_u64_fetch(ifa->ifa_obytes); 1755 1756 /* Fixup if_data carp(4) vhid. */ 1757 if (carp_get_vhid_p != NULL) 1758 ifam32->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1759 1760 return (SYSCTL_OUT(w->w_req, (caddr_t)ifam32, len)); 1761 } 1762 #endif 1763 1764 ifam = (struct ifa_msghdrl *)w->w_tmem; 1765 ifam->ifam_addrs = info->rti_addrs; 1766 ifam->ifam_flags = ifa->ifa_flags; 1767 ifam->ifam_index = ifa->ifa_ifp->if_index; 1768 ifam->_ifam_spare1 = 0; 1769 ifam->ifam_len = sizeof(*ifam); 1770 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1771 ifam->ifam_metric = ifa->ifa_metric; 1772 1773 bzero(&ifam->ifam_data, sizeof(ifam->ifam_data)); 1774 ifam->ifam_data.ifi_datalen = sizeof(struct if_data); 1775 ifam->ifam_data.ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1776 ifam->ifam_data.ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1777 ifam->ifam_data.ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1778 ifam->ifam_data.ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1779 1780 /* Fixup if_data carp(4) vhid. */ 1781 if (carp_get_vhid_p != NULL) 1782 ifam->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1783 1784 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1785 } 1786 1787 static int 1788 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1789 struct walkarg *w, int len) 1790 { 1791 struct ifa_msghdr *ifam; 1792 1793 ifam = (struct ifa_msghdr *)w->w_tmem; 1794 ifam->ifam_addrs = info->rti_addrs; 1795 ifam->ifam_flags = ifa->ifa_flags; 1796 ifam->ifam_index = ifa->ifa_ifp->if_index; 1797 ifam->ifam_metric = ifa->ifa_metric; 1798 1799 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1800 } 1801 1802 static int 1803 sysctl_iflist(int af, struct walkarg *w) 1804 { 1805 struct ifnet *ifp; 1806 struct ifaddr *ifa; 1807 struct rt_addrinfo info; 1808 int len, error = 0; 1809 1810 bzero((caddr_t)&info, sizeof(info)); 1811 IFNET_RLOCK_NOSLEEP(); 1812 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1813 if (w->w_arg && w->w_arg != ifp->if_index) 1814 continue; 1815 IF_ADDR_RLOCK(ifp); 1816 ifa = ifp->if_addr; 1817 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1818 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1819 info.rti_info[RTAX_IFP] = NULL; 1820 if (w->w_req && w->w_tmem) { 1821 if (w->w_op == NET_RT_IFLISTL) 1822 error = sysctl_iflist_ifml(ifp, &info, w, len); 1823 else 1824 error = sysctl_iflist_ifm(ifp, &info, w, len); 1825 if (error) 1826 goto done; 1827 } 1828 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1829 if (af && af != ifa->ifa_addr->sa_family) 1830 continue; 1831 if (prison_if(w->w_req->td->td_ucred, 1832 ifa->ifa_addr) != 0) 1833 continue; 1834 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1835 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1836 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1837 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1838 if (w->w_req && w->w_tmem) { 1839 if (w->w_op == NET_RT_IFLISTL) 1840 error = sysctl_iflist_ifaml(ifa, &info, 1841 w, len); 1842 else 1843 error = sysctl_iflist_ifam(ifa, &info, 1844 w, len); 1845 if (error) 1846 goto done; 1847 } 1848 } 1849 IF_ADDR_RUNLOCK(ifp); 1850 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1851 info.rti_info[RTAX_BRD] = NULL; 1852 } 1853 done: 1854 if (ifp != NULL) 1855 IF_ADDR_RUNLOCK(ifp); 1856 IFNET_RUNLOCK_NOSLEEP(); 1857 return (error); 1858 } 1859 1860 static int 1861 sysctl_ifmalist(int af, struct walkarg *w) 1862 { 1863 struct ifnet *ifp; 1864 struct ifmultiaddr *ifma; 1865 struct rt_addrinfo info; 1866 int len, error = 0; 1867 struct ifaddr *ifa; 1868 1869 bzero((caddr_t)&info, sizeof(info)); 1870 IFNET_RLOCK_NOSLEEP(); 1871 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1872 if (w->w_arg && w->w_arg != ifp->if_index) 1873 continue; 1874 ifa = ifp->if_addr; 1875 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1876 IF_ADDR_RLOCK(ifp); 1877 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1878 if (af && af != ifma->ifma_addr->sa_family) 1879 continue; 1880 if (prison_if(w->w_req->td->td_ucred, 1881 ifma->ifma_addr) != 0) 1882 continue; 1883 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1884 info.rti_info[RTAX_GATEWAY] = 1885 (ifma->ifma_addr->sa_family != AF_LINK) ? 1886 ifma->ifma_lladdr : NULL; 1887 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1888 if (w->w_req && w->w_tmem) { 1889 struct ifma_msghdr *ifmam; 1890 1891 ifmam = (struct ifma_msghdr *)w->w_tmem; 1892 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1893 ifmam->ifmam_flags = 0; 1894 ifmam->ifmam_addrs = info.rti_addrs; 1895 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1896 if (error) { 1897 IF_ADDR_RUNLOCK(ifp); 1898 goto done; 1899 } 1900 } 1901 } 1902 IF_ADDR_RUNLOCK(ifp); 1903 } 1904 done: 1905 IFNET_RUNLOCK_NOSLEEP(); 1906 return (error); 1907 } 1908 1909 static int 1910 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1911 { 1912 int *name = (int *)arg1; 1913 u_int namelen = arg2; 1914 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1915 int i, lim, error = EINVAL; 1916 int fib = 0; 1917 u_char af; 1918 struct walkarg w; 1919 1920 name ++; 1921 namelen--; 1922 if (req->newptr) 1923 return (EPERM); 1924 if (name[1] == NET_RT_DUMP) { 1925 if (namelen == 3) 1926 fib = req->td->td_proc->p_fibnum; 1927 else if (namelen == 4) 1928 fib = (name[3] == RT_ALL_FIBS) ? 1929 req->td->td_proc->p_fibnum : name[3]; 1930 else 1931 return ((namelen < 3) ? EISDIR : ENOTDIR); 1932 if (fib < 0 || fib >= rt_numfibs) 1933 return (EINVAL); 1934 } else if (namelen != 3) 1935 return ((namelen < 3) ? EISDIR : ENOTDIR); 1936 af = name[0]; 1937 if (af > AF_MAX) 1938 return (EINVAL); 1939 bzero(&w, sizeof(w)); 1940 w.w_op = name[1]; 1941 w.w_arg = name[2]; 1942 w.w_req = req; 1943 1944 error = sysctl_wire_old_buffer(req, 0); 1945 if (error) 1946 return (error); 1947 switch (w.w_op) { 1948 1949 case NET_RT_DUMP: 1950 case NET_RT_FLAGS: 1951 if (af == 0) { /* dump all tables */ 1952 i = 1; 1953 lim = AF_MAX; 1954 } else /* dump only one table */ 1955 i = lim = af; 1956 1957 /* 1958 * take care of llinfo entries, the caller must 1959 * specify an AF 1960 */ 1961 if (w.w_op == NET_RT_FLAGS && 1962 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1963 if (af != 0) 1964 error = lltable_sysctl_dumparp(af, w.w_req); 1965 else 1966 error = EINVAL; 1967 break; 1968 } 1969 /* 1970 * take care of routing entries 1971 */ 1972 for (error = 0; error == 0 && i <= lim; i++) { 1973 rnh = rt_tables_get_rnh(fib, i); 1974 if (rnh != NULL) { 1975 RADIX_NODE_HEAD_RLOCK(rnh); 1976 error = rnh->rnh_walktree(rnh, 1977 sysctl_dumpentry, &w); 1978 RADIX_NODE_HEAD_RUNLOCK(rnh); 1979 } else if (af != 0) 1980 error = EAFNOSUPPORT; 1981 } 1982 break; 1983 1984 case NET_RT_IFLIST: 1985 case NET_RT_IFLISTL: 1986 error = sysctl_iflist(af, &w); 1987 break; 1988 1989 case NET_RT_IFMALIST: 1990 error = sysctl_ifmalist(af, &w); 1991 break; 1992 } 1993 if (w.w_tmem) 1994 free(w.w_tmem, M_RTABLE); 1995 return (error); 1996 } 1997 1998 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1999 2000 /* 2001 * Definitions of protocols supported in the ROUTE domain. 2002 */ 2003 2004 static struct domain routedomain; /* or at least forward */ 2005 2006 static struct protosw routesw[] = { 2007 { 2008 .pr_type = SOCK_RAW, 2009 .pr_domain = &routedomain, 2010 .pr_flags = PR_ATOMIC|PR_ADDR, 2011 .pr_output = route_output, 2012 .pr_ctlinput = raw_ctlinput, 2013 .pr_init = raw_init, 2014 .pr_usrreqs = &route_usrreqs 2015 } 2016 }; 2017 2018 static struct domain routedomain = { 2019 .dom_family = PF_ROUTE, 2020 .dom_name = "route", 2021 .dom_protosw = routesw, 2022 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 2023 }; 2024 2025 VNET_DOMAIN_SET(route); 2026