1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_route.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rmlock.h> 50 #include <sys/rwlock.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/if_llatbl.h> 61 #include <net/if_types.h> 62 #include <net/netisr.h> 63 #include <net/raw_cb.h> 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/route_var.h> 67 #include <net/vnet.h> 68 69 #include <netinet/in.h> 70 #include <netinet/if_ether.h> 71 #include <netinet/ip_carp.h> 72 #ifdef INET6 73 #include <netinet6/in6_var.h> 74 #include <netinet6/ip6_var.h> 75 #include <netinet6/scope6_var.h> 76 #endif 77 #include <net/route/nhop.h> 78 79 #ifdef COMPAT_FREEBSD32 80 #include <sys/mount.h> 81 #include <compat/freebsd32/freebsd32.h> 82 83 struct if_msghdr32 { 84 uint16_t ifm_msglen; 85 uint8_t ifm_version; 86 uint8_t ifm_type; 87 int32_t ifm_addrs; 88 int32_t ifm_flags; 89 uint16_t ifm_index; 90 uint16_t _ifm_spare1; 91 struct if_data ifm_data; 92 }; 93 94 struct if_msghdrl32 { 95 uint16_t ifm_msglen; 96 uint8_t ifm_version; 97 uint8_t ifm_type; 98 int32_t ifm_addrs; 99 int32_t ifm_flags; 100 uint16_t ifm_index; 101 uint16_t _ifm_spare1; 102 uint16_t ifm_len; 103 uint16_t ifm_data_off; 104 uint32_t _ifm_spare2; 105 struct if_data ifm_data; 106 }; 107 108 struct ifa_msghdrl32 { 109 uint16_t ifam_msglen; 110 uint8_t ifam_version; 111 uint8_t ifam_type; 112 int32_t ifam_addrs; 113 int32_t ifam_flags; 114 uint16_t ifam_index; 115 uint16_t _ifam_spare1; 116 uint16_t ifam_len; 117 uint16_t ifam_data_off; 118 int32_t ifam_metric; 119 struct if_data ifam_data; 120 }; 121 122 #define SA_SIZE32(sa) \ 123 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 124 sizeof(int) : \ 125 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 126 127 #endif /* COMPAT_FREEBSD32 */ 128 129 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 130 131 /* NB: these are not modified */ 132 static struct sockaddr route_src = { 2, PF_ROUTE, }; 133 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 134 135 /* These are external hooks for CARP. */ 136 int (*carp_get_vhid_p)(struct ifaddr *); 137 138 /* 139 * Used by rtsock/raw_input callback code to decide whether to filter the update 140 * notification to a socket bound to a particular FIB. 141 */ 142 #define RTS_FILTER_FIB M_PROTO8 143 144 typedef struct { 145 int ip_count; /* attached w/ AF_INET */ 146 int ip6_count; /* attached w/ AF_INET6 */ 147 int any_count; /* total attached */ 148 } route_cb_t; 149 VNET_DEFINE_STATIC(route_cb_t, route_cb); 150 #define V_route_cb VNET(route_cb) 151 152 struct mtx rtsock_mtx; 153 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 154 155 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 156 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 157 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 158 159 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 160 161 struct walkarg { 162 int family; 163 int w_tmemsize; 164 int w_op, w_arg; 165 caddr_t w_tmem; 166 struct sysctl_req *w_req; 167 struct sockaddr *dst; 168 struct sockaddr *mask; 169 }; 170 171 static void rts_input(struct mbuf *m); 172 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 173 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 174 struct walkarg *w, int *plen); 175 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 176 struct rt_addrinfo *rtinfo); 177 static int cleanup_xaddrs(struct rt_addrinfo *info); 178 static int sysctl_dumpentry(struct rtentry *rt, void *vw); 179 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 180 uint32_t weight, struct walkarg *w); 181 static int sysctl_iflist(int af, struct walkarg *w); 182 static int sysctl_ifmalist(int af, struct walkarg *w); 183 static int route_output(struct mbuf *m, struct socket *so, ...); 184 static void rt_getmetrics(const struct rtentry *rt, 185 const struct nhop_object *nh, struct rt_metrics *out); 186 static void rt_dispatch(struct mbuf *, sa_family_t); 187 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 188 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 189 static int update_rtm_from_rc(struct rt_addrinfo *info, 190 struct rt_msghdr **prtm, int alloc_len, 191 struct rib_cmd_info *rc, struct nhop_object *nh); 192 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 193 struct mbuf *m, sa_family_t saf, u_int fibnum, 194 int rtm_errno); 195 static bool can_export_rte(struct ucred *td_ucred, bool rt_is_host, 196 const struct sockaddr *rt_dst); 197 198 static struct netisr_handler rtsock_nh = { 199 .nh_name = "rtsock", 200 .nh_handler = rts_input, 201 .nh_proto = NETISR_ROUTE, 202 .nh_policy = NETISR_POLICY_SOURCE, 203 }; 204 205 static int 206 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 207 { 208 int error, qlimit; 209 210 netisr_getqlimit(&rtsock_nh, &qlimit); 211 error = sysctl_handle_int(oidp, &qlimit, 0, req); 212 if (error || !req->newptr) 213 return (error); 214 if (qlimit < 1) 215 return (EINVAL); 216 return (netisr_setqlimit(&rtsock_nh, qlimit)); 217 } 218 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 219 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 220 0, 0, sysctl_route_netisr_maxqlen, "I", 221 "maximum routing socket dispatch queue length"); 222 223 static void 224 vnet_rts_init(void) 225 { 226 int tmp; 227 228 if (IS_DEFAULT_VNET(curvnet)) { 229 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 230 rtsock_nh.nh_qlimit = tmp; 231 netisr_register(&rtsock_nh); 232 } 233 #ifdef VIMAGE 234 else 235 netisr_register_vnet(&rtsock_nh); 236 #endif 237 } 238 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 239 vnet_rts_init, 0); 240 241 #ifdef VIMAGE 242 static void 243 vnet_rts_uninit(void) 244 { 245 246 netisr_unregister_vnet(&rtsock_nh); 247 } 248 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 249 vnet_rts_uninit, 0); 250 #endif 251 252 static int 253 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 254 struct rawcb *rp) 255 { 256 int fibnum; 257 258 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 259 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 260 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 261 262 /* No filtering requested. */ 263 if ((m->m_flags & RTS_FILTER_FIB) == 0) 264 return (0); 265 266 /* Check if it is a rts and the fib matches the one of the socket. */ 267 fibnum = M_GETFIB(m); 268 if (proto->sp_family != PF_ROUTE || 269 rp->rcb_socket == NULL || 270 rp->rcb_socket->so_fibnum == fibnum) 271 return (0); 272 273 /* Filtering requested and no match, the socket shall be skipped. */ 274 return (1); 275 } 276 277 static void 278 rts_input(struct mbuf *m) 279 { 280 struct sockproto route_proto; 281 unsigned short *family; 282 struct m_tag *tag; 283 284 route_proto.sp_family = PF_ROUTE; 285 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 286 if (tag != NULL) { 287 family = (unsigned short *)(tag + 1); 288 route_proto.sp_protocol = *family; 289 m_tag_delete(m, tag); 290 } else 291 route_proto.sp_protocol = 0; 292 293 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 294 } 295 296 /* 297 * It really doesn't make any sense at all for this code to share much 298 * with raw_usrreq.c, since its functionality is so restricted. XXX 299 */ 300 static void 301 rts_abort(struct socket *so) 302 { 303 304 raw_usrreqs.pru_abort(so); 305 } 306 307 static void 308 rts_close(struct socket *so) 309 { 310 311 raw_usrreqs.pru_close(so); 312 } 313 314 /* pru_accept is EOPNOTSUPP */ 315 316 static int 317 rts_attach(struct socket *so, int proto, struct thread *td) 318 { 319 struct rawcb *rp; 320 int error; 321 322 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 323 324 /* XXX */ 325 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 326 327 so->so_pcb = (caddr_t)rp; 328 so->so_fibnum = td->td_proc->p_fibnum; 329 error = raw_attach(so, proto); 330 rp = sotorawcb(so); 331 if (error) { 332 so->so_pcb = NULL; 333 free(rp, M_PCB); 334 return error; 335 } 336 RTSOCK_LOCK(); 337 switch(rp->rcb_proto.sp_protocol) { 338 case AF_INET: 339 V_route_cb.ip_count++; 340 break; 341 case AF_INET6: 342 V_route_cb.ip6_count++; 343 break; 344 } 345 V_route_cb.any_count++; 346 RTSOCK_UNLOCK(); 347 soisconnected(so); 348 so->so_options |= SO_USELOOPBACK; 349 return 0; 350 } 351 352 static int 353 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 354 { 355 356 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 357 } 358 359 static int 360 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 361 { 362 363 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 364 } 365 366 /* pru_connect2 is EOPNOTSUPP */ 367 /* pru_control is EOPNOTSUPP */ 368 369 static void 370 rts_detach(struct socket *so) 371 { 372 struct rawcb *rp = sotorawcb(so); 373 374 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 375 376 RTSOCK_LOCK(); 377 switch(rp->rcb_proto.sp_protocol) { 378 case AF_INET: 379 V_route_cb.ip_count--; 380 break; 381 case AF_INET6: 382 V_route_cb.ip6_count--; 383 break; 384 } 385 V_route_cb.any_count--; 386 RTSOCK_UNLOCK(); 387 raw_usrreqs.pru_detach(so); 388 } 389 390 static int 391 rts_disconnect(struct socket *so) 392 { 393 394 return (raw_usrreqs.pru_disconnect(so)); 395 } 396 397 /* pru_listen is EOPNOTSUPP */ 398 399 static int 400 rts_peeraddr(struct socket *so, struct sockaddr **nam) 401 { 402 403 return (raw_usrreqs.pru_peeraddr(so, nam)); 404 } 405 406 /* pru_rcvd is EOPNOTSUPP */ 407 /* pru_rcvoob is EOPNOTSUPP */ 408 409 static int 410 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 411 struct mbuf *control, struct thread *td) 412 { 413 414 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 415 } 416 417 /* pru_sense is null */ 418 419 static int 420 rts_shutdown(struct socket *so) 421 { 422 423 return (raw_usrreqs.pru_shutdown(so)); 424 } 425 426 static int 427 rts_sockaddr(struct socket *so, struct sockaddr **nam) 428 { 429 430 return (raw_usrreqs.pru_sockaddr(so, nam)); 431 } 432 433 static struct pr_usrreqs route_usrreqs = { 434 .pru_abort = rts_abort, 435 .pru_attach = rts_attach, 436 .pru_bind = rts_bind, 437 .pru_connect = rts_connect, 438 .pru_detach = rts_detach, 439 .pru_disconnect = rts_disconnect, 440 .pru_peeraddr = rts_peeraddr, 441 .pru_send = rts_send, 442 .pru_shutdown = rts_shutdown, 443 .pru_sockaddr = rts_sockaddr, 444 .pru_close = rts_close, 445 }; 446 447 #ifndef _SOCKADDR_UNION_DEFINED 448 #define _SOCKADDR_UNION_DEFINED 449 /* 450 * The union of all possible address formats we handle. 451 */ 452 union sockaddr_union { 453 struct sockaddr sa; 454 struct sockaddr_in sin; 455 struct sockaddr_in6 sin6; 456 }; 457 #endif /* _SOCKADDR_UNION_DEFINED */ 458 459 static int 460 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 461 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 462 { 463 #if defined(INET) || defined(INET6) 464 struct epoch_tracker et; 465 #endif 466 467 /* First, see if the returned address is part of the jail. */ 468 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 469 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 470 return (0); 471 } 472 473 switch (info->rti_info[RTAX_DST]->sa_family) { 474 #ifdef INET 475 case AF_INET: 476 { 477 struct in_addr ia; 478 struct ifaddr *ifa; 479 int found; 480 481 found = 0; 482 /* 483 * Try to find an address on the given outgoing interface 484 * that belongs to the jail. 485 */ 486 NET_EPOCH_ENTER(et); 487 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 488 struct sockaddr *sa; 489 sa = ifa->ifa_addr; 490 if (sa->sa_family != AF_INET) 491 continue; 492 ia = ((struct sockaddr_in *)sa)->sin_addr; 493 if (prison_check_ip4(cred, &ia) == 0) { 494 found = 1; 495 break; 496 } 497 } 498 NET_EPOCH_EXIT(et); 499 if (!found) { 500 /* 501 * As a last resort return the 'default' jail address. 502 */ 503 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 504 sin_addr; 505 if (prison_get_ip4(cred, &ia) != 0) 506 return (ESRCH); 507 } 508 bzero(&saun->sin, sizeof(struct sockaddr_in)); 509 saun->sin.sin_len = sizeof(struct sockaddr_in); 510 saun->sin.sin_family = AF_INET; 511 saun->sin.sin_addr.s_addr = ia.s_addr; 512 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 513 break; 514 } 515 #endif 516 #ifdef INET6 517 case AF_INET6: 518 { 519 struct in6_addr ia6; 520 struct ifaddr *ifa; 521 int found; 522 523 found = 0; 524 /* 525 * Try to find an address on the given outgoing interface 526 * that belongs to the jail. 527 */ 528 NET_EPOCH_ENTER(et); 529 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 530 struct sockaddr *sa; 531 sa = ifa->ifa_addr; 532 if (sa->sa_family != AF_INET6) 533 continue; 534 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 535 &ia6, sizeof(struct in6_addr)); 536 if (prison_check_ip6(cred, &ia6) == 0) { 537 found = 1; 538 break; 539 } 540 } 541 NET_EPOCH_EXIT(et); 542 if (!found) { 543 /* 544 * As a last resort return the 'default' jail address. 545 */ 546 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 547 sin6_addr; 548 if (prison_get_ip6(cred, &ia6) != 0) 549 return (ESRCH); 550 } 551 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 552 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 553 saun->sin6.sin6_family = AF_INET6; 554 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 555 if (sa6_recoverscope(&saun->sin6) != 0) 556 return (ESRCH); 557 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 558 break; 559 } 560 #endif 561 default: 562 return (ESRCH); 563 } 564 return (0); 565 } 566 567 static int 568 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun) 569 { 570 struct ifaddr *ifa; 571 sa_family_t saf; 572 573 if (V_loif == NULL) { 574 printf("Unable to add blackhole/reject nhop without loopback"); 575 return (ENOTSUP); 576 } 577 info->rti_ifp = V_loif; 578 579 saf = info->rti_info[RTAX_DST]->sa_family; 580 581 CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) { 582 if (ifa->ifa_addr->sa_family == saf) { 583 info->rti_ifa = ifa; 584 break; 585 } 586 } 587 if (info->rti_ifa == NULL) 588 return (ENOTSUP); 589 590 bzero(saun, sizeof(union sockaddr_union)); 591 switch (saf) { 592 #ifdef INET 593 case AF_INET: 594 saun->sin.sin_family = AF_INET; 595 saun->sin.sin_len = sizeof(struct sockaddr_in); 596 saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 597 break; 598 #endif 599 #ifdef INET6 600 case AF_INET6: 601 saun->sin6.sin6_family = AF_INET6; 602 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 603 saun->sin6.sin6_addr = in6addr_loopback; 604 break; 605 #endif 606 default: 607 return (ENOTSUP); 608 } 609 info->rti_info[RTAX_GATEWAY] = &saun->sa; 610 info->rti_flags |= RTF_GATEWAY; 611 612 return (0); 613 } 614 615 /* 616 * Fills in @info based on userland-provided @rtm message. 617 * 618 * Returns 0 on success. 619 */ 620 static int 621 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info) 622 { 623 int error; 624 sa_family_t saf; 625 626 rtm->rtm_pid = curproc->p_pid; 627 info->rti_addrs = rtm->rtm_addrs; 628 629 info->rti_mflags = rtm->rtm_inits; 630 info->rti_rmx = &rtm->rtm_rmx; 631 632 /* 633 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 634 * link-local address because rtrequest requires addresses with 635 * embedded scope id. 636 */ 637 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 638 return (EINVAL); 639 640 info->rti_flags = rtm->rtm_flags; 641 error = cleanup_xaddrs(info); 642 if (error != 0) 643 return (error); 644 saf = info->rti_info[RTAX_DST]->sa_family; 645 /* 646 * Verify that the caller has the appropriate privilege; RTM_GET 647 * is the only operation the non-superuser is allowed. 648 */ 649 if (rtm->rtm_type != RTM_GET) { 650 error = priv_check(curthread, PRIV_NET_ROUTE); 651 if (error != 0) 652 return (error); 653 } 654 655 /* 656 * The given gateway address may be an interface address. 657 * For example, issuing a "route change" command on a route 658 * entry that was created from a tunnel, and the gateway 659 * address given is the local end point. In this case the 660 * RTF_GATEWAY flag must be cleared or the destination will 661 * not be reachable even though there is no error message. 662 */ 663 if (info->rti_info[RTAX_GATEWAY] != NULL && 664 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 665 struct rt_addrinfo ginfo; 666 struct sockaddr *gdst; 667 struct sockaddr_storage ss; 668 669 bzero(&ginfo, sizeof(ginfo)); 670 bzero(&ss, sizeof(ss)); 671 ss.ss_len = sizeof(ss); 672 673 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 674 gdst = info->rti_info[RTAX_GATEWAY]; 675 676 /* 677 * A host route through the loopback interface is 678 * installed for each interface adddress. In pre 8.0 679 * releases the interface address of a PPP link type 680 * is not reachable locally. This behavior is fixed as 681 * part of the new L2/L3 redesign and rewrite work. The 682 * signature of this interface address route is the 683 * AF_LINK sa_family type of the gateway, and the 684 * rt_ifp has the IFF_LOOPBACK flag set. 685 */ 686 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 687 if (ss.ss_family == AF_LINK && 688 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 689 info->rti_flags &= ~RTF_GATEWAY; 690 info->rti_flags |= RTF_GWFLAG_COMPAT; 691 } 692 rib_free_info(&ginfo); 693 } 694 } 695 696 return (0); 697 } 698 699 static struct nhop_object * 700 select_nhop(struct nhop_object *nh, const struct sockaddr *gw) 701 { 702 if (!NH_IS_NHGRP(nh)) 703 return (nh); 704 #ifdef ROUTE_MPATH 705 struct weightened_nhop *wn; 706 uint32_t num_nhops; 707 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 708 if (gw == NULL) 709 return (wn[0].nh); 710 for (int i = 0; i < num_nhops; i++) { 711 if (match_nhop_gw(wn[i].nh, gw)) 712 return (wn[i].nh); 713 } 714 #endif 715 return (NULL); 716 } 717 718 /* 719 * Handles RTM_GET message from routing socket, returning matching rt. 720 * 721 * Returns: 722 * 0 on success, with locked and referenced matching rt in @rt_nrt 723 * errno of failure 724 */ 725 static int 726 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 727 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 728 { 729 RIB_RLOCK_TRACKER; 730 struct rib_head *rnh; 731 struct nhop_object *nh; 732 sa_family_t saf; 733 734 saf = info->rti_info[RTAX_DST]->sa_family; 735 736 rnh = rt_tables_get_rnh(fibnum, saf); 737 if (rnh == NULL) 738 return (EAFNOSUPPORT); 739 740 RIB_RLOCK(rnh); 741 742 /* 743 * By (implicit) convention host route (one without netmask) 744 * means longest-prefix-match request and the route with netmask 745 * means exact-match lookup. 746 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128 747 * prefixes, use original data to check for the netmask presence. 748 */ 749 if ((rtm->rtm_addrs & RTA_NETMASK) == 0) { 750 /* 751 * Provide longest prefix match for 752 * address lookup (no mask). 753 * 'route -n get addr' 754 */ 755 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 756 info->rti_info[RTAX_DST], &rnh->head); 757 } else 758 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 759 info->rti_info[RTAX_DST], 760 info->rti_info[RTAX_NETMASK], &rnh->head); 761 762 if (rc->rc_rt == NULL) { 763 RIB_RUNLOCK(rnh); 764 return (ESRCH); 765 } 766 767 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 768 if (nh == NULL) { 769 RIB_RUNLOCK(rnh); 770 return (ESRCH); 771 } 772 /* 773 * If performing proxied L2 entry insertion, and 774 * the actual PPP host entry is found, perform 775 * another search to retrieve the prefix route of 776 * the local end point of the PPP link. 777 * TODO: move this logic to userland. 778 */ 779 if (rtm->rtm_flags & RTF_ANNOUNCE) { 780 struct sockaddr laddr; 781 782 if (nh->nh_ifp != NULL && 783 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 784 struct ifaddr *ifa; 785 786 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 787 RT_ALL_FIBS); 788 if (ifa != NULL) 789 rt_maskedcopy(ifa->ifa_addr, 790 &laddr, 791 ifa->ifa_netmask); 792 } else 793 rt_maskedcopy(nh->nh_ifa->ifa_addr, 794 &laddr, 795 nh->nh_ifa->ifa_netmask); 796 /* 797 * refactor rt and no lock operation necessary 798 */ 799 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 800 &rnh->head); 801 if (rc->rc_rt == NULL) { 802 RIB_RUNLOCK(rnh); 803 return (ESRCH); 804 } 805 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 806 if (nh == NULL) { 807 RIB_RUNLOCK(rnh); 808 return (ESRCH); 809 } 810 } 811 rc->rc_nh_new = nh; 812 rc->rc_nh_weight = rc->rc_rt->rt_weight; 813 RIB_RUNLOCK(rnh); 814 815 return (0); 816 } 817 818 static void 819 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask) 820 { 821 #ifdef INET 822 if (family == AF_INET) { 823 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 824 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 825 826 bzero(dst4, sizeof(struct sockaddr_in)); 827 bzero(mask4, sizeof(struct sockaddr_in)); 828 829 dst4->sin_family = AF_INET; 830 dst4->sin_len = sizeof(struct sockaddr_in); 831 mask4->sin_family = AF_INET; 832 mask4->sin_len = sizeof(struct sockaddr_in); 833 } 834 #endif 835 #ifdef INET6 836 if (family == AF_INET6) { 837 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 838 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 839 840 bzero(dst6, sizeof(struct sockaddr_in6)); 841 bzero(mask6, sizeof(struct sockaddr_in6)); 842 843 dst6->sin6_family = AF_INET6; 844 dst6->sin6_len = sizeof(struct sockaddr_in6); 845 mask6->sin6_family = AF_INET6; 846 mask6->sin6_len = sizeof(struct sockaddr_in6); 847 } 848 #endif 849 } 850 851 static void 852 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst, 853 struct sockaddr *mask) 854 { 855 #ifdef INET 856 if (dst->sa_family == AF_INET) { 857 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 858 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 859 uint32_t scopeid = 0; 860 rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr, 861 &scopeid); 862 return; 863 } 864 #endif 865 #ifdef INET6 866 if (dst->sa_family == AF_INET6) { 867 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 868 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 869 uint32_t scopeid = 0; 870 rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr, 871 &mask6->sin6_addr, &scopeid); 872 dst6->sin6_scope_id = scopeid; 873 return; 874 } 875 #endif 876 } 877 878 879 /* 880 * Update sockaddrs, flags, etc in @prtm based on @rc data. 881 * rtm can be reallocated. 882 * 883 * Returns 0 on success, along with pointer to (potentially reallocated) 884 * rtm. 885 * 886 */ 887 static int 888 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 889 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 890 { 891 struct walkarg w; 892 union sockaddr_union saun; 893 struct rt_msghdr *rtm, *orig_rtm = NULL; 894 struct ifnet *ifp; 895 int error, len; 896 897 rtm = *prtm; 898 union sockaddr_union sa_dst, sa_mask; 899 int family = info->rti_info[RTAX_DST]->sa_family; 900 init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa); 901 export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa); 902 903 info->rti_info[RTAX_DST] = &sa_dst.sa; 904 info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa; 905 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 906 info->rti_info[RTAX_GENMASK] = 0; 907 ifp = nh->nh_ifp; 908 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 909 if (ifp) { 910 info->rti_info[RTAX_IFP] = 911 ifp->if_addr->ifa_addr; 912 error = rtm_get_jailed(info, ifp, nh, 913 &saun, curthread->td_ucred); 914 if (error != 0) 915 return (error); 916 if (ifp->if_flags & IFF_POINTOPOINT) 917 info->rti_info[RTAX_BRD] = 918 nh->nh_ifa->ifa_dstaddr; 919 rtm->rtm_index = ifp->if_index; 920 } else { 921 info->rti_info[RTAX_IFP] = NULL; 922 info->rti_info[RTAX_IFA] = NULL; 923 } 924 } else if (ifp != NULL) 925 rtm->rtm_index = ifp->if_index; 926 927 /* Check if we need to realloc storage */ 928 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 929 if (len > alloc_len) { 930 struct rt_msghdr *tmp_rtm; 931 932 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 933 if (tmp_rtm == NULL) 934 return (ENOBUFS); 935 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 936 orig_rtm = rtm; 937 rtm = tmp_rtm; 938 alloc_len = len; 939 940 /* 941 * Delay freeing original rtm as info contains 942 * data referencing it. 943 */ 944 } 945 946 w.w_tmem = (caddr_t)rtm; 947 w.w_tmemsize = alloc_len; 948 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 949 950 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 951 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 952 rtm->rtm_flags = RTF_GATEWAY | 953 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 954 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 955 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 956 rtm->rtm_addrs = info->rti_addrs; 957 958 if (orig_rtm != NULL) 959 free(orig_rtm, M_TEMP); 960 *prtm = rtm; 961 962 return (0); 963 } 964 965 #ifdef ROUTE_MPATH 966 static void 967 save_del_notification(struct rib_cmd_info *rc, void *_cbdata) 968 { 969 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 970 971 if (rc->rc_cmd == RTM_DELETE) 972 *rc_new = *rc; 973 } 974 975 static void 976 save_add_notification(struct rib_cmd_info *rc, void *_cbdata) 977 { 978 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 979 980 if (rc->rc_cmd == RTM_ADD) 981 *rc_new = *rc; 982 } 983 #endif 984 985 /*ARGSUSED*/ 986 static int 987 route_output(struct mbuf *m, struct socket *so, ...) 988 { 989 struct rt_msghdr *rtm = NULL; 990 struct rtentry *rt = NULL; 991 struct rt_addrinfo info; 992 struct epoch_tracker et; 993 #ifdef INET6 994 struct sockaddr_storage ss; 995 struct sockaddr_in6 *sin6; 996 int i, rti_need_deembed = 0; 997 #endif 998 int alloc_len = 0, len, error = 0, fibnum; 999 sa_family_t saf = AF_UNSPEC; 1000 struct rib_cmd_info rc; 1001 struct nhop_object *nh; 1002 1003 fibnum = so->so_fibnum; 1004 #define senderr(e) { error = e; goto flush;} 1005 if (m == NULL || ((m->m_len < sizeof(long)) && 1006 (m = m_pullup(m, sizeof(long))) == NULL)) 1007 return (ENOBUFS); 1008 if ((m->m_flags & M_PKTHDR) == 0) 1009 panic("route_output"); 1010 NET_EPOCH_ENTER(et); 1011 len = m->m_pkthdr.len; 1012 if (len < sizeof(*rtm) || 1013 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 1014 senderr(EINVAL); 1015 1016 /* 1017 * Most of current messages are in range 200-240 bytes, 1018 * minimize possible re-allocation on reply using larger size 1019 * buffer aligned on 1k boundaty. 1020 */ 1021 alloc_len = roundup2(len, 1024); 1022 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 1023 senderr(ENOBUFS); 1024 1025 m_copydata(m, 0, len, (caddr_t)rtm); 1026 bzero(&info, sizeof(info)); 1027 nh = NULL; 1028 1029 if (rtm->rtm_version != RTM_VERSION) { 1030 /* Do not touch message since format is unknown */ 1031 free(rtm, M_TEMP); 1032 rtm = NULL; 1033 senderr(EPROTONOSUPPORT); 1034 } 1035 1036 /* 1037 * Starting from here, it is possible 1038 * to alter original message and insert 1039 * caller PID and error value. 1040 */ 1041 1042 if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) { 1043 senderr(error); 1044 } 1045 1046 saf = info.rti_info[RTAX_DST]->sa_family; 1047 1048 /* support for new ARP code */ 1049 if (rtm->rtm_flags & RTF_LLDATA) { 1050 error = lla_rt_output(rtm, &info); 1051 #ifdef INET6 1052 if (error == 0) 1053 rti_need_deembed = 1; 1054 #endif 1055 goto flush; 1056 } 1057 1058 union sockaddr_union gw_saun; 1059 int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT); 1060 if (blackhole_flags != 0) { 1061 if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT)) 1062 error = fill_blackholeinfo(&info, &gw_saun); 1063 else 1064 error = EINVAL; 1065 if (error != 0) 1066 senderr(error); 1067 /* TODO: rebuild rtm from scratch */ 1068 } 1069 1070 switch (rtm->rtm_type) { 1071 case RTM_ADD: 1072 case RTM_CHANGE: 1073 if (rtm->rtm_type == RTM_ADD) { 1074 if (info.rti_info[RTAX_GATEWAY] == NULL) 1075 senderr(EINVAL); 1076 } 1077 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 1078 if (error == 0) { 1079 #ifdef INET6 1080 rti_need_deembed = 1; 1081 #endif 1082 #ifdef ROUTE_MPATH 1083 if (NH_IS_NHGRP(rc.rc_nh_new) || 1084 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { 1085 struct rib_cmd_info rc_simple = {}; 1086 rib_decompose_notification(&rc, 1087 save_add_notification, (void *)&rc_simple); 1088 rc = rc_simple; 1089 } 1090 #endif 1091 nh = rc.rc_nh_new; 1092 rtm->rtm_index = nh->nh_ifp->if_index; 1093 rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); 1094 } 1095 break; 1096 1097 case RTM_DELETE: 1098 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 1099 if (error == 0) { 1100 #ifdef ROUTE_MPATH 1101 if (NH_IS_NHGRP(rc.rc_nh_old) || 1102 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { 1103 struct rib_cmd_info rc_simple = {}; 1104 rib_decompose_notification(&rc, 1105 save_del_notification, (void *)&rc_simple); 1106 rc = rc_simple; 1107 } 1108 #endif 1109 nh = rc.rc_nh_old; 1110 goto report; 1111 } 1112 #ifdef INET6 1113 /* rt_msg2() will not be used when RTM_DELETE fails. */ 1114 rti_need_deembed = 1; 1115 #endif 1116 break; 1117 1118 case RTM_GET: 1119 error = handle_rtm_get(&info, fibnum, rtm, &rc); 1120 if (error != 0) 1121 senderr(error); 1122 nh = rc.rc_nh_new; 1123 1124 report: 1125 if (!can_export_rte(curthread->td_ucred, 1126 info.rti_info[RTAX_NETMASK] == NULL, 1127 info.rti_info[RTAX_DST])) { 1128 senderr(ESRCH); 1129 } 1130 1131 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 1132 /* 1133 * Note that some sockaddr pointers may have changed to 1134 * point to memory outsize @rtm. Some may be pointing 1135 * to the on-stack variables. 1136 * Given that, any pointer in @info CANNOT BE USED. 1137 */ 1138 1139 /* 1140 * scopeid deembedding has been performed while 1141 * writing updated rtm in rtsock_msg_buffer(). 1142 * With that in mind, skip deembedding procedure below. 1143 */ 1144 #ifdef INET6 1145 rti_need_deembed = 0; 1146 #endif 1147 if (error != 0) 1148 senderr(error); 1149 break; 1150 1151 default: 1152 senderr(EOPNOTSUPP); 1153 } 1154 1155 flush: 1156 NET_EPOCH_EXIT(et); 1157 rt = NULL; 1158 1159 #ifdef INET6 1160 if (rtm != NULL) { 1161 if (rti_need_deembed) { 1162 /* sin6_scope_id is recovered before sending rtm. */ 1163 sin6 = (struct sockaddr_in6 *)&ss; 1164 for (i = 0; i < RTAX_MAX; i++) { 1165 if (info.rti_info[i] == NULL) 1166 continue; 1167 if (info.rti_info[i]->sa_family != AF_INET6) 1168 continue; 1169 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1170 if (sa6_recoverscope(sin6) == 0) 1171 bcopy(sin6, info.rti_info[i], 1172 sizeof(*sin6)); 1173 } 1174 } 1175 } 1176 #endif 1177 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1178 1179 return (error); 1180 } 1181 1182 /* 1183 * Sends the prepared reply message in @rtm to all rtsock clients. 1184 * Frees @m and @rtm. 1185 * 1186 */ 1187 static void 1188 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1189 sa_family_t saf, u_int fibnum, int rtm_errno) 1190 { 1191 struct rawcb *rp = NULL; 1192 1193 /* 1194 * Check to see if we don't want our own messages. 1195 */ 1196 if ((so->so_options & SO_USELOOPBACK) == 0) { 1197 if (V_route_cb.any_count <= 1) { 1198 if (rtm != NULL) 1199 free(rtm, M_TEMP); 1200 m_freem(m); 1201 return; 1202 } 1203 /* There is another listener, so construct message */ 1204 rp = sotorawcb(so); 1205 } 1206 1207 if (rtm != NULL) { 1208 if (rtm_errno!= 0) 1209 rtm->rtm_errno = rtm_errno; 1210 else 1211 rtm->rtm_flags |= RTF_DONE; 1212 1213 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1214 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1215 m_freem(m); 1216 m = NULL; 1217 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1218 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1219 1220 free(rtm, M_TEMP); 1221 } 1222 if (m != NULL) { 1223 M_SETFIB(m, fibnum); 1224 m->m_flags |= RTS_FILTER_FIB; 1225 if (rp) { 1226 /* 1227 * XXX insure we don't get a copy by 1228 * invalidating our protocol 1229 */ 1230 unsigned short family = rp->rcb_proto.sp_family; 1231 rp->rcb_proto.sp_family = 0; 1232 rt_dispatch(m, saf); 1233 rp->rcb_proto.sp_family = family; 1234 } else 1235 rt_dispatch(m, saf); 1236 } 1237 } 1238 1239 static void 1240 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1241 struct rt_metrics *out) 1242 { 1243 1244 bzero(out, sizeof(*out)); 1245 out->rmx_mtu = nh->nh_mtu; 1246 out->rmx_weight = rt->rt_weight; 1247 out->rmx_nhidx = nhop_get_idx(nh); 1248 /* Kernel -> userland timebase conversion. */ 1249 out->rmx_expire = rt->rt_expire ? 1250 rt->rt_expire - time_uptime + time_second : 0; 1251 } 1252 1253 /* 1254 * Extract the addresses of the passed sockaddrs. 1255 * Do a little sanity checking so as to avoid bad memory references. 1256 * This data is derived straight from userland. 1257 */ 1258 static int 1259 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1260 { 1261 struct sockaddr *sa; 1262 int i; 1263 1264 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1265 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1266 continue; 1267 sa = (struct sockaddr *)cp; 1268 /* 1269 * It won't fit. 1270 */ 1271 if (cp + sa->sa_len > cplim) 1272 return (EINVAL); 1273 /* 1274 * there are no more.. quit now 1275 * If there are more bits, they are in error. 1276 * I've seen this. route(1) can evidently generate these. 1277 * This causes kernel to core dump. 1278 * for compatibility, If we see this, point to a safe address. 1279 */ 1280 if (sa->sa_len == 0) { 1281 rtinfo->rti_info[i] = &sa_zero; 1282 return (0); /* should be EINVAL but for compat */ 1283 } 1284 /* accept it */ 1285 #ifdef INET6 1286 if (sa->sa_family == AF_INET6) 1287 sa6_embedscope((struct sockaddr_in6 *)sa, 1288 V_ip6_use_defzone); 1289 #endif 1290 rtinfo->rti_info[i] = sa; 1291 cp += SA_SIZE(sa); 1292 } 1293 return (0); 1294 } 1295 1296 #ifdef INET 1297 static inline void 1298 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr) 1299 { 1300 1301 const struct sockaddr_in nsin = { 1302 .sin_family = AF_INET, 1303 .sin_len = sizeof(struct sockaddr_in), 1304 .sin_addr = addr, 1305 }; 1306 *sin = nsin; 1307 } 1308 #endif 1309 1310 #ifdef INET6 1311 static inline void 1312 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6, 1313 uint32_t scopeid) 1314 { 1315 1316 const struct sockaddr_in6 nsin6 = { 1317 .sin6_family = AF_INET6, 1318 .sin6_len = sizeof(struct sockaddr_in6), 1319 .sin6_addr = *addr6, 1320 .sin6_scope_id = scopeid, 1321 }; 1322 *sin6 = nsin6; 1323 } 1324 #endif 1325 1326 static int 1327 cleanup_xaddrs_gateway(struct rt_addrinfo *info) 1328 { 1329 struct sockaddr *gw = info->rti_info[RTAX_GATEWAY]; 1330 1331 switch (gw->sa_family) { 1332 #ifdef INET 1333 case AF_INET: 1334 { 1335 struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw; 1336 if (gw_sin->sin_len < sizeof(struct sockaddr_in)) { 1337 printf("gw sin_len too small\n"); 1338 return (EINVAL); 1339 } 1340 fill_sockaddr_inet(gw_sin, gw_sin->sin_addr); 1341 } 1342 break; 1343 #endif 1344 #ifdef INET6 1345 case AF_INET6: 1346 { 1347 struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw; 1348 if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) { 1349 printf("gw sin6_len too small\n"); 1350 return (EINVAL); 1351 } 1352 fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0); 1353 break; 1354 } 1355 #endif 1356 case AF_LINK: 1357 { 1358 struct sockaddr_dl_short *gw_sdl; 1359 1360 gw_sdl = (struct sockaddr_dl_short *)gw; 1361 if (gw_sdl->sdl_len < sizeof(struct sockaddr_dl_short)) { 1362 printf("gw sdl_len too small\n"); 1363 return (EINVAL); 1364 } 1365 1366 const struct sockaddr_dl_short sdl = { 1367 .sdl_family = AF_LINK, 1368 .sdl_len = sizeof(struct sockaddr_dl_short), 1369 .sdl_index = gw_sdl->sdl_index, 1370 }; 1371 *gw_sdl = sdl; 1372 break; 1373 } 1374 } 1375 1376 return (0); 1377 } 1378 1379 #ifdef INET 1380 static int 1381 cleanup_xaddrs_inet(struct rt_addrinfo *info) 1382 { 1383 struct sockaddr_in *dst_sa, *mask_sa; 1384 1385 /* Check & fixup dst/netmask combination first */ 1386 dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST]; 1387 mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK]; 1388 1389 struct in_addr mask = { 1390 .s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST, 1391 }; 1392 struct in_addr dst = { 1393 .s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr)) 1394 }; 1395 1396 if (dst_sa->sin_len < sizeof(struct sockaddr_in)) { 1397 printf("dst sin_len too small\n"); 1398 return (EINVAL); 1399 } 1400 if (mask_sa && mask_sa->sin_len < sizeof(struct sockaddr_in)) { 1401 printf("mask sin_len too small\n"); 1402 return (EINVAL); 1403 } 1404 fill_sockaddr_inet(dst_sa, dst); 1405 1406 if (mask.s_addr != INADDR_BROADCAST) 1407 fill_sockaddr_inet(mask_sa, mask); 1408 else { 1409 info->rti_info[RTAX_NETMASK] = NULL; 1410 info->rti_flags |= RTF_HOST; 1411 info->rti_addrs &= ~RTA_NETMASK; 1412 } 1413 1414 /* Check gateway */ 1415 if (info->rti_info[RTAX_GATEWAY] != NULL) 1416 return (cleanup_xaddrs_gateway(info)); 1417 1418 return (0); 1419 } 1420 #endif 1421 1422 #ifdef INET6 1423 static int 1424 cleanup_xaddrs_inet6(struct rt_addrinfo *info) 1425 { 1426 struct sockaddr_in6 *dst_sa, *mask_sa; 1427 struct in6_addr mask; 1428 1429 /* Check & fixup dst/netmask combination first */ 1430 dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST]; 1431 mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK]; 1432 1433 mask = mask_sa ? mask_sa->sin6_addr : in6mask128; 1434 IN6_MASK_ADDR(&dst_sa->sin6_addr, &mask); 1435 1436 if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1437 printf("dst sin6_len too small\n"); 1438 return (EINVAL); 1439 } 1440 if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1441 printf("mask sin6_len too small\n"); 1442 return (EINVAL); 1443 } 1444 fill_sockaddr_inet6(dst_sa, &dst_sa->sin6_addr, 0); 1445 1446 if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) 1447 fill_sockaddr_inet6(mask_sa, &mask, 0); 1448 else { 1449 info->rti_info[RTAX_NETMASK] = NULL; 1450 info->rti_flags |= RTF_HOST; 1451 info->rti_addrs &= ~RTA_NETMASK; 1452 } 1453 1454 /* Check gateway */ 1455 if (info->rti_info[RTAX_GATEWAY] != NULL) 1456 return (cleanup_xaddrs_gateway(info)); 1457 1458 return (0); 1459 } 1460 #endif 1461 1462 static int 1463 cleanup_xaddrs(struct rt_addrinfo *info) 1464 { 1465 int error = EAFNOSUPPORT; 1466 1467 if (info->rti_info[RTAX_DST] == NULL) 1468 return (EINVAL); 1469 1470 switch (info->rti_info[RTAX_DST]->sa_family) { 1471 #ifdef INET 1472 case AF_INET: 1473 error = cleanup_xaddrs_inet(info); 1474 break; 1475 #endif 1476 #ifdef INET6 1477 case AF_INET6: 1478 error = cleanup_xaddrs_inet6(info); 1479 break; 1480 #endif 1481 } 1482 1483 return (error); 1484 } 1485 1486 /* 1487 * Fill in @dmask with valid netmask leaving original @smask 1488 * intact. Mostly used with radix netmasks. 1489 */ 1490 struct sockaddr * 1491 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1492 struct sockaddr_storage *dmask) 1493 { 1494 if (dst == NULL || smask == NULL) 1495 return (NULL); 1496 1497 memset(dmask, 0, dst->sa_len); 1498 memcpy(dmask, smask, smask->sa_len); 1499 dmask->ss_len = dst->sa_len; 1500 dmask->ss_family = dst->sa_family; 1501 1502 return ((struct sockaddr *)dmask); 1503 } 1504 1505 /* 1506 * Writes information related to @rtinfo object to newly-allocated mbuf. 1507 * Assumes MCLBYTES is enough to construct any message. 1508 * Used for OS notifications of vaious events (if/ifa announces,etc) 1509 * 1510 * Returns allocated mbuf or NULL on failure. 1511 */ 1512 static struct mbuf * 1513 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1514 { 1515 struct sockaddr_storage ss; 1516 struct rt_msghdr *rtm; 1517 struct mbuf *m; 1518 int i; 1519 struct sockaddr *sa; 1520 #ifdef INET6 1521 struct sockaddr_in6 *sin6; 1522 #endif 1523 int len, dlen; 1524 1525 switch (type) { 1526 case RTM_DELADDR: 1527 case RTM_NEWADDR: 1528 len = sizeof(struct ifa_msghdr); 1529 break; 1530 1531 case RTM_DELMADDR: 1532 case RTM_NEWMADDR: 1533 len = sizeof(struct ifma_msghdr); 1534 break; 1535 1536 case RTM_IFINFO: 1537 len = sizeof(struct if_msghdr); 1538 break; 1539 1540 case RTM_IFANNOUNCE: 1541 case RTM_IEEE80211: 1542 len = sizeof(struct if_announcemsghdr); 1543 break; 1544 1545 default: 1546 len = sizeof(struct rt_msghdr); 1547 } 1548 1549 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1550 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1551 if (len > MHLEN) 1552 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1553 else 1554 m = m_gethdr(M_NOWAIT, MT_DATA); 1555 if (m == NULL) 1556 return (m); 1557 1558 m->m_pkthdr.len = m->m_len = len; 1559 rtm = mtod(m, struct rt_msghdr *); 1560 bzero((caddr_t)rtm, len); 1561 for (i = 0; i < RTAX_MAX; i++) { 1562 if ((sa = rtinfo->rti_info[i]) == NULL) 1563 continue; 1564 rtinfo->rti_addrs |= (1 << i); 1565 1566 dlen = SA_SIZE(sa); 1567 KASSERT(dlen <= sizeof(ss), 1568 ("%s: sockaddr size overflow", __func__)); 1569 bzero(&ss, sizeof(ss)); 1570 bcopy(sa, &ss, sa->sa_len); 1571 sa = (struct sockaddr *)&ss; 1572 #ifdef INET6 1573 if (sa->sa_family == AF_INET6) { 1574 sin6 = (struct sockaddr_in6 *)sa; 1575 (void)sa6_recoverscope(sin6); 1576 } 1577 #endif 1578 m_copyback(m, len, dlen, (caddr_t)sa); 1579 len += dlen; 1580 } 1581 if (m->m_pkthdr.len != len) { 1582 m_freem(m); 1583 return (NULL); 1584 } 1585 rtm->rtm_msglen = len; 1586 rtm->rtm_version = RTM_VERSION; 1587 rtm->rtm_type = type; 1588 return (m); 1589 } 1590 1591 /* 1592 * Writes information related to @rtinfo object to preallocated buffer. 1593 * Stores needed size in @plen. If @w is NULL, calculates size without 1594 * writing. 1595 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1596 * 1597 * Returns 0 on success. 1598 * 1599 */ 1600 static int 1601 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1602 { 1603 struct sockaddr_storage ss; 1604 int len, buflen = 0, dlen, i; 1605 caddr_t cp = NULL; 1606 struct rt_msghdr *rtm = NULL; 1607 #ifdef INET6 1608 struct sockaddr_in6 *sin6; 1609 #endif 1610 #ifdef COMPAT_FREEBSD32 1611 bool compat32 = false; 1612 #endif 1613 1614 switch (type) { 1615 case RTM_DELADDR: 1616 case RTM_NEWADDR: 1617 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1618 #ifdef COMPAT_FREEBSD32 1619 if (w->w_req->flags & SCTL_MASK32) { 1620 len = sizeof(struct ifa_msghdrl32); 1621 compat32 = true; 1622 } else 1623 #endif 1624 len = sizeof(struct ifa_msghdrl); 1625 } else 1626 len = sizeof(struct ifa_msghdr); 1627 break; 1628 1629 case RTM_IFINFO: 1630 #ifdef COMPAT_FREEBSD32 1631 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1632 if (w->w_op == NET_RT_IFLISTL) 1633 len = sizeof(struct if_msghdrl32); 1634 else 1635 len = sizeof(struct if_msghdr32); 1636 compat32 = true; 1637 break; 1638 } 1639 #endif 1640 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1641 len = sizeof(struct if_msghdrl); 1642 else 1643 len = sizeof(struct if_msghdr); 1644 break; 1645 1646 case RTM_NEWMADDR: 1647 len = sizeof(struct ifma_msghdr); 1648 break; 1649 1650 default: 1651 len = sizeof(struct rt_msghdr); 1652 } 1653 1654 if (w != NULL) { 1655 rtm = (struct rt_msghdr *)w->w_tmem; 1656 buflen = w->w_tmemsize - len; 1657 cp = (caddr_t)w->w_tmem + len; 1658 } 1659 1660 rtinfo->rti_addrs = 0; 1661 for (i = 0; i < RTAX_MAX; i++) { 1662 struct sockaddr *sa; 1663 1664 if ((sa = rtinfo->rti_info[i]) == NULL) 1665 continue; 1666 rtinfo->rti_addrs |= (1 << i); 1667 #ifdef COMPAT_FREEBSD32 1668 if (compat32) 1669 dlen = SA_SIZE32(sa); 1670 else 1671 #endif 1672 dlen = SA_SIZE(sa); 1673 if (cp != NULL && buflen >= dlen) { 1674 KASSERT(dlen <= sizeof(ss), 1675 ("%s: sockaddr size overflow", __func__)); 1676 bzero(&ss, sizeof(ss)); 1677 bcopy(sa, &ss, sa->sa_len); 1678 sa = (struct sockaddr *)&ss; 1679 #ifdef INET6 1680 if (sa->sa_family == AF_INET6) { 1681 sin6 = (struct sockaddr_in6 *)sa; 1682 (void)sa6_recoverscope(sin6); 1683 } 1684 #endif 1685 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1686 cp += dlen; 1687 buflen -= dlen; 1688 } else if (cp != NULL) { 1689 /* 1690 * Buffer too small. Count needed size 1691 * and return with error. 1692 */ 1693 cp = NULL; 1694 } 1695 1696 len += dlen; 1697 } 1698 1699 if (cp != NULL) { 1700 dlen = ALIGN(len) - len; 1701 if (buflen < dlen) 1702 cp = NULL; 1703 else { 1704 bzero(cp, dlen); 1705 cp += dlen; 1706 buflen -= dlen; 1707 } 1708 } 1709 len = ALIGN(len); 1710 1711 if (cp != NULL) { 1712 /* fill header iff buffer is large enough */ 1713 rtm->rtm_version = RTM_VERSION; 1714 rtm->rtm_type = type; 1715 rtm->rtm_msglen = len; 1716 } 1717 1718 *plen = len; 1719 1720 if (w != NULL && cp == NULL) 1721 return (ENOBUFS); 1722 1723 return (0); 1724 } 1725 1726 /* 1727 * This routine is called to generate a message from the routing 1728 * socket indicating that a redirect has occurred, a routing lookup 1729 * has failed, or that a protocol has detected timeouts to a particular 1730 * destination. 1731 */ 1732 void 1733 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1734 int fibnum) 1735 { 1736 struct rt_msghdr *rtm; 1737 struct mbuf *m; 1738 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1739 1740 if (V_route_cb.any_count == 0) 1741 return; 1742 m = rtsock_msg_mbuf(type, rtinfo); 1743 if (m == NULL) 1744 return; 1745 1746 if (fibnum != RT_ALL_FIBS) { 1747 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1748 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1749 M_SETFIB(m, fibnum); 1750 m->m_flags |= RTS_FILTER_FIB; 1751 } 1752 1753 rtm = mtod(m, struct rt_msghdr *); 1754 rtm->rtm_flags = RTF_DONE | flags; 1755 rtm->rtm_errno = error; 1756 rtm->rtm_addrs = rtinfo->rti_addrs; 1757 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1758 } 1759 1760 void 1761 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1762 { 1763 1764 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1765 } 1766 1767 /* 1768 * This routine is called to generate a message from the routing 1769 * socket indicating that the status of a network interface has changed. 1770 */ 1771 void 1772 rt_ifmsg(struct ifnet *ifp) 1773 { 1774 struct if_msghdr *ifm; 1775 struct mbuf *m; 1776 struct rt_addrinfo info; 1777 1778 if (V_route_cb.any_count == 0) 1779 return; 1780 bzero((caddr_t)&info, sizeof(info)); 1781 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1782 if (m == NULL) 1783 return; 1784 ifm = mtod(m, struct if_msghdr *); 1785 ifm->ifm_index = ifp->if_index; 1786 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1787 if_data_copy(ifp, &ifm->ifm_data); 1788 ifm->ifm_addrs = 0; 1789 rt_dispatch(m, AF_UNSPEC); 1790 } 1791 1792 /* 1793 * Announce interface address arrival/withdraw. 1794 * Please do not call directly, use rt_addrmsg(). 1795 * Assume input data to be valid. 1796 * Returns 0 on success. 1797 */ 1798 int 1799 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1800 { 1801 struct rt_addrinfo info; 1802 struct sockaddr *sa; 1803 int ncmd; 1804 struct mbuf *m; 1805 struct ifa_msghdr *ifam; 1806 struct ifnet *ifp = ifa->ifa_ifp; 1807 struct sockaddr_storage ss; 1808 1809 if (V_route_cb.any_count == 0) 1810 return (0); 1811 1812 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1813 1814 bzero((caddr_t)&info, sizeof(info)); 1815 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1816 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1817 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1818 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1819 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1820 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1821 return (ENOBUFS); 1822 ifam = mtod(m, struct ifa_msghdr *); 1823 ifam->ifam_index = ifp->if_index; 1824 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1825 ifam->ifam_flags = ifa->ifa_flags; 1826 ifam->ifam_addrs = info.rti_addrs; 1827 1828 if (fibnum != RT_ALL_FIBS) { 1829 M_SETFIB(m, fibnum); 1830 m->m_flags |= RTS_FILTER_FIB; 1831 } 1832 1833 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1834 1835 return (0); 1836 } 1837 1838 /* 1839 * Announce route addition/removal to rtsock based on @rt data. 1840 * Callers are advives to use rt_routemsg() instead of using this 1841 * function directly. 1842 * Assume @rt data is consistent. 1843 * 1844 * Returns 0 on success. 1845 */ 1846 int 1847 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh, 1848 int fibnum) 1849 { 1850 union sockaddr_union dst, mask; 1851 struct rt_addrinfo info; 1852 1853 if (V_route_cb.any_count == 0) 1854 return (0); 1855 1856 int family = rt_get_family(rt); 1857 init_sockaddrs_family(family, &dst.sa, &mask.sa); 1858 export_rtaddrs(rt, &dst.sa, &mask.sa); 1859 1860 bzero((caddr_t)&info, sizeof(info)); 1861 info.rti_info[RTAX_DST] = &dst.sa; 1862 info.rti_info[RTAX_NETMASK] = &mask.sa; 1863 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1864 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 1865 info.rti_ifp = nh->nh_ifp; 1866 1867 return (rtsock_routemsg_info(cmd, &info, fibnum)); 1868 } 1869 1870 int 1871 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 1872 { 1873 struct rt_msghdr *rtm; 1874 struct sockaddr *sa; 1875 struct mbuf *m; 1876 1877 if (V_route_cb.any_count == 0) 1878 return (0); 1879 1880 if (info->rti_flags & RTF_HOST) 1881 info->rti_info[RTAX_NETMASK] = NULL; 1882 1883 m = rtsock_msg_mbuf(cmd, info); 1884 if (m == NULL) 1885 return (ENOBUFS); 1886 1887 if (fibnum != RT_ALL_FIBS) { 1888 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1889 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1890 M_SETFIB(m, fibnum); 1891 m->m_flags |= RTS_FILTER_FIB; 1892 } 1893 1894 rtm = mtod(m, struct rt_msghdr *); 1895 rtm->rtm_addrs = info->rti_addrs; 1896 if (info->rti_ifp != NULL) 1897 rtm->rtm_index = info->rti_ifp->if_index; 1898 /* Add RTF_DONE to indicate command 'completion' required by API */ 1899 info->rti_flags |= RTF_DONE; 1900 /* Reported routes has to be up */ 1901 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 1902 info->rti_flags |= RTF_UP; 1903 rtm->rtm_flags = info->rti_flags; 1904 1905 sa = info->rti_info[RTAX_DST]; 1906 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1907 1908 return (0); 1909 } 1910 1911 /* 1912 * This is the analogue to the rt_newaddrmsg which performs the same 1913 * function but for multicast group memberhips. This is easier since 1914 * there is no route state to worry about. 1915 */ 1916 void 1917 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1918 { 1919 struct rt_addrinfo info; 1920 struct mbuf *m = NULL; 1921 struct ifnet *ifp = ifma->ifma_ifp; 1922 struct ifma_msghdr *ifmam; 1923 1924 if (V_route_cb.any_count == 0) 1925 return; 1926 1927 bzero((caddr_t)&info, sizeof(info)); 1928 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1929 if (ifp && ifp->if_addr) 1930 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1931 else 1932 info.rti_info[RTAX_IFP] = NULL; 1933 /* 1934 * If a link-layer address is present, present it as a ``gateway'' 1935 * (similarly to how ARP entries, e.g., are presented). 1936 */ 1937 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1938 m = rtsock_msg_mbuf(cmd, &info); 1939 if (m == NULL) 1940 return; 1941 ifmam = mtod(m, struct ifma_msghdr *); 1942 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1943 __func__)); 1944 ifmam->ifmam_index = ifp->if_index; 1945 ifmam->ifmam_addrs = info.rti_addrs; 1946 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1947 } 1948 1949 static struct mbuf * 1950 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1951 struct rt_addrinfo *info) 1952 { 1953 struct if_announcemsghdr *ifan; 1954 struct mbuf *m; 1955 1956 if (V_route_cb.any_count == 0) 1957 return NULL; 1958 bzero((caddr_t)info, sizeof(*info)); 1959 m = rtsock_msg_mbuf(type, info); 1960 if (m != NULL) { 1961 ifan = mtod(m, struct if_announcemsghdr *); 1962 ifan->ifan_index = ifp->if_index; 1963 strlcpy(ifan->ifan_name, ifp->if_xname, 1964 sizeof(ifan->ifan_name)); 1965 ifan->ifan_what = what; 1966 } 1967 return m; 1968 } 1969 1970 /* 1971 * This is called to generate routing socket messages indicating 1972 * IEEE80211 wireless events. 1973 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1974 */ 1975 void 1976 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1977 { 1978 struct mbuf *m; 1979 struct rt_addrinfo info; 1980 1981 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1982 if (m != NULL) { 1983 /* 1984 * Append the ieee80211 data. Try to stick it in the 1985 * mbuf containing the ifannounce msg; otherwise allocate 1986 * a new mbuf and append. 1987 * 1988 * NB: we assume m is a single mbuf. 1989 */ 1990 if (data_len > M_TRAILINGSPACE(m)) { 1991 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1992 if (n == NULL) { 1993 m_freem(m); 1994 return; 1995 } 1996 bcopy(data, mtod(n, void *), data_len); 1997 n->m_len = data_len; 1998 m->m_next = n; 1999 } else if (data_len > 0) { 2000 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 2001 m->m_len += data_len; 2002 } 2003 if (m->m_flags & M_PKTHDR) 2004 m->m_pkthdr.len += data_len; 2005 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 2006 rt_dispatch(m, AF_UNSPEC); 2007 } 2008 } 2009 2010 /* 2011 * This is called to generate routing socket messages indicating 2012 * network interface arrival and departure. 2013 */ 2014 void 2015 rt_ifannouncemsg(struct ifnet *ifp, int what) 2016 { 2017 struct mbuf *m; 2018 struct rt_addrinfo info; 2019 2020 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 2021 if (m != NULL) 2022 rt_dispatch(m, AF_UNSPEC); 2023 } 2024 2025 static void 2026 rt_dispatch(struct mbuf *m, sa_family_t saf) 2027 { 2028 struct m_tag *tag; 2029 2030 /* 2031 * Preserve the family from the sockaddr, if any, in an m_tag for 2032 * use when injecting the mbuf into the routing socket buffer from 2033 * the netisr. 2034 */ 2035 if (saf != AF_UNSPEC) { 2036 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 2037 M_NOWAIT); 2038 if (tag == NULL) { 2039 m_freem(m); 2040 return; 2041 } 2042 *(unsigned short *)(tag + 1) = saf; 2043 m_tag_prepend(m, tag); 2044 } 2045 #ifdef VIMAGE 2046 if (V_loif) 2047 m->m_pkthdr.rcvif = V_loif; 2048 else { 2049 m_freem(m); 2050 return; 2051 } 2052 #endif 2053 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 2054 } 2055 2056 /* 2057 * Checks if rte can be exported v.r.t jails/vnets. 2058 * 2059 * Returns 1 if it can, 0 otherwise. 2060 */ 2061 static bool 2062 can_export_rte(struct ucred *td_ucred, bool rt_is_host, 2063 const struct sockaddr *rt_dst) 2064 { 2065 2066 if ((!rt_is_host) ? jailed_without_vnet(td_ucred) 2067 : prison_if(td_ucred, rt_dst) != 0) 2068 return (false); 2069 return (true); 2070 } 2071 2072 2073 /* 2074 * This is used in dumping the kernel table via sysctl(). 2075 */ 2076 static int 2077 sysctl_dumpentry(struct rtentry *rt, void *vw) 2078 { 2079 struct walkarg *w = vw; 2080 struct nhop_object *nh; 2081 int error = 0; 2082 2083 NET_EPOCH_ASSERT(); 2084 2085 export_rtaddrs(rt, w->dst, w->mask); 2086 if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst)) 2087 return (0); 2088 nh = rt_get_raw_nhop(rt); 2089 #ifdef ROUTE_MPATH 2090 if (NH_IS_NHGRP(nh)) { 2091 struct weightened_nhop *wn; 2092 uint32_t num_nhops; 2093 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 2094 for (int i = 0; i < num_nhops; i++) { 2095 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); 2096 if (error != 0) 2097 return (error); 2098 } 2099 } else 2100 #endif 2101 error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 2102 2103 return (0); 2104 } 2105 2106 2107 static int 2108 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 2109 struct walkarg *w) 2110 { 2111 struct rt_addrinfo info; 2112 int error = 0, size; 2113 uint32_t rtflags; 2114 2115 rtflags = nhop_get_rtflags(nh); 2116 2117 if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg)) 2118 return (0); 2119 2120 bzero((caddr_t)&info, sizeof(info)); 2121 info.rti_info[RTAX_DST] = w->dst; 2122 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2123 info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask; 2124 info.rti_info[RTAX_GENMASK] = 0; 2125 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 2126 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 2127 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 2128 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 2129 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 2130 } 2131 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 2132 return (error); 2133 if (w->w_req && w->w_tmem) { 2134 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 2135 2136 bzero(&rtm->rtm_index, 2137 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 2138 2139 /* 2140 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags) 2141 * and RTF_UP (if entry is linked, which is always true here). 2142 * Given that, use nhop rtflags & add RTF_UP. 2143 */ 2144 rtm->rtm_flags = rtflags | RTF_UP; 2145 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 2146 rtm->rtm_flags = RTF_GATEWAY | 2147 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 2148 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 2149 rtm->rtm_rmx.rmx_weight = weight; 2150 rtm->rtm_index = nh->nh_ifp->if_index; 2151 rtm->rtm_addrs = info.rti_addrs; 2152 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 2153 return (error); 2154 } 2155 return (error); 2156 } 2157 2158 static int 2159 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 2160 struct rt_addrinfo *info, struct walkarg *w, int len) 2161 { 2162 struct if_msghdrl *ifm; 2163 struct if_data *ifd; 2164 2165 ifm = (struct if_msghdrl *)w->w_tmem; 2166 2167 #ifdef COMPAT_FREEBSD32 2168 if (w->w_req->flags & SCTL_MASK32) { 2169 struct if_msghdrl32 *ifm32; 2170 2171 ifm32 = (struct if_msghdrl32 *)ifm; 2172 ifm32->ifm_addrs = info->rti_addrs; 2173 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2174 ifm32->ifm_index = ifp->if_index; 2175 ifm32->_ifm_spare1 = 0; 2176 ifm32->ifm_len = sizeof(*ifm32); 2177 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 2178 ifm32->_ifm_spare2 = 0; 2179 ifd = &ifm32->ifm_data; 2180 } else 2181 #endif 2182 { 2183 ifm->ifm_addrs = info->rti_addrs; 2184 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2185 ifm->ifm_index = ifp->if_index; 2186 ifm->_ifm_spare1 = 0; 2187 ifm->ifm_len = sizeof(*ifm); 2188 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 2189 ifm->_ifm_spare2 = 0; 2190 ifd = &ifm->ifm_data; 2191 } 2192 2193 memcpy(ifd, src_ifd, sizeof(*ifd)); 2194 2195 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2196 } 2197 2198 static int 2199 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 2200 struct rt_addrinfo *info, struct walkarg *w, int len) 2201 { 2202 struct if_msghdr *ifm; 2203 struct if_data *ifd; 2204 2205 ifm = (struct if_msghdr *)w->w_tmem; 2206 2207 #ifdef COMPAT_FREEBSD32 2208 if (w->w_req->flags & SCTL_MASK32) { 2209 struct if_msghdr32 *ifm32; 2210 2211 ifm32 = (struct if_msghdr32 *)ifm; 2212 ifm32->ifm_addrs = info->rti_addrs; 2213 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2214 ifm32->ifm_index = ifp->if_index; 2215 ifm32->_ifm_spare1 = 0; 2216 ifd = &ifm32->ifm_data; 2217 } else 2218 #endif 2219 { 2220 ifm->ifm_addrs = info->rti_addrs; 2221 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2222 ifm->ifm_index = ifp->if_index; 2223 ifm->_ifm_spare1 = 0; 2224 ifd = &ifm->ifm_data; 2225 } 2226 2227 memcpy(ifd, src_ifd, sizeof(*ifd)); 2228 2229 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2230 } 2231 2232 static int 2233 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 2234 struct walkarg *w, int len) 2235 { 2236 struct ifa_msghdrl *ifam; 2237 struct if_data *ifd; 2238 2239 ifam = (struct ifa_msghdrl *)w->w_tmem; 2240 2241 #ifdef COMPAT_FREEBSD32 2242 if (w->w_req->flags & SCTL_MASK32) { 2243 struct ifa_msghdrl32 *ifam32; 2244 2245 ifam32 = (struct ifa_msghdrl32 *)ifam; 2246 ifam32->ifam_addrs = info->rti_addrs; 2247 ifam32->ifam_flags = ifa->ifa_flags; 2248 ifam32->ifam_index = ifa->ifa_ifp->if_index; 2249 ifam32->_ifam_spare1 = 0; 2250 ifam32->ifam_len = sizeof(*ifam32); 2251 ifam32->ifam_data_off = 2252 offsetof(struct ifa_msghdrl32, ifam_data); 2253 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 2254 ifd = &ifam32->ifam_data; 2255 } else 2256 #endif 2257 { 2258 ifam->ifam_addrs = info->rti_addrs; 2259 ifam->ifam_flags = ifa->ifa_flags; 2260 ifam->ifam_index = ifa->ifa_ifp->if_index; 2261 ifam->_ifam_spare1 = 0; 2262 ifam->ifam_len = sizeof(*ifam); 2263 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 2264 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2265 ifd = &ifam->ifam_data; 2266 } 2267 2268 bzero(ifd, sizeof(*ifd)); 2269 ifd->ifi_datalen = sizeof(struct if_data); 2270 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 2271 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 2272 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 2273 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 2274 2275 /* Fixup if_data carp(4) vhid. */ 2276 if (carp_get_vhid_p != NULL) 2277 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 2278 2279 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2280 } 2281 2282 static int 2283 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 2284 struct walkarg *w, int len) 2285 { 2286 struct ifa_msghdr *ifam; 2287 2288 ifam = (struct ifa_msghdr *)w->w_tmem; 2289 ifam->ifam_addrs = info->rti_addrs; 2290 ifam->ifam_flags = ifa->ifa_flags; 2291 ifam->ifam_index = ifa->ifa_ifp->if_index; 2292 ifam->_ifam_spare1 = 0; 2293 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2294 2295 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2296 } 2297 2298 static int 2299 sysctl_iflist(int af, struct walkarg *w) 2300 { 2301 struct ifnet *ifp; 2302 struct ifaddr *ifa; 2303 struct if_data ifd; 2304 struct rt_addrinfo info; 2305 int len, error = 0; 2306 struct sockaddr_storage ss; 2307 2308 bzero((caddr_t)&info, sizeof(info)); 2309 bzero(&ifd, sizeof(ifd)); 2310 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2311 if (w->w_arg && w->w_arg != ifp->if_index) 2312 continue; 2313 if_data_copy(ifp, &ifd); 2314 ifa = ifp->if_addr; 2315 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 2316 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 2317 if (error != 0) 2318 goto done; 2319 info.rti_info[RTAX_IFP] = NULL; 2320 if (w->w_req && w->w_tmem) { 2321 if (w->w_op == NET_RT_IFLISTL) 2322 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 2323 len); 2324 else 2325 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 2326 len); 2327 if (error) 2328 goto done; 2329 } 2330 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 2331 if (af && af != ifa->ifa_addr->sa_family) 2332 continue; 2333 if (prison_if(w->w_req->td->td_ucred, 2334 ifa->ifa_addr) != 0) 2335 continue; 2336 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2337 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2338 ifa->ifa_addr, ifa->ifa_netmask, &ss); 2339 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2340 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 2341 if (error != 0) 2342 goto done; 2343 if (w->w_req && w->w_tmem) { 2344 if (w->w_op == NET_RT_IFLISTL) 2345 error = sysctl_iflist_ifaml(ifa, &info, 2346 w, len); 2347 else 2348 error = sysctl_iflist_ifam(ifa, &info, 2349 w, len); 2350 if (error) 2351 goto done; 2352 } 2353 } 2354 info.rti_info[RTAX_IFA] = NULL; 2355 info.rti_info[RTAX_NETMASK] = NULL; 2356 info.rti_info[RTAX_BRD] = NULL; 2357 } 2358 done: 2359 return (error); 2360 } 2361 2362 static int 2363 sysctl_ifmalist(int af, struct walkarg *w) 2364 { 2365 struct rt_addrinfo info; 2366 struct ifaddr *ifa; 2367 struct ifmultiaddr *ifma; 2368 struct ifnet *ifp; 2369 int error, len; 2370 2371 NET_EPOCH_ASSERT(); 2372 2373 error = 0; 2374 bzero((caddr_t)&info, sizeof(info)); 2375 2376 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2377 if (w->w_arg && w->w_arg != ifp->if_index) 2378 continue; 2379 ifa = ifp->if_addr; 2380 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 2381 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2382 if (af && af != ifma->ifma_addr->sa_family) 2383 continue; 2384 if (prison_if(w->w_req->td->td_ucred, 2385 ifma->ifma_addr) != 0) 2386 continue; 2387 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2388 info.rti_info[RTAX_GATEWAY] = 2389 (ifma->ifma_addr->sa_family != AF_LINK) ? 2390 ifma->ifma_lladdr : NULL; 2391 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 2392 if (error != 0) 2393 break; 2394 if (w->w_req && w->w_tmem) { 2395 struct ifma_msghdr *ifmam; 2396 2397 ifmam = (struct ifma_msghdr *)w->w_tmem; 2398 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2399 ifmam->ifmam_flags = 0; 2400 ifmam->ifmam_addrs = info.rti_addrs; 2401 ifmam->_ifmam_spare1 = 0; 2402 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2403 if (error != 0) 2404 break; 2405 } 2406 } 2407 if (error != 0) 2408 break; 2409 } 2410 return (error); 2411 } 2412 2413 static void 2414 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w) 2415 { 2416 union sockaddr_union sa_dst, sa_mask; 2417 2418 w->family = family; 2419 w->dst = (struct sockaddr *)&sa_dst; 2420 w->mask = (struct sockaddr *)&sa_mask; 2421 2422 init_sockaddrs_family(family, w->dst, w->mask); 2423 2424 rib_walk(fibnum, family, false, sysctl_dumpentry, w); 2425 } 2426 2427 static int 2428 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2429 { 2430 struct epoch_tracker et; 2431 int *name = (int *)arg1; 2432 u_int namelen = arg2; 2433 struct rib_head *rnh = NULL; /* silence compiler. */ 2434 int i, lim, error = EINVAL; 2435 int fib = 0; 2436 u_char af; 2437 struct walkarg w; 2438 2439 name ++; 2440 namelen--; 2441 if (req->newptr) 2442 return (EPERM); 2443 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { 2444 if (namelen == 3) 2445 fib = req->td->td_proc->p_fibnum; 2446 else if (namelen == 4) 2447 fib = (name[3] == RT_ALL_FIBS) ? 2448 req->td->td_proc->p_fibnum : name[3]; 2449 else 2450 return ((namelen < 3) ? EISDIR : ENOTDIR); 2451 if (fib < 0 || fib >= rt_numfibs) 2452 return (EINVAL); 2453 } else if (namelen != 3) 2454 return ((namelen < 3) ? EISDIR : ENOTDIR); 2455 af = name[0]; 2456 if (af > AF_MAX) 2457 return (EINVAL); 2458 bzero(&w, sizeof(w)); 2459 w.w_op = name[1]; 2460 w.w_arg = name[2]; 2461 w.w_req = req; 2462 2463 error = sysctl_wire_old_buffer(req, 0); 2464 if (error) 2465 return (error); 2466 2467 /* 2468 * Allocate reply buffer in advance. 2469 * All rtsock messages has maximum length of u_short. 2470 */ 2471 w.w_tmemsize = 65536; 2472 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2473 2474 NET_EPOCH_ENTER(et); 2475 switch (w.w_op) { 2476 case NET_RT_DUMP: 2477 case NET_RT_FLAGS: 2478 if (af == 0) { /* dump all tables */ 2479 i = 1; 2480 lim = AF_MAX; 2481 } else /* dump only one table */ 2482 i = lim = af; 2483 2484 /* 2485 * take care of llinfo entries, the caller must 2486 * specify an AF 2487 */ 2488 if (w.w_op == NET_RT_FLAGS && 2489 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2490 if (af != 0) 2491 error = lltable_sysctl_dumparp(af, w.w_req); 2492 else 2493 error = EINVAL; 2494 break; 2495 } 2496 /* 2497 * take care of routing entries 2498 */ 2499 for (error = 0; error == 0 && i <= lim; i++) { 2500 rnh = rt_tables_get_rnh(fib, i); 2501 if (rnh != NULL) { 2502 rtable_sysctl_dump(fib, i, &w); 2503 } else if (af != 0) 2504 error = EAFNOSUPPORT; 2505 } 2506 break; 2507 case NET_RT_NHOP: 2508 case NET_RT_NHGRP: 2509 /* Allow dumping one specific af/fib at a time */ 2510 if (namelen < 4) { 2511 error = EINVAL; 2512 break; 2513 } 2514 fib = name[3]; 2515 if (fib < 0 || fib > rt_numfibs) { 2516 error = EINVAL; 2517 break; 2518 } 2519 rnh = rt_tables_get_rnh(fib, af); 2520 if (rnh == NULL) { 2521 error = EAFNOSUPPORT; 2522 break; 2523 } 2524 if (w.w_op == NET_RT_NHOP) 2525 error = nhops_dump_sysctl(rnh, w.w_req); 2526 else 2527 #ifdef ROUTE_MPATH 2528 error = nhgrp_dump_sysctl(rnh, w.w_req); 2529 #else 2530 error = ENOTSUP; 2531 #endif 2532 break; 2533 case NET_RT_IFLIST: 2534 case NET_RT_IFLISTL: 2535 error = sysctl_iflist(af, &w); 2536 break; 2537 2538 case NET_RT_IFMALIST: 2539 error = sysctl_ifmalist(af, &w); 2540 break; 2541 } 2542 NET_EPOCH_EXIT(et); 2543 2544 free(w.w_tmem, M_TEMP); 2545 return (error); 2546 } 2547 2548 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2549 sysctl_rtsock, "Return route tables and interface/address lists"); 2550 2551 /* 2552 * Definitions of protocols supported in the ROUTE domain. 2553 */ 2554 2555 static struct domain routedomain; /* or at least forward */ 2556 2557 static struct protosw routesw[] = { 2558 { 2559 .pr_type = SOCK_RAW, 2560 .pr_domain = &routedomain, 2561 .pr_flags = PR_ATOMIC|PR_ADDR, 2562 .pr_output = route_output, 2563 .pr_ctlinput = raw_ctlinput, 2564 .pr_init = raw_init, 2565 .pr_usrreqs = &route_usrreqs 2566 } 2567 }; 2568 2569 static struct domain routedomain = { 2570 .dom_family = PF_ROUTE, 2571 .dom_name = "route", 2572 .dom_protosw = routesw, 2573 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 2574 }; 2575 2576 VNET_DOMAIN_SET(route); 2577