xref: /freebsd/sys/net/rtsock.c (revision f2d48b5e2c3b45850585e4d7aee324fe148afbf2)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_ddb.h"
35 #include "opt_route.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/domain.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/rmlock.h>
50 #include <sys/rwlock.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_llatbl.h>
61 #include <net/if_types.h>
62 #include <net/netisr.h>
63 #include <net/raw_cb.h>
64 #include <net/route.h>
65 #include <net/route/route_ctl.h>
66 #include <net/route/route_var.h>
67 #include <net/vnet.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/if_ether.h>
71 #include <netinet/ip_carp.h>
72 #ifdef INET6
73 #include <netinet6/ip6_var.h>
74 #include <netinet6/scope6_var.h>
75 #endif
76 #include <net/route/nhop.h>
77 
78 #ifdef COMPAT_FREEBSD32
79 #include <sys/mount.h>
80 #include <compat/freebsd32/freebsd32.h>
81 
82 struct if_msghdr32 {
83 	uint16_t ifm_msglen;
84 	uint8_t	ifm_version;
85 	uint8_t	ifm_type;
86 	int32_t	ifm_addrs;
87 	int32_t	ifm_flags;
88 	uint16_t ifm_index;
89 	uint16_t _ifm_spare1;
90 	struct	if_data ifm_data;
91 };
92 
93 struct if_msghdrl32 {
94 	uint16_t ifm_msglen;
95 	uint8_t	ifm_version;
96 	uint8_t	ifm_type;
97 	int32_t	ifm_addrs;
98 	int32_t	ifm_flags;
99 	uint16_t ifm_index;
100 	uint16_t _ifm_spare1;
101 	uint16_t ifm_len;
102 	uint16_t ifm_data_off;
103 	uint32_t _ifm_spare2;
104 	struct	if_data ifm_data;
105 };
106 
107 struct ifa_msghdrl32 {
108 	uint16_t ifam_msglen;
109 	uint8_t	ifam_version;
110 	uint8_t	ifam_type;
111 	int32_t	ifam_addrs;
112 	int32_t	ifam_flags;
113 	uint16_t ifam_index;
114 	uint16_t _ifam_spare1;
115 	uint16_t ifam_len;
116 	uint16_t ifam_data_off;
117 	int32_t	ifam_metric;
118 	struct	if_data ifam_data;
119 };
120 
121 #define SA_SIZE32(sa)						\
122     (  (((struct sockaddr *)(sa))->sa_len == 0) ?		\
123 	sizeof(int)		:				\
124 	1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
125 
126 #endif /* COMPAT_FREEBSD32 */
127 
128 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
129 
130 /* NB: these are not modified */
131 static struct	sockaddr route_src = { 2, PF_ROUTE, };
132 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
133 
134 /* These are external hooks for CARP. */
135 int	(*carp_get_vhid_p)(struct ifaddr *);
136 
137 /*
138  * Used by rtsock/raw_input callback code to decide whether to filter the update
139  * notification to a socket bound to a particular FIB.
140  */
141 #define	RTS_FILTER_FIB	M_PROTO8
142 
143 typedef struct {
144 	int	ip_count;	/* attached w/ AF_INET */
145 	int	ip6_count;	/* attached w/ AF_INET6 */
146 	int	any_count;	/* total attached */
147 } route_cb_t;
148 VNET_DEFINE_STATIC(route_cb_t, route_cb);
149 #define	V_route_cb VNET(route_cb)
150 
151 struct mtx rtsock_mtx;
152 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
153 
154 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
155 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
156 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
157 
158 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
159 
160 struct walkarg {
161 	int	family;
162 	int	w_tmemsize;
163 	int	w_op, w_arg;
164 	caddr_t	w_tmem;
165 	struct sysctl_req *w_req;
166 	struct sockaddr *dst;
167 	struct sockaddr *mask;
168 };
169 
170 static void	rts_input(struct mbuf *m);
171 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
172 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
173 			struct walkarg *w, int *plen);
174 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
175 			struct rt_addrinfo *rtinfo);
176 static int	sysctl_dumpentry(struct rtentry *rt, void *vw);
177 static int	sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh,
178 			uint32_t weight, struct walkarg *w);
179 static int	sysctl_iflist(int af, struct walkarg *w);
180 static int	sysctl_ifmalist(int af, struct walkarg *w);
181 static int	route_output(struct mbuf *m, struct socket *so, ...);
182 static void	rt_getmetrics(const struct rtentry *rt,
183 			const struct nhop_object *nh, struct rt_metrics *out);
184 static void	rt_dispatch(struct mbuf *, sa_family_t);
185 static int	handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
186 			struct rt_msghdr *rtm, struct rib_cmd_info *rc);
187 static int	update_rtm_from_rc(struct rt_addrinfo *info,
188 			struct rt_msghdr **prtm, int alloc_len,
189 			struct rib_cmd_info *rc, struct nhop_object *nh);
190 static void	send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
191 			struct mbuf *m, sa_family_t saf, u_int fibnum,
192 			int rtm_errno);
193 static bool	can_export_rte(struct ucred *td_ucred, bool rt_is_host,
194 			const struct sockaddr *rt_dst);
195 
196 static struct netisr_handler rtsock_nh = {
197 	.nh_name = "rtsock",
198 	.nh_handler = rts_input,
199 	.nh_proto = NETISR_ROUTE,
200 	.nh_policy = NETISR_POLICY_SOURCE,
201 };
202 
203 static int
204 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
205 {
206 	int error, qlimit;
207 
208 	netisr_getqlimit(&rtsock_nh, &qlimit);
209 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
210         if (error || !req->newptr)
211                 return (error);
212 	if (qlimit < 1)
213 		return (EINVAL);
214 	return (netisr_setqlimit(&rtsock_nh, qlimit));
215 }
216 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
217     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
218     0, 0, sysctl_route_netisr_maxqlen, "I",
219     "maximum routing socket dispatch queue length");
220 
221 static void
222 vnet_rts_init(void)
223 {
224 	int tmp;
225 
226 	if (IS_DEFAULT_VNET(curvnet)) {
227 		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
228 			rtsock_nh.nh_qlimit = tmp;
229 		netisr_register(&rtsock_nh);
230 	}
231 #ifdef VIMAGE
232 	 else
233 		netisr_register_vnet(&rtsock_nh);
234 #endif
235 }
236 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
237     vnet_rts_init, 0);
238 
239 #ifdef VIMAGE
240 static void
241 vnet_rts_uninit(void)
242 {
243 
244 	netisr_unregister_vnet(&rtsock_nh);
245 }
246 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
247     vnet_rts_uninit, 0);
248 #endif
249 
250 static int
251 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
252     struct rawcb *rp)
253 {
254 	int fibnum;
255 
256 	KASSERT(m != NULL, ("%s: m is NULL", __func__));
257 	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
258 	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
259 
260 	/* No filtering requested. */
261 	if ((m->m_flags & RTS_FILTER_FIB) == 0)
262 		return (0);
263 
264 	/* Check if it is a rts and the fib matches the one of the socket. */
265 	fibnum = M_GETFIB(m);
266 	if (proto->sp_family != PF_ROUTE ||
267 	    rp->rcb_socket == NULL ||
268 	    rp->rcb_socket->so_fibnum == fibnum)
269 		return (0);
270 
271 	/* Filtering requested and no match, the socket shall be skipped. */
272 	return (1);
273 }
274 
275 static void
276 rts_input(struct mbuf *m)
277 {
278 	struct sockproto route_proto;
279 	unsigned short *family;
280 	struct m_tag *tag;
281 
282 	route_proto.sp_family = PF_ROUTE;
283 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
284 	if (tag != NULL) {
285 		family = (unsigned short *)(tag + 1);
286 		route_proto.sp_protocol = *family;
287 		m_tag_delete(m, tag);
288 	} else
289 		route_proto.sp_protocol = 0;
290 
291 	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
292 }
293 
294 /*
295  * It really doesn't make any sense at all for this code to share much
296  * with raw_usrreq.c, since its functionality is so restricted.  XXX
297  */
298 static void
299 rts_abort(struct socket *so)
300 {
301 
302 	raw_usrreqs.pru_abort(so);
303 }
304 
305 static void
306 rts_close(struct socket *so)
307 {
308 
309 	raw_usrreqs.pru_close(so);
310 }
311 
312 /* pru_accept is EOPNOTSUPP */
313 
314 static int
315 rts_attach(struct socket *so, int proto, struct thread *td)
316 {
317 	struct rawcb *rp;
318 	int error;
319 
320 	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
321 
322 	/* XXX */
323 	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
324 
325 	so->so_pcb = (caddr_t)rp;
326 	so->so_fibnum = td->td_proc->p_fibnum;
327 	error = raw_attach(so, proto);
328 	rp = sotorawcb(so);
329 	if (error) {
330 		so->so_pcb = NULL;
331 		free(rp, M_PCB);
332 		return error;
333 	}
334 	RTSOCK_LOCK();
335 	switch(rp->rcb_proto.sp_protocol) {
336 	case AF_INET:
337 		V_route_cb.ip_count++;
338 		break;
339 	case AF_INET6:
340 		V_route_cb.ip6_count++;
341 		break;
342 	}
343 	V_route_cb.any_count++;
344 	RTSOCK_UNLOCK();
345 	soisconnected(so);
346 	so->so_options |= SO_USELOOPBACK;
347 	return 0;
348 }
349 
350 static int
351 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
352 {
353 
354 	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
355 }
356 
357 static int
358 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
359 {
360 
361 	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
362 }
363 
364 /* pru_connect2 is EOPNOTSUPP */
365 /* pru_control is EOPNOTSUPP */
366 
367 static void
368 rts_detach(struct socket *so)
369 {
370 	struct rawcb *rp = sotorawcb(so);
371 
372 	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
373 
374 	RTSOCK_LOCK();
375 	switch(rp->rcb_proto.sp_protocol) {
376 	case AF_INET:
377 		V_route_cb.ip_count--;
378 		break;
379 	case AF_INET6:
380 		V_route_cb.ip6_count--;
381 		break;
382 	}
383 	V_route_cb.any_count--;
384 	RTSOCK_UNLOCK();
385 	raw_usrreqs.pru_detach(so);
386 }
387 
388 static int
389 rts_disconnect(struct socket *so)
390 {
391 
392 	return (raw_usrreqs.pru_disconnect(so));
393 }
394 
395 /* pru_listen is EOPNOTSUPP */
396 
397 static int
398 rts_peeraddr(struct socket *so, struct sockaddr **nam)
399 {
400 
401 	return (raw_usrreqs.pru_peeraddr(so, nam));
402 }
403 
404 /* pru_rcvd is EOPNOTSUPP */
405 /* pru_rcvoob is EOPNOTSUPP */
406 
407 static int
408 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
409 	 struct mbuf *control, struct thread *td)
410 {
411 
412 	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
413 }
414 
415 /* pru_sense is null */
416 
417 static int
418 rts_shutdown(struct socket *so)
419 {
420 
421 	return (raw_usrreqs.pru_shutdown(so));
422 }
423 
424 static int
425 rts_sockaddr(struct socket *so, struct sockaddr **nam)
426 {
427 
428 	return (raw_usrreqs.pru_sockaddr(so, nam));
429 }
430 
431 static struct pr_usrreqs route_usrreqs = {
432 	.pru_abort =		rts_abort,
433 	.pru_attach =		rts_attach,
434 	.pru_bind =		rts_bind,
435 	.pru_connect =		rts_connect,
436 	.pru_detach =		rts_detach,
437 	.pru_disconnect =	rts_disconnect,
438 	.pru_peeraddr =		rts_peeraddr,
439 	.pru_send =		rts_send,
440 	.pru_shutdown =		rts_shutdown,
441 	.pru_sockaddr =		rts_sockaddr,
442 	.pru_close =		rts_close,
443 };
444 
445 #ifndef _SOCKADDR_UNION_DEFINED
446 #define	_SOCKADDR_UNION_DEFINED
447 /*
448  * The union of all possible address formats we handle.
449  */
450 union sockaddr_union {
451 	struct sockaddr		sa;
452 	struct sockaddr_in	sin;
453 	struct sockaddr_in6	sin6;
454 };
455 #endif /* _SOCKADDR_UNION_DEFINED */
456 
457 static int
458 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
459     struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred)
460 {
461 #if defined(INET) || defined(INET6)
462 	struct epoch_tracker et;
463 #endif
464 
465 	/* First, see if the returned address is part of the jail. */
466 	if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) {
467 		info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
468 		return (0);
469 	}
470 
471 	switch (info->rti_info[RTAX_DST]->sa_family) {
472 #ifdef INET
473 	case AF_INET:
474 	{
475 		struct in_addr ia;
476 		struct ifaddr *ifa;
477 		int found;
478 
479 		found = 0;
480 		/*
481 		 * Try to find an address on the given outgoing interface
482 		 * that belongs to the jail.
483 		 */
484 		NET_EPOCH_ENTER(et);
485 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
486 			struct sockaddr *sa;
487 			sa = ifa->ifa_addr;
488 			if (sa->sa_family != AF_INET)
489 				continue;
490 			ia = ((struct sockaddr_in *)sa)->sin_addr;
491 			if (prison_check_ip4(cred, &ia) == 0) {
492 				found = 1;
493 				break;
494 			}
495 		}
496 		NET_EPOCH_EXIT(et);
497 		if (!found) {
498 			/*
499 			 * As a last resort return the 'default' jail address.
500 			 */
501 			ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)->
502 			    sin_addr;
503 			if (prison_get_ip4(cred, &ia) != 0)
504 				return (ESRCH);
505 		}
506 		bzero(&saun->sin, sizeof(struct sockaddr_in));
507 		saun->sin.sin_len = sizeof(struct sockaddr_in);
508 		saun->sin.sin_family = AF_INET;
509 		saun->sin.sin_addr.s_addr = ia.s_addr;
510 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
511 		break;
512 	}
513 #endif
514 #ifdef INET6
515 	case AF_INET6:
516 	{
517 		struct in6_addr ia6;
518 		struct ifaddr *ifa;
519 		int found;
520 
521 		found = 0;
522 		/*
523 		 * Try to find an address on the given outgoing interface
524 		 * that belongs to the jail.
525 		 */
526 		NET_EPOCH_ENTER(et);
527 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
528 			struct sockaddr *sa;
529 			sa = ifa->ifa_addr;
530 			if (sa->sa_family != AF_INET6)
531 				continue;
532 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
533 			    &ia6, sizeof(struct in6_addr));
534 			if (prison_check_ip6(cred, &ia6) == 0) {
535 				found = 1;
536 				break;
537 			}
538 		}
539 		NET_EPOCH_EXIT(et);
540 		if (!found) {
541 			/*
542 			 * As a last resort return the 'default' jail address.
543 			 */
544 			ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)->
545 			    sin6_addr;
546 			if (prison_get_ip6(cred, &ia6) != 0)
547 				return (ESRCH);
548 		}
549 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
550 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
551 		saun->sin6.sin6_family = AF_INET6;
552 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
553 		if (sa6_recoverscope(&saun->sin6) != 0)
554 			return (ESRCH);
555 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
556 		break;
557 	}
558 #endif
559 	default:
560 		return (ESRCH);
561 	}
562 	return (0);
563 }
564 
565 /*
566  * Fills in @info based on userland-provided @rtm message.
567  *
568  * Returns 0 on success.
569  */
570 static int
571 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info)
572 {
573 	int error;
574 	sa_family_t saf;
575 
576 	rtm->rtm_pid = curproc->p_pid;
577 	info->rti_addrs = rtm->rtm_addrs;
578 
579 	info->rti_mflags = rtm->rtm_inits;
580 	info->rti_rmx = &rtm->rtm_rmx;
581 
582 	/*
583 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
584 	 * link-local address because rtrequest requires addresses with
585 	 * embedded scope id.
586 	 */
587 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
588 		return (EINVAL);
589 
590 	if (rtm->rtm_flags & RTF_RNH_LOCKED)
591 		return (EINVAL);
592 	info->rti_flags = rtm->rtm_flags;
593 	if (info->rti_info[RTAX_DST] == NULL ||
594 	    info->rti_info[RTAX_DST]->sa_family >= AF_MAX ||
595 	    (info->rti_info[RTAX_GATEWAY] != NULL &&
596 	     info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
597 		return (EINVAL);
598 	saf = info->rti_info[RTAX_DST]->sa_family;
599 	/*
600 	 * Verify that the caller has the appropriate privilege; RTM_GET
601 	 * is the only operation the non-superuser is allowed.
602 	 */
603 	if (rtm->rtm_type != RTM_GET) {
604 		error = priv_check(curthread, PRIV_NET_ROUTE);
605 		if (error != 0)
606 			return (error);
607 	}
608 
609 	/*
610 	 * The given gateway address may be an interface address.
611 	 * For example, issuing a "route change" command on a route
612 	 * entry that was created from a tunnel, and the gateway
613 	 * address given is the local end point. In this case the
614 	 * RTF_GATEWAY flag must be cleared or the destination will
615 	 * not be reachable even though there is no error message.
616 	 */
617 	if (info->rti_info[RTAX_GATEWAY] != NULL &&
618 	    info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
619 		struct rt_addrinfo ginfo;
620 		struct sockaddr *gdst;
621 		struct sockaddr_storage ss;
622 
623 		bzero(&ginfo, sizeof(ginfo));
624 		bzero(&ss, sizeof(ss));
625 		ss.ss_len = sizeof(ss);
626 
627 		ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
628 		gdst = info->rti_info[RTAX_GATEWAY];
629 
630 		/*
631 		 * A host route through the loopback interface is
632 		 * installed for each interface adddress. In pre 8.0
633 		 * releases the interface address of a PPP link type
634 		 * is not reachable locally. This behavior is fixed as
635 		 * part of the new L2/L3 redesign and rewrite work. The
636 		 * signature of this interface address route is the
637 		 * AF_LINK sa_family type of the gateway, and the
638 		 * rt_ifp has the IFF_LOOPBACK flag set.
639 		 */
640 		if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
641 			if (ss.ss_family == AF_LINK &&
642 			    ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
643 				info->rti_flags &= ~RTF_GATEWAY;
644 				info->rti_flags |= RTF_GWFLAG_COMPAT;
645 			}
646 			rib_free_info(&ginfo);
647 		}
648 	}
649 
650 	return (0);
651 }
652 
653 static struct nhop_object *
654 select_nhop(struct nhop_object *nh, const struct sockaddr *gw)
655 {
656 	if (!NH_IS_NHGRP(nh))
657 		return (nh);
658 #ifdef ROUTE_MPATH
659 	struct weightened_nhop *wn;
660 	uint32_t num_nhops;
661 	wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
662 	if (gw == NULL)
663 		return (wn[0].nh);
664 	for (int i = 0; i < num_nhops; i++) {
665 		if (match_nhop_gw(wn[i].nh, gw))
666 			return (wn[i].nh);
667 	}
668 #endif
669 	return (NULL);
670 }
671 
672 /*
673  * Handles RTM_GET message from routing socket, returning matching rt.
674  *
675  * Returns:
676  * 0 on success, with locked and referenced matching rt in @rt_nrt
677  * errno of failure
678  */
679 static int
680 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
681     struct rt_msghdr *rtm, struct rib_cmd_info *rc)
682 {
683 	RIB_RLOCK_TRACKER;
684 	struct rib_head *rnh;
685 	struct nhop_object *nh;
686 	sa_family_t saf;
687 
688 	saf = info->rti_info[RTAX_DST]->sa_family;
689 
690 	rnh = rt_tables_get_rnh(fibnum, saf);
691 	if (rnh == NULL)
692 		return (EAFNOSUPPORT);
693 
694 	RIB_RLOCK(rnh);
695 
696 	if (info->rti_info[RTAX_NETMASK] == NULL) {
697 		/*
698 		 * Provide longest prefix match for
699 		 * address lookup (no mask).
700 		 * 'route -n get addr'
701 		 */
702 		rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr(
703 		    info->rti_info[RTAX_DST], &rnh->head);
704 	} else
705 		rc->rc_rt = (struct rtentry *) rnh->rnh_lookup(
706 		    info->rti_info[RTAX_DST],
707 		    info->rti_info[RTAX_NETMASK], &rnh->head);
708 
709 	if (rc->rc_rt == NULL) {
710 		RIB_RUNLOCK(rnh);
711 		return (ESRCH);
712 	}
713 
714 	nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
715 	if (nh == NULL) {
716 		RIB_RUNLOCK(rnh);
717 		return (ESRCH);
718 	}
719 	/*
720 	 * If performing proxied L2 entry insertion, and
721 	 * the actual PPP host entry is found, perform
722 	 * another search to retrieve the prefix route of
723 	 * the local end point of the PPP link.
724 	 * TODO: move this logic to userland.
725 	 */
726 	if (rtm->rtm_flags & RTF_ANNOUNCE) {
727 		struct sockaddr laddr;
728 
729 		if (nh->nh_ifp != NULL &&
730 		    nh->nh_ifp->if_type == IFT_PROPVIRTUAL) {
731 			struct ifaddr *ifa;
732 
733 			ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
734 					RT_ALL_FIBS);
735 			if (ifa != NULL)
736 				rt_maskedcopy(ifa->ifa_addr,
737 					      &laddr,
738 					      ifa->ifa_netmask);
739 		} else
740 			rt_maskedcopy(nh->nh_ifa->ifa_addr,
741 				      &laddr,
742 				      nh->nh_ifa->ifa_netmask);
743 		/*
744 		 * refactor rt and no lock operation necessary
745 		 */
746 		rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
747 		    &rnh->head);
748 		if (rc->rc_rt == NULL) {
749 			RIB_RUNLOCK(rnh);
750 			return (ESRCH);
751 		}
752 		nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
753 		if (nh == NULL) {
754 			RIB_RUNLOCK(rnh);
755 			return (ESRCH);
756 		}
757 	}
758 	rc->rc_nh_new = nh;
759 	rc->rc_nh_weight = rc->rc_rt->rt_weight;
760 	RIB_RUNLOCK(rnh);
761 
762 	return (0);
763 }
764 
765 static void
766 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask)
767 {
768 #ifdef INET
769 	if (family == AF_INET) {
770 		struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
771 		struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
772 
773 		bzero(dst4, sizeof(struct sockaddr_in));
774 		bzero(mask4, sizeof(struct sockaddr_in));
775 
776 		dst4->sin_family = AF_INET;
777 		dst4->sin_len = sizeof(struct sockaddr_in);
778 		mask4->sin_family = AF_INET;
779 		mask4->sin_len = sizeof(struct sockaddr_in);
780 	}
781 #endif
782 #ifdef INET6
783 	if (family == AF_INET6) {
784 		struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
785 		struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
786 
787 		bzero(dst6, sizeof(struct sockaddr_in6));
788 		bzero(mask6, sizeof(struct sockaddr_in6));
789 
790 		dst6->sin6_family = AF_INET6;
791 		dst6->sin6_len = sizeof(struct sockaddr_in6);
792 		mask6->sin6_family = AF_INET6;
793 		mask6->sin6_len = sizeof(struct sockaddr_in6);
794 	}
795 #endif
796 }
797 
798 static void
799 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst,
800     struct sockaddr *mask)
801 {
802 #ifdef INET
803 	if (dst->sa_family == AF_INET) {
804 		struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
805 		struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
806 		uint32_t scopeid = 0;
807 		rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr,
808 		    &scopeid);
809 		return;
810 	}
811 #endif
812 #ifdef INET6
813 	if (dst->sa_family == AF_INET6) {
814 		struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
815 		struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
816 		uint32_t scopeid = 0;
817 		rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr,
818 		    &mask6->sin6_addr, &scopeid);
819 		dst6->sin6_scope_id = scopeid;
820 		return;
821 	}
822 #endif
823 }
824 
825 
826 /*
827  * Update sockaddrs, flags, etc in @prtm based on @rc data.
828  * rtm can be reallocated.
829  *
830  * Returns 0 on success, along with pointer to (potentially reallocated)
831  *  rtm.
832  *
833  */
834 static int
835 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm,
836     int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh)
837 {
838 	struct walkarg w;
839 	union sockaddr_union saun;
840 	struct rt_msghdr *rtm, *orig_rtm = NULL;
841 	struct ifnet *ifp;
842 	int error, len;
843 
844 	rtm = *prtm;
845 	union sockaddr_union sa_dst, sa_mask;
846 	int family = info->rti_info[RTAX_DST]->sa_family;
847 	init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa);
848 	export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa);
849 
850 	info->rti_info[RTAX_DST] = &sa_dst.sa;
851 	info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa;
852 	info->rti_info[RTAX_GATEWAY] = &nh->gw_sa;
853 	info->rti_info[RTAX_GENMASK] = 0;
854 	ifp = nh->nh_ifp;
855 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
856 		if (ifp) {
857 			info->rti_info[RTAX_IFP] =
858 			    ifp->if_addr->ifa_addr;
859 			error = rtm_get_jailed(info, ifp, nh,
860 			    &saun, curthread->td_ucred);
861 			if (error != 0)
862 				return (error);
863 			if (ifp->if_flags & IFF_POINTOPOINT)
864 				info->rti_info[RTAX_BRD] =
865 				    nh->nh_ifa->ifa_dstaddr;
866 			rtm->rtm_index = ifp->if_index;
867 		} else {
868 			info->rti_info[RTAX_IFP] = NULL;
869 			info->rti_info[RTAX_IFA] = NULL;
870 		}
871 	} else if (ifp != NULL)
872 		rtm->rtm_index = ifp->if_index;
873 
874 	/* Check if we need to realloc storage */
875 	rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
876 	if (len > alloc_len) {
877 		struct rt_msghdr *tmp_rtm;
878 
879 		tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
880 		if (tmp_rtm == NULL)
881 			return (ENOBUFS);
882 		bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
883 		orig_rtm = rtm;
884 		rtm = tmp_rtm;
885 		alloc_len = len;
886 
887 		/*
888 		 * Delay freeing original rtm as info contains
889 		 * data referencing it.
890 		 */
891 	}
892 
893 	w.w_tmem = (caddr_t)rtm;
894 	w.w_tmemsize = alloc_len;
895 	rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
896 
897 	rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh);
898 	if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
899 		rtm->rtm_flags = RTF_GATEWAY |
900 			(rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
901 	rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx);
902 	rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight;
903 	rtm->rtm_addrs = info->rti_addrs;
904 
905 	if (orig_rtm != NULL)
906 		free(orig_rtm, M_TEMP);
907 	*prtm = rtm;
908 
909 	return (0);
910 }
911 
912 #ifdef ROUTE_MPATH
913 static void
914 save_del_notification(struct rib_cmd_info *rc, void *_cbdata)
915 {
916 	struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
917 
918 	if (rc->rc_cmd == RTM_DELETE)
919 		*rc_new = *rc;
920 }
921 
922 static void
923 save_add_notification(struct rib_cmd_info *rc, void *_cbdata)
924 {
925 	struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
926 
927 	if (rc->rc_cmd == RTM_ADD)
928 		*rc_new = *rc;
929 }
930 #endif
931 
932 /*ARGSUSED*/
933 static int
934 route_output(struct mbuf *m, struct socket *so, ...)
935 {
936 	struct rt_msghdr *rtm = NULL;
937 	struct rtentry *rt = NULL;
938 	struct rt_addrinfo info;
939 	struct epoch_tracker et;
940 #ifdef INET6
941 	struct sockaddr_storage ss;
942 	struct sockaddr_in6 *sin6;
943 	int i, rti_need_deembed = 0;
944 #endif
945 	int alloc_len = 0, len, error = 0, fibnum;
946 	sa_family_t saf = AF_UNSPEC;
947 	struct walkarg w;
948 	struct rib_cmd_info rc;
949 	struct nhop_object *nh;
950 
951 	fibnum = so->so_fibnum;
952 #define senderr(e) { error = e; goto flush;}
953 	if (m == NULL || ((m->m_len < sizeof(long)) &&
954 		       (m = m_pullup(m, sizeof(long))) == NULL))
955 		return (ENOBUFS);
956 	if ((m->m_flags & M_PKTHDR) == 0)
957 		panic("route_output");
958 	NET_EPOCH_ENTER(et);
959 	len = m->m_pkthdr.len;
960 	if (len < sizeof(*rtm) ||
961 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
962 		senderr(EINVAL);
963 
964 	/*
965 	 * Most of current messages are in range 200-240 bytes,
966 	 * minimize possible re-allocation on reply using larger size
967 	 * buffer aligned on 1k boundaty.
968 	 */
969 	alloc_len = roundup2(len, 1024);
970 	if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
971 		senderr(ENOBUFS);
972 
973 	m_copydata(m, 0, len, (caddr_t)rtm);
974 	bzero(&info, sizeof(info));
975 	bzero(&w, sizeof(w));
976 	nh = NULL;
977 
978 	if (rtm->rtm_version != RTM_VERSION) {
979 		/* Do not touch message since format is unknown */
980 		free(rtm, M_TEMP);
981 		rtm = NULL;
982 		senderr(EPROTONOSUPPORT);
983 	}
984 
985 	/*
986 	 * Starting from here, it is possible
987 	 * to alter original message and insert
988 	 * caller PID and error value.
989 	 */
990 
991 	if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) {
992 		senderr(error);
993 	}
994 
995 	saf = info.rti_info[RTAX_DST]->sa_family;
996 
997 	/* support for new ARP code */
998 	if (rtm->rtm_flags & RTF_LLDATA) {
999 		error = lla_rt_output(rtm, &info);
1000 #ifdef INET6
1001 		if (error == 0)
1002 			rti_need_deembed = 1;
1003 #endif
1004 		goto flush;
1005 	}
1006 
1007 	switch (rtm->rtm_type) {
1008 	case RTM_ADD:
1009 	case RTM_CHANGE:
1010 		if (rtm->rtm_type == RTM_ADD) {
1011 			if (info.rti_info[RTAX_GATEWAY] == NULL)
1012 				senderr(EINVAL);
1013 		}
1014 		error = rib_action(fibnum, rtm->rtm_type, &info, &rc);
1015 		if (error == 0) {
1016 #ifdef INET6
1017 			rti_need_deembed = 1;
1018 #endif
1019 #ifdef ROUTE_MPATH
1020 			if (NH_IS_NHGRP(rc.rc_nh_new) ||
1021 			    (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) {
1022 				struct rib_cmd_info rc_simple = {};
1023 				rib_decompose_notification(&rc,
1024 				    save_add_notification, (void *)&rc_simple);
1025 				rc = rc_simple;
1026 			}
1027 #endif
1028 			nh = rc.rc_nh_new;
1029 			rtm->rtm_index = nh->nh_ifp->if_index;
1030 			rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh);
1031 		}
1032 		break;
1033 
1034 	case RTM_DELETE:
1035 		error = rib_action(fibnum, RTM_DELETE, &info, &rc);
1036 		if (error == 0) {
1037 #ifdef ROUTE_MPATH
1038 			if (NH_IS_NHGRP(rc.rc_nh_old) ||
1039 			    (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) {
1040 				struct rib_cmd_info rc_simple = {};
1041 				rib_decompose_notification(&rc,
1042 				    save_del_notification, (void *)&rc_simple);
1043 				rc = rc_simple;
1044 			}
1045 #endif
1046 			nh = rc.rc_nh_old;
1047 			goto report;
1048 		}
1049 #ifdef INET6
1050 		/* rt_msg2() will not be used when RTM_DELETE fails. */
1051 		rti_need_deembed = 1;
1052 #endif
1053 		break;
1054 
1055 	case RTM_GET:
1056 		error = handle_rtm_get(&info, fibnum, rtm, &rc);
1057 		if (error != 0)
1058 			senderr(error);
1059 		nh = rc.rc_nh_new;
1060 
1061 report:
1062 		if (!can_export_rte(curthread->td_ucred,
1063 		    info.rti_info[RTAX_NETMASK] == NULL,
1064 		    info.rti_info[RTAX_DST])) {
1065 			senderr(ESRCH);
1066 		}
1067 
1068 		error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh);
1069 		/*
1070 		 * Note that some sockaddr pointers may have changed to
1071 		 * point to memory outsize @rtm. Some may be pointing
1072 		 * to the on-stack variables.
1073 		 * Given that, any pointer in @info CANNOT BE USED.
1074 		 */
1075 
1076 		/*
1077 		 * scopeid deembedding has been performed while
1078 		 * writing updated rtm in rtsock_msg_buffer().
1079 		 * With that in mind, skip deembedding procedure below.
1080 		 */
1081 #ifdef INET6
1082 		rti_need_deembed = 0;
1083 #endif
1084 		if (error != 0)
1085 			senderr(error);
1086 		break;
1087 
1088 	default:
1089 		senderr(EOPNOTSUPP);
1090 	}
1091 
1092 flush:
1093 	NET_EPOCH_EXIT(et);
1094 	rt = NULL;
1095 
1096 #ifdef INET6
1097 	if (rtm != NULL) {
1098 		if (rti_need_deembed) {
1099 			/* sin6_scope_id is recovered before sending rtm. */
1100 			sin6 = (struct sockaddr_in6 *)&ss;
1101 			for (i = 0; i < RTAX_MAX; i++) {
1102 				if (info.rti_info[i] == NULL)
1103 					continue;
1104 				if (info.rti_info[i]->sa_family != AF_INET6)
1105 					continue;
1106 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
1107 				if (sa6_recoverscope(sin6) == 0)
1108 					bcopy(sin6, info.rti_info[i],
1109 						    sizeof(*sin6));
1110 			}
1111 		}
1112 	}
1113 #endif
1114 	send_rtm_reply(so, rtm, m, saf, fibnum, error);
1115 
1116 	return (error);
1117 }
1118 
1119 /*
1120  * Sends the prepared reply message in @rtm to all rtsock clients.
1121  * Frees @m and @rtm.
1122  *
1123  */
1124 static void
1125 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1126     sa_family_t saf, u_int fibnum, int rtm_errno)
1127 {
1128 	struct rawcb *rp = NULL;
1129 
1130 	/*
1131 	 * Check to see if we don't want our own messages.
1132 	 */
1133 	if ((so->so_options & SO_USELOOPBACK) == 0) {
1134 		if (V_route_cb.any_count <= 1) {
1135 			if (rtm != NULL)
1136 				free(rtm, M_TEMP);
1137 			m_freem(m);
1138 			return;
1139 		}
1140 		/* There is another listener, so construct message */
1141 		rp = sotorawcb(so);
1142 	}
1143 
1144 	if (rtm != NULL) {
1145 		if (rtm_errno!= 0)
1146 			rtm->rtm_errno = rtm_errno;
1147 		else
1148 			rtm->rtm_flags |= RTF_DONE;
1149 
1150 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1151 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
1152 			m_freem(m);
1153 			m = NULL;
1154 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
1155 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1156 
1157 		free(rtm, M_TEMP);
1158 	}
1159 	if (m != NULL) {
1160 		M_SETFIB(m, fibnum);
1161 		m->m_flags |= RTS_FILTER_FIB;
1162 		if (rp) {
1163 			/*
1164 			 * XXX insure we don't get a copy by
1165 			 * invalidating our protocol
1166 			 */
1167 			unsigned short family = rp->rcb_proto.sp_family;
1168 			rp->rcb_proto.sp_family = 0;
1169 			rt_dispatch(m, saf);
1170 			rp->rcb_proto.sp_family = family;
1171 		} else
1172 			rt_dispatch(m, saf);
1173 	}
1174 }
1175 
1176 static void
1177 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh,
1178     struct rt_metrics *out)
1179 {
1180 
1181 	bzero(out, sizeof(*out));
1182 	out->rmx_mtu = nh->nh_mtu;
1183 	out->rmx_weight = rt->rt_weight;
1184 	out->rmx_nhidx = nhop_get_idx(nh);
1185 	/* Kernel -> userland timebase conversion. */
1186 	out->rmx_expire = rt->rt_expire ?
1187 	    rt->rt_expire - time_uptime + time_second : 0;
1188 }
1189 
1190 /*
1191  * Extract the addresses of the passed sockaddrs.
1192  * Do a little sanity checking so as to avoid bad memory references.
1193  * This data is derived straight from userland.
1194  */
1195 static int
1196 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1197 {
1198 	struct sockaddr *sa;
1199 	int i;
1200 
1201 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1202 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
1203 			continue;
1204 		sa = (struct sockaddr *)cp;
1205 		/*
1206 		 * It won't fit.
1207 		 */
1208 		if (cp + sa->sa_len > cplim)
1209 			return (EINVAL);
1210 		/*
1211 		 * there are no more.. quit now
1212 		 * If there are more bits, they are in error.
1213 		 * I've seen this. route(1) can evidently generate these.
1214 		 * This causes kernel to core dump.
1215 		 * for compatibility, If we see this, point to a safe address.
1216 		 */
1217 		if (sa->sa_len == 0) {
1218 			rtinfo->rti_info[i] = &sa_zero;
1219 			return (0); /* should be EINVAL but for compat */
1220 		}
1221 		/* accept it */
1222 #ifdef INET6
1223 		if (sa->sa_family == AF_INET6)
1224 			sa6_embedscope((struct sockaddr_in6 *)sa,
1225 			    V_ip6_use_defzone);
1226 #endif
1227 		rtinfo->rti_info[i] = sa;
1228 		cp += SA_SIZE(sa);
1229 	}
1230 	return (0);
1231 }
1232 
1233 /*
1234  * Fill in @dmask with valid netmask leaving original @smask
1235  * intact. Mostly used with radix netmasks.
1236  */
1237 struct sockaddr *
1238 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask,
1239     struct sockaddr_storage *dmask)
1240 {
1241 	if (dst == NULL || smask == NULL)
1242 		return (NULL);
1243 
1244 	memset(dmask, 0, dst->sa_len);
1245 	memcpy(dmask, smask, smask->sa_len);
1246 	dmask->ss_len = dst->sa_len;
1247 	dmask->ss_family = dst->sa_family;
1248 
1249 	return ((struct sockaddr *)dmask);
1250 }
1251 
1252 /*
1253  * Writes information related to @rtinfo object to newly-allocated mbuf.
1254  * Assumes MCLBYTES is enough to construct any message.
1255  * Used for OS notifications of vaious events (if/ifa announces,etc)
1256  *
1257  * Returns allocated mbuf or NULL on failure.
1258  */
1259 static struct mbuf *
1260 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1261 {
1262 	struct sockaddr_storage ss;
1263 	struct rt_msghdr *rtm;
1264 	struct mbuf *m;
1265 	int i;
1266 	struct sockaddr *sa;
1267 #ifdef INET6
1268 	struct sockaddr_in6 *sin6;
1269 #endif
1270 	int len, dlen;
1271 
1272 	switch (type) {
1273 	case RTM_DELADDR:
1274 	case RTM_NEWADDR:
1275 		len = sizeof(struct ifa_msghdr);
1276 		break;
1277 
1278 	case RTM_DELMADDR:
1279 	case RTM_NEWMADDR:
1280 		len = sizeof(struct ifma_msghdr);
1281 		break;
1282 
1283 	case RTM_IFINFO:
1284 		len = sizeof(struct if_msghdr);
1285 		break;
1286 
1287 	case RTM_IFANNOUNCE:
1288 	case RTM_IEEE80211:
1289 		len = sizeof(struct if_announcemsghdr);
1290 		break;
1291 
1292 	default:
1293 		len = sizeof(struct rt_msghdr);
1294 	}
1295 
1296 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1297 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1298 	if (len > MHLEN)
1299 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1300 	else
1301 		m = m_gethdr(M_NOWAIT, MT_DATA);
1302 	if (m == NULL)
1303 		return (m);
1304 
1305 	m->m_pkthdr.len = m->m_len = len;
1306 	rtm = mtod(m, struct rt_msghdr *);
1307 	bzero((caddr_t)rtm, len);
1308 	for (i = 0; i < RTAX_MAX; i++) {
1309 		if ((sa = rtinfo->rti_info[i]) == NULL)
1310 			continue;
1311 		rtinfo->rti_addrs |= (1 << i);
1312 
1313 		dlen = SA_SIZE(sa);
1314 		KASSERT(dlen <= sizeof(ss),
1315 		    ("%s: sockaddr size overflow", __func__));
1316 		bzero(&ss, sizeof(ss));
1317 		bcopy(sa, &ss, sa->sa_len);
1318 		sa = (struct sockaddr *)&ss;
1319 #ifdef INET6
1320 		if (sa->sa_family == AF_INET6) {
1321 			sin6 = (struct sockaddr_in6 *)sa;
1322 			(void)sa6_recoverscope(sin6);
1323 		}
1324 #endif
1325 		m_copyback(m, len, dlen, (caddr_t)sa);
1326 		len += dlen;
1327 	}
1328 	if (m->m_pkthdr.len != len) {
1329 		m_freem(m);
1330 		return (NULL);
1331 	}
1332 	rtm->rtm_msglen = len;
1333 	rtm->rtm_version = RTM_VERSION;
1334 	rtm->rtm_type = type;
1335 	return (m);
1336 }
1337 
1338 /*
1339  * Writes information related to @rtinfo object to preallocated buffer.
1340  * Stores needed size in @plen. If @w is NULL, calculates size without
1341  * writing.
1342  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1343  *
1344  * Returns 0 on success.
1345  *
1346  */
1347 static int
1348 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1349 {
1350 	struct sockaddr_storage ss;
1351 	int len, buflen = 0, dlen, i;
1352 	caddr_t cp = NULL;
1353 	struct rt_msghdr *rtm = NULL;
1354 #ifdef INET6
1355 	struct sockaddr_in6 *sin6;
1356 #endif
1357 #ifdef COMPAT_FREEBSD32
1358 	bool compat32 = false;
1359 #endif
1360 
1361 	switch (type) {
1362 	case RTM_DELADDR:
1363 	case RTM_NEWADDR:
1364 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1365 #ifdef COMPAT_FREEBSD32
1366 			if (w->w_req->flags & SCTL_MASK32) {
1367 				len = sizeof(struct ifa_msghdrl32);
1368 				compat32 = true;
1369 			} else
1370 #endif
1371 				len = sizeof(struct ifa_msghdrl);
1372 		} else
1373 			len = sizeof(struct ifa_msghdr);
1374 		break;
1375 
1376 	case RTM_IFINFO:
1377 #ifdef COMPAT_FREEBSD32
1378 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1379 			if (w->w_op == NET_RT_IFLISTL)
1380 				len = sizeof(struct if_msghdrl32);
1381 			else
1382 				len = sizeof(struct if_msghdr32);
1383 			compat32 = true;
1384 			break;
1385 		}
1386 #endif
1387 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1388 			len = sizeof(struct if_msghdrl);
1389 		else
1390 			len = sizeof(struct if_msghdr);
1391 		break;
1392 
1393 	case RTM_NEWMADDR:
1394 		len = sizeof(struct ifma_msghdr);
1395 		break;
1396 
1397 	default:
1398 		len = sizeof(struct rt_msghdr);
1399 	}
1400 
1401 	if (w != NULL) {
1402 		rtm = (struct rt_msghdr *)w->w_tmem;
1403 		buflen = w->w_tmemsize - len;
1404 		cp = (caddr_t)w->w_tmem + len;
1405 	}
1406 
1407 	rtinfo->rti_addrs = 0;
1408 	for (i = 0; i < RTAX_MAX; i++) {
1409 		struct sockaddr *sa;
1410 
1411 		if ((sa = rtinfo->rti_info[i]) == NULL)
1412 			continue;
1413 		rtinfo->rti_addrs |= (1 << i);
1414 #ifdef COMPAT_FREEBSD32
1415 		if (compat32)
1416 			dlen = SA_SIZE32(sa);
1417 		else
1418 #endif
1419 			dlen = SA_SIZE(sa);
1420 		if (cp != NULL && buflen >= dlen) {
1421 			KASSERT(dlen <= sizeof(ss),
1422 			    ("%s: sockaddr size overflow", __func__));
1423 			bzero(&ss, sizeof(ss));
1424 			bcopy(sa, &ss, sa->sa_len);
1425 			sa = (struct sockaddr *)&ss;
1426 #ifdef INET6
1427 			if (sa->sa_family == AF_INET6) {
1428 				sin6 = (struct sockaddr_in6 *)sa;
1429 				(void)sa6_recoverscope(sin6);
1430 			}
1431 #endif
1432 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1433 			cp += dlen;
1434 			buflen -= dlen;
1435 		} else if (cp != NULL) {
1436 			/*
1437 			 * Buffer too small. Count needed size
1438 			 * and return with error.
1439 			 */
1440 			cp = NULL;
1441 		}
1442 
1443 		len += dlen;
1444 	}
1445 
1446 	if (cp != NULL) {
1447 		dlen = ALIGN(len) - len;
1448 		if (buflen < dlen)
1449 			cp = NULL;
1450 		else {
1451 			bzero(cp, dlen);
1452 			cp += dlen;
1453 			buflen -= dlen;
1454 		}
1455 	}
1456 	len = ALIGN(len);
1457 
1458 	if (cp != NULL) {
1459 		/* fill header iff buffer is large enough */
1460 		rtm->rtm_version = RTM_VERSION;
1461 		rtm->rtm_type = type;
1462 		rtm->rtm_msglen = len;
1463 	}
1464 
1465 	*plen = len;
1466 
1467 	if (w != NULL && cp == NULL)
1468 		return (ENOBUFS);
1469 
1470 	return (0);
1471 }
1472 
1473 /*
1474  * This routine is called to generate a message from the routing
1475  * socket indicating that a redirect has occurred, a routing lookup
1476  * has failed, or that a protocol has detected timeouts to a particular
1477  * destination.
1478  */
1479 void
1480 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1481     int fibnum)
1482 {
1483 	struct rt_msghdr *rtm;
1484 	struct mbuf *m;
1485 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1486 
1487 	if (V_route_cb.any_count == 0)
1488 		return;
1489 	m = rtsock_msg_mbuf(type, rtinfo);
1490 	if (m == NULL)
1491 		return;
1492 
1493 	if (fibnum != RT_ALL_FIBS) {
1494 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1495 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1496 		M_SETFIB(m, fibnum);
1497 		m->m_flags |= RTS_FILTER_FIB;
1498 	}
1499 
1500 	rtm = mtod(m, struct rt_msghdr *);
1501 	rtm->rtm_flags = RTF_DONE | flags;
1502 	rtm->rtm_errno = error;
1503 	rtm->rtm_addrs = rtinfo->rti_addrs;
1504 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1505 }
1506 
1507 void
1508 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1509 {
1510 
1511 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1512 }
1513 
1514 /*
1515  * This routine is called to generate a message from the routing
1516  * socket indicating that the status of a network interface has changed.
1517  */
1518 void
1519 rt_ifmsg(struct ifnet *ifp)
1520 {
1521 	struct if_msghdr *ifm;
1522 	struct mbuf *m;
1523 	struct rt_addrinfo info;
1524 
1525 	if (V_route_cb.any_count == 0)
1526 		return;
1527 	bzero((caddr_t)&info, sizeof(info));
1528 	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1529 	if (m == NULL)
1530 		return;
1531 	ifm = mtod(m, struct if_msghdr *);
1532 	ifm->ifm_index = ifp->if_index;
1533 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1534 	if_data_copy(ifp, &ifm->ifm_data);
1535 	ifm->ifm_addrs = 0;
1536 	rt_dispatch(m, AF_UNSPEC);
1537 }
1538 
1539 /*
1540  * Announce interface address arrival/withdraw.
1541  * Please do not call directly, use rt_addrmsg().
1542  * Assume input data to be valid.
1543  * Returns 0 on success.
1544  */
1545 int
1546 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1547 {
1548 	struct rt_addrinfo info;
1549 	struct sockaddr *sa;
1550 	int ncmd;
1551 	struct mbuf *m;
1552 	struct ifa_msghdr *ifam;
1553 	struct ifnet *ifp = ifa->ifa_ifp;
1554 	struct sockaddr_storage ss;
1555 
1556 	if (V_route_cb.any_count == 0)
1557 		return (0);
1558 
1559 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1560 
1561 	bzero((caddr_t)&info, sizeof(info));
1562 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1563 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1564 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1565 	    info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
1566 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1567 	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1568 		return (ENOBUFS);
1569 	ifam = mtod(m, struct ifa_msghdr *);
1570 	ifam->ifam_index = ifp->if_index;
1571 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1572 	ifam->ifam_flags = ifa->ifa_flags;
1573 	ifam->ifam_addrs = info.rti_addrs;
1574 
1575 	if (fibnum != RT_ALL_FIBS) {
1576 		M_SETFIB(m, fibnum);
1577 		m->m_flags |= RTS_FILTER_FIB;
1578 	}
1579 
1580 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1581 
1582 	return (0);
1583 }
1584 
1585 /*
1586  * Announce route addition/removal to rtsock based on @rt data.
1587  * Callers are advives to use rt_routemsg() instead of using this
1588  *  function directly.
1589  * Assume @rt data is consistent.
1590  *
1591  * Returns 0 on success.
1592  */
1593 int
1594 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs,
1595     int fibnum)
1596 {
1597 	struct sockaddr_storage ss;
1598 	struct rt_addrinfo info;
1599 	struct nhop_object *nh;
1600 
1601 	if (V_route_cb.any_count == 0)
1602 		return (0);
1603 
1604 	nh = rt->rt_nhop;
1605 	bzero((caddr_t)&info, sizeof(info));
1606 	info.rti_info[RTAX_DST] = rt_key(rt);
1607 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss);
1608 	info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
1609 	info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh);
1610 	info.rti_ifp = ifp;
1611 
1612 	return (rtsock_routemsg_info(cmd, &info, fibnum));
1613 }
1614 
1615 int
1616 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
1617 {
1618 	struct rt_msghdr *rtm;
1619 	struct sockaddr *sa;
1620 	struct mbuf *m;
1621 
1622 	if (V_route_cb.any_count == 0)
1623 		return (0);
1624 
1625 	if (info->rti_flags & RTF_HOST)
1626 		info->rti_info[RTAX_NETMASK] = NULL;
1627 
1628 	m = rtsock_msg_mbuf(cmd, info);
1629 	if (m == NULL)
1630 		return (ENOBUFS);
1631 
1632 	if (fibnum != RT_ALL_FIBS) {
1633 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1634 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1635 		M_SETFIB(m, fibnum);
1636 		m->m_flags |= RTS_FILTER_FIB;
1637 	}
1638 
1639 	rtm = mtod(m, struct rt_msghdr *);
1640 	rtm->rtm_addrs = info->rti_addrs;
1641 	if (info->rti_ifp != NULL)
1642 		rtm->rtm_index = info->rti_ifp->if_index;
1643 	/* Add RTF_DONE to indicate command 'completion' required by API */
1644 	info->rti_flags |= RTF_DONE;
1645 	/* Reported routes has to be up */
1646 	if (cmd == RTM_ADD || cmd == RTM_CHANGE)
1647 		info->rti_flags |= RTF_UP;
1648 	rtm->rtm_flags = info->rti_flags;
1649 
1650 	sa = info->rti_info[RTAX_DST];
1651 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1652 
1653 	return (0);
1654 }
1655 
1656 /*
1657  * This is the analogue to the rt_newaddrmsg which performs the same
1658  * function but for multicast group memberhips.  This is easier since
1659  * there is no route state to worry about.
1660  */
1661 void
1662 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1663 {
1664 	struct rt_addrinfo info;
1665 	struct mbuf *m = NULL;
1666 	struct ifnet *ifp = ifma->ifma_ifp;
1667 	struct ifma_msghdr *ifmam;
1668 
1669 	if (V_route_cb.any_count == 0)
1670 		return;
1671 
1672 	bzero((caddr_t)&info, sizeof(info));
1673 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1674 	if (ifp && ifp->if_addr)
1675 		info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1676 	else
1677 		info.rti_info[RTAX_IFP] = NULL;
1678 	/*
1679 	 * If a link-layer address is present, present it as a ``gateway''
1680 	 * (similarly to how ARP entries, e.g., are presented).
1681 	 */
1682 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1683 	m = rtsock_msg_mbuf(cmd, &info);
1684 	if (m == NULL)
1685 		return;
1686 	ifmam = mtod(m, struct ifma_msghdr *);
1687 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1688 	    __func__));
1689 	ifmam->ifmam_index = ifp->if_index;
1690 	ifmam->ifmam_addrs = info.rti_addrs;
1691 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1692 }
1693 
1694 static struct mbuf *
1695 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1696 	struct rt_addrinfo *info)
1697 {
1698 	struct if_announcemsghdr *ifan;
1699 	struct mbuf *m;
1700 
1701 	if (V_route_cb.any_count == 0)
1702 		return NULL;
1703 	bzero((caddr_t)info, sizeof(*info));
1704 	m = rtsock_msg_mbuf(type, info);
1705 	if (m != NULL) {
1706 		ifan = mtod(m, struct if_announcemsghdr *);
1707 		ifan->ifan_index = ifp->if_index;
1708 		strlcpy(ifan->ifan_name, ifp->if_xname,
1709 			sizeof(ifan->ifan_name));
1710 		ifan->ifan_what = what;
1711 	}
1712 	return m;
1713 }
1714 
1715 /*
1716  * This is called to generate routing socket messages indicating
1717  * IEEE80211 wireless events.
1718  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1719  */
1720 void
1721 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1722 {
1723 	struct mbuf *m;
1724 	struct rt_addrinfo info;
1725 
1726 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1727 	if (m != NULL) {
1728 		/*
1729 		 * Append the ieee80211 data.  Try to stick it in the
1730 		 * mbuf containing the ifannounce msg; otherwise allocate
1731 		 * a new mbuf and append.
1732 		 *
1733 		 * NB: we assume m is a single mbuf.
1734 		 */
1735 		if (data_len > M_TRAILINGSPACE(m)) {
1736 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1737 			if (n == NULL) {
1738 				m_freem(m);
1739 				return;
1740 			}
1741 			bcopy(data, mtod(n, void *), data_len);
1742 			n->m_len = data_len;
1743 			m->m_next = n;
1744 		} else if (data_len > 0) {
1745 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1746 			m->m_len += data_len;
1747 		}
1748 		if (m->m_flags & M_PKTHDR)
1749 			m->m_pkthdr.len += data_len;
1750 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1751 		rt_dispatch(m, AF_UNSPEC);
1752 	}
1753 }
1754 
1755 /*
1756  * This is called to generate routing socket messages indicating
1757  * network interface arrival and departure.
1758  */
1759 void
1760 rt_ifannouncemsg(struct ifnet *ifp, int what)
1761 {
1762 	struct mbuf *m;
1763 	struct rt_addrinfo info;
1764 
1765 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1766 	if (m != NULL)
1767 		rt_dispatch(m, AF_UNSPEC);
1768 }
1769 
1770 static void
1771 rt_dispatch(struct mbuf *m, sa_family_t saf)
1772 {
1773 	struct m_tag *tag;
1774 
1775 	/*
1776 	 * Preserve the family from the sockaddr, if any, in an m_tag for
1777 	 * use when injecting the mbuf into the routing socket buffer from
1778 	 * the netisr.
1779 	 */
1780 	if (saf != AF_UNSPEC) {
1781 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1782 		    M_NOWAIT);
1783 		if (tag == NULL) {
1784 			m_freem(m);
1785 			return;
1786 		}
1787 		*(unsigned short *)(tag + 1) = saf;
1788 		m_tag_prepend(m, tag);
1789 	}
1790 #ifdef VIMAGE
1791 	if (V_loif)
1792 		m->m_pkthdr.rcvif = V_loif;
1793 	else {
1794 		m_freem(m);
1795 		return;
1796 	}
1797 #endif
1798 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1799 }
1800 
1801 /*
1802  * Checks if rte can be exported v.r.t jails/vnets.
1803  *
1804  * Returns 1 if it can, 0 otherwise.
1805  */
1806 static bool
1807 can_export_rte(struct ucred *td_ucred, bool rt_is_host,
1808     const struct sockaddr *rt_dst)
1809 {
1810 
1811 	if ((!rt_is_host) ? jailed_without_vnet(td_ucred)
1812 	    : prison_if(td_ucred, rt_dst) != 0)
1813 		return (false);
1814 	return (true);
1815 }
1816 
1817 
1818 /*
1819  * This is used in dumping the kernel table via sysctl().
1820  */
1821 static int
1822 sysctl_dumpentry(struct rtentry *rt, void *vw)
1823 {
1824 	struct walkarg *w = vw;
1825 	struct nhop_object *nh;
1826 	int error = 0;
1827 
1828 	NET_EPOCH_ASSERT();
1829 
1830 	export_rtaddrs(rt, w->dst, w->mask);
1831 	if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst))
1832 		return (0);
1833 	nh = rt_get_raw_nhop(rt);
1834 #ifdef ROUTE_MPATH
1835 	if (NH_IS_NHGRP(nh)) {
1836 		struct weightened_nhop *wn;
1837 		uint32_t num_nhops;
1838 		wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
1839 		for (int i = 0; i < num_nhops; i++) {
1840 			error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w);
1841 			if (error != 0)
1842 				return (error);
1843 		}
1844 	} else
1845 #endif
1846 		error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w);
1847 
1848 	return (0);
1849 }
1850 
1851 
1852 static int
1853 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight,
1854     struct walkarg *w)
1855 {
1856 	struct rt_addrinfo info;
1857 	int error = 0, size;
1858 	uint32_t rtflags;
1859 
1860 	rtflags = nhop_get_rtflags(nh);
1861 
1862 	if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg))
1863 		return (0);
1864 
1865 	bzero((caddr_t)&info, sizeof(info));
1866 	info.rti_info[RTAX_DST] = w->dst;
1867 	info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
1868 	info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask;
1869 	info.rti_info[RTAX_GENMASK] = 0;
1870 	if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) {
1871 		info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr;
1872 		info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
1873 		if (nh->nh_ifp->if_flags & IFF_POINTOPOINT)
1874 			info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr;
1875 	}
1876 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1877 		return (error);
1878 	if (w->w_req && w->w_tmem) {
1879 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1880 
1881 		bzero(&rtm->rtm_index,
1882 		    sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
1883 
1884 		/*
1885 		 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags)
1886 		 * and RTF_UP (if entry is linked, which is always true here).
1887 		 * Given that, use nhop rtflags & add RTF_UP.
1888 		 */
1889 		rtm->rtm_flags = rtflags | RTF_UP;
1890 		if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
1891 			rtm->rtm_flags = RTF_GATEWAY |
1892 				(rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
1893 		rt_getmetrics(rt, nh, &rtm->rtm_rmx);
1894 		rtm->rtm_rmx.rmx_weight = weight;
1895 		rtm->rtm_index = nh->nh_ifp->if_index;
1896 		rtm->rtm_addrs = info.rti_addrs;
1897 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1898 		return (error);
1899 	}
1900 	return (error);
1901 }
1902 
1903 static int
1904 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
1905     struct rt_addrinfo *info, struct walkarg *w, int len)
1906 {
1907 	struct if_msghdrl *ifm;
1908 	struct if_data *ifd;
1909 
1910 	ifm = (struct if_msghdrl *)w->w_tmem;
1911 
1912 #ifdef COMPAT_FREEBSD32
1913 	if (w->w_req->flags & SCTL_MASK32) {
1914 		struct if_msghdrl32 *ifm32;
1915 
1916 		ifm32 = (struct if_msghdrl32 *)ifm;
1917 		ifm32->ifm_addrs = info->rti_addrs;
1918 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1919 		ifm32->ifm_index = ifp->if_index;
1920 		ifm32->_ifm_spare1 = 0;
1921 		ifm32->ifm_len = sizeof(*ifm32);
1922 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1923 		ifm32->_ifm_spare2 = 0;
1924 		ifd = &ifm32->ifm_data;
1925 	} else
1926 #endif
1927 	{
1928 		ifm->ifm_addrs = info->rti_addrs;
1929 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1930 		ifm->ifm_index = ifp->if_index;
1931 		ifm->_ifm_spare1 = 0;
1932 		ifm->ifm_len = sizeof(*ifm);
1933 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1934 		ifm->_ifm_spare2 = 0;
1935 		ifd = &ifm->ifm_data;
1936 	}
1937 
1938 	memcpy(ifd, src_ifd, sizeof(*ifd));
1939 
1940 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1941 }
1942 
1943 static int
1944 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
1945     struct rt_addrinfo *info, struct walkarg *w, int len)
1946 {
1947 	struct if_msghdr *ifm;
1948 	struct if_data *ifd;
1949 
1950 	ifm = (struct if_msghdr *)w->w_tmem;
1951 
1952 #ifdef COMPAT_FREEBSD32
1953 	if (w->w_req->flags & SCTL_MASK32) {
1954 		struct if_msghdr32 *ifm32;
1955 
1956 		ifm32 = (struct if_msghdr32 *)ifm;
1957 		ifm32->ifm_addrs = info->rti_addrs;
1958 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1959 		ifm32->ifm_index = ifp->if_index;
1960 		ifm32->_ifm_spare1 = 0;
1961 		ifd = &ifm32->ifm_data;
1962 	} else
1963 #endif
1964 	{
1965 		ifm->ifm_addrs = info->rti_addrs;
1966 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1967 		ifm->ifm_index = ifp->if_index;
1968 		ifm->_ifm_spare1 = 0;
1969 		ifd = &ifm->ifm_data;
1970 	}
1971 
1972 	memcpy(ifd, src_ifd, sizeof(*ifd));
1973 
1974 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1975 }
1976 
1977 static int
1978 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1979     struct walkarg *w, int len)
1980 {
1981 	struct ifa_msghdrl *ifam;
1982 	struct if_data *ifd;
1983 
1984 	ifam = (struct ifa_msghdrl *)w->w_tmem;
1985 
1986 #ifdef COMPAT_FREEBSD32
1987 	if (w->w_req->flags & SCTL_MASK32) {
1988 		struct ifa_msghdrl32 *ifam32;
1989 
1990 		ifam32 = (struct ifa_msghdrl32 *)ifam;
1991 		ifam32->ifam_addrs = info->rti_addrs;
1992 		ifam32->ifam_flags = ifa->ifa_flags;
1993 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
1994 		ifam32->_ifam_spare1 = 0;
1995 		ifam32->ifam_len = sizeof(*ifam32);
1996 		ifam32->ifam_data_off =
1997 		    offsetof(struct ifa_msghdrl32, ifam_data);
1998 		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
1999 		ifd = &ifam32->ifam_data;
2000 	} else
2001 #endif
2002 	{
2003 		ifam->ifam_addrs = info->rti_addrs;
2004 		ifam->ifam_flags = ifa->ifa_flags;
2005 		ifam->ifam_index = ifa->ifa_ifp->if_index;
2006 		ifam->_ifam_spare1 = 0;
2007 		ifam->ifam_len = sizeof(*ifam);
2008 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
2009 		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
2010 		ifd = &ifam->ifam_data;
2011 	}
2012 
2013 	bzero(ifd, sizeof(*ifd));
2014 	ifd->ifi_datalen = sizeof(struct if_data);
2015 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
2016 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
2017 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
2018 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
2019 
2020 	/* Fixup if_data carp(4) vhid. */
2021 	if (carp_get_vhid_p != NULL)
2022 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
2023 
2024 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
2025 }
2026 
2027 static int
2028 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
2029     struct walkarg *w, int len)
2030 {
2031 	struct ifa_msghdr *ifam;
2032 
2033 	ifam = (struct ifa_msghdr *)w->w_tmem;
2034 	ifam->ifam_addrs = info->rti_addrs;
2035 	ifam->ifam_flags = ifa->ifa_flags;
2036 	ifam->ifam_index = ifa->ifa_ifp->if_index;
2037 	ifam->_ifam_spare1 = 0;
2038 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
2039 
2040 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
2041 }
2042 
2043 static int
2044 sysctl_iflist(int af, struct walkarg *w)
2045 {
2046 	struct ifnet *ifp;
2047 	struct ifaddr *ifa;
2048 	struct if_data ifd;
2049 	struct rt_addrinfo info;
2050 	int len, error = 0;
2051 	struct sockaddr_storage ss;
2052 
2053 	bzero((caddr_t)&info, sizeof(info));
2054 	bzero(&ifd, sizeof(ifd));
2055 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2056 		if (w->w_arg && w->w_arg != ifp->if_index)
2057 			continue;
2058 		if_data_copy(ifp, &ifd);
2059 		ifa = ifp->if_addr;
2060 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
2061 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
2062 		if (error != 0)
2063 			goto done;
2064 		info.rti_info[RTAX_IFP] = NULL;
2065 		if (w->w_req && w->w_tmem) {
2066 			if (w->w_op == NET_RT_IFLISTL)
2067 				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
2068 				    len);
2069 			else
2070 				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
2071 				    len);
2072 			if (error)
2073 				goto done;
2074 		}
2075 		while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
2076 			if (af && af != ifa->ifa_addr->sa_family)
2077 				continue;
2078 			if (prison_if(w->w_req->td->td_ucred,
2079 			    ifa->ifa_addr) != 0)
2080 				continue;
2081 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
2082 			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
2083 			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
2084 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
2085 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
2086 			if (error != 0)
2087 				goto done;
2088 			if (w->w_req && w->w_tmem) {
2089 				if (w->w_op == NET_RT_IFLISTL)
2090 					error = sysctl_iflist_ifaml(ifa, &info,
2091 					    w, len);
2092 				else
2093 					error = sysctl_iflist_ifam(ifa, &info,
2094 					    w, len);
2095 				if (error)
2096 					goto done;
2097 			}
2098 		}
2099 		info.rti_info[RTAX_IFA] = NULL;
2100 		info.rti_info[RTAX_NETMASK] = NULL;
2101 		info.rti_info[RTAX_BRD] = NULL;
2102 	}
2103 done:
2104 	return (error);
2105 }
2106 
2107 static int
2108 sysctl_ifmalist(int af, struct walkarg *w)
2109 {
2110 	struct rt_addrinfo info;
2111 	struct ifaddr *ifa;
2112 	struct ifmultiaddr *ifma;
2113 	struct ifnet *ifp;
2114 	int error, len;
2115 
2116 	NET_EPOCH_ASSERT();
2117 
2118 	error = 0;
2119 	bzero((caddr_t)&info, sizeof(info));
2120 
2121 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2122 		if (w->w_arg && w->w_arg != ifp->if_index)
2123 			continue;
2124 		ifa = ifp->if_addr;
2125 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
2126 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2127 			if (af && af != ifma->ifma_addr->sa_family)
2128 				continue;
2129 			if (prison_if(w->w_req->td->td_ucred,
2130 			    ifma->ifma_addr) != 0)
2131 				continue;
2132 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
2133 			info.rti_info[RTAX_GATEWAY] =
2134 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
2135 			    ifma->ifma_lladdr : NULL;
2136 			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
2137 			if (error != 0)
2138 				break;
2139 			if (w->w_req && w->w_tmem) {
2140 				struct ifma_msghdr *ifmam;
2141 
2142 				ifmam = (struct ifma_msghdr *)w->w_tmem;
2143 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
2144 				ifmam->ifmam_flags = 0;
2145 				ifmam->ifmam_addrs = info.rti_addrs;
2146 				ifmam->_ifmam_spare1 = 0;
2147 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
2148 				if (error != 0)
2149 					break;
2150 			}
2151 		}
2152 		if (error != 0)
2153 			break;
2154 	}
2155 	return (error);
2156 }
2157 
2158 static void
2159 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w)
2160 {
2161 	union sockaddr_union sa_dst, sa_mask;
2162 
2163 	w->family = family;
2164 	w->dst = (struct sockaddr *)&sa_dst;
2165 	w->mask = (struct sockaddr *)&sa_mask;
2166 
2167 	init_sockaddrs_family(family, w->dst, w->mask);
2168 
2169 	rib_walk(fibnum, family, false, sysctl_dumpentry, w);
2170 }
2171 
2172 static int
2173 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2174 {
2175 	struct epoch_tracker et;
2176 	int	*name = (int *)arg1;
2177 	u_int	namelen = arg2;
2178 	struct rib_head *rnh = NULL; /* silence compiler. */
2179 	int	i, lim, error = EINVAL;
2180 	int	fib = 0;
2181 	u_char	af;
2182 	struct	walkarg w;
2183 
2184 	name ++;
2185 	namelen--;
2186 	if (req->newptr)
2187 		return (EPERM);
2188 	if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) {
2189 		if (namelen == 3)
2190 			fib = req->td->td_proc->p_fibnum;
2191 		else if (namelen == 4)
2192 			fib = (name[3] == RT_ALL_FIBS) ?
2193 			    req->td->td_proc->p_fibnum : name[3];
2194 		else
2195 			return ((namelen < 3) ? EISDIR : ENOTDIR);
2196 		if (fib < 0 || fib >= rt_numfibs)
2197 			return (EINVAL);
2198 	} else if (namelen != 3)
2199 		return ((namelen < 3) ? EISDIR : ENOTDIR);
2200 	af = name[0];
2201 	if (af > AF_MAX)
2202 		return (EINVAL);
2203 	bzero(&w, sizeof(w));
2204 	w.w_op = name[1];
2205 	w.w_arg = name[2];
2206 	w.w_req = req;
2207 
2208 	error = sysctl_wire_old_buffer(req, 0);
2209 	if (error)
2210 		return (error);
2211 
2212 	/*
2213 	 * Allocate reply buffer in advance.
2214 	 * All rtsock messages has maximum length of u_short.
2215 	 */
2216 	w.w_tmemsize = 65536;
2217 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2218 
2219 	NET_EPOCH_ENTER(et);
2220 	switch (w.w_op) {
2221 	case NET_RT_DUMP:
2222 	case NET_RT_FLAGS:
2223 		if (af == 0) {			/* dump all tables */
2224 			i = 1;
2225 			lim = AF_MAX;
2226 		} else				/* dump only one table */
2227 			i = lim = af;
2228 
2229 		/*
2230 		 * take care of llinfo entries, the caller must
2231 		 * specify an AF
2232 		 */
2233 		if (w.w_op == NET_RT_FLAGS &&
2234 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2235 			if (af != 0)
2236 				error = lltable_sysctl_dumparp(af, w.w_req);
2237 			else
2238 				error = EINVAL;
2239 			break;
2240 		}
2241 		/*
2242 		 * take care of routing entries
2243 		 */
2244 		for (error = 0; error == 0 && i <= lim; i++) {
2245 			rnh = rt_tables_get_rnh(fib, i);
2246 			if (rnh != NULL) {
2247 				rtable_sysctl_dump(fib, i, &w);
2248 			} else if (af != 0)
2249 				error = EAFNOSUPPORT;
2250 		}
2251 		break;
2252 	case NET_RT_NHOP:
2253 	case NET_RT_NHGRP:
2254 		/* Allow dumping one specific af/fib at a time */
2255 		if (namelen < 4) {
2256 			error = EINVAL;
2257 			break;
2258 		}
2259 		fib = name[3];
2260 		if (fib < 0 || fib > rt_numfibs) {
2261 			error = EINVAL;
2262 			break;
2263 		}
2264 		rnh = rt_tables_get_rnh(fib, af);
2265 		if (rnh == NULL) {
2266 			error = EAFNOSUPPORT;
2267 			break;
2268 		}
2269 		if (w.w_op == NET_RT_NHOP)
2270 			error = nhops_dump_sysctl(rnh, w.w_req);
2271 		else
2272 #ifdef ROUTE_MPATH
2273 			error = nhgrp_dump_sysctl(rnh, w.w_req);
2274 #else
2275 			error = ENOTSUP;
2276 #endif
2277 		break;
2278 	case NET_RT_IFLIST:
2279 	case NET_RT_IFLISTL:
2280 		error = sysctl_iflist(af, &w);
2281 		break;
2282 
2283 	case NET_RT_IFMALIST:
2284 		error = sysctl_ifmalist(af, &w);
2285 		break;
2286 	}
2287 	NET_EPOCH_EXIT(et);
2288 
2289 	free(w.w_tmem, M_TEMP);
2290 	return (error);
2291 }
2292 
2293 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2294     sysctl_rtsock, "Return route tables and interface/address lists");
2295 
2296 /*
2297  * Definitions of protocols supported in the ROUTE domain.
2298  */
2299 
2300 static struct domain routedomain;		/* or at least forward */
2301 
2302 static struct protosw routesw[] = {
2303 {
2304 	.pr_type =		SOCK_RAW,
2305 	.pr_domain =		&routedomain,
2306 	.pr_flags =		PR_ATOMIC|PR_ADDR,
2307 	.pr_output =		route_output,
2308 	.pr_ctlinput =		raw_ctlinput,
2309 	.pr_init =		raw_init,
2310 	.pr_usrreqs =		&route_usrreqs
2311 }
2312 };
2313 
2314 static struct domain routedomain = {
2315 	.dom_family =		PF_ROUTE,
2316 	.dom_name =		"route",
2317 	.dom_protosw =		routesw,
2318 	.dom_protoswNPROTOSW =	&routesw[nitems(routesw)]
2319 };
2320 
2321 VNET_DOMAIN_SET(route);
2322