1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_mpath.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rmlock.h> 50 #include <sys/rwlock.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 57 #ifdef DDB 58 #include <ddb/ddb.h> 59 #include <ddb/db_lex.h> 60 #endif 61 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_dl.h> 65 #include <net/if_llatbl.h> 66 #include <net/if_types.h> 67 #include <net/netisr.h> 68 #include <net/raw_cb.h> 69 #include <net/route.h> 70 #include <net/route_var.h> 71 #include <net/vnet.h> 72 73 #include <netinet/in.h> 74 #include <netinet/if_ether.h> 75 #include <netinet/ip_carp.h> 76 #ifdef INET6 77 #include <netinet6/ip6_var.h> 78 #include <netinet6/scope6_var.h> 79 #endif 80 81 #ifdef COMPAT_FREEBSD32 82 #include <sys/mount.h> 83 #include <compat/freebsd32/freebsd32.h> 84 85 struct if_msghdr32 { 86 uint16_t ifm_msglen; 87 uint8_t ifm_version; 88 uint8_t ifm_type; 89 int32_t ifm_addrs; 90 int32_t ifm_flags; 91 uint16_t ifm_index; 92 uint16_t _ifm_spare1; 93 struct if_data ifm_data; 94 }; 95 96 struct if_msghdrl32 { 97 uint16_t ifm_msglen; 98 uint8_t ifm_version; 99 uint8_t ifm_type; 100 int32_t ifm_addrs; 101 int32_t ifm_flags; 102 uint16_t ifm_index; 103 uint16_t _ifm_spare1; 104 uint16_t ifm_len; 105 uint16_t ifm_data_off; 106 uint32_t _ifm_spare2; 107 struct if_data ifm_data; 108 }; 109 110 struct ifa_msghdrl32 { 111 uint16_t ifam_msglen; 112 uint8_t ifam_version; 113 uint8_t ifam_type; 114 int32_t ifam_addrs; 115 int32_t ifam_flags; 116 uint16_t ifam_index; 117 uint16_t _ifam_spare1; 118 uint16_t ifam_len; 119 uint16_t ifam_data_off; 120 int32_t ifam_metric; 121 struct if_data ifam_data; 122 }; 123 124 #define SA_SIZE32(sa) \ 125 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 126 sizeof(int) : \ 127 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 128 129 #endif /* COMPAT_FREEBSD32 */ 130 131 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 132 133 /* NB: these are not modified */ 134 static struct sockaddr route_src = { 2, PF_ROUTE, }; 135 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 136 137 /* These are external hooks for CARP. */ 138 int (*carp_get_vhid_p)(struct ifaddr *); 139 140 /* 141 * Used by rtsock/raw_input callback code to decide whether to filter the update 142 * notification to a socket bound to a particular FIB. 143 */ 144 #define RTS_FILTER_FIB M_PROTO8 145 146 typedef struct { 147 int ip_count; /* attached w/ AF_INET */ 148 int ip6_count; /* attached w/ AF_INET6 */ 149 int any_count; /* total attached */ 150 } route_cb_t; 151 VNET_DEFINE_STATIC(route_cb_t, route_cb); 152 #define V_route_cb VNET(route_cb) 153 154 struct mtx rtsock_mtx; 155 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 156 157 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 158 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 159 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 160 161 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 162 163 struct walkarg { 164 int w_tmemsize; 165 int w_op, w_arg; 166 caddr_t w_tmem; 167 struct sysctl_req *w_req; 168 }; 169 170 static void rts_input(struct mbuf *m); 171 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 172 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 173 struct walkarg *w, int *plen); 174 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 175 struct rt_addrinfo *rtinfo); 176 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 177 static int sysctl_iflist(int af, struct walkarg *w); 178 static int sysctl_ifmalist(int af, struct walkarg *w); 179 static int route_output(struct mbuf *m, struct socket *so, ...); 180 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 181 static void rt_dispatch(struct mbuf *, sa_family_t); 182 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 183 struct sockaddr *smask, struct sockaddr_storage *dmask); 184 185 static struct netisr_handler rtsock_nh = { 186 .nh_name = "rtsock", 187 .nh_handler = rts_input, 188 .nh_proto = NETISR_ROUTE, 189 .nh_policy = NETISR_POLICY_SOURCE, 190 }; 191 192 static int 193 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 194 { 195 int error, qlimit; 196 197 netisr_getqlimit(&rtsock_nh, &qlimit); 198 error = sysctl_handle_int(oidp, &qlimit, 0, req); 199 if (error || !req->newptr) 200 return (error); 201 if (qlimit < 1) 202 return (EINVAL); 203 return (netisr_setqlimit(&rtsock_nh, qlimit)); 204 } 205 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 206 0, 0, sysctl_route_netisr_maxqlen, "I", 207 "maximum routing socket dispatch queue length"); 208 209 static void 210 vnet_rts_init(void) 211 { 212 int tmp; 213 214 if (IS_DEFAULT_VNET(curvnet)) { 215 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 216 rtsock_nh.nh_qlimit = tmp; 217 netisr_register(&rtsock_nh); 218 } 219 #ifdef VIMAGE 220 else 221 netisr_register_vnet(&rtsock_nh); 222 #endif 223 } 224 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 225 vnet_rts_init, 0); 226 227 #ifdef VIMAGE 228 static void 229 vnet_rts_uninit(void) 230 { 231 232 netisr_unregister_vnet(&rtsock_nh); 233 } 234 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 235 vnet_rts_uninit, 0); 236 #endif 237 238 static int 239 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 240 struct rawcb *rp) 241 { 242 int fibnum; 243 244 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 245 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 246 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 247 248 /* No filtering requested. */ 249 if ((m->m_flags & RTS_FILTER_FIB) == 0) 250 return (0); 251 252 /* Check if it is a rts and the fib matches the one of the socket. */ 253 fibnum = M_GETFIB(m); 254 if (proto->sp_family != PF_ROUTE || 255 rp->rcb_socket == NULL || 256 rp->rcb_socket->so_fibnum == fibnum) 257 return (0); 258 259 /* Filtering requested and no match, the socket shall be skipped. */ 260 return (1); 261 } 262 263 static void 264 rts_input(struct mbuf *m) 265 { 266 struct sockproto route_proto; 267 unsigned short *family; 268 struct m_tag *tag; 269 270 route_proto.sp_family = PF_ROUTE; 271 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 272 if (tag != NULL) { 273 family = (unsigned short *)(tag + 1); 274 route_proto.sp_protocol = *family; 275 m_tag_delete(m, tag); 276 } else 277 route_proto.sp_protocol = 0; 278 279 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 280 } 281 282 /* 283 * It really doesn't make any sense at all for this code to share much 284 * with raw_usrreq.c, since its functionality is so restricted. XXX 285 */ 286 static void 287 rts_abort(struct socket *so) 288 { 289 290 raw_usrreqs.pru_abort(so); 291 } 292 293 static void 294 rts_close(struct socket *so) 295 { 296 297 raw_usrreqs.pru_close(so); 298 } 299 300 /* pru_accept is EOPNOTSUPP */ 301 302 static int 303 rts_attach(struct socket *so, int proto, struct thread *td) 304 { 305 struct rawcb *rp; 306 int error; 307 308 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 309 310 /* XXX */ 311 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 312 313 so->so_pcb = (caddr_t)rp; 314 so->so_fibnum = td->td_proc->p_fibnum; 315 error = raw_attach(so, proto); 316 rp = sotorawcb(so); 317 if (error) { 318 so->so_pcb = NULL; 319 free(rp, M_PCB); 320 return error; 321 } 322 RTSOCK_LOCK(); 323 switch(rp->rcb_proto.sp_protocol) { 324 case AF_INET: 325 V_route_cb.ip_count++; 326 break; 327 case AF_INET6: 328 V_route_cb.ip6_count++; 329 break; 330 } 331 V_route_cb.any_count++; 332 RTSOCK_UNLOCK(); 333 soisconnected(so); 334 so->so_options |= SO_USELOOPBACK; 335 return 0; 336 } 337 338 static int 339 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 340 { 341 342 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 343 } 344 345 static int 346 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 347 { 348 349 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 350 } 351 352 /* pru_connect2 is EOPNOTSUPP */ 353 /* pru_control is EOPNOTSUPP */ 354 355 static void 356 rts_detach(struct socket *so) 357 { 358 struct rawcb *rp = sotorawcb(so); 359 360 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 361 362 RTSOCK_LOCK(); 363 switch(rp->rcb_proto.sp_protocol) { 364 case AF_INET: 365 V_route_cb.ip_count--; 366 break; 367 case AF_INET6: 368 V_route_cb.ip6_count--; 369 break; 370 } 371 V_route_cb.any_count--; 372 RTSOCK_UNLOCK(); 373 raw_usrreqs.pru_detach(so); 374 } 375 376 static int 377 rts_disconnect(struct socket *so) 378 { 379 380 return (raw_usrreqs.pru_disconnect(so)); 381 } 382 383 /* pru_listen is EOPNOTSUPP */ 384 385 static int 386 rts_peeraddr(struct socket *so, struct sockaddr **nam) 387 { 388 389 return (raw_usrreqs.pru_peeraddr(so, nam)); 390 } 391 392 /* pru_rcvd is EOPNOTSUPP */ 393 /* pru_rcvoob is EOPNOTSUPP */ 394 395 static int 396 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 397 struct mbuf *control, struct thread *td) 398 { 399 400 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 401 } 402 403 /* pru_sense is null */ 404 405 static int 406 rts_shutdown(struct socket *so) 407 { 408 409 return (raw_usrreqs.pru_shutdown(so)); 410 } 411 412 static int 413 rts_sockaddr(struct socket *so, struct sockaddr **nam) 414 { 415 416 return (raw_usrreqs.pru_sockaddr(so, nam)); 417 } 418 419 static struct pr_usrreqs route_usrreqs = { 420 .pru_abort = rts_abort, 421 .pru_attach = rts_attach, 422 .pru_bind = rts_bind, 423 .pru_connect = rts_connect, 424 .pru_detach = rts_detach, 425 .pru_disconnect = rts_disconnect, 426 .pru_peeraddr = rts_peeraddr, 427 .pru_send = rts_send, 428 .pru_shutdown = rts_shutdown, 429 .pru_sockaddr = rts_sockaddr, 430 .pru_close = rts_close, 431 }; 432 433 #ifndef _SOCKADDR_UNION_DEFINED 434 #define _SOCKADDR_UNION_DEFINED 435 /* 436 * The union of all possible address formats we handle. 437 */ 438 union sockaddr_union { 439 struct sockaddr sa; 440 struct sockaddr_in sin; 441 struct sockaddr_in6 sin6; 442 }; 443 #endif /* _SOCKADDR_UNION_DEFINED */ 444 445 static int 446 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 447 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 448 { 449 #if defined(INET) || defined(INET6) 450 struct epoch_tracker et; 451 #endif 452 453 /* First, see if the returned address is part of the jail. */ 454 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 455 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 456 return (0); 457 } 458 459 switch (info->rti_info[RTAX_DST]->sa_family) { 460 #ifdef INET 461 case AF_INET: 462 { 463 struct in_addr ia; 464 struct ifaddr *ifa; 465 int found; 466 467 found = 0; 468 /* 469 * Try to find an address on the given outgoing interface 470 * that belongs to the jail. 471 */ 472 NET_EPOCH_ENTER(et); 473 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 474 struct sockaddr *sa; 475 sa = ifa->ifa_addr; 476 if (sa->sa_family != AF_INET) 477 continue; 478 ia = ((struct sockaddr_in *)sa)->sin_addr; 479 if (prison_check_ip4(cred, &ia) == 0) { 480 found = 1; 481 break; 482 } 483 } 484 NET_EPOCH_EXIT(et); 485 if (!found) { 486 /* 487 * As a last resort return the 'default' jail address. 488 */ 489 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 490 sin_addr; 491 if (prison_get_ip4(cred, &ia) != 0) 492 return (ESRCH); 493 } 494 bzero(&saun->sin, sizeof(struct sockaddr_in)); 495 saun->sin.sin_len = sizeof(struct sockaddr_in); 496 saun->sin.sin_family = AF_INET; 497 saun->sin.sin_addr.s_addr = ia.s_addr; 498 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 499 break; 500 } 501 #endif 502 #ifdef INET6 503 case AF_INET6: 504 { 505 struct in6_addr ia6; 506 struct ifaddr *ifa; 507 int found; 508 509 found = 0; 510 /* 511 * Try to find an address on the given outgoing interface 512 * that belongs to the jail. 513 */ 514 NET_EPOCH_ENTER(et); 515 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 516 struct sockaddr *sa; 517 sa = ifa->ifa_addr; 518 if (sa->sa_family != AF_INET6) 519 continue; 520 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 521 &ia6, sizeof(struct in6_addr)); 522 if (prison_check_ip6(cred, &ia6) == 0) { 523 found = 1; 524 break; 525 } 526 } 527 NET_EPOCH_EXIT(et); 528 if (!found) { 529 /* 530 * As a last resort return the 'default' jail address. 531 */ 532 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 533 sin6_addr; 534 if (prison_get_ip6(cred, &ia6) != 0) 535 return (ESRCH); 536 } 537 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 538 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 539 saun->sin6.sin6_family = AF_INET6; 540 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 541 if (sa6_recoverscope(&saun->sin6) != 0) 542 return (ESRCH); 543 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 544 break; 545 } 546 #endif 547 default: 548 return (ESRCH); 549 } 550 return (0); 551 } 552 553 /*ARGSUSED*/ 554 static int 555 route_output(struct mbuf *m, struct socket *so, ...) 556 { 557 RIB_RLOCK_TRACKER; 558 struct rt_msghdr *rtm = NULL; 559 struct rtentry *rt = NULL; 560 struct rib_head *rnh; 561 struct rt_addrinfo info; 562 struct sockaddr_storage ss; 563 #ifdef INET6 564 struct sockaddr_in6 *sin6; 565 int i, rti_need_deembed = 0; 566 #endif 567 int alloc_len = 0, len, error = 0, fibnum; 568 struct ifnet *ifp = NULL; 569 union sockaddr_union saun; 570 sa_family_t saf = AF_UNSPEC; 571 struct rawcb *rp = NULL; 572 struct walkarg w; 573 574 fibnum = so->so_fibnum; 575 576 #define senderr(e) { error = e; goto flush;} 577 if (m == NULL || ((m->m_len < sizeof(long)) && 578 (m = m_pullup(m, sizeof(long))) == NULL)) 579 return (ENOBUFS); 580 if ((m->m_flags & M_PKTHDR) == 0) 581 panic("route_output"); 582 len = m->m_pkthdr.len; 583 if (len < sizeof(*rtm) || 584 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 585 senderr(EINVAL); 586 587 /* 588 * Most of current messages are in range 200-240 bytes, 589 * minimize possible re-allocation on reply using larger size 590 * buffer aligned on 1k boundaty. 591 */ 592 alloc_len = roundup2(len, 1024); 593 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 594 senderr(ENOBUFS); 595 596 m_copydata(m, 0, len, (caddr_t)rtm); 597 bzero(&info, sizeof(info)); 598 bzero(&w, sizeof(w)); 599 600 if (rtm->rtm_version != RTM_VERSION) { 601 /* Do not touch message since format is unknown */ 602 free(rtm, M_TEMP); 603 rtm = NULL; 604 senderr(EPROTONOSUPPORT); 605 } 606 607 /* 608 * Starting from here, it is possible 609 * to alter original message and insert 610 * caller PID and error value. 611 */ 612 613 rtm->rtm_pid = curproc->p_pid; 614 info.rti_addrs = rtm->rtm_addrs; 615 616 info.rti_mflags = rtm->rtm_inits; 617 info.rti_rmx = &rtm->rtm_rmx; 618 619 /* 620 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 621 * link-local address because rtrequest requires addresses with 622 * embedded scope id. 623 */ 624 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 625 senderr(EINVAL); 626 627 if (rtm->rtm_flags & RTF_RNH_LOCKED) 628 senderr(EINVAL); 629 info.rti_flags = rtm->rtm_flags; 630 if (info.rti_info[RTAX_DST] == NULL || 631 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 632 (info.rti_info[RTAX_GATEWAY] != NULL && 633 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 634 senderr(EINVAL); 635 saf = info.rti_info[RTAX_DST]->sa_family; 636 /* 637 * Verify that the caller has the appropriate privilege; RTM_GET 638 * is the only operation the non-superuser is allowed. 639 */ 640 if (rtm->rtm_type != RTM_GET) { 641 error = priv_check(curthread, PRIV_NET_ROUTE); 642 if (error) 643 senderr(error); 644 } 645 646 /* 647 * The given gateway address may be an interface address. 648 * For example, issuing a "route change" command on a route 649 * entry that was created from a tunnel, and the gateway 650 * address given is the local end point. In this case the 651 * RTF_GATEWAY flag must be cleared or the destination will 652 * not be reachable even though there is no error message. 653 */ 654 if (info.rti_info[RTAX_GATEWAY] != NULL && 655 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 656 struct rt_addrinfo ginfo; 657 struct sockaddr *gdst; 658 659 bzero(&ginfo, sizeof(ginfo)); 660 bzero(&ss, sizeof(ss)); 661 ss.ss_len = sizeof(ss); 662 663 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 664 gdst = info.rti_info[RTAX_GATEWAY]; 665 666 /* 667 * A host route through the loopback interface is 668 * installed for each interface adddress. In pre 8.0 669 * releases the interface address of a PPP link type 670 * is not reachable locally. This behavior is fixed as 671 * part of the new L2/L3 redesign and rewrite work. The 672 * signature of this interface address route is the 673 * AF_LINK sa_family type of the rt_gateway, and the 674 * rt_ifp has the IFF_LOOPBACK flag set. 675 */ 676 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 677 if (ss.ss_family == AF_LINK && 678 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 679 info.rti_flags &= ~RTF_GATEWAY; 680 info.rti_flags |= RTF_GWFLAG_COMPAT; 681 } 682 rib_free_info(&ginfo); 683 } 684 } 685 686 switch (rtm->rtm_type) { 687 struct rtentry *saved_nrt; 688 689 case RTM_ADD: 690 case RTM_CHANGE: 691 if (rtm->rtm_type == RTM_ADD) { 692 if (info.rti_info[RTAX_GATEWAY] == NULL) 693 senderr(EINVAL); 694 } 695 saved_nrt = NULL; 696 697 /* support for new ARP code */ 698 if (info.rti_info[RTAX_GATEWAY] != NULL && 699 info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 700 (rtm->rtm_flags & RTF_LLDATA) != 0) { 701 error = lla_rt_output(rtm, &info); 702 #ifdef INET6 703 if (error == 0) 704 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 705 #endif 706 break; 707 } 708 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 709 fibnum); 710 if (error == 0 && saved_nrt != NULL) { 711 #ifdef INET6 712 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 713 #endif 714 RT_LOCK(saved_nrt); 715 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 716 RT_REMREF(saved_nrt); 717 RT_UNLOCK(saved_nrt); 718 } 719 break; 720 721 case RTM_DELETE: 722 saved_nrt = NULL; 723 /* support for new ARP code */ 724 if (info.rti_info[RTAX_GATEWAY] && 725 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 726 (rtm->rtm_flags & RTF_LLDATA) != 0) { 727 error = lla_rt_output(rtm, &info); 728 #ifdef INET6 729 if (error == 0) 730 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 731 #endif 732 break; 733 } 734 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 735 if (error == 0) { 736 RT_LOCK(saved_nrt); 737 rt = saved_nrt; 738 goto report; 739 } 740 #ifdef INET6 741 /* rt_msg2() will not be used when RTM_DELETE fails. */ 742 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 743 #endif 744 break; 745 746 case RTM_GET: 747 rnh = rt_tables_get_rnh(fibnum, saf); 748 if (rnh == NULL) 749 senderr(EAFNOSUPPORT); 750 751 RIB_RLOCK(rnh); 752 753 if (info.rti_info[RTAX_NETMASK] == NULL && 754 rtm->rtm_type == RTM_GET) { 755 /* 756 * Provide longest prefix match for 757 * address lookup (no mask). 758 * 'route -n get addr' 759 */ 760 rt = (struct rtentry *) rnh->rnh_matchaddr( 761 info.rti_info[RTAX_DST], &rnh->head); 762 } else 763 rt = (struct rtentry *) rnh->rnh_lookup( 764 info.rti_info[RTAX_DST], 765 info.rti_info[RTAX_NETMASK], &rnh->head); 766 767 if (rt == NULL) { 768 RIB_RUNLOCK(rnh); 769 senderr(ESRCH); 770 } 771 #ifdef RADIX_MPATH 772 /* 773 * for RTM_CHANGE/LOCK, if we got multipath routes, 774 * we require users to specify a matching RTAX_GATEWAY. 775 * 776 * for RTM_GET, gate is optional even with multipath. 777 * if gate == NULL the first match is returned. 778 * (no need to call rt_mpath_matchgate if gate == NULL) 779 */ 780 if (rt_mpath_capable(rnh) && 781 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 782 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 783 if (!rt) { 784 RIB_RUNLOCK(rnh); 785 senderr(ESRCH); 786 } 787 } 788 #endif 789 /* 790 * If performing proxied L2 entry insertion, and 791 * the actual PPP host entry is found, perform 792 * another search to retrieve the prefix route of 793 * the local end point of the PPP link. 794 */ 795 if (rtm->rtm_flags & RTF_ANNOUNCE) { 796 struct sockaddr laddr; 797 798 if (rt->rt_ifp != NULL && 799 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 800 struct epoch_tracker et; 801 struct ifaddr *ifa; 802 803 NET_EPOCH_ENTER(et); 804 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1, 805 RT_ALL_FIBS); 806 if (ifa != NULL) 807 rt_maskedcopy(ifa->ifa_addr, 808 &laddr, 809 ifa->ifa_netmask); 810 NET_EPOCH_EXIT(et); 811 } else 812 rt_maskedcopy(rt->rt_ifa->ifa_addr, 813 &laddr, 814 rt->rt_ifa->ifa_netmask); 815 /* 816 * refactor rt and no lock operation necessary 817 */ 818 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 819 &rnh->head); 820 if (rt == NULL) { 821 RIB_RUNLOCK(rnh); 822 senderr(ESRCH); 823 } 824 } 825 RT_LOCK(rt); 826 RT_ADDREF(rt); 827 RIB_RUNLOCK(rnh); 828 829 report: 830 RT_LOCK_ASSERT(rt); 831 if ((rt->rt_flags & RTF_HOST) == 0 832 ? jailed_without_vnet(curthread->td_ucred) 833 : prison_if(curthread->td_ucred, 834 rt_key(rt)) != 0) { 835 RT_UNLOCK(rt); 836 senderr(ESRCH); 837 } 838 info.rti_info[RTAX_DST] = rt_key(rt); 839 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 840 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 841 rt_mask(rt), &ss); 842 info.rti_info[RTAX_GENMASK] = 0; 843 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 844 ifp = rt->rt_ifp; 845 if (ifp) { 846 info.rti_info[RTAX_IFP] = 847 ifp->if_addr->ifa_addr; 848 error = rtm_get_jailed(&info, ifp, rt, 849 &saun, curthread->td_ucred); 850 if (error != 0) { 851 RT_UNLOCK(rt); 852 senderr(error); 853 } 854 if (ifp->if_flags & IFF_POINTOPOINT) 855 info.rti_info[RTAX_BRD] = 856 rt->rt_ifa->ifa_dstaddr; 857 rtm->rtm_index = ifp->if_index; 858 } else { 859 info.rti_info[RTAX_IFP] = NULL; 860 info.rti_info[RTAX_IFA] = NULL; 861 } 862 } else if ((ifp = rt->rt_ifp) != NULL) { 863 rtm->rtm_index = ifp->if_index; 864 } 865 866 /* Check if we need to realloc storage */ 867 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 868 if (len > alloc_len) { 869 struct rt_msghdr *new_rtm; 870 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 871 if (new_rtm == NULL) { 872 RT_UNLOCK(rt); 873 senderr(ENOBUFS); 874 } 875 bcopy(rtm, new_rtm, rtm->rtm_msglen); 876 free(rtm, M_TEMP); 877 rtm = new_rtm; 878 alloc_len = len; 879 } 880 881 w.w_tmem = (caddr_t)rtm; 882 w.w_tmemsize = alloc_len; 883 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 884 885 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 886 rtm->rtm_flags = RTF_GATEWAY | 887 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 888 else 889 rtm->rtm_flags = rt->rt_flags; 890 rt_getmetrics(rt, &rtm->rtm_rmx); 891 rtm->rtm_addrs = info.rti_addrs; 892 893 RT_UNLOCK(rt); 894 break; 895 896 default: 897 senderr(EOPNOTSUPP); 898 } 899 900 flush: 901 if (rt != NULL) 902 RTFREE(rt); 903 /* 904 * Check to see if we don't want our own messages. 905 */ 906 if ((so->so_options & SO_USELOOPBACK) == 0) { 907 if (V_route_cb.any_count <= 1) { 908 if (rtm != NULL) 909 free(rtm, M_TEMP); 910 m_freem(m); 911 return (error); 912 } 913 /* There is another listener, so construct message */ 914 rp = sotorawcb(so); 915 } 916 917 if (rtm != NULL) { 918 #ifdef INET6 919 if (rti_need_deembed) { 920 /* sin6_scope_id is recovered before sending rtm. */ 921 sin6 = (struct sockaddr_in6 *)&ss; 922 for (i = 0; i < RTAX_MAX; i++) { 923 if (info.rti_info[i] == NULL) 924 continue; 925 if (info.rti_info[i]->sa_family != AF_INET6) 926 continue; 927 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 928 if (sa6_recoverscope(sin6) == 0) 929 bcopy(sin6, info.rti_info[i], 930 sizeof(*sin6)); 931 } 932 } 933 #endif 934 if (error != 0) 935 rtm->rtm_errno = error; 936 else 937 rtm->rtm_flags |= RTF_DONE; 938 939 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 940 if (m->m_pkthdr.len < rtm->rtm_msglen) { 941 m_freem(m); 942 m = NULL; 943 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 944 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 945 946 free(rtm, M_TEMP); 947 } 948 if (m != NULL) { 949 M_SETFIB(m, fibnum); 950 m->m_flags |= RTS_FILTER_FIB; 951 if (rp) { 952 /* 953 * XXX insure we don't get a copy by 954 * invalidating our protocol 955 */ 956 unsigned short family = rp->rcb_proto.sp_family; 957 rp->rcb_proto.sp_family = 0; 958 rt_dispatch(m, saf); 959 rp->rcb_proto.sp_family = family; 960 } else 961 rt_dispatch(m, saf); 962 } 963 964 return (error); 965 } 966 967 static void 968 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 969 { 970 971 bzero(out, sizeof(*out)); 972 out->rmx_mtu = rt->rt_mtu; 973 out->rmx_weight = rt->rt_weight; 974 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 975 /* Kernel -> userland timebase conversion. */ 976 out->rmx_expire = rt->rt_expire ? 977 rt->rt_expire - time_uptime + time_second : 0; 978 } 979 980 /* 981 * Extract the addresses of the passed sockaddrs. 982 * Do a little sanity checking so as to avoid bad memory references. 983 * This data is derived straight from userland. 984 */ 985 static int 986 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 987 { 988 struct sockaddr *sa; 989 int i; 990 991 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 992 if ((rtinfo->rti_addrs & (1 << i)) == 0) 993 continue; 994 sa = (struct sockaddr *)cp; 995 /* 996 * It won't fit. 997 */ 998 if (cp + sa->sa_len > cplim) 999 return (EINVAL); 1000 /* 1001 * there are no more.. quit now 1002 * If there are more bits, they are in error. 1003 * I've seen this. route(1) can evidently generate these. 1004 * This causes kernel to core dump. 1005 * for compatibility, If we see this, point to a safe address. 1006 */ 1007 if (sa->sa_len == 0) { 1008 rtinfo->rti_info[i] = &sa_zero; 1009 return (0); /* should be EINVAL but for compat */ 1010 } 1011 /* accept it */ 1012 #ifdef INET6 1013 if (sa->sa_family == AF_INET6) 1014 sa6_embedscope((struct sockaddr_in6 *)sa, 1015 V_ip6_use_defzone); 1016 #endif 1017 rtinfo->rti_info[i] = sa; 1018 cp += SA_SIZE(sa); 1019 } 1020 return (0); 1021 } 1022 1023 /* 1024 * Fill in @dmask with valid netmask leaving original @smask 1025 * intact. Mostly used with radix netmasks. 1026 */ 1027 static struct sockaddr * 1028 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 1029 struct sockaddr_storage *dmask) 1030 { 1031 if (dst == NULL || smask == NULL) 1032 return (NULL); 1033 1034 memset(dmask, 0, dst->sa_len); 1035 memcpy(dmask, smask, smask->sa_len); 1036 dmask->ss_len = dst->sa_len; 1037 dmask->ss_family = dst->sa_family; 1038 1039 return ((struct sockaddr *)dmask); 1040 } 1041 1042 /* 1043 * Writes information related to @rtinfo object to newly-allocated mbuf. 1044 * Assumes MCLBYTES is enough to construct any message. 1045 * Used for OS notifications of vaious events (if/ifa announces,etc) 1046 * 1047 * Returns allocated mbuf or NULL on failure. 1048 */ 1049 static struct mbuf * 1050 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1051 { 1052 struct rt_msghdr *rtm; 1053 struct mbuf *m; 1054 int i; 1055 struct sockaddr *sa; 1056 #ifdef INET6 1057 struct sockaddr_storage ss; 1058 struct sockaddr_in6 *sin6; 1059 #endif 1060 int len, dlen; 1061 1062 switch (type) { 1063 1064 case RTM_DELADDR: 1065 case RTM_NEWADDR: 1066 len = sizeof(struct ifa_msghdr); 1067 break; 1068 1069 case RTM_DELMADDR: 1070 case RTM_NEWMADDR: 1071 len = sizeof(struct ifma_msghdr); 1072 break; 1073 1074 case RTM_IFINFO: 1075 len = sizeof(struct if_msghdr); 1076 break; 1077 1078 case RTM_IFANNOUNCE: 1079 case RTM_IEEE80211: 1080 len = sizeof(struct if_announcemsghdr); 1081 break; 1082 1083 default: 1084 len = sizeof(struct rt_msghdr); 1085 } 1086 1087 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1088 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1089 if (len > MHLEN) 1090 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1091 else 1092 m = m_gethdr(M_NOWAIT, MT_DATA); 1093 if (m == NULL) 1094 return (m); 1095 1096 m->m_pkthdr.len = m->m_len = len; 1097 rtm = mtod(m, struct rt_msghdr *); 1098 bzero((caddr_t)rtm, len); 1099 for (i = 0; i < RTAX_MAX; i++) { 1100 if ((sa = rtinfo->rti_info[i]) == NULL) 1101 continue; 1102 rtinfo->rti_addrs |= (1 << i); 1103 dlen = SA_SIZE(sa); 1104 #ifdef INET6 1105 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1106 sin6 = (struct sockaddr_in6 *)&ss; 1107 bcopy(sa, sin6, sizeof(*sin6)); 1108 if (sa6_recoverscope(sin6) == 0) 1109 sa = (struct sockaddr *)sin6; 1110 } 1111 #endif 1112 m_copyback(m, len, dlen, (caddr_t)sa); 1113 len += dlen; 1114 } 1115 if (m->m_pkthdr.len != len) { 1116 m_freem(m); 1117 return (NULL); 1118 } 1119 rtm->rtm_msglen = len; 1120 rtm->rtm_version = RTM_VERSION; 1121 rtm->rtm_type = type; 1122 return (m); 1123 } 1124 1125 /* 1126 * Writes information related to @rtinfo object to preallocated buffer. 1127 * Stores needed size in @plen. If @w is NULL, calculates size without 1128 * writing. 1129 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1130 * 1131 * Returns 0 on success. 1132 * 1133 */ 1134 static int 1135 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1136 { 1137 int i; 1138 int len, buflen = 0, dlen; 1139 caddr_t cp = NULL; 1140 struct rt_msghdr *rtm = NULL; 1141 #ifdef INET6 1142 struct sockaddr_storage ss; 1143 struct sockaddr_in6 *sin6; 1144 #endif 1145 #ifdef COMPAT_FREEBSD32 1146 bool compat32 = false; 1147 #endif 1148 1149 switch (type) { 1150 1151 case RTM_DELADDR: 1152 case RTM_NEWADDR: 1153 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1154 #ifdef COMPAT_FREEBSD32 1155 if (w->w_req->flags & SCTL_MASK32) { 1156 len = sizeof(struct ifa_msghdrl32); 1157 compat32 = true; 1158 } else 1159 #endif 1160 len = sizeof(struct ifa_msghdrl); 1161 } else 1162 len = sizeof(struct ifa_msghdr); 1163 break; 1164 1165 case RTM_IFINFO: 1166 #ifdef COMPAT_FREEBSD32 1167 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1168 if (w->w_op == NET_RT_IFLISTL) 1169 len = sizeof(struct if_msghdrl32); 1170 else 1171 len = sizeof(struct if_msghdr32); 1172 compat32 = true; 1173 break; 1174 } 1175 #endif 1176 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1177 len = sizeof(struct if_msghdrl); 1178 else 1179 len = sizeof(struct if_msghdr); 1180 break; 1181 1182 case RTM_NEWMADDR: 1183 len = sizeof(struct ifma_msghdr); 1184 break; 1185 1186 default: 1187 len = sizeof(struct rt_msghdr); 1188 } 1189 1190 if (w != NULL) { 1191 rtm = (struct rt_msghdr *)w->w_tmem; 1192 buflen = w->w_tmemsize - len; 1193 cp = (caddr_t)w->w_tmem + len; 1194 } 1195 1196 rtinfo->rti_addrs = 0; 1197 for (i = 0; i < RTAX_MAX; i++) { 1198 struct sockaddr *sa; 1199 1200 if ((sa = rtinfo->rti_info[i]) == NULL) 1201 continue; 1202 rtinfo->rti_addrs |= (1 << i); 1203 #ifdef COMPAT_FREEBSD32 1204 if (compat32) 1205 dlen = SA_SIZE32(sa); 1206 else 1207 #endif 1208 dlen = SA_SIZE(sa); 1209 if (cp != NULL && buflen >= dlen) { 1210 #ifdef INET6 1211 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1212 sin6 = (struct sockaddr_in6 *)&ss; 1213 bcopy(sa, sin6, sizeof(*sin6)); 1214 if (sa6_recoverscope(sin6) == 0) 1215 sa = (struct sockaddr *)sin6; 1216 } 1217 #endif 1218 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1219 cp += dlen; 1220 buflen -= dlen; 1221 } else if (cp != NULL) { 1222 /* 1223 * Buffer too small. Count needed size 1224 * and return with error. 1225 */ 1226 cp = NULL; 1227 } 1228 1229 len += dlen; 1230 } 1231 1232 if (cp != NULL) { 1233 dlen = ALIGN(len) - len; 1234 if (buflen < dlen) 1235 cp = NULL; 1236 else { 1237 bzero(cp, dlen); 1238 cp += dlen; 1239 buflen -= dlen; 1240 } 1241 } 1242 len = ALIGN(len); 1243 1244 if (cp != NULL) { 1245 /* fill header iff buffer is large enough */ 1246 rtm->rtm_version = RTM_VERSION; 1247 rtm->rtm_type = type; 1248 rtm->rtm_msglen = len; 1249 } 1250 1251 *plen = len; 1252 1253 if (w != NULL && cp == NULL) 1254 return (ENOBUFS); 1255 1256 return (0); 1257 } 1258 1259 /* 1260 * This routine is called to generate a message from the routing 1261 * socket indicating that a redirect has occurred, a routing lookup 1262 * has failed, or that a protocol has detected timeouts to a particular 1263 * destination. 1264 */ 1265 void 1266 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1267 int fibnum) 1268 { 1269 struct rt_msghdr *rtm; 1270 struct mbuf *m; 1271 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1272 1273 if (V_route_cb.any_count == 0) 1274 return; 1275 m = rtsock_msg_mbuf(type, rtinfo); 1276 if (m == NULL) 1277 return; 1278 1279 if (fibnum != RT_ALL_FIBS) { 1280 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1281 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1282 M_SETFIB(m, fibnum); 1283 m->m_flags |= RTS_FILTER_FIB; 1284 } 1285 1286 rtm = mtod(m, struct rt_msghdr *); 1287 rtm->rtm_flags = RTF_DONE | flags; 1288 rtm->rtm_errno = error; 1289 rtm->rtm_addrs = rtinfo->rti_addrs; 1290 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1291 } 1292 1293 void 1294 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1295 { 1296 1297 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1298 } 1299 1300 /* 1301 * This routine is called to generate a message from the routing 1302 * socket indicating that the status of a network interface has changed. 1303 */ 1304 void 1305 rt_ifmsg(struct ifnet *ifp) 1306 { 1307 struct if_msghdr *ifm; 1308 struct mbuf *m; 1309 struct rt_addrinfo info; 1310 1311 if (V_route_cb.any_count == 0) 1312 return; 1313 bzero((caddr_t)&info, sizeof(info)); 1314 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1315 if (m == NULL) 1316 return; 1317 ifm = mtod(m, struct if_msghdr *); 1318 ifm->ifm_index = ifp->if_index; 1319 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1320 if_data_copy(ifp, &ifm->ifm_data); 1321 ifm->ifm_addrs = 0; 1322 rt_dispatch(m, AF_UNSPEC); 1323 } 1324 1325 /* 1326 * Announce interface address arrival/withdraw. 1327 * Please do not call directly, use rt_addrmsg(). 1328 * Assume input data to be valid. 1329 * Returns 0 on success. 1330 */ 1331 int 1332 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1333 { 1334 struct rt_addrinfo info; 1335 struct sockaddr *sa; 1336 int ncmd; 1337 struct mbuf *m; 1338 struct ifa_msghdr *ifam; 1339 struct ifnet *ifp = ifa->ifa_ifp; 1340 struct sockaddr_storage ss; 1341 1342 if (V_route_cb.any_count == 0) 1343 return (0); 1344 1345 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1346 1347 bzero((caddr_t)&info, sizeof(info)); 1348 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1349 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1350 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1351 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1352 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1353 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1354 return (ENOBUFS); 1355 ifam = mtod(m, struct ifa_msghdr *); 1356 ifam->ifam_index = ifp->if_index; 1357 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1358 ifam->ifam_flags = ifa->ifa_flags; 1359 ifam->ifam_addrs = info.rti_addrs; 1360 1361 if (fibnum != RT_ALL_FIBS) { 1362 M_SETFIB(m, fibnum); 1363 m->m_flags |= RTS_FILTER_FIB; 1364 } 1365 1366 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1367 1368 return (0); 1369 } 1370 1371 /* 1372 * Announce route addition/removal. 1373 * Please do not call directly, use rt_routemsg(). 1374 * Note that @rt data MAY be inconsistent/invalid: 1375 * if some userland app sends us "invalid" route message (invalid mask, 1376 * no dst, wrong address families, etc...) we need to pass it back 1377 * to app (and any other rtsock consumers) with rtm_errno field set to 1378 * non-zero value. 1379 * 1380 * Returns 0 on success. 1381 */ 1382 int 1383 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1384 int fibnum) 1385 { 1386 struct rt_addrinfo info; 1387 struct sockaddr *sa; 1388 struct mbuf *m; 1389 struct rt_msghdr *rtm; 1390 struct sockaddr_storage ss; 1391 1392 if (V_route_cb.any_count == 0) 1393 return (0); 1394 1395 bzero((caddr_t)&info, sizeof(info)); 1396 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1397 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1398 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1399 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1400 return (ENOBUFS); 1401 rtm = mtod(m, struct rt_msghdr *); 1402 rtm->rtm_index = ifp->if_index; 1403 rtm->rtm_flags |= rt->rt_flags; 1404 rtm->rtm_errno = error; 1405 rtm->rtm_addrs = info.rti_addrs; 1406 1407 if (fibnum != RT_ALL_FIBS) { 1408 M_SETFIB(m, fibnum); 1409 m->m_flags |= RTS_FILTER_FIB; 1410 } 1411 1412 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1413 1414 return (0); 1415 } 1416 1417 /* 1418 * This is the analogue to the rt_newaddrmsg which performs the same 1419 * function but for multicast group memberhips. This is easier since 1420 * there is no route state to worry about. 1421 */ 1422 void 1423 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1424 { 1425 struct rt_addrinfo info; 1426 struct mbuf *m = NULL; 1427 struct ifnet *ifp = ifma->ifma_ifp; 1428 struct ifma_msghdr *ifmam; 1429 1430 if (V_route_cb.any_count == 0) 1431 return; 1432 1433 bzero((caddr_t)&info, sizeof(info)); 1434 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1435 if (ifp && ifp->if_addr) 1436 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1437 else 1438 info.rti_info[RTAX_IFP] = NULL; 1439 /* 1440 * If a link-layer address is present, present it as a ``gateway'' 1441 * (similarly to how ARP entries, e.g., are presented). 1442 */ 1443 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1444 m = rtsock_msg_mbuf(cmd, &info); 1445 if (m == NULL) 1446 return; 1447 ifmam = mtod(m, struct ifma_msghdr *); 1448 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1449 __func__)); 1450 ifmam->ifmam_index = ifp->if_index; 1451 ifmam->ifmam_addrs = info.rti_addrs; 1452 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1453 } 1454 1455 static struct mbuf * 1456 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1457 struct rt_addrinfo *info) 1458 { 1459 struct if_announcemsghdr *ifan; 1460 struct mbuf *m; 1461 1462 if (V_route_cb.any_count == 0) 1463 return NULL; 1464 bzero((caddr_t)info, sizeof(*info)); 1465 m = rtsock_msg_mbuf(type, info); 1466 if (m != NULL) { 1467 ifan = mtod(m, struct if_announcemsghdr *); 1468 ifan->ifan_index = ifp->if_index; 1469 strlcpy(ifan->ifan_name, ifp->if_xname, 1470 sizeof(ifan->ifan_name)); 1471 ifan->ifan_what = what; 1472 } 1473 return m; 1474 } 1475 1476 /* 1477 * This is called to generate routing socket messages indicating 1478 * IEEE80211 wireless events. 1479 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1480 */ 1481 void 1482 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1483 { 1484 struct mbuf *m; 1485 struct rt_addrinfo info; 1486 1487 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1488 if (m != NULL) { 1489 /* 1490 * Append the ieee80211 data. Try to stick it in the 1491 * mbuf containing the ifannounce msg; otherwise allocate 1492 * a new mbuf and append. 1493 * 1494 * NB: we assume m is a single mbuf. 1495 */ 1496 if (data_len > M_TRAILINGSPACE(m)) { 1497 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1498 if (n == NULL) { 1499 m_freem(m); 1500 return; 1501 } 1502 bcopy(data, mtod(n, void *), data_len); 1503 n->m_len = data_len; 1504 m->m_next = n; 1505 } else if (data_len > 0) { 1506 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1507 m->m_len += data_len; 1508 } 1509 if (m->m_flags & M_PKTHDR) 1510 m->m_pkthdr.len += data_len; 1511 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1512 rt_dispatch(m, AF_UNSPEC); 1513 } 1514 } 1515 1516 /* 1517 * This is called to generate routing socket messages indicating 1518 * network interface arrival and departure. 1519 */ 1520 void 1521 rt_ifannouncemsg(struct ifnet *ifp, int what) 1522 { 1523 struct mbuf *m; 1524 struct rt_addrinfo info; 1525 1526 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1527 if (m != NULL) 1528 rt_dispatch(m, AF_UNSPEC); 1529 } 1530 1531 static void 1532 rt_dispatch(struct mbuf *m, sa_family_t saf) 1533 { 1534 struct m_tag *tag; 1535 1536 /* 1537 * Preserve the family from the sockaddr, if any, in an m_tag for 1538 * use when injecting the mbuf into the routing socket buffer from 1539 * the netisr. 1540 */ 1541 if (saf != AF_UNSPEC) { 1542 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1543 M_NOWAIT); 1544 if (tag == NULL) { 1545 m_freem(m); 1546 return; 1547 } 1548 *(unsigned short *)(tag + 1) = saf; 1549 m_tag_prepend(m, tag); 1550 } 1551 #ifdef VIMAGE 1552 if (V_loif) 1553 m->m_pkthdr.rcvif = V_loif; 1554 else { 1555 m_freem(m); 1556 return; 1557 } 1558 #endif 1559 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1560 } 1561 1562 /* 1563 * This is used in dumping the kernel table via sysctl(). 1564 */ 1565 static int 1566 sysctl_dumpentry(struct radix_node *rn, void *vw) 1567 { 1568 struct walkarg *w = vw; 1569 struct rtentry *rt = (struct rtentry *)rn; 1570 int error = 0, size; 1571 struct rt_addrinfo info; 1572 struct sockaddr_storage ss; 1573 1574 NET_EPOCH_ASSERT(); 1575 1576 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1577 return 0; 1578 if ((rt->rt_flags & RTF_HOST) == 0 1579 ? jailed_without_vnet(w->w_req->td->td_ucred) 1580 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1581 return (0); 1582 bzero((caddr_t)&info, sizeof(info)); 1583 info.rti_info[RTAX_DST] = rt_key(rt); 1584 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1585 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1586 rt_mask(rt), &ss); 1587 info.rti_info[RTAX_GENMASK] = 0; 1588 if (rt->rt_ifp && !(rt->rt_ifp->if_flags & IFF_DYING)) { 1589 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1590 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1591 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1592 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1593 } 1594 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1595 return (error); 1596 if (w->w_req && w->w_tmem) { 1597 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1598 1599 bzero(&rtm->rtm_index, 1600 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 1601 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1602 rtm->rtm_flags = RTF_GATEWAY | 1603 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1604 else 1605 rtm->rtm_flags = rt->rt_flags; 1606 rt_getmetrics(rt, &rtm->rtm_rmx); 1607 rtm->rtm_index = rt->rt_ifp->if_index; 1608 rtm->rtm_addrs = info.rti_addrs; 1609 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1610 return (error); 1611 } 1612 return (error); 1613 } 1614 1615 static int 1616 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1617 struct rt_addrinfo *info, struct walkarg *w, int len) 1618 { 1619 struct if_msghdrl *ifm; 1620 struct if_data *ifd; 1621 1622 ifm = (struct if_msghdrl *)w->w_tmem; 1623 1624 #ifdef COMPAT_FREEBSD32 1625 if (w->w_req->flags & SCTL_MASK32) { 1626 struct if_msghdrl32 *ifm32; 1627 1628 ifm32 = (struct if_msghdrl32 *)ifm; 1629 ifm32->ifm_addrs = info->rti_addrs; 1630 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1631 ifm32->ifm_index = ifp->if_index; 1632 ifm32->_ifm_spare1 = 0; 1633 ifm32->ifm_len = sizeof(*ifm32); 1634 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1635 ifm32->_ifm_spare2 = 0; 1636 ifd = &ifm32->ifm_data; 1637 } else 1638 #endif 1639 { 1640 ifm->ifm_addrs = info->rti_addrs; 1641 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1642 ifm->ifm_index = ifp->if_index; 1643 ifm->_ifm_spare1 = 0; 1644 ifm->ifm_len = sizeof(*ifm); 1645 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1646 ifm->_ifm_spare2 = 0; 1647 ifd = &ifm->ifm_data; 1648 } 1649 1650 memcpy(ifd, src_ifd, sizeof(*ifd)); 1651 1652 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1653 } 1654 1655 static int 1656 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1657 struct rt_addrinfo *info, struct walkarg *w, int len) 1658 { 1659 struct if_msghdr *ifm; 1660 struct if_data *ifd; 1661 1662 ifm = (struct if_msghdr *)w->w_tmem; 1663 1664 #ifdef COMPAT_FREEBSD32 1665 if (w->w_req->flags & SCTL_MASK32) { 1666 struct if_msghdr32 *ifm32; 1667 1668 ifm32 = (struct if_msghdr32 *)ifm; 1669 ifm32->ifm_addrs = info->rti_addrs; 1670 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1671 ifm32->ifm_index = ifp->if_index; 1672 ifm32->_ifm_spare1 = 0; 1673 ifd = &ifm32->ifm_data; 1674 } else 1675 #endif 1676 { 1677 ifm->ifm_addrs = info->rti_addrs; 1678 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1679 ifm->ifm_index = ifp->if_index; 1680 ifm->_ifm_spare1 = 0; 1681 ifd = &ifm->ifm_data; 1682 } 1683 1684 memcpy(ifd, src_ifd, sizeof(*ifd)); 1685 1686 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1687 } 1688 1689 static int 1690 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1691 struct walkarg *w, int len) 1692 { 1693 struct ifa_msghdrl *ifam; 1694 struct if_data *ifd; 1695 1696 ifam = (struct ifa_msghdrl *)w->w_tmem; 1697 1698 #ifdef COMPAT_FREEBSD32 1699 if (w->w_req->flags & SCTL_MASK32) { 1700 struct ifa_msghdrl32 *ifam32; 1701 1702 ifam32 = (struct ifa_msghdrl32 *)ifam; 1703 ifam32->ifam_addrs = info->rti_addrs; 1704 ifam32->ifam_flags = ifa->ifa_flags; 1705 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1706 ifam32->_ifam_spare1 = 0; 1707 ifam32->ifam_len = sizeof(*ifam32); 1708 ifam32->ifam_data_off = 1709 offsetof(struct ifa_msghdrl32, ifam_data); 1710 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1711 ifd = &ifam32->ifam_data; 1712 } else 1713 #endif 1714 { 1715 ifam->ifam_addrs = info->rti_addrs; 1716 ifam->ifam_flags = ifa->ifa_flags; 1717 ifam->ifam_index = ifa->ifa_ifp->if_index; 1718 ifam->_ifam_spare1 = 0; 1719 ifam->ifam_len = sizeof(*ifam); 1720 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1721 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1722 ifd = &ifam->ifam_data; 1723 } 1724 1725 bzero(ifd, sizeof(*ifd)); 1726 ifd->ifi_datalen = sizeof(struct if_data); 1727 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1728 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1729 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1730 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1731 1732 /* Fixup if_data carp(4) vhid. */ 1733 if (carp_get_vhid_p != NULL) 1734 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1735 1736 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1737 } 1738 1739 static int 1740 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1741 struct walkarg *w, int len) 1742 { 1743 struct ifa_msghdr *ifam; 1744 1745 ifam = (struct ifa_msghdr *)w->w_tmem; 1746 ifam->ifam_addrs = info->rti_addrs; 1747 ifam->ifam_flags = ifa->ifa_flags; 1748 ifam->ifam_index = ifa->ifa_ifp->if_index; 1749 ifam->_ifam_spare1 = 0; 1750 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1751 1752 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1753 } 1754 1755 static int 1756 sysctl_iflist(int af, struct walkarg *w) 1757 { 1758 struct ifnet *ifp; 1759 struct ifaddr *ifa; 1760 struct if_data ifd; 1761 struct rt_addrinfo info; 1762 int len, error = 0; 1763 struct sockaddr_storage ss; 1764 struct epoch_tracker et; 1765 1766 bzero((caddr_t)&info, sizeof(info)); 1767 bzero(&ifd, sizeof(ifd)); 1768 NET_EPOCH_ENTER(et); 1769 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1770 if (w->w_arg && w->w_arg != ifp->if_index) 1771 continue; 1772 if_data_copy(ifp, &ifd); 1773 ifa = ifp->if_addr; 1774 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1775 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1776 if (error != 0) 1777 goto done; 1778 info.rti_info[RTAX_IFP] = NULL; 1779 if (w->w_req && w->w_tmem) { 1780 if (w->w_op == NET_RT_IFLISTL) 1781 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1782 len); 1783 else 1784 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1785 len); 1786 if (error) 1787 goto done; 1788 } 1789 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 1790 if (af && af != ifa->ifa_addr->sa_family) 1791 continue; 1792 if (prison_if(w->w_req->td->td_ucred, 1793 ifa->ifa_addr) != 0) 1794 continue; 1795 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1796 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1797 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1798 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1799 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1800 if (error != 0) 1801 goto done; 1802 if (w->w_req && w->w_tmem) { 1803 if (w->w_op == NET_RT_IFLISTL) 1804 error = sysctl_iflist_ifaml(ifa, &info, 1805 w, len); 1806 else 1807 error = sysctl_iflist_ifam(ifa, &info, 1808 w, len); 1809 if (error) 1810 goto done; 1811 } 1812 } 1813 info.rti_info[RTAX_IFA] = NULL; 1814 info.rti_info[RTAX_NETMASK] = NULL; 1815 info.rti_info[RTAX_BRD] = NULL; 1816 } 1817 done: 1818 NET_EPOCH_EXIT(et); 1819 return (error); 1820 } 1821 1822 static int 1823 sysctl_ifmalist(int af, struct walkarg *w) 1824 { 1825 struct rt_addrinfo info; 1826 struct epoch_tracker et; 1827 struct ifaddr *ifa; 1828 struct ifmultiaddr *ifma; 1829 struct ifnet *ifp; 1830 int error, len; 1831 1832 error = 0; 1833 bzero((caddr_t)&info, sizeof(info)); 1834 1835 NET_EPOCH_ENTER(et); 1836 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1837 if (w->w_arg && w->w_arg != ifp->if_index) 1838 continue; 1839 ifa = ifp->if_addr; 1840 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1841 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1842 if (af && af != ifma->ifma_addr->sa_family) 1843 continue; 1844 if (prison_if(w->w_req->td->td_ucred, 1845 ifma->ifma_addr) != 0) 1846 continue; 1847 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1848 info.rti_info[RTAX_GATEWAY] = 1849 (ifma->ifma_addr->sa_family != AF_LINK) ? 1850 ifma->ifma_lladdr : NULL; 1851 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1852 if (error != 0) 1853 break; 1854 if (w->w_req && w->w_tmem) { 1855 struct ifma_msghdr *ifmam; 1856 1857 ifmam = (struct ifma_msghdr *)w->w_tmem; 1858 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1859 ifmam->ifmam_flags = 0; 1860 ifmam->ifmam_addrs = info.rti_addrs; 1861 ifmam->_ifmam_spare1 = 0; 1862 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1863 if (error != 0) 1864 break; 1865 } 1866 } 1867 if (error != 0) 1868 break; 1869 } 1870 NET_EPOCH_EXIT(et); 1871 return (error); 1872 } 1873 1874 static int 1875 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1876 { 1877 RIB_RLOCK_TRACKER; 1878 int *name = (int *)arg1; 1879 u_int namelen = arg2; 1880 struct rib_head *rnh = NULL; /* silence compiler. */ 1881 int i, lim, error = EINVAL; 1882 int fib = 0; 1883 u_char af; 1884 struct walkarg w; 1885 1886 name ++; 1887 namelen--; 1888 if (req->newptr) 1889 return (EPERM); 1890 if (name[1] == NET_RT_DUMP) { 1891 if (namelen == 3) 1892 fib = req->td->td_proc->p_fibnum; 1893 else if (namelen == 4) 1894 fib = (name[3] == RT_ALL_FIBS) ? 1895 req->td->td_proc->p_fibnum : name[3]; 1896 else 1897 return ((namelen < 3) ? EISDIR : ENOTDIR); 1898 if (fib < 0 || fib >= rt_numfibs) 1899 return (EINVAL); 1900 } else if (namelen != 3) 1901 return ((namelen < 3) ? EISDIR : ENOTDIR); 1902 af = name[0]; 1903 if (af > AF_MAX) 1904 return (EINVAL); 1905 bzero(&w, sizeof(w)); 1906 w.w_op = name[1]; 1907 w.w_arg = name[2]; 1908 w.w_req = req; 1909 1910 error = sysctl_wire_old_buffer(req, 0); 1911 if (error) 1912 return (error); 1913 1914 /* 1915 * Allocate reply buffer in advance. 1916 * All rtsock messages has maximum length of u_short. 1917 */ 1918 w.w_tmemsize = 65536; 1919 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1920 1921 switch (w.w_op) { 1922 1923 case NET_RT_DUMP: 1924 case NET_RT_FLAGS: 1925 if (af == 0) { /* dump all tables */ 1926 i = 1; 1927 lim = AF_MAX; 1928 } else /* dump only one table */ 1929 i = lim = af; 1930 1931 /* 1932 * take care of llinfo entries, the caller must 1933 * specify an AF 1934 */ 1935 if (w.w_op == NET_RT_FLAGS && 1936 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1937 if (af != 0) 1938 error = lltable_sysctl_dumparp(af, w.w_req); 1939 else 1940 error = EINVAL; 1941 break; 1942 } 1943 /* 1944 * take care of routing entries 1945 */ 1946 for (error = 0; error == 0 && i <= lim; i++) { 1947 rnh = rt_tables_get_rnh(fib, i); 1948 if (rnh != NULL) { 1949 struct epoch_tracker et; 1950 1951 RIB_RLOCK(rnh); 1952 NET_EPOCH_ENTER(et); 1953 error = rnh->rnh_walktree(&rnh->head, 1954 sysctl_dumpentry, &w); 1955 NET_EPOCH_EXIT(et); 1956 RIB_RUNLOCK(rnh); 1957 } else if (af != 0) 1958 error = EAFNOSUPPORT; 1959 } 1960 break; 1961 1962 case NET_RT_IFLIST: 1963 case NET_RT_IFLISTL: 1964 error = sysctl_iflist(af, &w); 1965 break; 1966 1967 case NET_RT_IFMALIST: 1968 error = sysctl_ifmalist(af, &w); 1969 break; 1970 } 1971 1972 free(w.w_tmem, M_TEMP); 1973 return (error); 1974 } 1975 1976 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1977 1978 /* 1979 * Definitions of protocols supported in the ROUTE domain. 1980 */ 1981 1982 static struct domain routedomain; /* or at least forward */ 1983 1984 static struct protosw routesw[] = { 1985 { 1986 .pr_type = SOCK_RAW, 1987 .pr_domain = &routedomain, 1988 .pr_flags = PR_ATOMIC|PR_ADDR, 1989 .pr_output = route_output, 1990 .pr_ctlinput = raw_ctlinput, 1991 .pr_init = raw_init, 1992 .pr_usrreqs = &route_usrreqs 1993 } 1994 }; 1995 1996 static struct domain routedomain = { 1997 .dom_family = PF_ROUTE, 1998 .dom_name = "route", 1999 .dom_protosw = routesw, 2000 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 2001 }; 2002 2003 VNET_DOMAIN_SET(route); 2004 2005 #ifdef DDB 2006 /* 2007 * Unfortunately, RTF_ values are expressed as raw masks rather than powers of 2008 * 2, so we cannot use them as nice C99 initializer indices below. 2009 */ 2010 static const char * const rtf_flag_strings[] = { 2011 "UP", 2012 "GATEWAY", 2013 "HOST", 2014 "REJECT", 2015 "DYNAMIC", 2016 "MODIFIED", 2017 "DONE", 2018 "UNUSED_0x80", 2019 "UNUSED_0x100", 2020 "XRESOLVE", 2021 "LLDATA", 2022 "STATIC", 2023 "BLACKHOLE", 2024 "UNUSED_0x2000", 2025 "PROTO2", 2026 "PROTO1", 2027 "UNUSED_0x10000", 2028 "UNUSED_0x20000", 2029 "PROTO3", 2030 "FIXEDMTU", 2031 "PINNED", 2032 "LOCAL", 2033 "BROADCAST", 2034 "MULTICAST", 2035 /* Big gap. */ 2036 [28] = "STICKY", 2037 [30] = "RNH_LOCKED", 2038 [31] = "GWFLAG_COMPAT", 2039 }; 2040 2041 static const char * __pure 2042 rt_flag_name(unsigned idx) 2043 { 2044 if (idx >= nitems(rtf_flag_strings)) 2045 return ("INVALID_FLAG"); 2046 if (rtf_flag_strings[idx] == NULL) 2047 return ("UNKNOWN"); 2048 return (rtf_flag_strings[idx]); 2049 } 2050 2051 static void 2052 rt_dumpaddr_ddb(const char *name, const struct sockaddr *sa) 2053 { 2054 char buf[INET6_ADDRSTRLEN], *res; 2055 2056 res = NULL; 2057 if (sa == NULL) 2058 res = "NULL"; 2059 else if (sa->sa_family == AF_INET) { 2060 res = inet_ntop(AF_INET, 2061 &((const struct sockaddr_in *)sa)->sin_addr, 2062 buf, sizeof(buf)); 2063 } else if (sa->sa_family == AF_INET6) { 2064 res = inet_ntop(AF_INET6, 2065 &((const struct sockaddr_in6 *)sa)->sin6_addr, 2066 buf, sizeof(buf)); 2067 } else if (sa->sa_family == AF_LINK) { 2068 res = "on link"; 2069 } 2070 2071 if (res != NULL) { 2072 db_printf("%s <%s> ", name, res); 2073 return; 2074 } 2075 2076 db_printf("%s <af:%d> ", name, sa->sa_family); 2077 } 2078 2079 static int 2080 rt_dumpentry_ddb(struct radix_node *rn, void *arg __unused) 2081 { 2082 struct sockaddr_storage ss; 2083 struct rtentry *rt; 2084 int flags, idx; 2085 2086 /* If RNTORT is important, put it in a header. */ 2087 rt = (void *)rn; 2088 2089 rt_dumpaddr_ddb("dst", rt_key(rt)); 2090 rt_dumpaddr_ddb("gateway", rt->rt_gateway); 2091 rt_dumpaddr_ddb("netmask", rtsock_fix_netmask(rt_key(rt), rt_mask(rt), 2092 &ss)); 2093 if (rt->rt_ifp != NULL && (rt->rt_ifp->if_flags & IFF_DYING) == 0) { 2094 rt_dumpaddr_ddb("ifp", rt->rt_ifp->if_addr->ifa_addr); 2095 rt_dumpaddr_ddb("ifa", rt->rt_ifa->ifa_addr); 2096 } 2097 2098 db_printf("flags "); 2099 flags = rt->rt_flags; 2100 if (flags == 0) 2101 db_printf("none"); 2102 2103 while ((idx = ffs(flags)) > 0) { 2104 idx--; 2105 2106 if (flags != rt->rt_flags) 2107 db_printf(","); 2108 db_printf("%s", rt_flag_name(idx)); 2109 2110 flags &= ~(1ul << idx); 2111 } 2112 2113 db_printf("\n"); 2114 return (0); 2115 } 2116 2117 DB_SHOW_COMMAND(routetable, db_show_routetable_cmd) 2118 { 2119 struct rib_head *rnh; 2120 int error, i, lim; 2121 2122 if (have_addr) 2123 i = lim = addr; 2124 else { 2125 i = 1; 2126 lim = AF_MAX; 2127 } 2128 2129 for (; i <= lim; i++) { 2130 rnh = rt_tables_get_rnh(0, i); 2131 if (rnh == NULL) { 2132 if (have_addr) { 2133 db_printf("%s: AF %d not supported?\n", 2134 __func__, i); 2135 break; 2136 } 2137 continue; 2138 } 2139 2140 if (!have_addr && i > 1) 2141 db_printf("\n"); 2142 2143 db_printf("Route table for AF %d%s%s%s:\n", i, 2144 (i == AF_INET || i == AF_INET6) ? " (" : "", 2145 (i == AF_INET) ? "INET" : (i == AF_INET6) ? "INET6" : "", 2146 (i == AF_INET || i == AF_INET6) ? ")" : ""); 2147 2148 error = rnh->rnh_walktree(&rnh->head, rt_dumpentry_ddb, NULL); 2149 if (error != 0) 2150 db_printf("%s: walktree(%d): %d\n", __func__, i, 2151 error); 2152 } 2153 } 2154 2155 _DB_FUNC(_show, route, db_show_route_cmd, db_show_table, CS_OWN, NULL) 2156 { 2157 char buf[INET6_ADDRSTRLEN], *bp; 2158 const void *dst_addrp; 2159 struct sockaddr *dstp; 2160 struct rtentry *rt; 2161 union { 2162 struct sockaddr_in dest_sin; 2163 struct sockaddr_in6 dest_sin6; 2164 } u; 2165 uint16_t hextets[8]; 2166 unsigned i, tets; 2167 int t, af, exp, tokflags; 2168 2169 /* 2170 * Undecoded address family. No double-colon expansion seen yet. 2171 */ 2172 af = -1; 2173 exp = -1; 2174 /* Assume INET6 to start; we can work back if guess was wrong. */ 2175 tokflags = DRT_WSPACE | DRT_HEX | DRT_HEXADECIMAL; 2176 2177 /* 2178 * db_command has lexed 'show route' for us. 2179 */ 2180 t = db_read_token_flags(tokflags); 2181 if (t == tWSPACE) 2182 t = db_read_token_flags(tokflags); 2183 2184 /* 2185 * tEOL: Just 'show route' isn't a valid mode. 2186 * tMINUS: It's either '-h' or some invalid option. Regardless, usage. 2187 */ 2188 if (t == tEOL || t == tMINUS) 2189 goto usage; 2190 2191 db_unread_token(t); 2192 2193 tets = nitems(hextets); 2194 2195 /* 2196 * Each loop iteration, we expect to read one octet (v4) or hextet 2197 * (v6), followed by an appropriate field separator ('.' or ':' or 2198 * '::'). 2199 * 2200 * At the start of each loop, we're looking for a number (octet or 2201 * hextet). 2202 * 2203 * INET6 addresses have a special case where they may begin with '::'. 2204 */ 2205 for (i = 0; i < tets; i++) { 2206 t = db_read_token_flags(tokflags); 2207 2208 if (t == tCOLONCOLON) { 2209 /* INET6 with leading '::' or invalid. */ 2210 if (i != 0) { 2211 db_printf("Parse error: unexpected extra " 2212 "colons.\n"); 2213 goto exit; 2214 } 2215 2216 af = AF_INET6; 2217 exp = i; 2218 hextets[i] = 0; 2219 continue; 2220 } else if (t == tNUMBER) { 2221 /* 2222 * Lexer separates out '-' as tMINUS, but make the 2223 * assumption explicit here. 2224 */ 2225 MPASS(db_tok_number >= 0); 2226 2227 if (af == AF_INET && db_tok_number > UINT8_MAX) { 2228 db_printf("Not a valid v4 octet: %ld\n", 2229 (long)db_tok_number); 2230 goto exit; 2231 } 2232 hextets[i] = db_tok_number; 2233 } else if (t == tEOL) { 2234 /* 2235 * We can only detect the end of an IPv6 address in 2236 * compact representation with EOL. 2237 */ 2238 if (af != AF_INET6 || exp < 0) { 2239 db_printf("Parse failed. Got unexpected EOF " 2240 "when the address is not a compact-" 2241 "representation IPv6 address.\n"); 2242 goto exit; 2243 } 2244 break; 2245 } else { 2246 db_printf("Parse failed. Unexpected token %d.\n", t); 2247 goto exit; 2248 } 2249 2250 /* Next, look for a separator, if appropriate. */ 2251 if (i == tets - 1) 2252 continue; 2253 2254 t = db_read_token_flags(tokflags); 2255 if (af < 0) { 2256 if (t == tCOLON) { 2257 af = AF_INET6; 2258 continue; 2259 } 2260 if (t == tCOLONCOLON) { 2261 af = AF_INET6; 2262 i++; 2263 hextets[i] = 0; 2264 exp = i; 2265 continue; 2266 } 2267 if (t == tDOT) { 2268 unsigned hn, dn; 2269 2270 af = AF_INET; 2271 /* Need to fixup the first parsed number. */ 2272 if (hextets[0] > 0x255 || 2273 (hextets[0] & 0xf0) > 0x90 || 2274 (hextets[0] & 0xf) > 9) { 2275 db_printf("Not a valid v4 octet: %x\n", 2276 hextets[0]); 2277 goto exit; 2278 } 2279 2280 hn = hextets[0]; 2281 dn = (hn >> 8) * 100 + 2282 ((hn >> 4) & 0xf) * 10 + 2283 (hn & 0xf); 2284 2285 hextets[0] = dn; 2286 2287 /* Switch to decimal for remaining octets. */ 2288 tokflags &= ~DRT_RADIX_MASK; 2289 tokflags |= DRT_DECIMAL; 2290 2291 tets = 4; 2292 continue; 2293 } 2294 2295 db_printf("Parse error. Unexpected token %d.\n", t); 2296 goto exit; 2297 } else if (af == AF_INET) { 2298 if (t == tDOT) 2299 continue; 2300 db_printf("Expected '.' (%d) between octets but got " 2301 "(%d).\n", tDOT, t); 2302 goto exit; 2303 2304 } else if (af == AF_INET6) { 2305 if (t == tCOLON) 2306 continue; 2307 if (t == tCOLONCOLON) { 2308 if (exp < 0) { 2309 i++; 2310 hextets[i] = 0; 2311 exp = i; 2312 continue; 2313 } 2314 db_printf("Got bogus second '::' in v6 " 2315 "address.\n"); 2316 goto exit; 2317 } 2318 if (t == tEOL) { 2319 /* 2320 * Handle in the earlier part of the loop 2321 * because we need to handle trailing :: too. 2322 */ 2323 db_unread_token(t); 2324 continue; 2325 } 2326 2327 db_printf("Expected ':' (%d) or '::' (%d) between " 2328 "hextets but got (%d).\n", tCOLON, tCOLONCOLON, t); 2329 goto exit; 2330 } 2331 } 2332 2333 /* Check for trailing garbage. */ 2334 if (i == tets) { 2335 t = db_read_token_flags(tokflags); 2336 if (t != tEOL) { 2337 db_printf("Got unexpected garbage after address " 2338 "(%d).\n", t); 2339 goto exit; 2340 } 2341 } 2342 2343 /* 2344 * Need to expand compact INET6 addresses. 2345 * 2346 * Technically '::' for a single ':0:' is MUST NOT but just in case, 2347 * don't bother expanding that form (exp >= 0 && i == tets case). 2348 */ 2349 if (af == AF_INET6 && exp >= 0 && i < tets) { 2350 if (exp + 1 < i) { 2351 memmove(&hextets[exp + 1 + (nitems(hextets) - i)], 2352 &hextets[exp + 1], 2353 (i - (exp + 1)) * sizeof(hextets[0])); 2354 } 2355 memset(&hextets[exp + 1], 0, (nitems(hextets) - i) * 2356 sizeof(hextets[0])); 2357 } 2358 2359 memset(&u, 0, sizeof(u)); 2360 if (af == AF_INET) { 2361 u.dest_sin.sin_family = AF_INET; 2362 u.dest_sin.sin_len = sizeof(u.dest_sin); 2363 u.dest_sin.sin_addr.s_addr = htonl( 2364 ((uint32_t)hextets[0] << 24) | 2365 ((uint32_t)hextets[1] << 16) | 2366 ((uint32_t)hextets[2] << 8) | 2367 (uint32_t)hextets[3]); 2368 dstp = (void *)&u.dest_sin; 2369 dst_addrp = &u.dest_sin.sin_addr; 2370 } else if (af == AF_INET6) { 2371 u.dest_sin6.sin6_family = AF_INET6; 2372 u.dest_sin6.sin6_len = sizeof(u.dest_sin6); 2373 for (i = 0; i < nitems(hextets); i++) 2374 u.dest_sin6.sin6_addr.s6_addr16[i] = htons(hextets[i]); 2375 dstp = (void *)&u.dest_sin6; 2376 dst_addrp = &u.dest_sin6.sin6_addr; 2377 } else { 2378 MPASS(false); 2379 /* UNREACHABLE */ 2380 /* Appease Clang false positive: */ 2381 dstp = NULL; 2382 } 2383 2384 bp = inet_ntop(af, dst_addrp, buf, sizeof(buf)); 2385 if (bp != NULL) 2386 db_printf("Looking up route to destination '%s'\n", bp); 2387 2388 CURVNET_SET(vnet0); 2389 rt = rtalloc1(dstp, 0, RTF_RNH_LOCKED); 2390 CURVNET_RESTORE(); 2391 2392 if (rt == NULL) { 2393 db_printf("Could not get route for that server.\n"); 2394 return; 2395 } 2396 2397 rt_dumpentry_ddb((void *)rt, NULL); 2398 RTFREE_LOCKED(rt); 2399 2400 return; 2401 usage: 2402 db_printf("Usage: 'show route <address>'\n" 2403 " Currently accepts only dotted-decimal INET or colon-separated\n" 2404 " hextet INET6 addresses.\n"); 2405 exit: 2406 db_skip_to_eol(); 2407 } 2408 #endif 2409