1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_route.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/eventhandler.h> 43 #include <sys/domain.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 #include <sys/protosw.h> 50 #include <sys/rmlock.h> 51 #include <sys/rwlock.h> 52 #include <sys/signalvar.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/sysctl.h> 56 #include <sys/systm.h> 57 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #include <net/if_private.h> 61 #include <net/if_dl.h> 62 #include <net/if_llatbl.h> 63 #include <net/if_types.h> 64 #include <net/netisr.h> 65 #include <net/route.h> 66 #include <net/route/route_ctl.h> 67 #include <net/route/route_var.h> 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/if_ether.h> 72 #include <netinet/ip_carp.h> 73 #ifdef INET6 74 #include <netinet6/in6_var.h> 75 #include <netinet6/ip6_var.h> 76 #include <netinet6/scope6_var.h> 77 #endif 78 #include <net/route/nhop.h> 79 80 #define DEBUG_MOD_NAME rtsock 81 #define DEBUG_MAX_LEVEL LOG_DEBUG 82 #include <net/route/route_debug.h> 83 _DECLARE_DEBUG(LOG_INFO); 84 85 #ifdef COMPAT_FREEBSD32 86 #include <sys/mount.h> 87 #include <compat/freebsd32/freebsd32.h> 88 89 struct if_msghdr32 { 90 uint16_t ifm_msglen; 91 uint8_t ifm_version; 92 uint8_t ifm_type; 93 int32_t ifm_addrs; 94 int32_t ifm_flags; 95 uint16_t ifm_index; 96 uint16_t _ifm_spare1; 97 struct if_data ifm_data; 98 }; 99 100 struct if_msghdrl32 { 101 uint16_t ifm_msglen; 102 uint8_t ifm_version; 103 uint8_t ifm_type; 104 int32_t ifm_addrs; 105 int32_t ifm_flags; 106 uint16_t ifm_index; 107 uint16_t _ifm_spare1; 108 uint16_t ifm_len; 109 uint16_t ifm_data_off; 110 uint32_t _ifm_spare2; 111 struct if_data ifm_data; 112 }; 113 114 struct ifa_msghdrl32 { 115 uint16_t ifam_msglen; 116 uint8_t ifam_version; 117 uint8_t ifam_type; 118 int32_t ifam_addrs; 119 int32_t ifam_flags; 120 uint16_t ifam_index; 121 uint16_t _ifam_spare1; 122 uint16_t ifam_len; 123 uint16_t ifam_data_off; 124 int32_t ifam_metric; 125 struct if_data ifam_data; 126 }; 127 128 #define SA_SIZE32(sa) \ 129 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 130 sizeof(int) : \ 131 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 132 133 #endif /* COMPAT_FREEBSD32 */ 134 135 struct linear_buffer { 136 char *base; /* Base allocated memory pointer */ 137 uint32_t offset; /* Currently used offset */ 138 uint32_t size; /* Total buffer size */ 139 }; 140 #define SCRATCH_BUFFER_SIZE 1024 141 142 #define RTS_PID_LOG(_l, _fmt, ...) RT_LOG_##_l(_l, "PID %d: " _fmt, curproc ? curproc->p_pid : 0, ## __VA_ARGS__) 143 144 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 145 146 /* NB: these are not modified */ 147 static struct sockaddr route_src = { 2, PF_ROUTE, }; 148 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 149 150 /* These are external hooks for CARP. */ 151 int (*carp_get_vhid_p)(struct ifaddr *); 152 153 /* 154 * Used by rtsock callback code to decide whether to filter the update 155 * notification to a socket bound to a particular FIB. 156 */ 157 #define RTS_FILTER_FIB M_PROTO8 158 /* 159 * Used to store address family of the notification. 160 */ 161 #define m_rtsock_family m_pkthdr.PH_loc.eight[0] 162 163 struct rcb { 164 LIST_ENTRY(rcb) list; 165 struct socket *rcb_socket; 166 sa_family_t rcb_family; 167 }; 168 169 typedef struct { 170 LIST_HEAD(, rcb) cblist; 171 int ip_count; /* attached w/ AF_INET */ 172 int ip6_count; /* attached w/ AF_INET6 */ 173 int any_count; /* total attached */ 174 } route_cb_t; 175 VNET_DEFINE_STATIC(route_cb_t, route_cb); 176 #define V_route_cb VNET(route_cb) 177 178 struct mtx rtsock_mtx; 179 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 180 181 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 182 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 183 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 184 185 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 186 187 struct walkarg { 188 int family; 189 int w_tmemsize; 190 int w_op, w_arg; 191 caddr_t w_tmem; 192 struct sysctl_req *w_req; 193 struct sockaddr *dst; 194 struct sockaddr *mask; 195 }; 196 197 static void rts_input(struct mbuf *m); 198 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 199 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 200 struct walkarg *w, int *plen); 201 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 202 struct rt_addrinfo *rtinfo); 203 static int cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb); 204 static int sysctl_dumpentry(struct rtentry *rt, void *vw); 205 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 206 uint32_t weight, struct walkarg *w); 207 static int sysctl_iflist(int af, struct walkarg *w); 208 static int sysctl_ifmalist(int af, struct walkarg *w); 209 static void rt_getmetrics(const struct rtentry *rt, 210 const struct nhop_object *nh, struct rt_metrics *out); 211 static void rt_dispatch(struct mbuf *, sa_family_t); 212 static void rt_ifannouncemsg(struct ifnet *ifp, int what); 213 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 214 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 215 static int update_rtm_from_rc(struct rt_addrinfo *info, 216 struct rt_msghdr **prtm, int alloc_len, 217 struct rib_cmd_info *rc, struct nhop_object *nh); 218 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 219 struct mbuf *m, sa_family_t saf, u_int fibnum, 220 int rtm_errno); 221 static void rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc); 222 static void rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask); 223 224 static struct netisr_handler rtsock_nh = { 225 .nh_name = "rtsock", 226 .nh_handler = rts_input, 227 .nh_proto = NETISR_ROUTE, 228 .nh_policy = NETISR_POLICY_SOURCE, 229 }; 230 231 static int 232 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 233 { 234 int error, qlimit; 235 236 netisr_getqlimit(&rtsock_nh, &qlimit); 237 error = sysctl_handle_int(oidp, &qlimit, 0, req); 238 if (error || !req->newptr) 239 return (error); 240 if (qlimit < 1) 241 return (EINVAL); 242 return (netisr_setqlimit(&rtsock_nh, qlimit)); 243 } 244 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 245 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 246 0, 0, sysctl_route_netisr_maxqlen, "I", 247 "maximum routing socket dispatch queue length"); 248 249 static void 250 vnet_rts_init(void) 251 { 252 int tmp; 253 254 if (IS_DEFAULT_VNET(curvnet)) { 255 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 256 rtsock_nh.nh_qlimit = tmp; 257 netisr_register(&rtsock_nh); 258 } 259 #ifdef VIMAGE 260 else 261 netisr_register_vnet(&rtsock_nh); 262 #endif 263 } 264 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 265 vnet_rts_init, 0); 266 267 #ifdef VIMAGE 268 static void 269 vnet_rts_uninit(void) 270 { 271 272 netisr_unregister_vnet(&rtsock_nh); 273 } 274 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 275 vnet_rts_uninit, 0); 276 #endif 277 278 static void 279 report_route_event(const struct rib_cmd_info *rc, void *_cbdata) 280 { 281 uint32_t fibnum = (uint32_t)(uintptr_t)_cbdata; 282 struct nhop_object *nh; 283 284 nh = rc->rc_cmd == RTM_DELETE ? rc->rc_nh_old : rc->rc_nh_new; 285 rt_routemsg(rc->rc_cmd, rc->rc_rt, nh, fibnum); 286 } 287 288 static void 289 rts_handle_route_event(uint32_t fibnum, const struct rib_cmd_info *rc) 290 { 291 #ifdef ROUTE_MPATH 292 if ((rc->rc_nh_new && NH_IS_NHGRP(rc->rc_nh_new)) || 293 (rc->rc_nh_old && NH_IS_NHGRP(rc->rc_nh_old))) { 294 rib_decompose_notification(rc, report_route_event, 295 (void *)(uintptr_t)fibnum); 296 } else 297 #endif 298 report_route_event(rc, (void *)(uintptr_t)fibnum); 299 } 300 static struct rtbridge rtsbridge = { 301 .route_f = rts_handle_route_event, 302 .ifmsg_f = rtsock_ifmsg, 303 }; 304 static struct rtbridge *rtsbridge_orig_p; 305 306 static void 307 rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc) 308 { 309 netlink_callback_p->route_f(fibnum, rc); 310 } 311 312 static void 313 rtsock_init(void) 314 { 315 rtsbridge_orig_p = rtsock_callback_p; 316 rtsock_callback_p = &rtsbridge; 317 } 318 SYSINIT(rtsock_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rtsock_init, NULL); 319 320 static void 321 rts_handle_ifnet_arrival(void *arg __unused, struct ifnet *ifp) 322 { 323 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 324 } 325 EVENTHANDLER_DEFINE(ifnet_arrival_event, rts_handle_ifnet_arrival, NULL, 0); 326 327 static void 328 rts_handle_ifnet_departure(void *arg __unused, struct ifnet *ifp) 329 { 330 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 331 } 332 EVENTHANDLER_DEFINE(ifnet_departure_event, rts_handle_ifnet_departure, NULL, 0); 333 334 static void 335 rts_append_data(struct socket *so, struct mbuf *m) 336 { 337 338 if (sbappendaddr(&so->so_rcv, &route_src, m, NULL) == 0) { 339 soroverflow(so); 340 m_freem(m); 341 } else 342 sorwakeup(so); 343 } 344 345 static void 346 rts_input(struct mbuf *m) 347 { 348 struct rcb *rcb; 349 struct socket *last; 350 351 last = NULL; 352 RTSOCK_LOCK(); 353 LIST_FOREACH(rcb, &V_route_cb.cblist, list) { 354 if (rcb->rcb_family != AF_UNSPEC && 355 rcb->rcb_family != m->m_rtsock_family) 356 continue; 357 if ((m->m_flags & RTS_FILTER_FIB) && 358 M_GETFIB(m) != rcb->rcb_socket->so_fibnum) 359 continue; 360 if (last != NULL) { 361 struct mbuf *n; 362 363 n = m_copym(m, 0, M_COPYALL, M_NOWAIT); 364 if (n != NULL) 365 rts_append_data(last, n); 366 } 367 last = rcb->rcb_socket; 368 } 369 if (last != NULL) 370 rts_append_data(last, m); 371 else 372 m_freem(m); 373 RTSOCK_UNLOCK(); 374 } 375 376 static void 377 rts_close(struct socket *so) 378 { 379 380 soisdisconnected(so); 381 } 382 383 static SYSCTL_NODE(_net, OID_AUTO, rtsock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 384 "Routing socket infrastructure"); 385 static u_long rts_sendspace = 8192; 386 SYSCTL_ULONG(_net_rtsock, OID_AUTO, sendspace, CTLFLAG_RW, &rts_sendspace, 0, 387 "Default routing socket send space"); 388 static u_long rts_recvspace = 8192; 389 SYSCTL_ULONG(_net_rtsock, OID_AUTO, recvspace, CTLFLAG_RW, &rts_recvspace, 0, 390 "Default routing socket receive space"); 391 392 static int 393 rts_attach(struct socket *so, int proto, struct thread *td) 394 { 395 struct rcb *rcb; 396 int error; 397 398 error = soreserve(so, rts_sendspace, rts_recvspace); 399 if (error) 400 return (error); 401 402 rcb = malloc(sizeof(*rcb), M_PCB, M_WAITOK); 403 rcb->rcb_socket = so; 404 rcb->rcb_family = proto; 405 406 so->so_pcb = rcb; 407 so->so_fibnum = td->td_proc->p_fibnum; 408 so->so_options |= SO_USELOOPBACK; 409 410 RTSOCK_LOCK(); 411 LIST_INSERT_HEAD(&V_route_cb.cblist, rcb, list); 412 switch (proto) { 413 case AF_INET: 414 V_route_cb.ip_count++; 415 break; 416 case AF_INET6: 417 V_route_cb.ip6_count++; 418 break; 419 } 420 V_route_cb.any_count++; 421 RTSOCK_UNLOCK(); 422 soisconnected(so); 423 424 return (0); 425 } 426 427 static void 428 rts_detach(struct socket *so) 429 { 430 struct rcb *rcb = so->so_pcb; 431 432 RTSOCK_LOCK(); 433 LIST_REMOVE(rcb, list); 434 switch(rcb->rcb_family) { 435 case AF_INET: 436 V_route_cb.ip_count--; 437 break; 438 case AF_INET6: 439 V_route_cb.ip6_count--; 440 break; 441 } 442 V_route_cb.any_count--; 443 RTSOCK_UNLOCK(); 444 free(rcb, M_PCB); 445 so->so_pcb = NULL; 446 } 447 448 static int 449 rts_disconnect(struct socket *so) 450 { 451 452 return (ENOTCONN); 453 } 454 455 static int 456 rts_shutdown(struct socket *so) 457 { 458 459 socantsendmore(so); 460 return (0); 461 } 462 463 #ifndef _SOCKADDR_UNION_DEFINED 464 #define _SOCKADDR_UNION_DEFINED 465 /* 466 * The union of all possible address formats we handle. 467 */ 468 union sockaddr_union { 469 struct sockaddr sa; 470 struct sockaddr_in sin; 471 struct sockaddr_in6 sin6; 472 }; 473 #endif /* _SOCKADDR_UNION_DEFINED */ 474 475 static int 476 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 477 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 478 { 479 #if defined(INET) || defined(INET6) 480 struct epoch_tracker et; 481 #endif 482 483 /* First, see if the returned address is part of the jail. */ 484 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 485 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 486 return (0); 487 } 488 489 switch (info->rti_info[RTAX_DST]->sa_family) { 490 #ifdef INET 491 case AF_INET: 492 { 493 struct in_addr ia; 494 struct ifaddr *ifa; 495 int found; 496 497 found = 0; 498 /* 499 * Try to find an address on the given outgoing interface 500 * that belongs to the jail. 501 */ 502 NET_EPOCH_ENTER(et); 503 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 504 struct sockaddr *sa; 505 sa = ifa->ifa_addr; 506 if (sa->sa_family != AF_INET) 507 continue; 508 ia = ((struct sockaddr_in *)sa)->sin_addr; 509 if (prison_check_ip4(cred, &ia) == 0) { 510 found = 1; 511 break; 512 } 513 } 514 NET_EPOCH_EXIT(et); 515 if (!found) { 516 /* 517 * As a last resort return the 'default' jail address. 518 */ 519 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 520 sin_addr; 521 if (prison_get_ip4(cred, &ia) != 0) 522 return (ESRCH); 523 } 524 bzero(&saun->sin, sizeof(struct sockaddr_in)); 525 saun->sin.sin_len = sizeof(struct sockaddr_in); 526 saun->sin.sin_family = AF_INET; 527 saun->sin.sin_addr.s_addr = ia.s_addr; 528 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 529 break; 530 } 531 #endif 532 #ifdef INET6 533 case AF_INET6: 534 { 535 struct in6_addr ia6; 536 struct ifaddr *ifa; 537 int found; 538 539 found = 0; 540 /* 541 * Try to find an address on the given outgoing interface 542 * that belongs to the jail. 543 */ 544 NET_EPOCH_ENTER(et); 545 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 546 struct sockaddr *sa; 547 sa = ifa->ifa_addr; 548 if (sa->sa_family != AF_INET6) 549 continue; 550 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 551 &ia6, sizeof(struct in6_addr)); 552 if (prison_check_ip6(cred, &ia6) == 0) { 553 found = 1; 554 break; 555 } 556 } 557 NET_EPOCH_EXIT(et); 558 if (!found) { 559 /* 560 * As a last resort return the 'default' jail address. 561 */ 562 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 563 sin6_addr; 564 if (prison_get_ip6(cred, &ia6) != 0) 565 return (ESRCH); 566 } 567 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 568 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 569 saun->sin6.sin6_family = AF_INET6; 570 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 571 if (sa6_recoverscope(&saun->sin6) != 0) 572 return (ESRCH); 573 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 574 break; 575 } 576 #endif 577 default: 578 return (ESRCH); 579 } 580 return (0); 581 } 582 583 static int 584 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun) 585 { 586 struct ifaddr *ifa; 587 sa_family_t saf; 588 589 if (V_loif == NULL) { 590 RTS_PID_LOG(LOG_INFO, "Unable to add blackhole/reject nhop without loopback"); 591 return (ENOTSUP); 592 } 593 info->rti_ifp = V_loif; 594 595 saf = info->rti_info[RTAX_DST]->sa_family; 596 597 CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) { 598 if (ifa->ifa_addr->sa_family == saf) { 599 info->rti_ifa = ifa; 600 break; 601 } 602 } 603 if (info->rti_ifa == NULL) { 604 RTS_PID_LOG(LOG_INFO, "Unable to find ifa for blackhole/reject nhop"); 605 return (ENOTSUP); 606 } 607 608 bzero(saun, sizeof(union sockaddr_union)); 609 switch (saf) { 610 #ifdef INET 611 case AF_INET: 612 saun->sin.sin_family = AF_INET; 613 saun->sin.sin_len = sizeof(struct sockaddr_in); 614 saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 615 break; 616 #endif 617 #ifdef INET6 618 case AF_INET6: 619 saun->sin6.sin6_family = AF_INET6; 620 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 621 saun->sin6.sin6_addr = in6addr_loopback; 622 break; 623 #endif 624 default: 625 RTS_PID_LOG(LOG_INFO, "unsupported family: %d", saf); 626 return (ENOTSUP); 627 } 628 info->rti_info[RTAX_GATEWAY] = &saun->sa; 629 info->rti_flags |= RTF_GATEWAY; 630 631 return (0); 632 } 633 634 /* 635 * Fills in @info based on userland-provided @rtm message. 636 * 637 * Returns 0 on success. 638 */ 639 static int 640 fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum, 641 struct rt_addrinfo *info) 642 { 643 int error; 644 645 rtm->rtm_pid = curproc->p_pid; 646 info->rti_addrs = rtm->rtm_addrs; 647 648 info->rti_mflags = rtm->rtm_inits; 649 info->rti_rmx = &rtm->rtm_rmx; 650 651 /* 652 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 653 * link-local address because rtrequest requires addresses with 654 * embedded scope id. 655 */ 656 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 657 return (EINVAL); 658 659 info->rti_flags = rtm->rtm_flags; 660 error = cleanup_xaddrs(info, lb); 661 if (error != 0) 662 return (error); 663 /* 664 * Verify that the caller has the appropriate privilege; RTM_GET 665 * is the only operation the non-superuser is allowed. 666 */ 667 if (rtm->rtm_type != RTM_GET) { 668 error = priv_check(curthread, PRIV_NET_ROUTE); 669 if (error != 0) 670 return (error); 671 } 672 673 /* 674 * The given gateway address may be an interface address. 675 * For example, issuing a "route change" command on a route 676 * entry that was created from a tunnel, and the gateway 677 * address given is the local end point. In this case the 678 * RTF_GATEWAY flag must be cleared or the destination will 679 * not be reachable even though there is no error message. 680 */ 681 if (info->rti_info[RTAX_GATEWAY] != NULL && 682 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 683 struct nhop_object *nh; 684 685 /* 686 * A host route through the loopback interface is 687 * installed for each interface adddress. In pre 8.0 688 * releases the interface address of a PPP link type 689 * is not reachable locally. This behavior is fixed as 690 * part of the new L2/L3 redesign and rewrite work. The 691 * signature of this interface address route is the 692 * AF_LINK sa_family type of the gateway, and the 693 * rt_ifp has the IFF_LOOPBACK flag set. 694 */ 695 nh = rib_lookup(fibnum, info->rti_info[RTAX_GATEWAY], NHR_NONE, 0); 696 if (nh != NULL && nh->gw_sa.sa_family == AF_LINK && 697 nh->nh_ifp->if_flags & IFF_LOOPBACK) { 698 info->rti_flags &= ~RTF_GATEWAY; 699 info->rti_flags |= RTF_GWFLAG_COMPAT; 700 } 701 } 702 703 return (0); 704 } 705 706 static struct nhop_object * 707 select_nhop(struct nhop_object *nh, const struct sockaddr *gw) 708 { 709 if (!NH_IS_NHGRP(nh)) 710 return (nh); 711 #ifdef ROUTE_MPATH 712 const struct weightened_nhop *wn; 713 uint32_t num_nhops; 714 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 715 if (gw == NULL) 716 return (wn[0].nh); 717 for (int i = 0; i < num_nhops; i++) { 718 if (match_nhop_gw(wn[i].nh, gw)) 719 return (wn[i].nh); 720 } 721 #endif 722 return (NULL); 723 } 724 725 /* 726 * Handles RTM_GET message from routing socket, returning matching rt. 727 * 728 * Returns: 729 * 0 on success, with locked and referenced matching rt in @rt_nrt 730 * errno of failure 731 */ 732 static int 733 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 734 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 735 { 736 RIB_RLOCK_TRACKER; 737 struct rib_head *rnh; 738 struct nhop_object *nh; 739 sa_family_t saf; 740 741 saf = info->rti_info[RTAX_DST]->sa_family; 742 743 rnh = rt_tables_get_rnh(fibnum, saf); 744 if (rnh == NULL) 745 return (EAFNOSUPPORT); 746 747 RIB_RLOCK(rnh); 748 749 /* 750 * By (implicit) convention host route (one without netmask) 751 * means longest-prefix-match request and the route with netmask 752 * means exact-match lookup. 753 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128 754 * prefixes, use original data to check for the netmask presence. 755 */ 756 if ((rtm->rtm_addrs & RTA_NETMASK) == 0) { 757 /* 758 * Provide longest prefix match for 759 * address lookup (no mask). 760 * 'route -n get addr' 761 */ 762 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 763 info->rti_info[RTAX_DST], &rnh->head); 764 } else 765 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 766 info->rti_info[RTAX_DST], 767 info->rti_info[RTAX_NETMASK], &rnh->head); 768 769 if (rc->rc_rt == NULL) { 770 RIB_RUNLOCK(rnh); 771 return (ESRCH); 772 } 773 774 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 775 if (nh == NULL) { 776 RIB_RUNLOCK(rnh); 777 return (ESRCH); 778 } 779 /* 780 * If performing proxied L2 entry insertion, and 781 * the actual PPP host entry is found, perform 782 * another search to retrieve the prefix route of 783 * the local end point of the PPP link. 784 * TODO: move this logic to userland. 785 */ 786 if (rtm->rtm_flags & RTF_ANNOUNCE) { 787 struct sockaddr_storage laddr; 788 789 if (nh->nh_ifp != NULL && 790 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 791 struct ifaddr *ifa; 792 793 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 794 RT_ALL_FIBS); 795 if (ifa != NULL) 796 rt_maskedcopy(ifa->ifa_addr, 797 (struct sockaddr *)&laddr, 798 ifa->ifa_netmask); 799 } else 800 rt_maskedcopy(nh->nh_ifa->ifa_addr, 801 (struct sockaddr *)&laddr, 802 nh->nh_ifa->ifa_netmask); 803 /* 804 * refactor rt and no lock operation necessary 805 */ 806 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr( 807 (struct sockaddr *)&laddr, &rnh->head); 808 if (rc->rc_rt == NULL) { 809 RIB_RUNLOCK(rnh); 810 return (ESRCH); 811 } 812 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 813 if (nh == NULL) { 814 RIB_RUNLOCK(rnh); 815 return (ESRCH); 816 } 817 } 818 rc->rc_nh_new = nh; 819 rc->rc_nh_weight = rc->rc_rt->rt_weight; 820 RIB_RUNLOCK(rnh); 821 822 return (0); 823 } 824 825 static void 826 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask) 827 { 828 #ifdef INET 829 if (family == AF_INET) { 830 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 831 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 832 833 bzero(dst4, sizeof(struct sockaddr_in)); 834 bzero(mask4, sizeof(struct sockaddr_in)); 835 836 dst4->sin_family = AF_INET; 837 dst4->sin_len = sizeof(struct sockaddr_in); 838 mask4->sin_family = AF_INET; 839 mask4->sin_len = sizeof(struct sockaddr_in); 840 } 841 #endif 842 #ifdef INET6 843 if (family == AF_INET6) { 844 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 845 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 846 847 bzero(dst6, sizeof(struct sockaddr_in6)); 848 bzero(mask6, sizeof(struct sockaddr_in6)); 849 850 dst6->sin6_family = AF_INET6; 851 dst6->sin6_len = sizeof(struct sockaddr_in6); 852 mask6->sin6_family = AF_INET6; 853 mask6->sin6_len = sizeof(struct sockaddr_in6); 854 } 855 #endif 856 } 857 858 static void 859 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst, 860 struct sockaddr *mask) 861 { 862 #ifdef INET 863 if (dst->sa_family == AF_INET) { 864 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 865 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 866 uint32_t scopeid = 0; 867 rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr, 868 &scopeid); 869 return; 870 } 871 #endif 872 #ifdef INET6 873 if (dst->sa_family == AF_INET6) { 874 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 875 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 876 uint32_t scopeid = 0; 877 rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr, 878 &mask6->sin6_addr, &scopeid); 879 dst6->sin6_scope_id = scopeid; 880 return; 881 } 882 #endif 883 } 884 885 static int 886 update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm, 887 int alloc_len) 888 { 889 struct rt_msghdr *rtm, *orig_rtm = NULL; 890 struct walkarg w; 891 int len; 892 893 rtm = *prtm; 894 /* Check if we need to realloc storage */ 895 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 896 if (len > alloc_len) { 897 struct rt_msghdr *tmp_rtm; 898 899 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 900 if (tmp_rtm == NULL) 901 return (ENOBUFS); 902 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 903 orig_rtm = rtm; 904 rtm = tmp_rtm; 905 alloc_len = len; 906 907 /* 908 * Delay freeing original rtm as info contains 909 * data referencing it. 910 */ 911 } 912 913 w.w_tmem = (caddr_t)rtm; 914 w.w_tmemsize = alloc_len; 915 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 916 rtm->rtm_addrs = info->rti_addrs; 917 918 if (orig_rtm != NULL) 919 free(orig_rtm, M_TEMP); 920 *prtm = rtm; 921 return (0); 922 } 923 924 925 /* 926 * Update sockaddrs, flags, etc in @prtm based on @rc data. 927 * rtm can be reallocated. 928 * 929 * Returns 0 on success, along with pointer to (potentially reallocated) 930 * rtm. 931 * 932 */ 933 static int 934 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 935 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 936 { 937 union sockaddr_union saun; 938 struct rt_msghdr *rtm; 939 struct ifnet *ifp; 940 int error; 941 942 rtm = *prtm; 943 union sockaddr_union sa_dst, sa_mask; 944 int family = info->rti_info[RTAX_DST]->sa_family; 945 init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa); 946 export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa); 947 948 info->rti_info[RTAX_DST] = &sa_dst.sa; 949 info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa; 950 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 951 info->rti_info[RTAX_GENMASK] = 0; 952 ifp = nh->nh_ifp; 953 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 954 if (ifp) { 955 info->rti_info[RTAX_IFP] = 956 ifp->if_addr->ifa_addr; 957 error = rtm_get_jailed(info, ifp, nh, 958 &saun, curthread->td_ucred); 959 if (error != 0) 960 return (error); 961 if (ifp->if_flags & IFF_POINTOPOINT) 962 info->rti_info[RTAX_BRD] = 963 nh->nh_ifa->ifa_dstaddr; 964 rtm->rtm_index = ifp->if_index; 965 } else { 966 info->rti_info[RTAX_IFP] = NULL; 967 info->rti_info[RTAX_IFA] = NULL; 968 } 969 } else if (ifp != NULL) 970 rtm->rtm_index = ifp->if_index; 971 972 if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0) 973 return (error); 974 975 rtm = *prtm; 976 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 977 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 978 rtm->rtm_flags = RTF_GATEWAY | 979 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 980 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 981 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 982 983 return (0); 984 } 985 986 #ifdef ROUTE_MPATH 987 static void 988 save_del_notification(const struct rib_cmd_info *rc, void *_cbdata) 989 { 990 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 991 992 if (rc->rc_cmd == RTM_DELETE) 993 *rc_new = *rc; 994 } 995 996 static void 997 save_add_notification(const struct rib_cmd_info *rc, void *_cbdata) 998 { 999 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 1000 1001 if (rc->rc_cmd == RTM_ADD) 1002 *rc_new = *rc; 1003 } 1004 #endif 1005 1006 #if defined(INET6) || defined(INET) 1007 static struct sockaddr * 1008 alloc_sockaddr_aligned(struct linear_buffer *lb, int len) 1009 { 1010 len = roundup2(len, sizeof(uint64_t)); 1011 if (lb->offset + len > lb->size) 1012 return (NULL); 1013 struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset); 1014 lb->offset += len; 1015 return (sa); 1016 } 1017 #endif 1018 1019 static int 1020 rts_send(struct socket *so, int flags, struct mbuf *m, 1021 struct sockaddr *nam, struct mbuf *control, struct thread *td) 1022 { 1023 struct rt_msghdr *rtm = NULL; 1024 struct rt_addrinfo info; 1025 struct epoch_tracker et; 1026 #ifdef INET6 1027 struct sockaddr_storage ss; 1028 struct sockaddr_in6 *sin6; 1029 int i, rti_need_deembed = 0; 1030 #endif 1031 int alloc_len = 0, len, error = 0, fibnum; 1032 sa_family_t saf = AF_UNSPEC; 1033 struct rib_cmd_info rc; 1034 struct nhop_object *nh; 1035 1036 if ((flags & PRUS_OOB) || control != NULL) { 1037 m_freem(m); 1038 if (control != NULL) 1039 m_freem(control); 1040 return (EOPNOTSUPP); 1041 } 1042 1043 fibnum = so->so_fibnum; 1044 #define senderr(e) { error = e; goto flush;} 1045 if (m == NULL || ((m->m_len < sizeof(long)) && 1046 (m = m_pullup(m, sizeof(long))) == NULL)) 1047 return (ENOBUFS); 1048 if ((m->m_flags & M_PKTHDR) == 0) 1049 panic("route_output"); 1050 NET_EPOCH_ENTER(et); 1051 len = m->m_pkthdr.len; 1052 if (len < sizeof(*rtm) || 1053 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 1054 senderr(EINVAL); 1055 1056 /* 1057 * Most of current messages are in range 200-240 bytes, 1058 * minimize possible re-allocation on reply using larger size 1059 * buffer aligned on 1k boundaty. 1060 */ 1061 alloc_len = roundup2(len, 1024); 1062 int total_len = alloc_len + SCRATCH_BUFFER_SIZE; 1063 if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL) 1064 senderr(ENOBUFS); 1065 1066 m_copydata(m, 0, len, (caddr_t)rtm); 1067 bzero(&info, sizeof(info)); 1068 nh = NULL; 1069 struct linear_buffer lb = { 1070 .base = (char *)rtm + alloc_len, 1071 .size = SCRATCH_BUFFER_SIZE, 1072 }; 1073 1074 if (rtm->rtm_version != RTM_VERSION) { 1075 /* Do not touch message since format is unknown */ 1076 free(rtm, M_TEMP); 1077 rtm = NULL; 1078 senderr(EPROTONOSUPPORT); 1079 } 1080 1081 /* 1082 * Starting from here, it is possible 1083 * to alter original message and insert 1084 * caller PID and error value. 1085 */ 1086 1087 if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) { 1088 senderr(error); 1089 } 1090 /* fill_addringo() embeds scope into IPv6 addresses */ 1091 #ifdef INET6 1092 rti_need_deembed = 1; 1093 #endif 1094 1095 saf = info.rti_info[RTAX_DST]->sa_family; 1096 1097 /* support for new ARP code */ 1098 if (rtm->rtm_flags & RTF_LLDATA) { 1099 error = lla_rt_output(rtm, &info); 1100 goto flush; 1101 } 1102 1103 union sockaddr_union gw_saun; 1104 int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT); 1105 if (blackhole_flags != 0) { 1106 if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT)) 1107 error = fill_blackholeinfo(&info, &gw_saun); 1108 else { 1109 RTS_PID_LOG(LOG_DEBUG, "both BLACKHOLE and REJECT flags specifiied"); 1110 error = EINVAL; 1111 } 1112 if (error != 0) 1113 senderr(error); 1114 } 1115 1116 switch (rtm->rtm_type) { 1117 case RTM_ADD: 1118 case RTM_CHANGE: 1119 if (rtm->rtm_type == RTM_ADD) { 1120 if (info.rti_info[RTAX_GATEWAY] == NULL) { 1121 RTS_PID_LOG(LOG_DEBUG, "RTM_ADD w/o gateway"); 1122 senderr(EINVAL); 1123 } 1124 } 1125 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 1126 if (error == 0) { 1127 rtsock_notify_event(fibnum, &rc); 1128 #ifdef ROUTE_MPATH 1129 if (NH_IS_NHGRP(rc.rc_nh_new) || 1130 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { 1131 struct rib_cmd_info rc_simple = {}; 1132 rib_decompose_notification(&rc, 1133 save_add_notification, (void *)&rc_simple); 1134 rc = rc_simple; 1135 } 1136 #endif 1137 /* nh MAY be empty if RTM_CHANGE request is no-op */ 1138 nh = rc.rc_nh_new; 1139 if (nh != NULL) { 1140 rtm->rtm_index = nh->nh_ifp->if_index; 1141 rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); 1142 } 1143 } 1144 break; 1145 1146 case RTM_DELETE: 1147 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 1148 if (error == 0) { 1149 rtsock_notify_event(fibnum, &rc); 1150 #ifdef ROUTE_MPATH 1151 if (NH_IS_NHGRP(rc.rc_nh_old) || 1152 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { 1153 struct rib_cmd_info rc_simple = {}; 1154 rib_decompose_notification(&rc, 1155 save_del_notification, (void *)&rc_simple); 1156 rc = rc_simple; 1157 } 1158 #endif 1159 nh = rc.rc_nh_old; 1160 } 1161 break; 1162 1163 case RTM_GET: 1164 error = handle_rtm_get(&info, fibnum, rtm, &rc); 1165 if (error != 0) 1166 senderr(error); 1167 nh = rc.rc_nh_new; 1168 1169 if (!rt_is_exportable(rc.rc_rt, curthread->td_ucred)) 1170 senderr(ESRCH); 1171 break; 1172 1173 default: 1174 senderr(EOPNOTSUPP); 1175 } 1176 1177 if (error == 0 && nh != NULL) { 1178 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 1179 /* 1180 * Note that some sockaddr pointers may have changed to 1181 * point to memory outsize @rtm. Some may be pointing 1182 * to the on-stack variables. 1183 * Given that, any pointer in @info CANNOT BE USED. 1184 */ 1185 1186 /* 1187 * scopeid deembedding has been performed while 1188 * writing updated rtm in rtsock_msg_buffer(). 1189 * With that in mind, skip deembedding procedure below. 1190 */ 1191 #ifdef INET6 1192 rti_need_deembed = 0; 1193 #endif 1194 } 1195 1196 flush: 1197 NET_EPOCH_EXIT(et); 1198 1199 #ifdef INET6 1200 if (rtm != NULL) { 1201 if (rti_need_deembed) { 1202 /* sin6_scope_id is recovered before sending rtm. */ 1203 sin6 = (struct sockaddr_in6 *)&ss; 1204 for (i = 0; i < RTAX_MAX; i++) { 1205 if (info.rti_info[i] == NULL) 1206 continue; 1207 if (info.rti_info[i]->sa_family != AF_INET6) 1208 continue; 1209 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1210 if (sa6_recoverscope(sin6) == 0) 1211 bcopy(sin6, info.rti_info[i], 1212 sizeof(*sin6)); 1213 } 1214 if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) { 1215 if (error != 0) 1216 error = ENOBUFS; 1217 } 1218 } 1219 } 1220 #endif 1221 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1222 1223 return (error); 1224 } 1225 1226 /* 1227 * Sends the prepared reply message in @rtm to all rtsock clients. 1228 * Frees @m and @rtm. 1229 * 1230 */ 1231 static void 1232 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1233 sa_family_t saf, u_int fibnum, int rtm_errno) 1234 { 1235 struct rcb *rcb = NULL; 1236 1237 /* 1238 * Check to see if we don't want our own messages. 1239 */ 1240 if ((so->so_options & SO_USELOOPBACK) == 0) { 1241 if (V_route_cb.any_count <= 1) { 1242 if (rtm != NULL) 1243 free(rtm, M_TEMP); 1244 m_freem(m); 1245 return; 1246 } 1247 /* There is another listener, so construct message */ 1248 rcb = so->so_pcb; 1249 } 1250 1251 if (rtm != NULL) { 1252 if (rtm_errno!= 0) 1253 rtm->rtm_errno = rtm_errno; 1254 else 1255 rtm->rtm_flags |= RTF_DONE; 1256 1257 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1258 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1259 m_freem(m); 1260 m = NULL; 1261 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1262 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1263 1264 free(rtm, M_TEMP); 1265 } 1266 if (m != NULL) { 1267 M_SETFIB(m, fibnum); 1268 m->m_flags |= RTS_FILTER_FIB; 1269 if (rcb) { 1270 /* 1271 * XXX insure we don't get a copy by 1272 * invalidating our protocol 1273 */ 1274 sa_family_t family = rcb->rcb_family; 1275 rcb->rcb_family = AF_UNSPEC; 1276 rt_dispatch(m, saf); 1277 rcb->rcb_family = family; 1278 } else 1279 rt_dispatch(m, saf); 1280 } 1281 } 1282 1283 static void 1284 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1285 struct rt_metrics *out) 1286 { 1287 1288 bzero(out, sizeof(*out)); 1289 out->rmx_mtu = nh->nh_mtu; 1290 out->rmx_weight = rt->rt_weight; 1291 out->rmx_nhidx = nhop_get_idx(nh); 1292 /* Kernel -> userland timebase conversion. */ 1293 out->rmx_expire = nhop_get_expire(nh) ? 1294 nhop_get_expire(nh) - time_uptime + time_second : 0; 1295 } 1296 1297 /* 1298 * Extract the addresses of the passed sockaddrs. 1299 * Do a little sanity checking so as to avoid bad memory references. 1300 * This data is derived straight from userland. 1301 */ 1302 static int 1303 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1304 { 1305 struct sockaddr *sa; 1306 int i; 1307 1308 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1309 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1310 continue; 1311 sa = (struct sockaddr *)cp; 1312 /* 1313 * It won't fit. 1314 */ 1315 if (cp + sa->sa_len > cplim) { 1316 RTS_PID_LOG(LOG_DEBUG, "sa_len too big for sa type %d", i); 1317 return (EINVAL); 1318 } 1319 /* 1320 * there are no more.. quit now 1321 * If there are more bits, they are in error. 1322 * I've seen this. route(1) can evidently generate these. 1323 * This causes kernel to core dump. 1324 * for compatibility, If we see this, point to a safe address. 1325 */ 1326 if (sa->sa_len == 0) { 1327 rtinfo->rti_info[i] = &sa_zero; 1328 return (0); /* should be EINVAL but for compat */ 1329 } 1330 /* accept it */ 1331 #ifdef INET6 1332 if (sa->sa_family == AF_INET6) 1333 sa6_embedscope((struct sockaddr_in6 *)sa, 1334 V_ip6_use_defzone); 1335 #endif 1336 rtinfo->rti_info[i] = sa; 1337 cp += SA_SIZE(sa); 1338 } 1339 return (0); 1340 } 1341 1342 #ifdef INET 1343 static inline void 1344 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr) 1345 { 1346 1347 const struct sockaddr_in nsin = { 1348 .sin_family = AF_INET, 1349 .sin_len = sizeof(struct sockaddr_in), 1350 .sin_addr = addr, 1351 }; 1352 *sin = nsin; 1353 } 1354 #endif 1355 1356 #ifdef INET6 1357 static inline void 1358 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6, 1359 uint32_t scopeid) 1360 { 1361 1362 const struct sockaddr_in6 nsin6 = { 1363 .sin6_family = AF_INET6, 1364 .sin6_len = sizeof(struct sockaddr_in6), 1365 .sin6_addr = *addr6, 1366 .sin6_scope_id = scopeid, 1367 }; 1368 *sin6 = nsin6; 1369 } 1370 #endif 1371 1372 #if defined(INET6) || defined(INET) 1373 /* 1374 * Checks if gateway is suitable for lltable operations. 1375 * Lltable code requires AF_LINK gateway with ifindex 1376 * and mac address specified. 1377 * Returns 0 on success. 1378 */ 1379 static int 1380 cleanup_xaddrs_lladdr(struct rt_addrinfo *info) 1381 { 1382 struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY]; 1383 1384 if (sdl->sdl_family != AF_LINK) 1385 return (EINVAL); 1386 1387 if (sdl->sdl_index == 0) { 1388 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gateway w/o ifindex"); 1389 return (EINVAL); 1390 } 1391 1392 if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len) { 1393 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gw: sdl_nlen/sdl_alen too large"); 1394 return (EINVAL); 1395 } 1396 1397 return (0); 1398 } 1399 1400 static int 1401 cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb) 1402 { 1403 struct sockaddr *gw = info->rti_info[RTAX_GATEWAY]; 1404 struct sockaddr *sa; 1405 1406 if (info->rti_flags & RTF_LLDATA) 1407 return (cleanup_xaddrs_lladdr(info)); 1408 1409 switch (gw->sa_family) { 1410 #ifdef INET 1411 case AF_INET: 1412 { 1413 struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw; 1414 1415 /* Ensure reads do not go beyoud SA boundary */ 1416 if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) { 1417 RTS_PID_LOG(LOG_DEBUG, "gateway sin_len too small: %d", 1418 gw->sa_len); 1419 return (EINVAL); 1420 } 1421 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in)); 1422 if (sa == NULL) 1423 return (ENOBUFS); 1424 fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr); 1425 info->rti_info[RTAX_GATEWAY] = sa; 1426 } 1427 break; 1428 #endif 1429 #ifdef INET6 1430 case AF_INET6: 1431 { 1432 struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw; 1433 if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) { 1434 RTS_PID_LOG(LOG_DEBUG, "gateway sin6_len too small: %d", 1435 gw->sa_len); 1436 return (EINVAL); 1437 } 1438 fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0); 1439 break; 1440 } 1441 #endif 1442 case AF_LINK: 1443 { 1444 struct sockaddr_dl *gw_sdl; 1445 1446 size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data); 1447 gw_sdl = (struct sockaddr_dl *)gw; 1448 if (gw_sdl->sdl_len < sdl_min_len) { 1449 RTS_PID_LOG(LOG_DEBUG, "gateway sdl_len too small: %d", 1450 gw_sdl->sdl_len); 1451 return (EINVAL); 1452 } 1453 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short)); 1454 if (sa == NULL) 1455 return (ENOBUFS); 1456 1457 const struct sockaddr_dl_short sdl = { 1458 .sdl_family = AF_LINK, 1459 .sdl_len = sizeof(struct sockaddr_dl_short), 1460 .sdl_index = gw_sdl->sdl_index, 1461 }; 1462 *((struct sockaddr_dl_short *)sa) = sdl; 1463 info->rti_info[RTAX_GATEWAY] = sa; 1464 break; 1465 } 1466 } 1467 1468 return (0); 1469 } 1470 #endif 1471 1472 static void 1473 remove_netmask(struct rt_addrinfo *info) 1474 { 1475 info->rti_info[RTAX_NETMASK] = NULL; 1476 info->rti_flags |= RTF_HOST; 1477 info->rti_addrs &= ~RTA_NETMASK; 1478 } 1479 1480 #ifdef INET 1481 static int 1482 cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb) 1483 { 1484 struct sockaddr_in *dst_sa, *mask_sa; 1485 const int sa_len = sizeof(struct sockaddr_in); 1486 struct in_addr dst, mask; 1487 1488 /* Check & fixup dst/netmask combination first */ 1489 dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST]; 1490 mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK]; 1491 1492 /* Ensure reads do not go beyound the buffer size */ 1493 if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero)) { 1494 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin_len too small: %d", 1495 dst_sa->sin_len); 1496 return (EINVAL); 1497 } 1498 1499 if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) { 1500 /* 1501 * Some older routing software encode mask length into the 1502 * sin_len, thus resulting in "truncated" sockaddr. 1503 */ 1504 int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr); 1505 if (len >= 0) { 1506 mask.s_addr = 0; 1507 if (len > sizeof(struct in_addr)) 1508 len = sizeof(struct in_addr); 1509 memcpy(&mask, &mask_sa->sin_addr, len); 1510 } else { 1511 RTS_PID_LOG(LOG_DEBUG, "prefix mask sin_len too small: %d", 1512 mask_sa->sin_len); 1513 return (EINVAL); 1514 } 1515 } else 1516 mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST; 1517 1518 dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr)); 1519 1520 /* Construct new "clean" dst/mask sockaddresses */ 1521 if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1522 return (ENOBUFS); 1523 fill_sockaddr_inet(dst_sa, dst); 1524 info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa; 1525 1526 if (mask.s_addr != INADDR_BROADCAST) { 1527 if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1528 return (ENOBUFS); 1529 fill_sockaddr_inet(mask_sa, mask); 1530 info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa; 1531 info->rti_flags &= ~RTF_HOST; 1532 } else 1533 remove_netmask(info); 1534 1535 /* Check gateway */ 1536 if (info->rti_info[RTAX_GATEWAY] != NULL) 1537 return (cleanup_xaddrs_gateway(info, lb)); 1538 1539 return (0); 1540 } 1541 #endif 1542 1543 #ifdef INET6 1544 static int 1545 cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb) 1546 { 1547 struct sockaddr *sa; 1548 struct sockaddr_in6 *dst_sa, *mask_sa; 1549 struct in6_addr mask, *dst; 1550 const int sa_len = sizeof(struct sockaddr_in6); 1551 1552 /* Check & fixup dst/netmask combination first */ 1553 dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST]; 1554 mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK]; 1555 1556 if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1557 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin6_len too small: %d", 1558 dst_sa->sin6_len); 1559 return (EINVAL); 1560 } 1561 1562 if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1563 /* 1564 * Some older routing software encode mask length into the 1565 * sin6_len, thus resulting in "truncated" sockaddr. 1566 */ 1567 int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr); 1568 if (len >= 0) { 1569 bzero(&mask, sizeof(mask)); 1570 if (len > sizeof(struct in6_addr)) 1571 len = sizeof(struct in6_addr); 1572 memcpy(&mask, &mask_sa->sin6_addr, len); 1573 } else { 1574 RTS_PID_LOG(LOG_DEBUG, "rtsock: prefix mask sin6_len too small: %d", 1575 mask_sa->sin6_len); 1576 return (EINVAL); 1577 } 1578 } else 1579 mask = mask_sa ? mask_sa->sin6_addr : in6mask128; 1580 1581 dst = &dst_sa->sin6_addr; 1582 IN6_MASK_ADDR(dst, &mask); 1583 1584 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1585 return (ENOBUFS); 1586 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0); 1587 info->rti_info[RTAX_DST] = sa; 1588 1589 if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) { 1590 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1591 return (ENOBUFS); 1592 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0); 1593 info->rti_info[RTAX_NETMASK] = sa; 1594 info->rti_flags &= ~RTF_HOST; 1595 } else 1596 remove_netmask(info); 1597 1598 /* Check gateway */ 1599 if (info->rti_info[RTAX_GATEWAY] != NULL) 1600 return (cleanup_xaddrs_gateway(info, lb)); 1601 1602 return (0); 1603 } 1604 #endif 1605 1606 static int 1607 cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb) 1608 { 1609 int error = EAFNOSUPPORT; 1610 1611 if (info->rti_info[RTAX_DST] == NULL) { 1612 RTS_PID_LOG(LOG_DEBUG, "prefix dst is not set"); 1613 return (EINVAL); 1614 } 1615 1616 if (info->rti_flags & RTF_LLDATA) { 1617 /* 1618 * arp(8)/ndp(8) sends RTA_NETMASK for the associated 1619 * prefix along with the actual address in RTA_DST. 1620 * Remove netmask to avoid unnecessary address masking. 1621 */ 1622 remove_netmask(info); 1623 } 1624 1625 switch (info->rti_info[RTAX_DST]->sa_family) { 1626 #ifdef INET 1627 case AF_INET: 1628 error = cleanup_xaddrs_inet(info, lb); 1629 break; 1630 #endif 1631 #ifdef INET6 1632 case AF_INET6: 1633 error = cleanup_xaddrs_inet6(info, lb); 1634 break; 1635 #endif 1636 } 1637 1638 return (error); 1639 } 1640 1641 /* 1642 * Fill in @dmask with valid netmask leaving original @smask 1643 * intact. Mostly used with radix netmasks. 1644 */ 1645 struct sockaddr * 1646 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1647 struct sockaddr_storage *dmask) 1648 { 1649 if (dst == NULL || smask == NULL) 1650 return (NULL); 1651 1652 memset(dmask, 0, dst->sa_len); 1653 memcpy(dmask, smask, smask->sa_len); 1654 dmask->ss_len = dst->sa_len; 1655 dmask->ss_family = dst->sa_family; 1656 1657 return ((struct sockaddr *)dmask); 1658 } 1659 1660 /* 1661 * Writes information related to @rtinfo object to newly-allocated mbuf. 1662 * Assumes MCLBYTES is enough to construct any message. 1663 * Used for OS notifications of vaious events (if/ifa announces,etc) 1664 * 1665 * Returns allocated mbuf or NULL on failure. 1666 */ 1667 static struct mbuf * 1668 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1669 { 1670 struct sockaddr_storage ss; 1671 struct rt_msghdr *rtm; 1672 struct mbuf *m; 1673 int i; 1674 struct sockaddr *sa; 1675 #ifdef INET6 1676 struct sockaddr_in6 *sin6; 1677 #endif 1678 int len, dlen; 1679 1680 switch (type) { 1681 case RTM_DELADDR: 1682 case RTM_NEWADDR: 1683 len = sizeof(struct ifa_msghdr); 1684 break; 1685 1686 case RTM_DELMADDR: 1687 case RTM_NEWMADDR: 1688 len = sizeof(struct ifma_msghdr); 1689 break; 1690 1691 case RTM_IFINFO: 1692 len = sizeof(struct if_msghdr); 1693 break; 1694 1695 case RTM_IFANNOUNCE: 1696 case RTM_IEEE80211: 1697 len = sizeof(struct if_announcemsghdr); 1698 break; 1699 1700 default: 1701 len = sizeof(struct rt_msghdr); 1702 } 1703 1704 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1705 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1706 if (len > MHLEN) 1707 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1708 else 1709 m = m_gethdr(M_NOWAIT, MT_DATA); 1710 if (m == NULL) 1711 return (m); 1712 1713 m->m_pkthdr.len = m->m_len = len; 1714 rtm = mtod(m, struct rt_msghdr *); 1715 bzero((caddr_t)rtm, len); 1716 for (i = 0; i < RTAX_MAX; i++) { 1717 if ((sa = rtinfo->rti_info[i]) == NULL) 1718 continue; 1719 rtinfo->rti_addrs |= (1 << i); 1720 1721 dlen = SA_SIZE(sa); 1722 KASSERT(dlen <= sizeof(ss), 1723 ("%s: sockaddr size overflow", __func__)); 1724 bzero(&ss, sizeof(ss)); 1725 bcopy(sa, &ss, sa->sa_len); 1726 sa = (struct sockaddr *)&ss; 1727 #ifdef INET6 1728 if (sa->sa_family == AF_INET6) { 1729 sin6 = (struct sockaddr_in6 *)sa; 1730 (void)sa6_recoverscope(sin6); 1731 } 1732 #endif 1733 m_copyback(m, len, dlen, (caddr_t)sa); 1734 len += dlen; 1735 } 1736 if (m->m_pkthdr.len != len) { 1737 m_freem(m); 1738 return (NULL); 1739 } 1740 rtm->rtm_msglen = len; 1741 rtm->rtm_version = RTM_VERSION; 1742 rtm->rtm_type = type; 1743 return (m); 1744 } 1745 1746 /* 1747 * Writes information related to @rtinfo object to preallocated buffer. 1748 * Stores needed size in @plen. If @w is NULL, calculates size without 1749 * writing. 1750 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1751 * 1752 * Returns 0 on success. 1753 * 1754 */ 1755 static int 1756 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1757 { 1758 struct sockaddr_storage ss; 1759 int len, buflen = 0, dlen, i; 1760 caddr_t cp = NULL; 1761 struct rt_msghdr *rtm = NULL; 1762 #ifdef INET6 1763 struct sockaddr_in6 *sin6; 1764 #endif 1765 #ifdef COMPAT_FREEBSD32 1766 bool compat32 = false; 1767 #endif 1768 1769 switch (type) { 1770 case RTM_DELADDR: 1771 case RTM_NEWADDR: 1772 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1773 #ifdef COMPAT_FREEBSD32 1774 if (w->w_req->flags & SCTL_MASK32) { 1775 len = sizeof(struct ifa_msghdrl32); 1776 compat32 = true; 1777 } else 1778 #endif 1779 len = sizeof(struct ifa_msghdrl); 1780 } else 1781 len = sizeof(struct ifa_msghdr); 1782 break; 1783 1784 case RTM_IFINFO: 1785 #ifdef COMPAT_FREEBSD32 1786 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1787 if (w->w_op == NET_RT_IFLISTL) 1788 len = sizeof(struct if_msghdrl32); 1789 else 1790 len = sizeof(struct if_msghdr32); 1791 compat32 = true; 1792 break; 1793 } 1794 #endif 1795 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1796 len = sizeof(struct if_msghdrl); 1797 else 1798 len = sizeof(struct if_msghdr); 1799 break; 1800 1801 case RTM_NEWMADDR: 1802 len = sizeof(struct ifma_msghdr); 1803 break; 1804 1805 default: 1806 len = sizeof(struct rt_msghdr); 1807 } 1808 1809 if (w != NULL) { 1810 rtm = (struct rt_msghdr *)w->w_tmem; 1811 buflen = w->w_tmemsize - len; 1812 cp = (caddr_t)w->w_tmem + len; 1813 } 1814 1815 rtinfo->rti_addrs = 0; 1816 for (i = 0; i < RTAX_MAX; i++) { 1817 struct sockaddr *sa; 1818 1819 if ((sa = rtinfo->rti_info[i]) == NULL) 1820 continue; 1821 rtinfo->rti_addrs |= (1 << i); 1822 #ifdef COMPAT_FREEBSD32 1823 if (compat32) 1824 dlen = SA_SIZE32(sa); 1825 else 1826 #endif 1827 dlen = SA_SIZE(sa); 1828 if (cp != NULL && buflen >= dlen) { 1829 KASSERT(dlen <= sizeof(ss), 1830 ("%s: sockaddr size overflow", __func__)); 1831 bzero(&ss, sizeof(ss)); 1832 bcopy(sa, &ss, sa->sa_len); 1833 sa = (struct sockaddr *)&ss; 1834 #ifdef INET6 1835 if (sa->sa_family == AF_INET6) { 1836 sin6 = (struct sockaddr_in6 *)sa; 1837 (void)sa6_recoverscope(sin6); 1838 } 1839 #endif 1840 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1841 cp += dlen; 1842 buflen -= dlen; 1843 } else if (cp != NULL) { 1844 /* 1845 * Buffer too small. Count needed size 1846 * and return with error. 1847 */ 1848 cp = NULL; 1849 } 1850 1851 len += dlen; 1852 } 1853 1854 if (cp != NULL) { 1855 dlen = ALIGN(len) - len; 1856 if (buflen < dlen) 1857 cp = NULL; 1858 else { 1859 bzero(cp, dlen); 1860 cp += dlen; 1861 buflen -= dlen; 1862 } 1863 } 1864 len = ALIGN(len); 1865 1866 if (cp != NULL) { 1867 /* fill header iff buffer is large enough */ 1868 rtm->rtm_version = RTM_VERSION; 1869 rtm->rtm_type = type; 1870 rtm->rtm_msglen = len; 1871 } 1872 1873 *plen = len; 1874 1875 if (w != NULL && cp == NULL) 1876 return (ENOBUFS); 1877 1878 return (0); 1879 } 1880 1881 /* 1882 * This routine is called to generate a message from the routing 1883 * socket indicating that a redirect has occurred, a routing lookup 1884 * has failed, or that a protocol has detected timeouts to a particular 1885 * destination. 1886 */ 1887 void 1888 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1889 int fibnum) 1890 { 1891 struct rt_msghdr *rtm; 1892 struct mbuf *m; 1893 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1894 1895 if (V_route_cb.any_count == 0) 1896 return; 1897 m = rtsock_msg_mbuf(type, rtinfo); 1898 if (m == NULL) 1899 return; 1900 1901 if (fibnum != RT_ALL_FIBS) { 1902 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1903 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1904 M_SETFIB(m, fibnum); 1905 m->m_flags |= RTS_FILTER_FIB; 1906 } 1907 1908 rtm = mtod(m, struct rt_msghdr *); 1909 rtm->rtm_flags = RTF_DONE | flags; 1910 rtm->rtm_errno = error; 1911 rtm->rtm_addrs = rtinfo->rti_addrs; 1912 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1913 } 1914 1915 void 1916 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1917 { 1918 1919 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1920 } 1921 1922 /* 1923 * This routine is called to generate a message from the routing 1924 * socket indicating that the status of a network interface has changed. 1925 */ 1926 static void 1927 rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask __unused) 1928 { 1929 struct if_msghdr *ifm; 1930 struct mbuf *m; 1931 struct rt_addrinfo info; 1932 1933 if (V_route_cb.any_count == 0) 1934 return; 1935 bzero((caddr_t)&info, sizeof(info)); 1936 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1937 if (m == NULL) 1938 return; 1939 ifm = mtod(m, struct if_msghdr *); 1940 ifm->ifm_index = ifp->if_index; 1941 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1942 if_data_copy(ifp, &ifm->ifm_data); 1943 ifm->ifm_addrs = 0; 1944 rt_dispatch(m, AF_UNSPEC); 1945 } 1946 1947 /* 1948 * Announce interface address arrival/withdraw. 1949 * Please do not call directly, use rt_addrmsg(). 1950 * Assume input data to be valid. 1951 * Returns 0 on success. 1952 */ 1953 int 1954 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1955 { 1956 struct rt_addrinfo info; 1957 struct sockaddr *sa; 1958 int ncmd; 1959 struct mbuf *m; 1960 struct ifa_msghdr *ifam; 1961 struct ifnet *ifp = ifa->ifa_ifp; 1962 struct sockaddr_storage ss; 1963 1964 if (V_route_cb.any_count == 0) 1965 return (0); 1966 1967 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1968 1969 bzero((caddr_t)&info, sizeof(info)); 1970 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1971 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1972 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1973 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1974 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1975 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1976 return (ENOBUFS); 1977 ifam = mtod(m, struct ifa_msghdr *); 1978 ifam->ifam_index = ifp->if_index; 1979 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1980 ifam->ifam_flags = ifa->ifa_flags; 1981 ifam->ifam_addrs = info.rti_addrs; 1982 1983 if (fibnum != RT_ALL_FIBS) { 1984 M_SETFIB(m, fibnum); 1985 m->m_flags |= RTS_FILTER_FIB; 1986 } 1987 1988 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1989 1990 return (0); 1991 } 1992 1993 /* 1994 * Announce route addition/removal to rtsock based on @rt data. 1995 * Callers are advives to use rt_routemsg() instead of using this 1996 * function directly. 1997 * Assume @rt data is consistent. 1998 * 1999 * Returns 0 on success. 2000 */ 2001 int 2002 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh, 2003 int fibnum) 2004 { 2005 union sockaddr_union dst, mask; 2006 struct rt_addrinfo info; 2007 2008 if (V_route_cb.any_count == 0) 2009 return (0); 2010 2011 int family = rt_get_family(rt); 2012 init_sockaddrs_family(family, &dst.sa, &mask.sa); 2013 export_rtaddrs(rt, &dst.sa, &mask.sa); 2014 2015 bzero((caddr_t)&info, sizeof(info)); 2016 info.rti_info[RTAX_DST] = &dst.sa; 2017 info.rti_info[RTAX_NETMASK] = &mask.sa; 2018 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2019 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 2020 info.rti_ifp = nh->nh_ifp; 2021 2022 return (rtsock_routemsg_info(cmd, &info, fibnum)); 2023 } 2024 2025 int 2026 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 2027 { 2028 struct rt_msghdr *rtm; 2029 struct sockaddr *sa; 2030 struct mbuf *m; 2031 2032 if (V_route_cb.any_count == 0) 2033 return (0); 2034 2035 if (info->rti_flags & RTF_HOST) 2036 info->rti_info[RTAX_NETMASK] = NULL; 2037 2038 m = rtsock_msg_mbuf(cmd, info); 2039 if (m == NULL) 2040 return (ENOBUFS); 2041 2042 if (fibnum != RT_ALL_FIBS) { 2043 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 2044 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 2045 M_SETFIB(m, fibnum); 2046 m->m_flags |= RTS_FILTER_FIB; 2047 } 2048 2049 rtm = mtod(m, struct rt_msghdr *); 2050 rtm->rtm_addrs = info->rti_addrs; 2051 if (info->rti_ifp != NULL) 2052 rtm->rtm_index = info->rti_ifp->if_index; 2053 /* Add RTF_DONE to indicate command 'completion' required by API */ 2054 info->rti_flags |= RTF_DONE; 2055 /* Reported routes has to be up */ 2056 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 2057 info->rti_flags |= RTF_UP; 2058 rtm->rtm_flags = info->rti_flags; 2059 2060 sa = info->rti_info[RTAX_DST]; 2061 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 2062 2063 return (0); 2064 } 2065 2066 /* 2067 * This is the analogue to the rt_newaddrmsg which performs the same 2068 * function but for multicast group memberhips. This is easier since 2069 * there is no route state to worry about. 2070 */ 2071 void 2072 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 2073 { 2074 struct rt_addrinfo info; 2075 struct mbuf *m = NULL; 2076 struct ifnet *ifp = ifma->ifma_ifp; 2077 struct ifma_msghdr *ifmam; 2078 2079 if (V_route_cb.any_count == 0) 2080 return; 2081 2082 bzero((caddr_t)&info, sizeof(info)); 2083 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2084 if (ifp && ifp->if_addr) 2085 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 2086 else 2087 info.rti_info[RTAX_IFP] = NULL; 2088 /* 2089 * If a link-layer address is present, present it as a ``gateway'' 2090 * (similarly to how ARP entries, e.g., are presented). 2091 */ 2092 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 2093 m = rtsock_msg_mbuf(cmd, &info); 2094 if (m == NULL) 2095 return; 2096 ifmam = mtod(m, struct ifma_msghdr *); 2097 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 2098 __func__)); 2099 ifmam->ifmam_index = ifp->if_index; 2100 ifmam->ifmam_addrs = info.rti_addrs; 2101 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 2102 } 2103 2104 static struct mbuf * 2105 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 2106 struct rt_addrinfo *info) 2107 { 2108 struct if_announcemsghdr *ifan; 2109 struct mbuf *m; 2110 2111 if (V_route_cb.any_count == 0) 2112 return NULL; 2113 bzero((caddr_t)info, sizeof(*info)); 2114 m = rtsock_msg_mbuf(type, info); 2115 if (m != NULL) { 2116 ifan = mtod(m, struct if_announcemsghdr *); 2117 ifan->ifan_index = ifp->if_index; 2118 strlcpy(ifan->ifan_name, ifp->if_xname, 2119 sizeof(ifan->ifan_name)); 2120 ifan->ifan_what = what; 2121 } 2122 return m; 2123 } 2124 2125 /* 2126 * This is called to generate routing socket messages indicating 2127 * IEEE80211 wireless events. 2128 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 2129 */ 2130 void 2131 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 2132 { 2133 struct mbuf *m; 2134 struct rt_addrinfo info; 2135 2136 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 2137 if (m != NULL) { 2138 /* 2139 * Append the ieee80211 data. Try to stick it in the 2140 * mbuf containing the ifannounce msg; otherwise allocate 2141 * a new mbuf and append. 2142 * 2143 * NB: we assume m is a single mbuf. 2144 */ 2145 if (data_len > M_TRAILINGSPACE(m)) { 2146 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 2147 if (n == NULL) { 2148 m_freem(m); 2149 return; 2150 } 2151 bcopy(data, mtod(n, void *), data_len); 2152 n->m_len = data_len; 2153 m->m_next = n; 2154 } else if (data_len > 0) { 2155 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 2156 m->m_len += data_len; 2157 } 2158 if (m->m_flags & M_PKTHDR) 2159 m->m_pkthdr.len += data_len; 2160 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 2161 rt_dispatch(m, AF_UNSPEC); 2162 } 2163 } 2164 2165 /* 2166 * This is called to generate routing socket messages indicating 2167 * network interface arrival and departure. 2168 */ 2169 static void 2170 rt_ifannouncemsg(struct ifnet *ifp, int what) 2171 { 2172 struct mbuf *m; 2173 struct rt_addrinfo info; 2174 2175 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 2176 if (m != NULL) 2177 rt_dispatch(m, AF_UNSPEC); 2178 } 2179 2180 static void 2181 rt_dispatch(struct mbuf *m, sa_family_t saf) 2182 { 2183 2184 M_ASSERTPKTHDR(m); 2185 2186 m->m_rtsock_family = saf; 2187 if (V_loif) 2188 m->m_pkthdr.rcvif = V_loif; 2189 else { 2190 m_freem(m); 2191 return; 2192 } 2193 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 2194 } 2195 2196 /* 2197 * This is used in dumping the kernel table via sysctl(). 2198 */ 2199 static int 2200 sysctl_dumpentry(struct rtentry *rt, void *vw) 2201 { 2202 struct walkarg *w = vw; 2203 struct nhop_object *nh; 2204 2205 NET_EPOCH_ASSERT(); 2206 2207 if (!rt_is_exportable(rt, w->w_req->td->td_ucred)) 2208 return (0); 2209 2210 export_rtaddrs(rt, w->dst, w->mask); 2211 nh = rt_get_raw_nhop(rt); 2212 #ifdef ROUTE_MPATH 2213 if (NH_IS_NHGRP(nh)) { 2214 const struct weightened_nhop *wn; 2215 uint32_t num_nhops; 2216 int error; 2217 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 2218 for (int i = 0; i < num_nhops; i++) { 2219 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); 2220 if (error != 0) 2221 return (error); 2222 } 2223 } else 2224 #endif 2225 sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 2226 2227 return (0); 2228 } 2229 2230 2231 static int 2232 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 2233 struct walkarg *w) 2234 { 2235 struct rt_addrinfo info; 2236 int error = 0, size; 2237 uint32_t rtflags; 2238 2239 rtflags = nhop_get_rtflags(nh); 2240 2241 if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg)) 2242 return (0); 2243 2244 bzero((caddr_t)&info, sizeof(info)); 2245 info.rti_info[RTAX_DST] = w->dst; 2246 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2247 info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask; 2248 info.rti_info[RTAX_GENMASK] = 0; 2249 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 2250 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 2251 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 2252 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 2253 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 2254 } 2255 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 2256 return (error); 2257 if (w->w_req && w->w_tmem) { 2258 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 2259 2260 bzero(&rtm->rtm_index, 2261 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 2262 2263 /* 2264 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags) 2265 * and RTF_UP (if entry is linked, which is always true here). 2266 * Given that, use nhop rtflags & add RTF_UP. 2267 */ 2268 rtm->rtm_flags = rtflags | RTF_UP; 2269 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 2270 rtm->rtm_flags = RTF_GATEWAY | 2271 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 2272 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 2273 rtm->rtm_rmx.rmx_weight = weight; 2274 rtm->rtm_index = nh->nh_ifp->if_index; 2275 rtm->rtm_addrs = info.rti_addrs; 2276 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 2277 return (error); 2278 } 2279 return (error); 2280 } 2281 2282 static int 2283 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 2284 struct rt_addrinfo *info, struct walkarg *w, int len) 2285 { 2286 struct if_msghdrl *ifm; 2287 struct if_data *ifd; 2288 2289 ifm = (struct if_msghdrl *)w->w_tmem; 2290 2291 #ifdef COMPAT_FREEBSD32 2292 if (w->w_req->flags & SCTL_MASK32) { 2293 struct if_msghdrl32 *ifm32; 2294 2295 ifm32 = (struct if_msghdrl32 *)ifm; 2296 ifm32->ifm_addrs = info->rti_addrs; 2297 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2298 ifm32->ifm_index = ifp->if_index; 2299 ifm32->_ifm_spare1 = 0; 2300 ifm32->ifm_len = sizeof(*ifm32); 2301 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 2302 ifm32->_ifm_spare2 = 0; 2303 ifd = &ifm32->ifm_data; 2304 } else 2305 #endif 2306 { 2307 ifm->ifm_addrs = info->rti_addrs; 2308 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2309 ifm->ifm_index = ifp->if_index; 2310 ifm->_ifm_spare1 = 0; 2311 ifm->ifm_len = sizeof(*ifm); 2312 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 2313 ifm->_ifm_spare2 = 0; 2314 ifd = &ifm->ifm_data; 2315 } 2316 2317 memcpy(ifd, src_ifd, sizeof(*ifd)); 2318 2319 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2320 } 2321 2322 static int 2323 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 2324 struct rt_addrinfo *info, struct walkarg *w, int len) 2325 { 2326 struct if_msghdr *ifm; 2327 struct if_data *ifd; 2328 2329 ifm = (struct if_msghdr *)w->w_tmem; 2330 2331 #ifdef COMPAT_FREEBSD32 2332 if (w->w_req->flags & SCTL_MASK32) { 2333 struct if_msghdr32 *ifm32; 2334 2335 ifm32 = (struct if_msghdr32 *)ifm; 2336 ifm32->ifm_addrs = info->rti_addrs; 2337 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2338 ifm32->ifm_index = ifp->if_index; 2339 ifm32->_ifm_spare1 = 0; 2340 ifd = &ifm32->ifm_data; 2341 } else 2342 #endif 2343 { 2344 ifm->ifm_addrs = info->rti_addrs; 2345 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2346 ifm->ifm_index = ifp->if_index; 2347 ifm->_ifm_spare1 = 0; 2348 ifd = &ifm->ifm_data; 2349 } 2350 2351 memcpy(ifd, src_ifd, sizeof(*ifd)); 2352 2353 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2354 } 2355 2356 static int 2357 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 2358 struct walkarg *w, int len) 2359 { 2360 struct ifa_msghdrl *ifam; 2361 struct if_data *ifd; 2362 2363 ifam = (struct ifa_msghdrl *)w->w_tmem; 2364 2365 #ifdef COMPAT_FREEBSD32 2366 if (w->w_req->flags & SCTL_MASK32) { 2367 struct ifa_msghdrl32 *ifam32; 2368 2369 ifam32 = (struct ifa_msghdrl32 *)ifam; 2370 ifam32->ifam_addrs = info->rti_addrs; 2371 ifam32->ifam_flags = ifa->ifa_flags; 2372 ifam32->ifam_index = ifa->ifa_ifp->if_index; 2373 ifam32->_ifam_spare1 = 0; 2374 ifam32->ifam_len = sizeof(*ifam32); 2375 ifam32->ifam_data_off = 2376 offsetof(struct ifa_msghdrl32, ifam_data); 2377 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 2378 ifd = &ifam32->ifam_data; 2379 } else 2380 #endif 2381 { 2382 ifam->ifam_addrs = info->rti_addrs; 2383 ifam->ifam_flags = ifa->ifa_flags; 2384 ifam->ifam_index = ifa->ifa_ifp->if_index; 2385 ifam->_ifam_spare1 = 0; 2386 ifam->ifam_len = sizeof(*ifam); 2387 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 2388 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2389 ifd = &ifam->ifam_data; 2390 } 2391 2392 bzero(ifd, sizeof(*ifd)); 2393 ifd->ifi_datalen = sizeof(struct if_data); 2394 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 2395 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 2396 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 2397 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 2398 2399 /* Fixup if_data carp(4) vhid. */ 2400 if (carp_get_vhid_p != NULL) 2401 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 2402 2403 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2404 } 2405 2406 static int 2407 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 2408 struct walkarg *w, int len) 2409 { 2410 struct ifa_msghdr *ifam; 2411 2412 ifam = (struct ifa_msghdr *)w->w_tmem; 2413 ifam->ifam_addrs = info->rti_addrs; 2414 ifam->ifam_flags = ifa->ifa_flags; 2415 ifam->ifam_index = ifa->ifa_ifp->if_index; 2416 ifam->_ifam_spare1 = 0; 2417 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2418 2419 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2420 } 2421 2422 static int 2423 sysctl_iflist(int af, struct walkarg *w) 2424 { 2425 struct ifnet *ifp; 2426 struct ifaddr *ifa; 2427 struct if_data ifd; 2428 struct rt_addrinfo info; 2429 int len, error = 0; 2430 struct sockaddr_storage ss; 2431 2432 bzero((caddr_t)&info, sizeof(info)); 2433 bzero(&ifd, sizeof(ifd)); 2434 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2435 if (w->w_arg && w->w_arg != ifp->if_index) 2436 continue; 2437 if_data_copy(ifp, &ifd); 2438 ifa = ifp->if_addr; 2439 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 2440 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 2441 if (error != 0) 2442 goto done; 2443 info.rti_info[RTAX_IFP] = NULL; 2444 if (w->w_req && w->w_tmem) { 2445 if (w->w_op == NET_RT_IFLISTL) 2446 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 2447 len); 2448 else 2449 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 2450 len); 2451 if (error) 2452 goto done; 2453 } 2454 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 2455 if (af && af != ifa->ifa_addr->sa_family) 2456 continue; 2457 if (prison_if(w->w_req->td->td_ucred, 2458 ifa->ifa_addr) != 0) 2459 continue; 2460 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2461 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2462 ifa->ifa_addr, ifa->ifa_netmask, &ss); 2463 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2464 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 2465 if (error != 0) 2466 goto done; 2467 if (w->w_req && w->w_tmem) { 2468 if (w->w_op == NET_RT_IFLISTL) 2469 error = sysctl_iflist_ifaml(ifa, &info, 2470 w, len); 2471 else 2472 error = sysctl_iflist_ifam(ifa, &info, 2473 w, len); 2474 if (error) 2475 goto done; 2476 } 2477 } 2478 info.rti_info[RTAX_IFA] = NULL; 2479 info.rti_info[RTAX_NETMASK] = NULL; 2480 info.rti_info[RTAX_BRD] = NULL; 2481 } 2482 done: 2483 return (error); 2484 } 2485 2486 static int 2487 sysctl_ifmalist(int af, struct walkarg *w) 2488 { 2489 struct rt_addrinfo info; 2490 struct ifaddr *ifa; 2491 struct ifmultiaddr *ifma; 2492 struct ifnet *ifp; 2493 int error, len; 2494 2495 NET_EPOCH_ASSERT(); 2496 2497 error = 0; 2498 bzero((caddr_t)&info, sizeof(info)); 2499 2500 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2501 if (w->w_arg && w->w_arg != ifp->if_index) 2502 continue; 2503 ifa = ifp->if_addr; 2504 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 2505 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2506 if (af && af != ifma->ifma_addr->sa_family) 2507 continue; 2508 if (prison_if(w->w_req->td->td_ucred, 2509 ifma->ifma_addr) != 0) 2510 continue; 2511 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2512 info.rti_info[RTAX_GATEWAY] = 2513 (ifma->ifma_addr->sa_family != AF_LINK) ? 2514 ifma->ifma_lladdr : NULL; 2515 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 2516 if (error != 0) 2517 break; 2518 if (w->w_req && w->w_tmem) { 2519 struct ifma_msghdr *ifmam; 2520 2521 ifmam = (struct ifma_msghdr *)w->w_tmem; 2522 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2523 ifmam->ifmam_flags = 0; 2524 ifmam->ifmam_addrs = info.rti_addrs; 2525 ifmam->_ifmam_spare1 = 0; 2526 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2527 if (error != 0) 2528 break; 2529 } 2530 } 2531 if (error != 0) 2532 break; 2533 } 2534 return (error); 2535 } 2536 2537 static void 2538 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w) 2539 { 2540 union sockaddr_union sa_dst, sa_mask; 2541 2542 w->family = family; 2543 w->dst = (struct sockaddr *)&sa_dst; 2544 w->mask = (struct sockaddr *)&sa_mask; 2545 2546 init_sockaddrs_family(family, w->dst, w->mask); 2547 2548 rib_walk(fibnum, family, false, sysctl_dumpentry, w); 2549 } 2550 2551 static int 2552 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2553 { 2554 struct epoch_tracker et; 2555 int *name = (int *)arg1; 2556 u_int namelen = arg2; 2557 struct rib_head *rnh = NULL; /* silence compiler. */ 2558 int i, lim, error = EINVAL; 2559 int fib = 0; 2560 u_char af; 2561 struct walkarg w; 2562 2563 if (namelen < 3) 2564 return (EINVAL); 2565 2566 name++; 2567 namelen--; 2568 if (req->newptr) 2569 return (EPERM); 2570 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { 2571 if (namelen == 3) 2572 fib = req->td->td_proc->p_fibnum; 2573 else if (namelen == 4) 2574 fib = (name[3] == RT_ALL_FIBS) ? 2575 req->td->td_proc->p_fibnum : name[3]; 2576 else 2577 return ((namelen < 3) ? EISDIR : ENOTDIR); 2578 if (fib < 0 || fib >= rt_numfibs) 2579 return (EINVAL); 2580 } else if (namelen != 3) 2581 return ((namelen < 3) ? EISDIR : ENOTDIR); 2582 af = name[0]; 2583 if (af > AF_MAX) 2584 return (EINVAL); 2585 bzero(&w, sizeof(w)); 2586 w.w_op = name[1]; 2587 w.w_arg = name[2]; 2588 w.w_req = req; 2589 2590 error = sysctl_wire_old_buffer(req, 0); 2591 if (error) 2592 return (error); 2593 2594 /* 2595 * Allocate reply buffer in advance. 2596 * All rtsock messages has maximum length of u_short. 2597 */ 2598 w.w_tmemsize = 65536; 2599 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2600 2601 NET_EPOCH_ENTER(et); 2602 switch (w.w_op) { 2603 case NET_RT_DUMP: 2604 case NET_RT_FLAGS: 2605 if (af == 0) { /* dump all tables */ 2606 i = 1; 2607 lim = AF_MAX; 2608 } else /* dump only one table */ 2609 i = lim = af; 2610 2611 /* 2612 * take care of llinfo entries, the caller must 2613 * specify an AF 2614 */ 2615 if (w.w_op == NET_RT_FLAGS && 2616 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2617 if (af != 0) 2618 error = lltable_sysctl_dumparp(af, w.w_req); 2619 else 2620 error = EINVAL; 2621 break; 2622 } 2623 /* 2624 * take care of routing entries 2625 */ 2626 for (error = 0; error == 0 && i <= lim; i++) { 2627 rnh = rt_tables_get_rnh(fib, i); 2628 if (rnh != NULL) { 2629 rtable_sysctl_dump(fib, i, &w); 2630 } else if (af != 0) 2631 error = EAFNOSUPPORT; 2632 } 2633 break; 2634 case NET_RT_NHOP: 2635 case NET_RT_NHGRP: 2636 /* Allow dumping one specific af/fib at a time */ 2637 if (namelen < 4) { 2638 error = EINVAL; 2639 break; 2640 } 2641 fib = name[3]; 2642 if (fib < 0 || fib > rt_numfibs) { 2643 error = EINVAL; 2644 break; 2645 } 2646 rnh = rt_tables_get_rnh(fib, af); 2647 if (rnh == NULL) { 2648 error = EAFNOSUPPORT; 2649 break; 2650 } 2651 if (w.w_op == NET_RT_NHOP) 2652 error = nhops_dump_sysctl(rnh, w.w_req); 2653 else 2654 #ifdef ROUTE_MPATH 2655 error = nhgrp_dump_sysctl(rnh, w.w_req); 2656 #else 2657 error = ENOTSUP; 2658 #endif 2659 break; 2660 case NET_RT_IFLIST: 2661 case NET_RT_IFLISTL: 2662 error = sysctl_iflist(af, &w); 2663 break; 2664 2665 case NET_RT_IFMALIST: 2666 error = sysctl_ifmalist(af, &w); 2667 break; 2668 } 2669 NET_EPOCH_EXIT(et); 2670 2671 free(w.w_tmem, M_TEMP); 2672 return (error); 2673 } 2674 2675 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2676 sysctl_rtsock, "Return route tables and interface/address lists"); 2677 2678 /* 2679 * Definitions of protocols supported in the ROUTE domain. 2680 */ 2681 2682 static struct domain routedomain; /* or at least forward */ 2683 2684 static struct protosw routesw = { 2685 .pr_type = SOCK_RAW, 2686 .pr_flags = PR_ATOMIC|PR_ADDR, 2687 .pr_abort = rts_close, 2688 .pr_attach = rts_attach, 2689 .pr_detach = rts_detach, 2690 .pr_send = rts_send, 2691 .pr_shutdown = rts_shutdown, 2692 .pr_disconnect = rts_disconnect, 2693 .pr_close = rts_close, 2694 }; 2695 2696 static struct domain routedomain = { 2697 .dom_family = PF_ROUTE, 2698 .dom_name = "route", 2699 .dom_nprotosw = 1, 2700 .dom_protosw = { &routesw }, 2701 }; 2702 2703 DOMAIN_SET(route); 2704