xref: /freebsd/sys/net/rtsock.c (revision ea69bf7f5d1f3fcf2966a79ba80fbc8189f261e9)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_ddb.h"
35 #include "opt_mpath.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/domain.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/rmlock.h>
50 #include <sys/rwlock.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_llatbl.h>
61 #include <net/if_types.h>
62 #include <net/netisr.h>
63 #include <net/raw_cb.h>
64 #include <net/route.h>
65 #include <net/route/route_var.h>
66 #ifdef RADIX_MPATH
67 #include <net/radix_mpath.h>
68 #endif
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/if_ether.h>
73 #include <netinet/ip_carp.h>
74 #ifdef INET6
75 #include <netinet6/ip6_var.h>
76 #include <netinet6/scope6_var.h>
77 #endif
78 #include <net/route/nhop.h>
79 #include <net/route/shared.h>
80 
81 #ifdef COMPAT_FREEBSD32
82 #include <sys/mount.h>
83 #include <compat/freebsd32/freebsd32.h>
84 
85 struct if_msghdr32 {
86 	uint16_t ifm_msglen;
87 	uint8_t	ifm_version;
88 	uint8_t	ifm_type;
89 	int32_t	ifm_addrs;
90 	int32_t	ifm_flags;
91 	uint16_t ifm_index;
92 	uint16_t _ifm_spare1;
93 	struct	if_data ifm_data;
94 };
95 
96 struct if_msghdrl32 {
97 	uint16_t ifm_msglen;
98 	uint8_t	ifm_version;
99 	uint8_t	ifm_type;
100 	int32_t	ifm_addrs;
101 	int32_t	ifm_flags;
102 	uint16_t ifm_index;
103 	uint16_t _ifm_spare1;
104 	uint16_t ifm_len;
105 	uint16_t ifm_data_off;
106 	uint32_t _ifm_spare2;
107 	struct	if_data ifm_data;
108 };
109 
110 struct ifa_msghdrl32 {
111 	uint16_t ifam_msglen;
112 	uint8_t	ifam_version;
113 	uint8_t	ifam_type;
114 	int32_t	ifam_addrs;
115 	int32_t	ifam_flags;
116 	uint16_t ifam_index;
117 	uint16_t _ifam_spare1;
118 	uint16_t ifam_len;
119 	uint16_t ifam_data_off;
120 	int32_t	ifam_metric;
121 	struct	if_data ifam_data;
122 };
123 
124 #define SA_SIZE32(sa)						\
125     (  (((struct sockaddr *)(sa))->sa_len == 0) ?		\
126 	sizeof(int)		:				\
127 	1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
128 
129 #endif /* COMPAT_FREEBSD32 */
130 
131 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
132 
133 /* NB: these are not modified */
134 static struct	sockaddr route_src = { 2, PF_ROUTE, };
135 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
136 
137 /* These are external hooks for CARP. */
138 int	(*carp_get_vhid_p)(struct ifaddr *);
139 
140 /*
141  * Used by rtsock/raw_input callback code to decide whether to filter the update
142  * notification to a socket bound to a particular FIB.
143  */
144 #define	RTS_FILTER_FIB	M_PROTO8
145 
146 typedef struct {
147 	int	ip_count;	/* attached w/ AF_INET */
148 	int	ip6_count;	/* attached w/ AF_INET6 */
149 	int	any_count;	/* total attached */
150 } route_cb_t;
151 VNET_DEFINE_STATIC(route_cb_t, route_cb);
152 #define	V_route_cb VNET(route_cb)
153 
154 struct mtx rtsock_mtx;
155 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
156 
157 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
158 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
159 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
160 
161 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
162     "");
163 
164 struct walkarg {
165 	int	w_tmemsize;
166 	int	w_op, w_arg;
167 	caddr_t	w_tmem;
168 	struct sysctl_req *w_req;
169 };
170 
171 static void	rts_input(struct mbuf *m);
172 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
173 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
174 			struct walkarg *w, int *plen);
175 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
176 			struct rt_addrinfo *rtinfo);
177 static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
178 static int	sysctl_iflist(int af, struct walkarg *w);
179 static int	sysctl_ifmalist(int af, struct walkarg *w);
180 static int	route_output(struct mbuf *m, struct socket *so, ...);
181 static void	rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out);
182 static void	rt_dispatch(struct mbuf *, sa_family_t);
183 static int	handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
184 			struct rt_msghdr *rtm, struct rtentry **ret_nrt);
185 static int	update_rtm_from_rte(struct rt_addrinfo *info,
186 			struct rt_msghdr **prtm, int alloc_len,
187 			struct rtentry *rt);
188 static void	send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
189 			struct mbuf *m, sa_family_t saf, u_int fibnum,
190 			int rtm_errno);
191 static int	can_export_rte(struct ucred *td_ucred, const struct rtentry *rt);
192 
193 static struct netisr_handler rtsock_nh = {
194 	.nh_name = "rtsock",
195 	.nh_handler = rts_input,
196 	.nh_proto = NETISR_ROUTE,
197 	.nh_policy = NETISR_POLICY_SOURCE,
198 };
199 
200 static int
201 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
202 {
203 	int error, qlimit;
204 
205 	netisr_getqlimit(&rtsock_nh, &qlimit);
206 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
207         if (error || !req->newptr)
208                 return (error);
209 	if (qlimit < 1)
210 		return (EINVAL);
211 	return (netisr_setqlimit(&rtsock_nh, qlimit));
212 }
213 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
214     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
215     0, 0, sysctl_route_netisr_maxqlen, "I",
216     "maximum routing socket dispatch queue length");
217 
218 static void
219 vnet_rts_init(void)
220 {
221 	int tmp;
222 
223 	if (IS_DEFAULT_VNET(curvnet)) {
224 		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
225 			rtsock_nh.nh_qlimit = tmp;
226 		netisr_register(&rtsock_nh);
227 	}
228 #ifdef VIMAGE
229 	 else
230 		netisr_register_vnet(&rtsock_nh);
231 #endif
232 }
233 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
234     vnet_rts_init, 0);
235 
236 #ifdef VIMAGE
237 static void
238 vnet_rts_uninit(void)
239 {
240 
241 	netisr_unregister_vnet(&rtsock_nh);
242 }
243 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
244     vnet_rts_uninit, 0);
245 #endif
246 
247 static int
248 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
249     struct rawcb *rp)
250 {
251 	int fibnum;
252 
253 	KASSERT(m != NULL, ("%s: m is NULL", __func__));
254 	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
255 	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
256 
257 	/* No filtering requested. */
258 	if ((m->m_flags & RTS_FILTER_FIB) == 0)
259 		return (0);
260 
261 	/* Check if it is a rts and the fib matches the one of the socket. */
262 	fibnum = M_GETFIB(m);
263 	if (proto->sp_family != PF_ROUTE ||
264 	    rp->rcb_socket == NULL ||
265 	    rp->rcb_socket->so_fibnum == fibnum)
266 		return (0);
267 
268 	/* Filtering requested and no match, the socket shall be skipped. */
269 	return (1);
270 }
271 
272 static void
273 rts_input(struct mbuf *m)
274 {
275 	struct sockproto route_proto;
276 	unsigned short *family;
277 	struct m_tag *tag;
278 
279 	route_proto.sp_family = PF_ROUTE;
280 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
281 	if (tag != NULL) {
282 		family = (unsigned short *)(tag + 1);
283 		route_proto.sp_protocol = *family;
284 		m_tag_delete(m, tag);
285 	} else
286 		route_proto.sp_protocol = 0;
287 
288 	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
289 }
290 
291 /*
292  * It really doesn't make any sense at all for this code to share much
293  * with raw_usrreq.c, since its functionality is so restricted.  XXX
294  */
295 static void
296 rts_abort(struct socket *so)
297 {
298 
299 	raw_usrreqs.pru_abort(so);
300 }
301 
302 static void
303 rts_close(struct socket *so)
304 {
305 
306 	raw_usrreqs.pru_close(so);
307 }
308 
309 /* pru_accept is EOPNOTSUPP */
310 
311 static int
312 rts_attach(struct socket *so, int proto, struct thread *td)
313 {
314 	struct rawcb *rp;
315 	int error;
316 
317 	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
318 
319 	/* XXX */
320 	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
321 
322 	so->so_pcb = (caddr_t)rp;
323 	so->so_fibnum = td->td_proc->p_fibnum;
324 	error = raw_attach(so, proto);
325 	rp = sotorawcb(so);
326 	if (error) {
327 		so->so_pcb = NULL;
328 		free(rp, M_PCB);
329 		return error;
330 	}
331 	RTSOCK_LOCK();
332 	switch(rp->rcb_proto.sp_protocol) {
333 	case AF_INET:
334 		V_route_cb.ip_count++;
335 		break;
336 	case AF_INET6:
337 		V_route_cb.ip6_count++;
338 		break;
339 	}
340 	V_route_cb.any_count++;
341 	RTSOCK_UNLOCK();
342 	soisconnected(so);
343 	so->so_options |= SO_USELOOPBACK;
344 	return 0;
345 }
346 
347 static int
348 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
349 {
350 
351 	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
352 }
353 
354 static int
355 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
356 {
357 
358 	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
359 }
360 
361 /* pru_connect2 is EOPNOTSUPP */
362 /* pru_control is EOPNOTSUPP */
363 
364 static void
365 rts_detach(struct socket *so)
366 {
367 	struct rawcb *rp = sotorawcb(so);
368 
369 	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
370 
371 	RTSOCK_LOCK();
372 	switch(rp->rcb_proto.sp_protocol) {
373 	case AF_INET:
374 		V_route_cb.ip_count--;
375 		break;
376 	case AF_INET6:
377 		V_route_cb.ip6_count--;
378 		break;
379 	}
380 	V_route_cb.any_count--;
381 	RTSOCK_UNLOCK();
382 	raw_usrreqs.pru_detach(so);
383 }
384 
385 static int
386 rts_disconnect(struct socket *so)
387 {
388 
389 	return (raw_usrreqs.pru_disconnect(so));
390 }
391 
392 /* pru_listen is EOPNOTSUPP */
393 
394 static int
395 rts_peeraddr(struct socket *so, struct sockaddr **nam)
396 {
397 
398 	return (raw_usrreqs.pru_peeraddr(so, nam));
399 }
400 
401 /* pru_rcvd is EOPNOTSUPP */
402 /* pru_rcvoob is EOPNOTSUPP */
403 
404 static int
405 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
406 	 struct mbuf *control, struct thread *td)
407 {
408 
409 	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
410 }
411 
412 /* pru_sense is null */
413 
414 static int
415 rts_shutdown(struct socket *so)
416 {
417 
418 	return (raw_usrreqs.pru_shutdown(so));
419 }
420 
421 static int
422 rts_sockaddr(struct socket *so, struct sockaddr **nam)
423 {
424 
425 	return (raw_usrreqs.pru_sockaddr(so, nam));
426 }
427 
428 static struct pr_usrreqs route_usrreqs = {
429 	.pru_abort =		rts_abort,
430 	.pru_attach =		rts_attach,
431 	.pru_bind =		rts_bind,
432 	.pru_connect =		rts_connect,
433 	.pru_detach =		rts_detach,
434 	.pru_disconnect =	rts_disconnect,
435 	.pru_peeraddr =		rts_peeraddr,
436 	.pru_send =		rts_send,
437 	.pru_shutdown =		rts_shutdown,
438 	.pru_sockaddr =		rts_sockaddr,
439 	.pru_close =		rts_close,
440 };
441 
442 #ifndef _SOCKADDR_UNION_DEFINED
443 #define	_SOCKADDR_UNION_DEFINED
444 /*
445  * The union of all possible address formats we handle.
446  */
447 union sockaddr_union {
448 	struct sockaddr		sa;
449 	struct sockaddr_in	sin;
450 	struct sockaddr_in6	sin6;
451 };
452 #endif /* _SOCKADDR_UNION_DEFINED */
453 
454 static int
455 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
456     struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred)
457 {
458 #if defined(INET) || defined(INET6)
459 	struct epoch_tracker et;
460 #endif
461 
462 	/* First, see if the returned address is part of the jail. */
463 	if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) {
464 		info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
465 		return (0);
466 	}
467 
468 	switch (info->rti_info[RTAX_DST]->sa_family) {
469 #ifdef INET
470 	case AF_INET:
471 	{
472 		struct in_addr ia;
473 		struct ifaddr *ifa;
474 		int found;
475 
476 		found = 0;
477 		/*
478 		 * Try to find an address on the given outgoing interface
479 		 * that belongs to the jail.
480 		 */
481 		NET_EPOCH_ENTER(et);
482 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
483 			struct sockaddr *sa;
484 			sa = ifa->ifa_addr;
485 			if (sa->sa_family != AF_INET)
486 				continue;
487 			ia = ((struct sockaddr_in *)sa)->sin_addr;
488 			if (prison_check_ip4(cred, &ia) == 0) {
489 				found = 1;
490 				break;
491 			}
492 		}
493 		NET_EPOCH_EXIT(et);
494 		if (!found) {
495 			/*
496 			 * As a last resort return the 'default' jail address.
497 			 */
498 			ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)->
499 			    sin_addr;
500 			if (prison_get_ip4(cred, &ia) != 0)
501 				return (ESRCH);
502 		}
503 		bzero(&saun->sin, sizeof(struct sockaddr_in));
504 		saun->sin.sin_len = sizeof(struct sockaddr_in);
505 		saun->sin.sin_family = AF_INET;
506 		saun->sin.sin_addr.s_addr = ia.s_addr;
507 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
508 		break;
509 	}
510 #endif
511 #ifdef INET6
512 	case AF_INET6:
513 	{
514 		struct in6_addr ia6;
515 		struct ifaddr *ifa;
516 		int found;
517 
518 		found = 0;
519 		/*
520 		 * Try to find an address on the given outgoing interface
521 		 * that belongs to the jail.
522 		 */
523 		NET_EPOCH_ENTER(et);
524 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
525 			struct sockaddr *sa;
526 			sa = ifa->ifa_addr;
527 			if (sa->sa_family != AF_INET6)
528 				continue;
529 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
530 			    &ia6, sizeof(struct in6_addr));
531 			if (prison_check_ip6(cred, &ia6) == 0) {
532 				found = 1;
533 				break;
534 			}
535 		}
536 		NET_EPOCH_EXIT(et);
537 		if (!found) {
538 			/*
539 			 * As a last resort return the 'default' jail address.
540 			 */
541 			ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)->
542 			    sin6_addr;
543 			if (prison_get_ip6(cred, &ia6) != 0)
544 				return (ESRCH);
545 		}
546 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
547 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
548 		saun->sin6.sin6_family = AF_INET6;
549 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
550 		if (sa6_recoverscope(&saun->sin6) != 0)
551 			return (ESRCH);
552 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
553 		break;
554 	}
555 #endif
556 	default:
557 		return (ESRCH);
558 	}
559 	return (0);
560 }
561 
562 /*
563  * Fills in @info based on userland-provided @rtm message.
564  *
565  * Returns 0 on success.
566  */
567 static int
568 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info)
569 {
570 	int error;
571 	sa_family_t saf;
572 
573 	rtm->rtm_pid = curproc->p_pid;
574 	info->rti_addrs = rtm->rtm_addrs;
575 
576 	info->rti_mflags = rtm->rtm_inits;
577 	info->rti_rmx = &rtm->rtm_rmx;
578 
579 	/*
580 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
581 	 * link-local address because rtrequest requires addresses with
582 	 * embedded scope id.
583 	 */
584 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
585 		return (EINVAL);
586 
587 	if (rtm->rtm_flags & RTF_RNH_LOCKED)
588 		return (EINVAL);
589 	info->rti_flags = rtm->rtm_flags;
590 	if (info->rti_info[RTAX_DST] == NULL ||
591 	    info->rti_info[RTAX_DST]->sa_family >= AF_MAX ||
592 	    (info->rti_info[RTAX_GATEWAY] != NULL &&
593 	     info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
594 		return (EINVAL);
595 	saf = info->rti_info[RTAX_DST]->sa_family;
596 	/*
597 	 * Verify that the caller has the appropriate privilege; RTM_GET
598 	 * is the only operation the non-superuser is allowed.
599 	 */
600 	if (rtm->rtm_type != RTM_GET) {
601 		error = priv_check(curthread, PRIV_NET_ROUTE);
602 		if (error != 0)
603 			return (error);
604 	}
605 
606 	/*
607 	 * The given gateway address may be an interface address.
608 	 * For example, issuing a "route change" command on a route
609 	 * entry that was created from a tunnel, and the gateway
610 	 * address given is the local end point. In this case the
611 	 * RTF_GATEWAY flag must be cleared or the destination will
612 	 * not be reachable even though there is no error message.
613 	 */
614 	if (info->rti_info[RTAX_GATEWAY] != NULL &&
615 	    info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
616 		struct rt_addrinfo ginfo;
617 		struct sockaddr *gdst;
618 		struct sockaddr_storage ss;
619 
620 		bzero(&ginfo, sizeof(ginfo));
621 		bzero(&ss, sizeof(ss));
622 		ss.ss_len = sizeof(ss);
623 
624 		ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
625 		gdst = info->rti_info[RTAX_GATEWAY];
626 
627 		/*
628 		 * A host route through the loopback interface is
629 		 * installed for each interface adddress. In pre 8.0
630 		 * releases the interface address of a PPP link type
631 		 * is not reachable locally. This behavior is fixed as
632 		 * part of the new L2/L3 redesign and rewrite work. The
633 		 * signature of this interface address route is the
634 		 * AF_LINK sa_family type of the gateway, and the
635 		 * rt_ifp has the IFF_LOOPBACK flag set.
636 		 */
637 		if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
638 			if (ss.ss_family == AF_LINK &&
639 			    ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
640 				info->rti_flags &= ~RTF_GATEWAY;
641 				info->rti_flags |= RTF_GWFLAG_COMPAT;
642 			}
643 			rib_free_info(&ginfo);
644 		}
645 	}
646 
647 	return (0);
648 }
649 
650 /*
651  * Handles RTM_GET message from routing socket, returning matching rt.
652  *
653  * Returns:
654  * 0 on success, with locked and referenced matching rt in @rt_nrt
655  * errno of failure
656  */
657 static int
658 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
659     struct rt_msghdr *rtm, struct rtentry **ret_nrt)
660 {
661 	RIB_RLOCK_TRACKER;
662 	struct rtentry *rt;
663 	struct rib_head *rnh;
664 	sa_family_t saf;
665 
666 	saf = info->rti_info[RTAX_DST]->sa_family;
667 
668 	rnh = rt_tables_get_rnh(fibnum, saf);
669 	if (rnh == NULL)
670 		return (EAFNOSUPPORT);
671 
672 	RIB_RLOCK(rnh);
673 
674 	if (info->rti_info[RTAX_NETMASK] == NULL) {
675 		/*
676 		 * Provide longest prefix match for
677 		 * address lookup (no mask).
678 		 * 'route -n get addr'
679 		 */
680 		rt = (struct rtentry *) rnh->rnh_matchaddr(
681 		    info->rti_info[RTAX_DST], &rnh->head);
682 	} else
683 		rt = (struct rtentry *) rnh->rnh_lookup(
684 		    info->rti_info[RTAX_DST],
685 		    info->rti_info[RTAX_NETMASK], &rnh->head);
686 
687 	if (rt == NULL) {
688 		RIB_RUNLOCK(rnh);
689 		return (ESRCH);
690 	}
691 #ifdef RADIX_MPATH
692 	/*
693 	 * for RTM_GET, gate is optional even with multipath.
694 	 * if gate == NULL the first match is returned.
695 	 * (no need to call rt_mpath_matchgate if gate == NULL)
696 	 */
697 	if (rt_mpath_capable(rnh) && info->rti_info[RTAX_GATEWAY]) {
698 		rt = rt_mpath_matchgate(rt, info->rti_info[RTAX_GATEWAY]);
699 		if (!rt) {
700 			RIB_RUNLOCK(rnh);
701 			return (ESRCH);
702 		}
703 	}
704 #endif
705 	/*
706 	 * If performing proxied L2 entry insertion, and
707 	 * the actual PPP host entry is found, perform
708 	 * another search to retrieve the prefix route of
709 	 * the local end point of the PPP link.
710 	 * TODO: move this logic to userland.
711 	 */
712 	if (rtm->rtm_flags & RTF_ANNOUNCE) {
713 		struct sockaddr laddr;
714 		struct nhop_object *nh;
715 
716 		nh = rt->rt_nhop;
717 		if (nh->nh_ifp != NULL &&
718 		    nh->nh_ifp->if_type == IFT_PROPVIRTUAL) {
719 			struct epoch_tracker et;
720 			struct ifaddr *ifa;
721 
722 			NET_EPOCH_ENTER(et);
723 			ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
724 					RT_ALL_FIBS);
725 			NET_EPOCH_EXIT(et);
726 			if (ifa != NULL)
727 				rt_maskedcopy(ifa->ifa_addr,
728 					      &laddr,
729 					      ifa->ifa_netmask);
730 		} else
731 			rt_maskedcopy(nh->nh_ifa->ifa_addr,
732 				      &laddr,
733 				      nh->nh_ifa->ifa_netmask);
734 		/*
735 		 * refactor rt and no lock operation necessary
736 		 */
737 		rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
738 		    &rnh->head);
739 		if (rt == NULL) {
740 			RIB_RUNLOCK(rnh);
741 			return (ESRCH);
742 		}
743 	}
744 	RT_LOCK(rt);
745 	RT_ADDREF(rt);
746 	RIB_RUNLOCK(rnh);
747 
748 	*ret_nrt = rt;
749 
750 	return (0);
751 }
752 
753 /*
754  * Update sockaddrs, flags, etc in @prtm based on @rt data.
755  * Assumes @rt is locked.
756  * rtm can be reallocated.
757  *
758  * Returns 0 on success, along with pointer to (potentially reallocated)
759  *  rtm.
760  *
761  */
762 static int
763 update_rtm_from_rte(struct rt_addrinfo *info, struct rt_msghdr **prtm,
764     int alloc_len, struct rtentry *rt)
765 {
766 	struct sockaddr_storage netmask_ss;
767 	struct walkarg w;
768 	union sockaddr_union saun;
769 	struct rt_msghdr *rtm, *orig_rtm = NULL;
770 	struct nhop_object *nh;
771 	struct ifnet *ifp;
772 	int error, len;
773 
774 	RT_LOCK_ASSERT(rt);
775 
776 	rtm = *prtm;
777 
778 	nh = rt->rt_nhop;
779 	info->rti_info[RTAX_DST] = rt_key(rt);
780 	info->rti_info[RTAX_GATEWAY] = &nh->gw_sa;
781 	info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
782 	    rt_mask(rt), &netmask_ss);
783 	info->rti_info[RTAX_GENMASK] = 0;
784 	ifp = nh->nh_ifp;
785 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
786 		if (ifp) {
787 			info->rti_info[RTAX_IFP] =
788 			    ifp->if_addr->ifa_addr;
789 			error = rtm_get_jailed(info, ifp, nh,
790 			    &saun, curthread->td_ucred);
791 			if (error != 0)
792 				return (error);
793 			if (ifp->if_flags & IFF_POINTOPOINT)
794 				info->rti_info[RTAX_BRD] =
795 				    nh->nh_ifa->ifa_dstaddr;
796 			rtm->rtm_index = ifp->if_index;
797 		} else {
798 			info->rti_info[RTAX_IFP] = NULL;
799 			info->rti_info[RTAX_IFA] = NULL;
800 		}
801 	} else if (ifp != NULL)
802 		rtm->rtm_index = ifp->if_index;
803 
804 	/* Check if we need to realloc storage */
805 	rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
806 	if (len > alloc_len) {
807 		struct rt_msghdr *tmp_rtm;
808 
809 		tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
810 		if (tmp_rtm == NULL)
811 			return (ENOBUFS);
812 		bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
813 		orig_rtm = rtm;
814 		rtm = tmp_rtm;
815 		alloc_len = len;
816 
817 		/*
818 		 * Delay freeing original rtm as info contains
819 		 * data referencing it.
820 		 */
821 	}
822 
823 	w.w_tmem = (caddr_t)rtm;
824 	w.w_tmemsize = alloc_len;
825 	rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
826 
827 	if (rt->rt_flags & RTF_GWFLAG_COMPAT)
828 		rtm->rtm_flags = RTF_GATEWAY |
829 			(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
830 	else
831 		rtm->rtm_flags = rt->rt_flags;
832 	rt_getmetrics(rt, &rtm->rtm_rmx);
833 	rtm->rtm_addrs = info->rti_addrs;
834 
835 	if (orig_rtm != NULL)
836 		free(orig_rtm, M_TEMP);
837 	*prtm = rtm;
838 
839 	return (0);
840 }
841 
842 /*ARGSUSED*/
843 static int
844 route_output(struct mbuf *m, struct socket *so, ...)
845 {
846 	struct rt_msghdr *rtm = NULL;
847 	struct rtentry *rt = NULL;
848 	struct rt_addrinfo info;
849 	struct epoch_tracker et;
850 #ifdef INET6
851 	struct sockaddr_storage ss;
852 	struct sockaddr_in6 *sin6;
853 	int i, rti_need_deembed = 0;
854 #endif
855 	int alloc_len = 0, len, error = 0, fibnum;
856 	sa_family_t saf = AF_UNSPEC;
857 	struct walkarg w;
858 
859 	fibnum = so->so_fibnum;
860 
861 #define senderr(e) { error = e; goto flush;}
862 	if (m == NULL || ((m->m_len < sizeof(long)) &&
863 		       (m = m_pullup(m, sizeof(long))) == NULL))
864 		return (ENOBUFS);
865 	if ((m->m_flags & M_PKTHDR) == 0)
866 		panic("route_output");
867 	NET_EPOCH_ENTER(et);
868 	len = m->m_pkthdr.len;
869 	if (len < sizeof(*rtm) ||
870 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
871 		senderr(EINVAL);
872 
873 	/*
874 	 * Most of current messages are in range 200-240 bytes,
875 	 * minimize possible re-allocation on reply using larger size
876 	 * buffer aligned on 1k boundaty.
877 	 */
878 	alloc_len = roundup2(len, 1024);
879 	if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
880 		senderr(ENOBUFS);
881 
882 	m_copydata(m, 0, len, (caddr_t)rtm);
883 	bzero(&info, sizeof(info));
884 	bzero(&w, sizeof(w));
885 
886 	if (rtm->rtm_version != RTM_VERSION) {
887 		/* Do not touch message since format is unknown */
888 		free(rtm, M_TEMP);
889 		rtm = NULL;
890 		senderr(EPROTONOSUPPORT);
891 	}
892 
893 	/*
894 	 * Starting from here, it is possible
895 	 * to alter original message and insert
896 	 * caller PID and error value.
897 	 */
898 
899 	if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) {
900 		senderr(error);
901 	}
902 
903 	saf = info.rti_info[RTAX_DST]->sa_family;
904 
905 	/* support for new ARP code */
906 	if (rtm->rtm_flags & RTF_LLDATA) {
907 		error = lla_rt_output(rtm, &info);
908 #ifdef INET6
909 		if (error == 0)
910 			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
911 #endif
912 		goto flush;
913 	}
914 
915 	switch (rtm->rtm_type) {
916 		struct rtentry *saved_nrt;
917 
918 	case RTM_ADD:
919 	case RTM_CHANGE:
920 		if (rtm->rtm_type == RTM_ADD) {
921 			if (info.rti_info[RTAX_GATEWAY] == NULL)
922 				senderr(EINVAL);
923 		}
924 		saved_nrt = NULL;
925 		error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt,
926 		    fibnum);
927 		if (error == 0 && saved_nrt != NULL) {
928 #ifdef INET6
929 			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
930 #endif
931 			RT_LOCK(saved_nrt);
932 			rtm->rtm_index = saved_nrt->rt_nhop->nh_ifp->if_index;
933 			RT_REMREF(saved_nrt);
934 			RT_UNLOCK(saved_nrt);
935 		}
936 		break;
937 
938 	case RTM_DELETE:
939 		saved_nrt = NULL;
940 		error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum);
941 		if (error == 0) {
942 			RT_LOCK(saved_nrt);
943 			rt = saved_nrt;
944 			goto report;
945 		}
946 #ifdef INET6
947 		/* rt_msg2() will not be used when RTM_DELETE fails. */
948 		rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
949 #endif
950 		break;
951 
952 	case RTM_GET:
953 		error = handle_rtm_get(&info, fibnum, rtm, &rt);
954 		if (error != 0)
955 			senderr(error);
956 
957 report:
958 		RT_LOCK_ASSERT(rt);
959 		if (!can_export_rte(curthread->td_ucred, rt)) {
960 			RT_UNLOCK(rt);
961 			senderr(ESRCH);
962 		}
963 		error = update_rtm_from_rte(&info, &rtm, alloc_len, rt);
964 		/*
965 		 * Note that some sockaddr pointers may have changed to
966 		 * point to memory outsize @rtm. Some may be pointing
967 		 * to the on-stack variables.
968 		 * Given that, any pointer in @info CANNOT BE USED.
969 		 */
970 
971 		/*
972 		 * scopeid deembedding has been performed while
973 		 * writing updated rtm in rtsock_msg_buffer().
974 		 * With that in mind, skip deembedding procedure below.
975 		 */
976 #ifdef INET6
977 		rti_need_deembed = 0;
978 #endif
979 		RT_UNLOCK(rt);
980 		if (error != 0)
981 			senderr(error);
982 		break;
983 
984 	default:
985 		senderr(EOPNOTSUPP);
986 	}
987 
988 flush:
989 	NET_EPOCH_EXIT(et);
990 	if (rt != NULL)
991 		RTFREE(rt);
992 
993 #ifdef INET6
994 	if (rtm != NULL) {
995 		if (rti_need_deembed) {
996 			/* sin6_scope_id is recovered before sending rtm. */
997 			sin6 = (struct sockaddr_in6 *)&ss;
998 			for (i = 0; i < RTAX_MAX; i++) {
999 				if (info.rti_info[i] == NULL)
1000 					continue;
1001 				if (info.rti_info[i]->sa_family != AF_INET6)
1002 					continue;
1003 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
1004 				if (sa6_recoverscope(sin6) == 0)
1005 					bcopy(sin6, info.rti_info[i],
1006 						    sizeof(*sin6));
1007 			}
1008 		}
1009 	}
1010 #endif
1011 	send_rtm_reply(so, rtm, m, saf, fibnum, error);
1012 
1013 	return (error);
1014 }
1015 
1016 /*
1017  * Sends the prepared reply message in @rtm to all rtsock clients.
1018  * Frees @m and @rtm.
1019  *
1020  */
1021 static void
1022 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1023     sa_family_t saf, u_int fibnum, int rtm_errno)
1024 {
1025 	struct rawcb *rp = NULL;
1026 
1027 	/*
1028 	 * Check to see if we don't want our own messages.
1029 	 */
1030 	if ((so->so_options & SO_USELOOPBACK) == 0) {
1031 		if (V_route_cb.any_count <= 1) {
1032 			if (rtm != NULL)
1033 				free(rtm, M_TEMP);
1034 			m_freem(m);
1035 			return;
1036 		}
1037 		/* There is another listener, so construct message */
1038 		rp = sotorawcb(so);
1039 	}
1040 
1041 	if (rtm != NULL) {
1042 		if (rtm_errno!= 0)
1043 			rtm->rtm_errno = rtm_errno;
1044 		else
1045 			rtm->rtm_flags |= RTF_DONE;
1046 
1047 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1048 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
1049 			m_freem(m);
1050 			m = NULL;
1051 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
1052 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1053 
1054 		free(rtm, M_TEMP);
1055 	}
1056 	if (m != NULL) {
1057 		M_SETFIB(m, fibnum);
1058 		m->m_flags |= RTS_FILTER_FIB;
1059 		if (rp) {
1060 			/*
1061 			 * XXX insure we don't get a copy by
1062 			 * invalidating our protocol
1063 			 */
1064 			unsigned short family = rp->rcb_proto.sp_family;
1065 			rp->rcb_proto.sp_family = 0;
1066 			rt_dispatch(m, saf);
1067 			rp->rcb_proto.sp_family = family;
1068 		} else
1069 			rt_dispatch(m, saf);
1070 	}
1071 }
1072 
1073 
1074 static void
1075 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out)
1076 {
1077 
1078 	bzero(out, sizeof(*out));
1079 	out->rmx_mtu = rt->rt_nhop->nh_mtu;
1080 	out->rmx_weight = rt->rt_weight;
1081 	out->rmx_pksent = counter_u64_fetch(rt->rt_pksent);
1082 	out->rmx_nhidx = nhop_get_idx(rt->rt_nhop);
1083 	/* Kernel -> userland timebase conversion. */
1084 	out->rmx_expire = rt->rt_expire ?
1085 	    rt->rt_expire - time_uptime + time_second : 0;
1086 }
1087 
1088 /*
1089  * Extract the addresses of the passed sockaddrs.
1090  * Do a little sanity checking so as to avoid bad memory references.
1091  * This data is derived straight from userland.
1092  */
1093 static int
1094 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1095 {
1096 	struct sockaddr *sa;
1097 	int i;
1098 
1099 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1100 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
1101 			continue;
1102 		sa = (struct sockaddr *)cp;
1103 		/*
1104 		 * It won't fit.
1105 		 */
1106 		if (cp + sa->sa_len > cplim)
1107 			return (EINVAL);
1108 		/*
1109 		 * there are no more.. quit now
1110 		 * If there are more bits, they are in error.
1111 		 * I've seen this. route(1) can evidently generate these.
1112 		 * This causes kernel to core dump.
1113 		 * for compatibility, If we see this, point to a safe address.
1114 		 */
1115 		if (sa->sa_len == 0) {
1116 			rtinfo->rti_info[i] = &sa_zero;
1117 			return (0); /* should be EINVAL but for compat */
1118 		}
1119 		/* accept it */
1120 #ifdef INET6
1121 		if (sa->sa_family == AF_INET6)
1122 			sa6_embedscope((struct sockaddr_in6 *)sa,
1123 			    V_ip6_use_defzone);
1124 #endif
1125 		rtinfo->rti_info[i] = sa;
1126 		cp += SA_SIZE(sa);
1127 	}
1128 	return (0);
1129 }
1130 
1131 /*
1132  * Fill in @dmask with valid netmask leaving original @smask
1133  * intact. Mostly used with radix netmasks.
1134  */
1135 struct sockaddr *
1136 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask,
1137     struct sockaddr_storage *dmask)
1138 {
1139 	if (dst == NULL || smask == NULL)
1140 		return (NULL);
1141 
1142 	memset(dmask, 0, dst->sa_len);
1143 	memcpy(dmask, smask, smask->sa_len);
1144 	dmask->ss_len = dst->sa_len;
1145 	dmask->ss_family = dst->sa_family;
1146 
1147 	return ((struct sockaddr *)dmask);
1148 }
1149 
1150 /*
1151  * Writes information related to @rtinfo object to newly-allocated mbuf.
1152  * Assumes MCLBYTES is enough to construct any message.
1153  * Used for OS notifications of vaious events (if/ifa announces,etc)
1154  *
1155  * Returns allocated mbuf or NULL on failure.
1156  */
1157 static struct mbuf *
1158 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1159 {
1160 	struct rt_msghdr *rtm;
1161 	struct mbuf *m;
1162 	int i;
1163 	struct sockaddr *sa;
1164 #ifdef INET6
1165 	struct sockaddr_storage ss;
1166 	struct sockaddr_in6 *sin6;
1167 #endif
1168 	int len, dlen;
1169 
1170 	switch (type) {
1171 
1172 	case RTM_DELADDR:
1173 	case RTM_NEWADDR:
1174 		len = sizeof(struct ifa_msghdr);
1175 		break;
1176 
1177 	case RTM_DELMADDR:
1178 	case RTM_NEWMADDR:
1179 		len = sizeof(struct ifma_msghdr);
1180 		break;
1181 
1182 	case RTM_IFINFO:
1183 		len = sizeof(struct if_msghdr);
1184 		break;
1185 
1186 	case RTM_IFANNOUNCE:
1187 	case RTM_IEEE80211:
1188 		len = sizeof(struct if_announcemsghdr);
1189 		break;
1190 
1191 	default:
1192 		len = sizeof(struct rt_msghdr);
1193 	}
1194 
1195 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1196 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1197 	if (len > MHLEN)
1198 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1199 	else
1200 		m = m_gethdr(M_NOWAIT, MT_DATA);
1201 	if (m == NULL)
1202 		return (m);
1203 
1204 	m->m_pkthdr.len = m->m_len = len;
1205 	rtm = mtod(m, struct rt_msghdr *);
1206 	bzero((caddr_t)rtm, len);
1207 	for (i = 0; i < RTAX_MAX; i++) {
1208 		if ((sa = rtinfo->rti_info[i]) == NULL)
1209 			continue;
1210 		rtinfo->rti_addrs |= (1 << i);
1211 		dlen = SA_SIZE(sa);
1212 #ifdef INET6
1213 		if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1214 			sin6 = (struct sockaddr_in6 *)&ss;
1215 			bcopy(sa, sin6, sizeof(*sin6));
1216 			if (sa6_recoverscope(sin6) == 0)
1217 				sa = (struct sockaddr *)sin6;
1218 		}
1219 #endif
1220 		m_copyback(m, len, dlen, (caddr_t)sa);
1221 		len += dlen;
1222 	}
1223 	if (m->m_pkthdr.len != len) {
1224 		m_freem(m);
1225 		return (NULL);
1226 	}
1227 	rtm->rtm_msglen = len;
1228 	rtm->rtm_version = RTM_VERSION;
1229 	rtm->rtm_type = type;
1230 	return (m);
1231 }
1232 
1233 /*
1234  * Writes information related to @rtinfo object to preallocated buffer.
1235  * Stores needed size in @plen. If @w is NULL, calculates size without
1236  * writing.
1237  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1238  *
1239  * Returns 0 on success.
1240  *
1241  */
1242 static int
1243 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1244 {
1245 	int i;
1246 	int len, buflen = 0, dlen;
1247 	caddr_t cp = NULL;
1248 	struct rt_msghdr *rtm = NULL;
1249 #ifdef INET6
1250 	struct sockaddr_storage ss;
1251 	struct sockaddr_in6 *sin6;
1252 #endif
1253 #ifdef COMPAT_FREEBSD32
1254 	bool compat32 = false;
1255 #endif
1256 
1257 	switch (type) {
1258 
1259 	case RTM_DELADDR:
1260 	case RTM_NEWADDR:
1261 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1262 #ifdef COMPAT_FREEBSD32
1263 			if (w->w_req->flags & SCTL_MASK32) {
1264 				len = sizeof(struct ifa_msghdrl32);
1265 				compat32 = true;
1266 			} else
1267 #endif
1268 				len = sizeof(struct ifa_msghdrl);
1269 		} else
1270 			len = sizeof(struct ifa_msghdr);
1271 		break;
1272 
1273 	case RTM_IFINFO:
1274 #ifdef COMPAT_FREEBSD32
1275 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1276 			if (w->w_op == NET_RT_IFLISTL)
1277 				len = sizeof(struct if_msghdrl32);
1278 			else
1279 				len = sizeof(struct if_msghdr32);
1280 			compat32 = true;
1281 			break;
1282 		}
1283 #endif
1284 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1285 			len = sizeof(struct if_msghdrl);
1286 		else
1287 			len = sizeof(struct if_msghdr);
1288 		break;
1289 
1290 	case RTM_NEWMADDR:
1291 		len = sizeof(struct ifma_msghdr);
1292 		break;
1293 
1294 	default:
1295 		len = sizeof(struct rt_msghdr);
1296 	}
1297 
1298 	if (w != NULL) {
1299 		rtm = (struct rt_msghdr *)w->w_tmem;
1300 		buflen = w->w_tmemsize - len;
1301 		cp = (caddr_t)w->w_tmem + len;
1302 	}
1303 
1304 	rtinfo->rti_addrs = 0;
1305 	for (i = 0; i < RTAX_MAX; i++) {
1306 		struct sockaddr *sa;
1307 
1308 		if ((sa = rtinfo->rti_info[i]) == NULL)
1309 			continue;
1310 		rtinfo->rti_addrs |= (1 << i);
1311 #ifdef COMPAT_FREEBSD32
1312 		if (compat32)
1313 			dlen = SA_SIZE32(sa);
1314 		else
1315 #endif
1316 			dlen = SA_SIZE(sa);
1317 		if (cp != NULL && buflen >= dlen) {
1318 #ifdef INET6
1319 			if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1320 				sin6 = (struct sockaddr_in6 *)&ss;
1321 				bcopy(sa, sin6, sizeof(*sin6));
1322 				if (sa6_recoverscope(sin6) == 0)
1323 					sa = (struct sockaddr *)sin6;
1324 			}
1325 #endif
1326 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1327 			cp += dlen;
1328 			buflen -= dlen;
1329 		} else if (cp != NULL) {
1330 			/*
1331 			 * Buffer too small. Count needed size
1332 			 * and return with error.
1333 			 */
1334 			cp = NULL;
1335 		}
1336 
1337 		len += dlen;
1338 	}
1339 
1340 	if (cp != NULL) {
1341 		dlen = ALIGN(len) - len;
1342 		if (buflen < dlen)
1343 			cp = NULL;
1344 		else {
1345 			bzero(cp, dlen);
1346 			cp += dlen;
1347 			buflen -= dlen;
1348 		}
1349 	}
1350 	len = ALIGN(len);
1351 
1352 	if (cp != NULL) {
1353 		/* fill header iff buffer is large enough */
1354 		rtm->rtm_version = RTM_VERSION;
1355 		rtm->rtm_type = type;
1356 		rtm->rtm_msglen = len;
1357 	}
1358 
1359 	*plen = len;
1360 
1361 	if (w != NULL && cp == NULL)
1362 		return (ENOBUFS);
1363 
1364 	return (0);
1365 }
1366 
1367 /*
1368  * This routine is called to generate a message from the routing
1369  * socket indicating that a redirect has occurred, a routing lookup
1370  * has failed, or that a protocol has detected timeouts to a particular
1371  * destination.
1372  */
1373 void
1374 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1375     int fibnum)
1376 {
1377 	struct rt_msghdr *rtm;
1378 	struct mbuf *m;
1379 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1380 
1381 	if (V_route_cb.any_count == 0)
1382 		return;
1383 	m = rtsock_msg_mbuf(type, rtinfo);
1384 	if (m == NULL)
1385 		return;
1386 
1387 	if (fibnum != RT_ALL_FIBS) {
1388 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1389 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1390 		M_SETFIB(m, fibnum);
1391 		m->m_flags |= RTS_FILTER_FIB;
1392 	}
1393 
1394 	rtm = mtod(m, struct rt_msghdr *);
1395 	rtm->rtm_flags = RTF_DONE | flags;
1396 	rtm->rtm_errno = error;
1397 	rtm->rtm_addrs = rtinfo->rti_addrs;
1398 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1399 }
1400 
1401 void
1402 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1403 {
1404 
1405 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1406 }
1407 
1408 /*
1409  * This routine is called to generate a message from the routing
1410  * socket indicating that the status of a network interface has changed.
1411  */
1412 void
1413 rt_ifmsg(struct ifnet *ifp)
1414 {
1415 	struct if_msghdr *ifm;
1416 	struct mbuf *m;
1417 	struct rt_addrinfo info;
1418 
1419 	if (V_route_cb.any_count == 0)
1420 		return;
1421 	bzero((caddr_t)&info, sizeof(info));
1422 	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1423 	if (m == NULL)
1424 		return;
1425 	ifm = mtod(m, struct if_msghdr *);
1426 	ifm->ifm_index = ifp->if_index;
1427 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1428 	if_data_copy(ifp, &ifm->ifm_data);
1429 	ifm->ifm_addrs = 0;
1430 	rt_dispatch(m, AF_UNSPEC);
1431 }
1432 
1433 /*
1434  * Announce interface address arrival/withdraw.
1435  * Please do not call directly, use rt_addrmsg().
1436  * Assume input data to be valid.
1437  * Returns 0 on success.
1438  */
1439 int
1440 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1441 {
1442 	struct rt_addrinfo info;
1443 	struct sockaddr *sa;
1444 	int ncmd;
1445 	struct mbuf *m;
1446 	struct ifa_msghdr *ifam;
1447 	struct ifnet *ifp = ifa->ifa_ifp;
1448 	struct sockaddr_storage ss;
1449 
1450 	if (V_route_cb.any_count == 0)
1451 		return (0);
1452 
1453 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1454 
1455 	bzero((caddr_t)&info, sizeof(info));
1456 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1457 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1458 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1459 	    info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
1460 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1461 	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1462 		return (ENOBUFS);
1463 	ifam = mtod(m, struct ifa_msghdr *);
1464 	ifam->ifam_index = ifp->if_index;
1465 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1466 	ifam->ifam_flags = ifa->ifa_flags;
1467 	ifam->ifam_addrs = info.rti_addrs;
1468 
1469 	if (fibnum != RT_ALL_FIBS) {
1470 		M_SETFIB(m, fibnum);
1471 		m->m_flags |= RTS_FILTER_FIB;
1472 	}
1473 
1474 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1475 
1476 	return (0);
1477 }
1478 
1479 /*
1480  * Announce route addition/removal to rtsock based on @rt data.
1481  * Callers are advives to use rt_routemsg() instead of using this
1482  *  function directly.
1483  * Assume @rt data is consistent.
1484  *
1485  * Returns 0 on success.
1486  */
1487 int
1488 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs,
1489     int fibnum)
1490 {
1491 	struct sockaddr_storage ss;
1492 	struct rt_addrinfo info;
1493 
1494 	if (V_route_cb.any_count == 0)
1495 		return (0);
1496 
1497 	bzero((caddr_t)&info, sizeof(info));
1498 	info.rti_info[RTAX_DST] = rt_key(rt);
1499 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss);
1500 	info.rti_info[RTAX_GATEWAY] = &rt->rt_nhop->gw_sa;
1501 	info.rti_flags = rt->rt_flags;
1502 	info.rti_ifp = ifp;
1503 
1504 	return (rtsock_routemsg_info(cmd, &info, fibnum));
1505 }
1506 
1507 int
1508 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
1509 {
1510 	struct rt_msghdr *rtm;
1511 	struct sockaddr *sa;
1512 	struct mbuf *m;
1513 
1514 	if (V_route_cb.any_count == 0)
1515 		return (0);
1516 
1517 	if (info->rti_flags & RTF_HOST)
1518 		info->rti_info[RTAX_NETMASK] = NULL;
1519 
1520 	m = rtsock_msg_mbuf(cmd, info);
1521 	if (m == NULL)
1522 		return (ENOBUFS);
1523 
1524 	if (fibnum != RT_ALL_FIBS) {
1525 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1526 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1527 		M_SETFIB(m, fibnum);
1528 		m->m_flags |= RTS_FILTER_FIB;
1529 	}
1530 
1531 	rtm = mtod(m, struct rt_msghdr *);
1532 	rtm->rtm_addrs = info->rti_addrs;
1533 	if (info->rti_ifp != NULL)
1534 		rtm->rtm_index = info->rti_ifp->if_index;
1535 	/* Add RTF_DONE to indicate command 'completion' required by API */
1536 	info->rti_flags |= RTF_DONE;
1537 	/* Reported routes has to be up */
1538 	if (cmd == RTM_ADD || cmd == RTM_CHANGE)
1539 		info->rti_flags |= RTF_UP;
1540 	rtm->rtm_flags = info->rti_flags;
1541 
1542 	sa = info->rti_info[RTAX_DST];
1543 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1544 
1545 	return (0);
1546 }
1547 
1548 /*
1549  * This is the analogue to the rt_newaddrmsg which performs the same
1550  * function but for multicast group memberhips.  This is easier since
1551  * there is no route state to worry about.
1552  */
1553 void
1554 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1555 {
1556 	struct rt_addrinfo info;
1557 	struct mbuf *m = NULL;
1558 	struct ifnet *ifp = ifma->ifma_ifp;
1559 	struct ifma_msghdr *ifmam;
1560 
1561 	if (V_route_cb.any_count == 0)
1562 		return;
1563 
1564 	bzero((caddr_t)&info, sizeof(info));
1565 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1566 	if (ifp && ifp->if_addr)
1567 		info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1568 	else
1569 		info.rti_info[RTAX_IFP] = NULL;
1570 	/*
1571 	 * If a link-layer address is present, present it as a ``gateway''
1572 	 * (similarly to how ARP entries, e.g., are presented).
1573 	 */
1574 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1575 	m = rtsock_msg_mbuf(cmd, &info);
1576 	if (m == NULL)
1577 		return;
1578 	ifmam = mtod(m, struct ifma_msghdr *);
1579 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1580 	    __func__));
1581 	ifmam->ifmam_index = ifp->if_index;
1582 	ifmam->ifmam_addrs = info.rti_addrs;
1583 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1584 }
1585 
1586 static struct mbuf *
1587 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1588 	struct rt_addrinfo *info)
1589 {
1590 	struct if_announcemsghdr *ifan;
1591 	struct mbuf *m;
1592 
1593 	if (V_route_cb.any_count == 0)
1594 		return NULL;
1595 	bzero((caddr_t)info, sizeof(*info));
1596 	m = rtsock_msg_mbuf(type, info);
1597 	if (m != NULL) {
1598 		ifan = mtod(m, struct if_announcemsghdr *);
1599 		ifan->ifan_index = ifp->if_index;
1600 		strlcpy(ifan->ifan_name, ifp->if_xname,
1601 			sizeof(ifan->ifan_name));
1602 		ifan->ifan_what = what;
1603 	}
1604 	return m;
1605 }
1606 
1607 /*
1608  * This is called to generate routing socket messages indicating
1609  * IEEE80211 wireless events.
1610  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1611  */
1612 void
1613 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1614 {
1615 	struct mbuf *m;
1616 	struct rt_addrinfo info;
1617 
1618 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1619 	if (m != NULL) {
1620 		/*
1621 		 * Append the ieee80211 data.  Try to stick it in the
1622 		 * mbuf containing the ifannounce msg; otherwise allocate
1623 		 * a new mbuf and append.
1624 		 *
1625 		 * NB: we assume m is a single mbuf.
1626 		 */
1627 		if (data_len > M_TRAILINGSPACE(m)) {
1628 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1629 			if (n == NULL) {
1630 				m_freem(m);
1631 				return;
1632 			}
1633 			bcopy(data, mtod(n, void *), data_len);
1634 			n->m_len = data_len;
1635 			m->m_next = n;
1636 		} else if (data_len > 0) {
1637 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1638 			m->m_len += data_len;
1639 		}
1640 		if (m->m_flags & M_PKTHDR)
1641 			m->m_pkthdr.len += data_len;
1642 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1643 		rt_dispatch(m, AF_UNSPEC);
1644 	}
1645 }
1646 
1647 /*
1648  * This is called to generate routing socket messages indicating
1649  * network interface arrival and departure.
1650  */
1651 void
1652 rt_ifannouncemsg(struct ifnet *ifp, int what)
1653 {
1654 	struct mbuf *m;
1655 	struct rt_addrinfo info;
1656 
1657 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1658 	if (m != NULL)
1659 		rt_dispatch(m, AF_UNSPEC);
1660 }
1661 
1662 static void
1663 rt_dispatch(struct mbuf *m, sa_family_t saf)
1664 {
1665 	struct m_tag *tag;
1666 
1667 	/*
1668 	 * Preserve the family from the sockaddr, if any, in an m_tag for
1669 	 * use when injecting the mbuf into the routing socket buffer from
1670 	 * the netisr.
1671 	 */
1672 	if (saf != AF_UNSPEC) {
1673 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1674 		    M_NOWAIT);
1675 		if (tag == NULL) {
1676 			m_freem(m);
1677 			return;
1678 		}
1679 		*(unsigned short *)(tag + 1) = saf;
1680 		m_tag_prepend(m, tag);
1681 	}
1682 #ifdef VIMAGE
1683 	if (V_loif)
1684 		m->m_pkthdr.rcvif = V_loif;
1685 	else {
1686 		m_freem(m);
1687 		return;
1688 	}
1689 #endif
1690 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1691 }
1692 
1693 /*
1694  * Checks if rte can be exported v.r.t jails/vnets.
1695  *
1696  * Returns 1 if it can, 0 otherwise.
1697  */
1698 static int
1699 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt)
1700 {
1701 
1702 	if ((rt->rt_flags & RTF_HOST) == 0
1703 	    ? jailed_without_vnet(td_ucred)
1704 	    : prison_if(td_ucred, rt_key_const(rt)) != 0)
1705 		return (0);
1706 	return (1);
1707 }
1708 
1709 /*
1710  * This is used in dumping the kernel table via sysctl().
1711  */
1712 static int
1713 sysctl_dumpentry(struct radix_node *rn, void *vw)
1714 {
1715 	struct walkarg *w = vw;
1716 	struct rtentry *rt = (struct rtentry *)rn;
1717 	struct nhop_object *nh;
1718 	int error = 0, size;
1719 	struct rt_addrinfo info;
1720 	struct sockaddr_storage ss;
1721 
1722 	NET_EPOCH_ASSERT();
1723 
1724 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1725 		return 0;
1726 	if (!can_export_rte(w->w_req->td->td_ucred, rt))
1727 		return (0);
1728 	bzero((caddr_t)&info, sizeof(info));
1729 	info.rti_info[RTAX_DST] = rt_key(rt);
1730 	info.rti_info[RTAX_GATEWAY] = &rt->rt_nhop->gw_sa;
1731 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
1732 	    rt_mask(rt), &ss);
1733 	info.rti_info[RTAX_GENMASK] = 0;
1734 	nh = rt->rt_nhop;
1735 	if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) {
1736 		info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr;
1737 		info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
1738 		if (nh->nh_ifp->if_flags & IFF_POINTOPOINT)
1739 			info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr;
1740 	}
1741 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1742 		return (error);
1743 	if (w->w_req && w->w_tmem) {
1744 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1745 
1746 		bzero(&rtm->rtm_index,
1747 		    sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
1748 		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
1749 			rtm->rtm_flags = RTF_GATEWAY |
1750 				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
1751 		else
1752 			rtm->rtm_flags = rt->rt_flags;
1753 		rtm->rtm_flags |= nhop_get_rtflags(nh);
1754 		rt_getmetrics(rt, &rtm->rtm_rmx);
1755 		rtm->rtm_index = nh->nh_ifp->if_index;
1756 		rtm->rtm_addrs = info.rti_addrs;
1757 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1758 		return (error);
1759 	}
1760 	return (error);
1761 }
1762 
1763 static int
1764 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
1765     struct rt_addrinfo *info, struct walkarg *w, int len)
1766 {
1767 	struct if_msghdrl *ifm;
1768 	struct if_data *ifd;
1769 
1770 	ifm = (struct if_msghdrl *)w->w_tmem;
1771 
1772 #ifdef COMPAT_FREEBSD32
1773 	if (w->w_req->flags & SCTL_MASK32) {
1774 		struct if_msghdrl32 *ifm32;
1775 
1776 		ifm32 = (struct if_msghdrl32 *)ifm;
1777 		ifm32->ifm_addrs = info->rti_addrs;
1778 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1779 		ifm32->ifm_index = ifp->if_index;
1780 		ifm32->_ifm_spare1 = 0;
1781 		ifm32->ifm_len = sizeof(*ifm32);
1782 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1783 		ifm32->_ifm_spare2 = 0;
1784 		ifd = &ifm32->ifm_data;
1785 	} else
1786 #endif
1787 	{
1788 		ifm->ifm_addrs = info->rti_addrs;
1789 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1790 		ifm->ifm_index = ifp->if_index;
1791 		ifm->_ifm_spare1 = 0;
1792 		ifm->ifm_len = sizeof(*ifm);
1793 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1794 		ifm->_ifm_spare2 = 0;
1795 		ifd = &ifm->ifm_data;
1796 	}
1797 
1798 	memcpy(ifd, src_ifd, sizeof(*ifd));
1799 
1800 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1801 }
1802 
1803 static int
1804 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
1805     struct rt_addrinfo *info, struct walkarg *w, int len)
1806 {
1807 	struct if_msghdr *ifm;
1808 	struct if_data *ifd;
1809 
1810 	ifm = (struct if_msghdr *)w->w_tmem;
1811 
1812 #ifdef COMPAT_FREEBSD32
1813 	if (w->w_req->flags & SCTL_MASK32) {
1814 		struct if_msghdr32 *ifm32;
1815 
1816 		ifm32 = (struct if_msghdr32 *)ifm;
1817 		ifm32->ifm_addrs = info->rti_addrs;
1818 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1819 		ifm32->ifm_index = ifp->if_index;
1820 		ifm32->_ifm_spare1 = 0;
1821 		ifd = &ifm32->ifm_data;
1822 	} else
1823 #endif
1824 	{
1825 		ifm->ifm_addrs = info->rti_addrs;
1826 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1827 		ifm->ifm_index = ifp->if_index;
1828 		ifm->_ifm_spare1 = 0;
1829 		ifd = &ifm->ifm_data;
1830 	}
1831 
1832 	memcpy(ifd, src_ifd, sizeof(*ifd));
1833 
1834 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1835 }
1836 
1837 static int
1838 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1839     struct walkarg *w, int len)
1840 {
1841 	struct ifa_msghdrl *ifam;
1842 	struct if_data *ifd;
1843 
1844 	ifam = (struct ifa_msghdrl *)w->w_tmem;
1845 
1846 #ifdef COMPAT_FREEBSD32
1847 	if (w->w_req->flags & SCTL_MASK32) {
1848 		struct ifa_msghdrl32 *ifam32;
1849 
1850 		ifam32 = (struct ifa_msghdrl32 *)ifam;
1851 		ifam32->ifam_addrs = info->rti_addrs;
1852 		ifam32->ifam_flags = ifa->ifa_flags;
1853 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
1854 		ifam32->_ifam_spare1 = 0;
1855 		ifam32->ifam_len = sizeof(*ifam32);
1856 		ifam32->ifam_data_off =
1857 		    offsetof(struct ifa_msghdrl32, ifam_data);
1858 		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
1859 		ifd = &ifam32->ifam_data;
1860 	} else
1861 #endif
1862 	{
1863 		ifam->ifam_addrs = info->rti_addrs;
1864 		ifam->ifam_flags = ifa->ifa_flags;
1865 		ifam->ifam_index = ifa->ifa_ifp->if_index;
1866 		ifam->_ifam_spare1 = 0;
1867 		ifam->ifam_len = sizeof(*ifam);
1868 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1869 		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1870 		ifd = &ifam->ifam_data;
1871 	}
1872 
1873 	bzero(ifd, sizeof(*ifd));
1874 	ifd->ifi_datalen = sizeof(struct if_data);
1875 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
1876 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
1877 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
1878 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
1879 
1880 	/* Fixup if_data carp(4) vhid. */
1881 	if (carp_get_vhid_p != NULL)
1882 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
1883 
1884 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1885 }
1886 
1887 static int
1888 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1889     struct walkarg *w, int len)
1890 {
1891 	struct ifa_msghdr *ifam;
1892 
1893 	ifam = (struct ifa_msghdr *)w->w_tmem;
1894 	ifam->ifam_addrs = info->rti_addrs;
1895 	ifam->ifam_flags = ifa->ifa_flags;
1896 	ifam->ifam_index = ifa->ifa_ifp->if_index;
1897 	ifam->_ifam_spare1 = 0;
1898 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1899 
1900 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1901 }
1902 
1903 static int
1904 sysctl_iflist(int af, struct walkarg *w)
1905 {
1906 	struct ifnet *ifp;
1907 	struct ifaddr *ifa;
1908 	struct if_data ifd;
1909 	struct rt_addrinfo info;
1910 	int len, error = 0;
1911 	struct sockaddr_storage ss;
1912 
1913 	bzero((caddr_t)&info, sizeof(info));
1914 	bzero(&ifd, sizeof(ifd));
1915 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1916 		if (w->w_arg && w->w_arg != ifp->if_index)
1917 			continue;
1918 		if_data_copy(ifp, &ifd);
1919 		ifa = ifp->if_addr;
1920 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1921 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
1922 		if (error != 0)
1923 			goto done;
1924 		info.rti_info[RTAX_IFP] = NULL;
1925 		if (w->w_req && w->w_tmem) {
1926 			if (w->w_op == NET_RT_IFLISTL)
1927 				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
1928 				    len);
1929 			else
1930 				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
1931 				    len);
1932 			if (error)
1933 				goto done;
1934 		}
1935 		while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
1936 			if (af && af != ifa->ifa_addr->sa_family)
1937 				continue;
1938 			if (prison_if(w->w_req->td->td_ucred,
1939 			    ifa->ifa_addr) != 0)
1940 				continue;
1941 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1942 			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1943 			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
1944 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1945 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
1946 			if (error != 0)
1947 				goto done;
1948 			if (w->w_req && w->w_tmem) {
1949 				if (w->w_op == NET_RT_IFLISTL)
1950 					error = sysctl_iflist_ifaml(ifa, &info,
1951 					    w, len);
1952 				else
1953 					error = sysctl_iflist_ifam(ifa, &info,
1954 					    w, len);
1955 				if (error)
1956 					goto done;
1957 			}
1958 		}
1959 		info.rti_info[RTAX_IFA] = NULL;
1960 		info.rti_info[RTAX_NETMASK] = NULL;
1961 		info.rti_info[RTAX_BRD] = NULL;
1962 	}
1963 done:
1964 	return (error);
1965 }
1966 
1967 static int
1968 sysctl_ifmalist(int af, struct walkarg *w)
1969 {
1970 	struct rt_addrinfo info;
1971 	struct ifaddr *ifa;
1972 	struct ifmultiaddr *ifma;
1973 	struct ifnet *ifp;
1974 	int error, len;
1975 
1976 	NET_EPOCH_ASSERT();
1977 
1978 	error = 0;
1979 	bzero((caddr_t)&info, sizeof(info));
1980 
1981 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1982 		if (w->w_arg && w->w_arg != ifp->if_index)
1983 			continue;
1984 		ifa = ifp->if_addr;
1985 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1986 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1987 			if (af && af != ifma->ifma_addr->sa_family)
1988 				continue;
1989 			if (prison_if(w->w_req->td->td_ucred,
1990 			    ifma->ifma_addr) != 0)
1991 				continue;
1992 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1993 			info.rti_info[RTAX_GATEWAY] =
1994 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1995 			    ifma->ifma_lladdr : NULL;
1996 			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
1997 			if (error != 0)
1998 				break;
1999 			if (w->w_req && w->w_tmem) {
2000 				struct ifma_msghdr *ifmam;
2001 
2002 				ifmam = (struct ifma_msghdr *)w->w_tmem;
2003 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
2004 				ifmam->ifmam_flags = 0;
2005 				ifmam->ifmam_addrs = info.rti_addrs;
2006 				ifmam->_ifmam_spare1 = 0;
2007 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
2008 				if (error != 0)
2009 					break;
2010 			}
2011 		}
2012 		if (error != 0)
2013 			break;
2014 	}
2015 	return (error);
2016 }
2017 
2018 static int
2019 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2020 {
2021 	RIB_RLOCK_TRACKER;
2022 	struct epoch_tracker et;
2023 	int	*name = (int *)arg1;
2024 	u_int	namelen = arg2;
2025 	struct rib_head *rnh = NULL; /* silence compiler. */
2026 	int	i, lim, error = EINVAL;
2027 	int	fib = 0;
2028 	u_char	af;
2029 	struct	walkarg w;
2030 
2031 	name ++;
2032 	namelen--;
2033 	if (req->newptr)
2034 		return (EPERM);
2035 	if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP) {
2036 		if (namelen == 3)
2037 			fib = req->td->td_proc->p_fibnum;
2038 		else if (namelen == 4)
2039 			fib = (name[3] == RT_ALL_FIBS) ?
2040 			    req->td->td_proc->p_fibnum : name[3];
2041 		else
2042 			return ((namelen < 3) ? EISDIR : ENOTDIR);
2043 		if (fib < 0 || fib >= rt_numfibs)
2044 			return (EINVAL);
2045 	} else if (namelen != 3)
2046 		return ((namelen < 3) ? EISDIR : ENOTDIR);
2047 	af = name[0];
2048 	if (af > AF_MAX)
2049 		return (EINVAL);
2050 	bzero(&w, sizeof(w));
2051 	w.w_op = name[1];
2052 	w.w_arg = name[2];
2053 	w.w_req = req;
2054 
2055 	error = sysctl_wire_old_buffer(req, 0);
2056 	if (error)
2057 		return (error);
2058 
2059 	/*
2060 	 * Allocate reply buffer in advance.
2061 	 * All rtsock messages has maximum length of u_short.
2062 	 */
2063 	w.w_tmemsize = 65536;
2064 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2065 
2066 	NET_EPOCH_ENTER(et);
2067 	switch (w.w_op) {
2068 	case NET_RT_DUMP:
2069 	case NET_RT_FLAGS:
2070 		if (af == 0) {			/* dump all tables */
2071 			i = 1;
2072 			lim = AF_MAX;
2073 		} else				/* dump only one table */
2074 			i = lim = af;
2075 
2076 		/*
2077 		 * take care of llinfo entries, the caller must
2078 		 * specify an AF
2079 		 */
2080 		if (w.w_op == NET_RT_FLAGS &&
2081 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2082 			if (af != 0)
2083 				error = lltable_sysctl_dumparp(af, w.w_req);
2084 			else
2085 				error = EINVAL;
2086 			break;
2087 		}
2088 		/*
2089 		 * take care of routing entries
2090 		 */
2091 		for (error = 0; error == 0 && i <= lim; i++) {
2092 			rnh = rt_tables_get_rnh(fib, i);
2093 			if (rnh != NULL) {
2094 				RIB_RLOCK(rnh);
2095 			    	error = rnh->rnh_walktree(&rnh->head,
2096 				    sysctl_dumpentry, &w);
2097 				RIB_RUNLOCK(rnh);
2098 			} else if (af != 0)
2099 				error = EAFNOSUPPORT;
2100 		}
2101 		break;
2102 	case NET_RT_NHOP:
2103 		/* Allow dumping one specific af/fib at a time */
2104 		if (namelen < 4) {
2105 			error = EINVAL;
2106 			break;
2107 		}
2108 		fib = name[3];
2109 		if (fib < 0 || fib > rt_numfibs) {
2110 			error = EINVAL;
2111 			break;
2112 		}
2113 		rnh = rt_tables_get_rnh(fib, af);
2114 		if (rnh == NULL) {
2115 			error = EAFNOSUPPORT;
2116 			break;
2117 		}
2118 		if (w.w_op == NET_RT_NHOP)
2119 			error = nhops_dump_sysctl(rnh, w.w_req);
2120 		break;
2121 	case NET_RT_IFLIST:
2122 	case NET_RT_IFLISTL:
2123 		error = sysctl_iflist(af, &w);
2124 		break;
2125 
2126 	case NET_RT_IFMALIST:
2127 		error = sysctl_ifmalist(af, &w);
2128 		break;
2129 	}
2130 	NET_EPOCH_EXIT(et);
2131 
2132 	free(w.w_tmem, M_TEMP);
2133 	return (error);
2134 }
2135 
2136 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2137     sysctl_rtsock, "Return route tables and interface/address lists");
2138 
2139 /*
2140  * Definitions of protocols supported in the ROUTE domain.
2141  */
2142 
2143 static struct domain routedomain;		/* or at least forward */
2144 
2145 static struct protosw routesw[] = {
2146 {
2147 	.pr_type =		SOCK_RAW,
2148 	.pr_domain =		&routedomain,
2149 	.pr_flags =		PR_ATOMIC|PR_ADDR,
2150 	.pr_output =		route_output,
2151 	.pr_ctlinput =		raw_ctlinput,
2152 	.pr_init =		raw_init,
2153 	.pr_usrreqs =		&route_usrreqs
2154 }
2155 };
2156 
2157 static struct domain routedomain = {
2158 	.dom_family =		PF_ROUTE,
2159 	.dom_name =		 "route",
2160 	.dom_protosw =		routesw,
2161 	.dom_protoswNPROTOSW =	&routesw[nitems(routesw)]
2162 };
2163 
2164 VNET_DOMAIN_SET(route);
2165 
2166