1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_route.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/eventhandler.h> 43 #include <sys/domain.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 #include <sys/protosw.h> 50 #include <sys/rmlock.h> 51 #include <sys/rwlock.h> 52 #include <sys/signalvar.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/sysctl.h> 56 #include <sys/systm.h> 57 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #include <net/if_dl.h> 61 #include <net/if_llatbl.h> 62 #include <net/if_types.h> 63 #include <net/netisr.h> 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/route_var.h> 67 #include <net/vnet.h> 68 69 #include <netinet/in.h> 70 #include <netinet/if_ether.h> 71 #include <netinet/ip_carp.h> 72 #ifdef INET6 73 #include <netinet6/in6_var.h> 74 #include <netinet6/ip6_var.h> 75 #include <netinet6/scope6_var.h> 76 #endif 77 #include <net/route/nhop.h> 78 79 #define DEBUG_MOD_NAME rtsock 80 #define DEBUG_MAX_LEVEL LOG_DEBUG 81 #include <net/route/route_debug.h> 82 _DECLARE_DEBUG(LOG_INFO); 83 84 #ifdef COMPAT_FREEBSD32 85 #include <sys/mount.h> 86 #include <compat/freebsd32/freebsd32.h> 87 88 struct if_msghdr32 { 89 uint16_t ifm_msglen; 90 uint8_t ifm_version; 91 uint8_t ifm_type; 92 int32_t ifm_addrs; 93 int32_t ifm_flags; 94 uint16_t ifm_index; 95 uint16_t _ifm_spare1; 96 struct if_data ifm_data; 97 }; 98 99 struct if_msghdrl32 { 100 uint16_t ifm_msglen; 101 uint8_t ifm_version; 102 uint8_t ifm_type; 103 int32_t ifm_addrs; 104 int32_t ifm_flags; 105 uint16_t ifm_index; 106 uint16_t _ifm_spare1; 107 uint16_t ifm_len; 108 uint16_t ifm_data_off; 109 uint32_t _ifm_spare2; 110 struct if_data ifm_data; 111 }; 112 113 struct ifa_msghdrl32 { 114 uint16_t ifam_msglen; 115 uint8_t ifam_version; 116 uint8_t ifam_type; 117 int32_t ifam_addrs; 118 int32_t ifam_flags; 119 uint16_t ifam_index; 120 uint16_t _ifam_spare1; 121 uint16_t ifam_len; 122 uint16_t ifam_data_off; 123 int32_t ifam_metric; 124 struct if_data ifam_data; 125 }; 126 127 #define SA_SIZE32(sa) \ 128 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 129 sizeof(int) : \ 130 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 131 132 #endif /* COMPAT_FREEBSD32 */ 133 134 struct linear_buffer { 135 char *base; /* Base allocated memory pointer */ 136 uint32_t offset; /* Currently used offset */ 137 uint32_t size; /* Total buffer size */ 138 }; 139 #define SCRATCH_BUFFER_SIZE 1024 140 141 #define RTS_PID_LOG(_l, _fmt, ...) RT_LOG_##_l(_l, "PID %d: " _fmt, curproc ? curproc->p_pid : 0, ## __VA_ARGS__) 142 143 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 144 145 /* NB: these are not modified */ 146 static struct sockaddr route_src = { 2, PF_ROUTE, }; 147 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 148 149 /* These are external hooks for CARP. */ 150 int (*carp_get_vhid_p)(struct ifaddr *); 151 152 /* 153 * Used by rtsock callback code to decide whether to filter the update 154 * notification to a socket bound to a particular FIB. 155 */ 156 #define RTS_FILTER_FIB M_PROTO8 157 /* 158 * Used to store address family of the notification. 159 */ 160 #define m_rtsock_family m_pkthdr.PH_loc.eight[0] 161 162 struct rcb { 163 LIST_ENTRY(rcb) list; 164 struct socket *rcb_socket; 165 sa_family_t rcb_family; 166 }; 167 168 typedef struct { 169 LIST_HEAD(, rcb) cblist; 170 int ip_count; /* attached w/ AF_INET */ 171 int ip6_count; /* attached w/ AF_INET6 */ 172 int any_count; /* total attached */ 173 } route_cb_t; 174 VNET_DEFINE_STATIC(route_cb_t, route_cb); 175 #define V_route_cb VNET(route_cb) 176 177 struct mtx rtsock_mtx; 178 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 179 180 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 181 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 182 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 183 184 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 185 186 struct walkarg { 187 int family; 188 int w_tmemsize; 189 int w_op, w_arg; 190 caddr_t w_tmem; 191 struct sysctl_req *w_req; 192 struct sockaddr *dst; 193 struct sockaddr *mask; 194 }; 195 196 static void rts_input(struct mbuf *m); 197 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 198 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 199 struct walkarg *w, int *plen); 200 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 201 struct rt_addrinfo *rtinfo); 202 static int cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb); 203 static int sysctl_dumpentry(struct rtentry *rt, void *vw); 204 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 205 uint32_t weight, struct walkarg *w); 206 static int sysctl_iflist(int af, struct walkarg *w); 207 static int sysctl_ifmalist(int af, struct walkarg *w); 208 static void rt_getmetrics(const struct rtentry *rt, 209 const struct nhop_object *nh, struct rt_metrics *out); 210 static void rt_dispatch(struct mbuf *, sa_family_t); 211 static void rt_ifannouncemsg(struct ifnet *ifp, int what); 212 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 213 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 214 static int update_rtm_from_rc(struct rt_addrinfo *info, 215 struct rt_msghdr **prtm, int alloc_len, 216 struct rib_cmd_info *rc, struct nhop_object *nh); 217 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 218 struct mbuf *m, sa_family_t saf, u_int fibnum, 219 int rtm_errno); 220 static bool can_export_rte(struct ucred *td_ucred, bool rt_is_host, 221 const struct sockaddr *rt_dst); 222 static void rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc); 223 static void rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask); 224 225 static struct netisr_handler rtsock_nh = { 226 .nh_name = "rtsock", 227 .nh_handler = rts_input, 228 .nh_proto = NETISR_ROUTE, 229 .nh_policy = NETISR_POLICY_SOURCE, 230 }; 231 232 static int 233 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 234 { 235 int error, qlimit; 236 237 netisr_getqlimit(&rtsock_nh, &qlimit); 238 error = sysctl_handle_int(oidp, &qlimit, 0, req); 239 if (error || !req->newptr) 240 return (error); 241 if (qlimit < 1) 242 return (EINVAL); 243 return (netisr_setqlimit(&rtsock_nh, qlimit)); 244 } 245 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 246 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 247 0, 0, sysctl_route_netisr_maxqlen, "I", 248 "maximum routing socket dispatch queue length"); 249 250 static void 251 vnet_rts_init(void) 252 { 253 int tmp; 254 255 if (IS_DEFAULT_VNET(curvnet)) { 256 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 257 rtsock_nh.nh_qlimit = tmp; 258 netisr_register(&rtsock_nh); 259 } 260 #ifdef VIMAGE 261 else 262 netisr_register_vnet(&rtsock_nh); 263 #endif 264 } 265 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 266 vnet_rts_init, 0); 267 268 #ifdef VIMAGE 269 static void 270 vnet_rts_uninit(void) 271 { 272 273 netisr_unregister_vnet(&rtsock_nh); 274 } 275 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 276 vnet_rts_uninit, 0); 277 #endif 278 279 static void 280 report_route_event(const struct rib_cmd_info *rc, void *_cbdata) 281 { 282 uint32_t fibnum = (uint32_t)(uintptr_t)_cbdata; 283 struct nhop_object *nh; 284 285 nh = rc->rc_cmd == RTM_DELETE ? rc->rc_nh_old : rc->rc_nh_new; 286 rt_routemsg(rc->rc_cmd, rc->rc_rt, nh, fibnum); 287 } 288 289 static void 290 rts_handle_route_event(uint32_t fibnum, const struct rib_cmd_info *rc) 291 { 292 #ifdef ROUTE_MPATH 293 if ((rc->rc_nh_new && NH_IS_NHGRP(rc->rc_nh_new)) || 294 (rc->rc_nh_old && NH_IS_NHGRP(rc->rc_nh_old))) { 295 rib_decompose_notification(rc, report_route_event, 296 (void *)(uintptr_t)fibnum); 297 } else 298 #endif 299 report_route_event(rc, (void *)(uintptr_t)fibnum); 300 } 301 static struct rtbridge rtsbridge = { 302 .route_f = rts_handle_route_event, 303 .ifmsg_f = rtsock_ifmsg, 304 }; 305 static struct rtbridge *rtsbridge_orig_p; 306 307 static void 308 rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc) 309 { 310 netlink_callback_p->route_f(fibnum, rc); 311 } 312 313 static void 314 rtsock_init(void) 315 { 316 rtsbridge_orig_p = rtsock_callback_p; 317 rtsock_callback_p = &rtsbridge; 318 } 319 SYSINIT(rtsock_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rtsock_init, NULL); 320 321 static void 322 rts_handle_ifnet_arrival(void *arg __unused, struct ifnet *ifp) 323 { 324 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 325 } 326 EVENTHANDLER_DEFINE(ifnet_arrival_event, rts_handle_ifnet_arrival, NULL, 0); 327 328 static void 329 rts_handle_ifnet_departure(void *arg __unused, struct ifnet *ifp) 330 { 331 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 332 } 333 EVENTHANDLER_DEFINE(ifnet_departure_event, rts_handle_ifnet_departure, NULL, 0); 334 335 static void 336 rts_append_data(struct socket *so, struct mbuf *m) 337 { 338 339 if (sbappendaddr(&so->so_rcv, &route_src, m, NULL) == 0) { 340 soroverflow(so); 341 m_freem(m); 342 } else 343 sorwakeup(so); 344 } 345 346 static void 347 rts_input(struct mbuf *m) 348 { 349 struct rcb *rcb; 350 struct socket *last; 351 352 last = NULL; 353 RTSOCK_LOCK(); 354 LIST_FOREACH(rcb, &V_route_cb.cblist, list) { 355 if (rcb->rcb_family != AF_UNSPEC && 356 rcb->rcb_family != m->m_rtsock_family) 357 continue; 358 if ((m->m_flags & RTS_FILTER_FIB) && 359 M_GETFIB(m) != rcb->rcb_socket->so_fibnum) 360 continue; 361 if (last != NULL) { 362 struct mbuf *n; 363 364 n = m_copym(m, 0, M_COPYALL, M_NOWAIT); 365 if (n != NULL) 366 rts_append_data(last, n); 367 } 368 last = rcb->rcb_socket; 369 } 370 if (last != NULL) 371 rts_append_data(last, m); 372 else 373 m_freem(m); 374 RTSOCK_UNLOCK(); 375 } 376 377 static void 378 rts_close(struct socket *so) 379 { 380 381 soisdisconnected(so); 382 } 383 384 static SYSCTL_NODE(_net, OID_AUTO, rtsock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 385 "Routing socket infrastructure"); 386 static u_long rts_sendspace = 8192; 387 SYSCTL_ULONG(_net_rtsock, OID_AUTO, sendspace, CTLFLAG_RW, &rts_sendspace, 0, 388 "Default routing socket send space"); 389 static u_long rts_recvspace = 8192; 390 SYSCTL_ULONG(_net_rtsock, OID_AUTO, recvspace, CTLFLAG_RW, &rts_recvspace, 0, 391 "Default routing socket receive space"); 392 393 static int 394 rts_attach(struct socket *so, int proto, struct thread *td) 395 { 396 struct rcb *rcb; 397 int error; 398 399 error = soreserve(so, rts_sendspace, rts_recvspace); 400 if (error) 401 return (error); 402 403 rcb = malloc(sizeof(*rcb), M_PCB, M_WAITOK); 404 rcb->rcb_socket = so; 405 rcb->rcb_family = proto; 406 407 so->so_pcb = rcb; 408 so->so_fibnum = td->td_proc->p_fibnum; 409 so->so_options |= SO_USELOOPBACK; 410 411 RTSOCK_LOCK(); 412 LIST_INSERT_HEAD(&V_route_cb.cblist, rcb, list); 413 switch (proto) { 414 case AF_INET: 415 V_route_cb.ip_count++; 416 break; 417 case AF_INET6: 418 V_route_cb.ip6_count++; 419 break; 420 } 421 V_route_cb.any_count++; 422 RTSOCK_UNLOCK(); 423 soisconnected(so); 424 425 return (0); 426 } 427 428 static void 429 rts_detach(struct socket *so) 430 { 431 struct rcb *rcb = so->so_pcb; 432 433 RTSOCK_LOCK(); 434 LIST_REMOVE(rcb, list); 435 switch(rcb->rcb_family) { 436 case AF_INET: 437 V_route_cb.ip_count--; 438 break; 439 case AF_INET6: 440 V_route_cb.ip6_count--; 441 break; 442 } 443 V_route_cb.any_count--; 444 RTSOCK_UNLOCK(); 445 free(rcb, M_PCB); 446 so->so_pcb = NULL; 447 } 448 449 static int 450 rts_disconnect(struct socket *so) 451 { 452 453 return (ENOTCONN); 454 } 455 456 static int 457 rts_shutdown(struct socket *so) 458 { 459 460 socantsendmore(so); 461 return (0); 462 } 463 464 #ifndef _SOCKADDR_UNION_DEFINED 465 #define _SOCKADDR_UNION_DEFINED 466 /* 467 * The union of all possible address formats we handle. 468 */ 469 union sockaddr_union { 470 struct sockaddr sa; 471 struct sockaddr_in sin; 472 struct sockaddr_in6 sin6; 473 }; 474 #endif /* _SOCKADDR_UNION_DEFINED */ 475 476 static int 477 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 478 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 479 { 480 #if defined(INET) || defined(INET6) 481 struct epoch_tracker et; 482 #endif 483 484 /* First, see if the returned address is part of the jail. */ 485 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 486 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 487 return (0); 488 } 489 490 switch (info->rti_info[RTAX_DST]->sa_family) { 491 #ifdef INET 492 case AF_INET: 493 { 494 struct in_addr ia; 495 struct ifaddr *ifa; 496 int found; 497 498 found = 0; 499 /* 500 * Try to find an address on the given outgoing interface 501 * that belongs to the jail. 502 */ 503 NET_EPOCH_ENTER(et); 504 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 505 struct sockaddr *sa; 506 sa = ifa->ifa_addr; 507 if (sa->sa_family != AF_INET) 508 continue; 509 ia = ((struct sockaddr_in *)sa)->sin_addr; 510 if (prison_check_ip4(cred, &ia) == 0) { 511 found = 1; 512 break; 513 } 514 } 515 NET_EPOCH_EXIT(et); 516 if (!found) { 517 /* 518 * As a last resort return the 'default' jail address. 519 */ 520 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 521 sin_addr; 522 if (prison_get_ip4(cred, &ia) != 0) 523 return (ESRCH); 524 } 525 bzero(&saun->sin, sizeof(struct sockaddr_in)); 526 saun->sin.sin_len = sizeof(struct sockaddr_in); 527 saun->sin.sin_family = AF_INET; 528 saun->sin.sin_addr.s_addr = ia.s_addr; 529 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 530 break; 531 } 532 #endif 533 #ifdef INET6 534 case AF_INET6: 535 { 536 struct in6_addr ia6; 537 struct ifaddr *ifa; 538 int found; 539 540 found = 0; 541 /* 542 * Try to find an address on the given outgoing interface 543 * that belongs to the jail. 544 */ 545 NET_EPOCH_ENTER(et); 546 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 547 struct sockaddr *sa; 548 sa = ifa->ifa_addr; 549 if (sa->sa_family != AF_INET6) 550 continue; 551 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 552 &ia6, sizeof(struct in6_addr)); 553 if (prison_check_ip6(cred, &ia6) == 0) { 554 found = 1; 555 break; 556 } 557 } 558 NET_EPOCH_EXIT(et); 559 if (!found) { 560 /* 561 * As a last resort return the 'default' jail address. 562 */ 563 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 564 sin6_addr; 565 if (prison_get_ip6(cred, &ia6) != 0) 566 return (ESRCH); 567 } 568 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 569 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 570 saun->sin6.sin6_family = AF_INET6; 571 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 572 if (sa6_recoverscope(&saun->sin6) != 0) 573 return (ESRCH); 574 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 575 break; 576 } 577 #endif 578 default: 579 return (ESRCH); 580 } 581 return (0); 582 } 583 584 static int 585 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun) 586 { 587 struct ifaddr *ifa; 588 sa_family_t saf; 589 590 if (V_loif == NULL) { 591 RTS_PID_LOG(LOG_INFO, "Unable to add blackhole/reject nhop without loopback"); 592 return (ENOTSUP); 593 } 594 info->rti_ifp = V_loif; 595 596 saf = info->rti_info[RTAX_DST]->sa_family; 597 598 CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) { 599 if (ifa->ifa_addr->sa_family == saf) { 600 info->rti_ifa = ifa; 601 break; 602 } 603 } 604 if (info->rti_ifa == NULL) { 605 RTS_PID_LOG(LOG_INFO, "Unable to find ifa for blackhole/reject nhop"); 606 return (ENOTSUP); 607 } 608 609 bzero(saun, sizeof(union sockaddr_union)); 610 switch (saf) { 611 #ifdef INET 612 case AF_INET: 613 saun->sin.sin_family = AF_INET; 614 saun->sin.sin_len = sizeof(struct sockaddr_in); 615 saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 616 break; 617 #endif 618 #ifdef INET6 619 case AF_INET6: 620 saun->sin6.sin6_family = AF_INET6; 621 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 622 saun->sin6.sin6_addr = in6addr_loopback; 623 break; 624 #endif 625 default: 626 RTS_PID_LOG(LOG_INFO, "unsupported family: %d", saf); 627 return (ENOTSUP); 628 } 629 info->rti_info[RTAX_GATEWAY] = &saun->sa; 630 info->rti_flags |= RTF_GATEWAY; 631 632 return (0); 633 } 634 635 /* 636 * Fills in @info based on userland-provided @rtm message. 637 * 638 * Returns 0 on success. 639 */ 640 static int 641 fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum, 642 struct rt_addrinfo *info) 643 { 644 int error; 645 646 rtm->rtm_pid = curproc->p_pid; 647 info->rti_addrs = rtm->rtm_addrs; 648 649 info->rti_mflags = rtm->rtm_inits; 650 info->rti_rmx = &rtm->rtm_rmx; 651 652 /* 653 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 654 * link-local address because rtrequest requires addresses with 655 * embedded scope id. 656 */ 657 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 658 return (EINVAL); 659 660 info->rti_flags = rtm->rtm_flags; 661 error = cleanup_xaddrs(info, lb); 662 if (error != 0) 663 return (error); 664 /* 665 * Verify that the caller has the appropriate privilege; RTM_GET 666 * is the only operation the non-superuser is allowed. 667 */ 668 if (rtm->rtm_type != RTM_GET) { 669 error = priv_check(curthread, PRIV_NET_ROUTE); 670 if (error != 0) 671 return (error); 672 } 673 674 /* 675 * The given gateway address may be an interface address. 676 * For example, issuing a "route change" command on a route 677 * entry that was created from a tunnel, and the gateway 678 * address given is the local end point. In this case the 679 * RTF_GATEWAY flag must be cleared or the destination will 680 * not be reachable even though there is no error message. 681 */ 682 if (info->rti_info[RTAX_GATEWAY] != NULL && 683 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 684 struct nhop_object *nh; 685 686 /* 687 * A host route through the loopback interface is 688 * installed for each interface adddress. In pre 8.0 689 * releases the interface address of a PPP link type 690 * is not reachable locally. This behavior is fixed as 691 * part of the new L2/L3 redesign and rewrite work. The 692 * signature of this interface address route is the 693 * AF_LINK sa_family type of the gateway, and the 694 * rt_ifp has the IFF_LOOPBACK flag set. 695 */ 696 nh = rib_lookup(fibnum, info->rti_info[RTAX_GATEWAY], NHR_NONE, 0); 697 if (nh != NULL && nh->gw_sa.sa_family == AF_LINK && 698 nh->nh_ifp->if_flags & IFF_LOOPBACK) { 699 info->rti_flags &= ~RTF_GATEWAY; 700 info->rti_flags |= RTF_GWFLAG_COMPAT; 701 } 702 } 703 704 return (0); 705 } 706 707 static struct nhop_object * 708 select_nhop(struct nhop_object *nh, const struct sockaddr *gw) 709 { 710 if (!NH_IS_NHGRP(nh)) 711 return (nh); 712 #ifdef ROUTE_MPATH 713 const struct weightened_nhop *wn; 714 uint32_t num_nhops; 715 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 716 if (gw == NULL) 717 return (wn[0].nh); 718 for (int i = 0; i < num_nhops; i++) { 719 if (match_nhop_gw(wn[i].nh, gw)) 720 return (wn[i].nh); 721 } 722 #endif 723 return (NULL); 724 } 725 726 /* 727 * Handles RTM_GET message from routing socket, returning matching rt. 728 * 729 * Returns: 730 * 0 on success, with locked and referenced matching rt in @rt_nrt 731 * errno of failure 732 */ 733 static int 734 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 735 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 736 { 737 RIB_RLOCK_TRACKER; 738 struct rib_head *rnh; 739 struct nhop_object *nh; 740 sa_family_t saf; 741 742 saf = info->rti_info[RTAX_DST]->sa_family; 743 744 rnh = rt_tables_get_rnh(fibnum, saf); 745 if (rnh == NULL) 746 return (EAFNOSUPPORT); 747 748 RIB_RLOCK(rnh); 749 750 /* 751 * By (implicit) convention host route (one without netmask) 752 * means longest-prefix-match request and the route with netmask 753 * means exact-match lookup. 754 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128 755 * prefixes, use original data to check for the netmask presence. 756 */ 757 if ((rtm->rtm_addrs & RTA_NETMASK) == 0) { 758 /* 759 * Provide longest prefix match for 760 * address lookup (no mask). 761 * 'route -n get addr' 762 */ 763 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 764 info->rti_info[RTAX_DST], &rnh->head); 765 } else 766 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 767 info->rti_info[RTAX_DST], 768 info->rti_info[RTAX_NETMASK], &rnh->head); 769 770 if (rc->rc_rt == NULL) { 771 RIB_RUNLOCK(rnh); 772 return (ESRCH); 773 } 774 775 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 776 if (nh == NULL) { 777 RIB_RUNLOCK(rnh); 778 return (ESRCH); 779 } 780 /* 781 * If performing proxied L2 entry insertion, and 782 * the actual PPP host entry is found, perform 783 * another search to retrieve the prefix route of 784 * the local end point of the PPP link. 785 * TODO: move this logic to userland. 786 */ 787 if (rtm->rtm_flags & RTF_ANNOUNCE) { 788 struct sockaddr_storage laddr; 789 790 if (nh->nh_ifp != NULL && 791 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 792 struct ifaddr *ifa; 793 794 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 795 RT_ALL_FIBS); 796 if (ifa != NULL) 797 rt_maskedcopy(ifa->ifa_addr, 798 (struct sockaddr *)&laddr, 799 ifa->ifa_netmask); 800 } else 801 rt_maskedcopy(nh->nh_ifa->ifa_addr, 802 (struct sockaddr *)&laddr, 803 nh->nh_ifa->ifa_netmask); 804 /* 805 * refactor rt and no lock operation necessary 806 */ 807 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr( 808 (struct sockaddr *)&laddr, &rnh->head); 809 if (rc->rc_rt == NULL) { 810 RIB_RUNLOCK(rnh); 811 return (ESRCH); 812 } 813 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 814 if (nh == NULL) { 815 RIB_RUNLOCK(rnh); 816 return (ESRCH); 817 } 818 } 819 rc->rc_nh_new = nh; 820 rc->rc_nh_weight = rc->rc_rt->rt_weight; 821 RIB_RUNLOCK(rnh); 822 823 return (0); 824 } 825 826 static void 827 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask) 828 { 829 #ifdef INET 830 if (family == AF_INET) { 831 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 832 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 833 834 bzero(dst4, sizeof(struct sockaddr_in)); 835 bzero(mask4, sizeof(struct sockaddr_in)); 836 837 dst4->sin_family = AF_INET; 838 dst4->sin_len = sizeof(struct sockaddr_in); 839 mask4->sin_family = AF_INET; 840 mask4->sin_len = sizeof(struct sockaddr_in); 841 } 842 #endif 843 #ifdef INET6 844 if (family == AF_INET6) { 845 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 846 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 847 848 bzero(dst6, sizeof(struct sockaddr_in6)); 849 bzero(mask6, sizeof(struct sockaddr_in6)); 850 851 dst6->sin6_family = AF_INET6; 852 dst6->sin6_len = sizeof(struct sockaddr_in6); 853 mask6->sin6_family = AF_INET6; 854 mask6->sin6_len = sizeof(struct sockaddr_in6); 855 } 856 #endif 857 } 858 859 static void 860 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst, 861 struct sockaddr *mask) 862 { 863 #ifdef INET 864 if (dst->sa_family == AF_INET) { 865 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 866 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 867 uint32_t scopeid = 0; 868 rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr, 869 &scopeid); 870 return; 871 } 872 #endif 873 #ifdef INET6 874 if (dst->sa_family == AF_INET6) { 875 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 876 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 877 uint32_t scopeid = 0; 878 rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr, 879 &mask6->sin6_addr, &scopeid); 880 dst6->sin6_scope_id = scopeid; 881 return; 882 } 883 #endif 884 } 885 886 static int 887 update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm, 888 int alloc_len) 889 { 890 struct rt_msghdr *rtm, *orig_rtm = NULL; 891 struct walkarg w; 892 int len; 893 894 rtm = *prtm; 895 /* Check if we need to realloc storage */ 896 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 897 if (len > alloc_len) { 898 struct rt_msghdr *tmp_rtm; 899 900 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 901 if (tmp_rtm == NULL) 902 return (ENOBUFS); 903 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 904 orig_rtm = rtm; 905 rtm = tmp_rtm; 906 alloc_len = len; 907 908 /* 909 * Delay freeing original rtm as info contains 910 * data referencing it. 911 */ 912 } 913 914 w.w_tmem = (caddr_t)rtm; 915 w.w_tmemsize = alloc_len; 916 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 917 rtm->rtm_addrs = info->rti_addrs; 918 919 if (orig_rtm != NULL) 920 free(orig_rtm, M_TEMP); 921 *prtm = rtm; 922 return (0); 923 } 924 925 926 /* 927 * Update sockaddrs, flags, etc in @prtm based on @rc data. 928 * rtm can be reallocated. 929 * 930 * Returns 0 on success, along with pointer to (potentially reallocated) 931 * rtm. 932 * 933 */ 934 static int 935 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 936 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 937 { 938 union sockaddr_union saun; 939 struct rt_msghdr *rtm; 940 struct ifnet *ifp; 941 int error; 942 943 rtm = *prtm; 944 union sockaddr_union sa_dst, sa_mask; 945 int family = info->rti_info[RTAX_DST]->sa_family; 946 init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa); 947 export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa); 948 949 info->rti_info[RTAX_DST] = &sa_dst.sa; 950 info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa; 951 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 952 info->rti_info[RTAX_GENMASK] = 0; 953 ifp = nh->nh_ifp; 954 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 955 if (ifp) { 956 info->rti_info[RTAX_IFP] = 957 ifp->if_addr->ifa_addr; 958 error = rtm_get_jailed(info, ifp, nh, 959 &saun, curthread->td_ucred); 960 if (error != 0) 961 return (error); 962 if (ifp->if_flags & IFF_POINTOPOINT) 963 info->rti_info[RTAX_BRD] = 964 nh->nh_ifa->ifa_dstaddr; 965 rtm->rtm_index = ifp->if_index; 966 } else { 967 info->rti_info[RTAX_IFP] = NULL; 968 info->rti_info[RTAX_IFA] = NULL; 969 } 970 } else if (ifp != NULL) 971 rtm->rtm_index = ifp->if_index; 972 973 if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0) 974 return (error); 975 976 rtm = *prtm; 977 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 978 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 979 rtm->rtm_flags = RTF_GATEWAY | 980 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 981 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 982 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 983 984 return (0); 985 } 986 987 #ifdef ROUTE_MPATH 988 static void 989 save_del_notification(const struct rib_cmd_info *rc, void *_cbdata) 990 { 991 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 992 993 if (rc->rc_cmd == RTM_DELETE) 994 *rc_new = *rc; 995 } 996 997 static void 998 save_add_notification(const struct rib_cmd_info *rc, void *_cbdata) 999 { 1000 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 1001 1002 if (rc->rc_cmd == RTM_ADD) 1003 *rc_new = *rc; 1004 } 1005 #endif 1006 1007 #if defined(INET6) || defined(INET) 1008 static struct sockaddr * 1009 alloc_sockaddr_aligned(struct linear_buffer *lb, int len) 1010 { 1011 len = roundup2(len, sizeof(uint64_t)); 1012 if (lb->offset + len > lb->size) 1013 return (NULL); 1014 struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset); 1015 lb->offset += len; 1016 return (sa); 1017 } 1018 #endif 1019 1020 static int 1021 rts_send(struct socket *so, int flags, struct mbuf *m, 1022 struct sockaddr *nam, struct mbuf *control, struct thread *td) 1023 { 1024 struct rt_msghdr *rtm = NULL; 1025 struct rt_addrinfo info; 1026 struct epoch_tracker et; 1027 #ifdef INET6 1028 struct sockaddr_storage ss; 1029 struct sockaddr_in6 *sin6; 1030 int i, rti_need_deembed = 0; 1031 #endif 1032 int alloc_len = 0, len, error = 0, fibnum; 1033 sa_family_t saf = AF_UNSPEC; 1034 struct rib_cmd_info rc; 1035 struct nhop_object *nh; 1036 1037 if ((flags & PRUS_OOB) || control != NULL) { 1038 m_freem(m); 1039 if (control != NULL) 1040 m_freem(control); 1041 return (EOPNOTSUPP); 1042 } 1043 1044 fibnum = so->so_fibnum; 1045 #define senderr(e) { error = e; goto flush;} 1046 if (m == NULL || ((m->m_len < sizeof(long)) && 1047 (m = m_pullup(m, sizeof(long))) == NULL)) 1048 return (ENOBUFS); 1049 if ((m->m_flags & M_PKTHDR) == 0) 1050 panic("route_output"); 1051 NET_EPOCH_ENTER(et); 1052 len = m->m_pkthdr.len; 1053 if (len < sizeof(*rtm) || 1054 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 1055 senderr(EINVAL); 1056 1057 /* 1058 * Most of current messages are in range 200-240 bytes, 1059 * minimize possible re-allocation on reply using larger size 1060 * buffer aligned on 1k boundaty. 1061 */ 1062 alloc_len = roundup2(len, 1024); 1063 int total_len = alloc_len + SCRATCH_BUFFER_SIZE; 1064 if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL) 1065 senderr(ENOBUFS); 1066 1067 m_copydata(m, 0, len, (caddr_t)rtm); 1068 bzero(&info, sizeof(info)); 1069 nh = NULL; 1070 struct linear_buffer lb = { 1071 .base = (char *)rtm + alloc_len, 1072 .size = SCRATCH_BUFFER_SIZE, 1073 }; 1074 1075 if (rtm->rtm_version != RTM_VERSION) { 1076 /* Do not touch message since format is unknown */ 1077 free(rtm, M_TEMP); 1078 rtm = NULL; 1079 senderr(EPROTONOSUPPORT); 1080 } 1081 1082 /* 1083 * Starting from here, it is possible 1084 * to alter original message and insert 1085 * caller PID and error value. 1086 */ 1087 1088 if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) { 1089 senderr(error); 1090 } 1091 /* fill_addringo() embeds scope into IPv6 addresses */ 1092 #ifdef INET6 1093 rti_need_deembed = 1; 1094 #endif 1095 1096 saf = info.rti_info[RTAX_DST]->sa_family; 1097 1098 /* support for new ARP code */ 1099 if (rtm->rtm_flags & RTF_LLDATA) { 1100 error = lla_rt_output(rtm, &info); 1101 goto flush; 1102 } 1103 1104 union sockaddr_union gw_saun; 1105 int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT); 1106 if (blackhole_flags != 0) { 1107 if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT)) 1108 error = fill_blackholeinfo(&info, &gw_saun); 1109 else { 1110 RTS_PID_LOG(LOG_DEBUG, "both BLACKHOLE and REJECT flags specifiied"); 1111 error = EINVAL; 1112 } 1113 if (error != 0) 1114 senderr(error); 1115 } 1116 1117 switch (rtm->rtm_type) { 1118 case RTM_ADD: 1119 case RTM_CHANGE: 1120 if (rtm->rtm_type == RTM_ADD) { 1121 if (info.rti_info[RTAX_GATEWAY] == NULL) { 1122 RTS_PID_LOG(LOG_DEBUG, "RTM_ADD w/o gateway"); 1123 senderr(EINVAL); 1124 } 1125 } 1126 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 1127 if (error == 0) { 1128 rtsock_notify_event(fibnum, &rc); 1129 #ifdef ROUTE_MPATH 1130 if (NH_IS_NHGRP(rc.rc_nh_new) || 1131 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { 1132 struct rib_cmd_info rc_simple = {}; 1133 rib_decompose_notification(&rc, 1134 save_add_notification, (void *)&rc_simple); 1135 rc = rc_simple; 1136 } 1137 #endif 1138 /* nh MAY be empty if RTM_CHANGE request is no-op */ 1139 nh = rc.rc_nh_new; 1140 if (nh != NULL) { 1141 rtm->rtm_index = nh->nh_ifp->if_index; 1142 rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); 1143 } 1144 } 1145 break; 1146 1147 case RTM_DELETE: 1148 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 1149 if (error == 0) { 1150 rtsock_notify_event(fibnum, &rc); 1151 #ifdef ROUTE_MPATH 1152 if (NH_IS_NHGRP(rc.rc_nh_old) || 1153 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { 1154 struct rib_cmd_info rc_simple = {}; 1155 rib_decompose_notification(&rc, 1156 save_del_notification, (void *)&rc_simple); 1157 rc = rc_simple; 1158 } 1159 #endif 1160 nh = rc.rc_nh_old; 1161 } 1162 break; 1163 1164 case RTM_GET: 1165 error = handle_rtm_get(&info, fibnum, rtm, &rc); 1166 if (error != 0) 1167 senderr(error); 1168 nh = rc.rc_nh_new; 1169 1170 if (!can_export_rte(curthread->td_ucred, 1171 info.rti_info[RTAX_NETMASK] == NULL, 1172 info.rti_info[RTAX_DST])) { 1173 senderr(ESRCH); 1174 } 1175 break; 1176 1177 default: 1178 senderr(EOPNOTSUPP); 1179 } 1180 1181 if (error == 0 && nh != NULL) { 1182 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 1183 /* 1184 * Note that some sockaddr pointers may have changed to 1185 * point to memory outsize @rtm. Some may be pointing 1186 * to the on-stack variables. 1187 * Given that, any pointer in @info CANNOT BE USED. 1188 */ 1189 1190 /* 1191 * scopeid deembedding has been performed while 1192 * writing updated rtm in rtsock_msg_buffer(). 1193 * With that in mind, skip deembedding procedure below. 1194 */ 1195 #ifdef INET6 1196 rti_need_deembed = 0; 1197 #endif 1198 } 1199 1200 flush: 1201 NET_EPOCH_EXIT(et); 1202 1203 #ifdef INET6 1204 if (rtm != NULL) { 1205 if (rti_need_deembed) { 1206 /* sin6_scope_id is recovered before sending rtm. */ 1207 sin6 = (struct sockaddr_in6 *)&ss; 1208 for (i = 0; i < RTAX_MAX; i++) { 1209 if (info.rti_info[i] == NULL) 1210 continue; 1211 if (info.rti_info[i]->sa_family != AF_INET6) 1212 continue; 1213 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1214 if (sa6_recoverscope(sin6) == 0) 1215 bcopy(sin6, info.rti_info[i], 1216 sizeof(*sin6)); 1217 } 1218 if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) { 1219 if (error != 0) 1220 error = ENOBUFS; 1221 } 1222 } 1223 } 1224 #endif 1225 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1226 1227 return (error); 1228 } 1229 1230 /* 1231 * Sends the prepared reply message in @rtm to all rtsock clients. 1232 * Frees @m and @rtm. 1233 * 1234 */ 1235 static void 1236 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1237 sa_family_t saf, u_int fibnum, int rtm_errno) 1238 { 1239 struct rcb *rcb = NULL; 1240 1241 /* 1242 * Check to see if we don't want our own messages. 1243 */ 1244 if ((so->so_options & SO_USELOOPBACK) == 0) { 1245 if (V_route_cb.any_count <= 1) { 1246 if (rtm != NULL) 1247 free(rtm, M_TEMP); 1248 m_freem(m); 1249 return; 1250 } 1251 /* There is another listener, so construct message */ 1252 rcb = so->so_pcb; 1253 } 1254 1255 if (rtm != NULL) { 1256 if (rtm_errno!= 0) 1257 rtm->rtm_errno = rtm_errno; 1258 else 1259 rtm->rtm_flags |= RTF_DONE; 1260 1261 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1262 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1263 m_freem(m); 1264 m = NULL; 1265 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1266 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1267 1268 free(rtm, M_TEMP); 1269 } 1270 if (m != NULL) { 1271 M_SETFIB(m, fibnum); 1272 m->m_flags |= RTS_FILTER_FIB; 1273 if (rcb) { 1274 /* 1275 * XXX insure we don't get a copy by 1276 * invalidating our protocol 1277 */ 1278 sa_family_t family = rcb->rcb_family; 1279 rcb->rcb_family = AF_UNSPEC; 1280 rt_dispatch(m, saf); 1281 rcb->rcb_family = family; 1282 } else 1283 rt_dispatch(m, saf); 1284 } 1285 } 1286 1287 static void 1288 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1289 struct rt_metrics *out) 1290 { 1291 1292 bzero(out, sizeof(*out)); 1293 out->rmx_mtu = nh->nh_mtu; 1294 out->rmx_weight = rt->rt_weight; 1295 out->rmx_nhidx = nhop_get_idx(nh); 1296 /* Kernel -> userland timebase conversion. */ 1297 out->rmx_expire = nhop_get_expire(nh) ? 1298 nhop_get_expire(nh) - time_uptime + time_second : 0; 1299 } 1300 1301 /* 1302 * Extract the addresses of the passed sockaddrs. 1303 * Do a little sanity checking so as to avoid bad memory references. 1304 * This data is derived straight from userland. 1305 */ 1306 static int 1307 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1308 { 1309 struct sockaddr *sa; 1310 int i; 1311 1312 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1313 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1314 continue; 1315 sa = (struct sockaddr *)cp; 1316 /* 1317 * It won't fit. 1318 */ 1319 if (cp + sa->sa_len > cplim) { 1320 RTS_PID_LOG(LOG_DEBUG, "sa_len too big for sa type %d", i); 1321 return (EINVAL); 1322 } 1323 /* 1324 * there are no more.. quit now 1325 * If there are more bits, they are in error. 1326 * I've seen this. route(1) can evidently generate these. 1327 * This causes kernel to core dump. 1328 * for compatibility, If we see this, point to a safe address. 1329 */ 1330 if (sa->sa_len == 0) { 1331 rtinfo->rti_info[i] = &sa_zero; 1332 return (0); /* should be EINVAL but for compat */ 1333 } 1334 /* accept it */ 1335 #ifdef INET6 1336 if (sa->sa_family == AF_INET6) 1337 sa6_embedscope((struct sockaddr_in6 *)sa, 1338 V_ip6_use_defzone); 1339 #endif 1340 rtinfo->rti_info[i] = sa; 1341 cp += SA_SIZE(sa); 1342 } 1343 return (0); 1344 } 1345 1346 #ifdef INET 1347 static inline void 1348 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr) 1349 { 1350 1351 const struct sockaddr_in nsin = { 1352 .sin_family = AF_INET, 1353 .sin_len = sizeof(struct sockaddr_in), 1354 .sin_addr = addr, 1355 }; 1356 *sin = nsin; 1357 } 1358 #endif 1359 1360 #ifdef INET6 1361 static inline void 1362 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6, 1363 uint32_t scopeid) 1364 { 1365 1366 const struct sockaddr_in6 nsin6 = { 1367 .sin6_family = AF_INET6, 1368 .sin6_len = sizeof(struct sockaddr_in6), 1369 .sin6_addr = *addr6, 1370 .sin6_scope_id = scopeid, 1371 }; 1372 *sin6 = nsin6; 1373 } 1374 #endif 1375 1376 #if defined(INET6) || defined(INET) 1377 /* 1378 * Checks if gateway is suitable for lltable operations. 1379 * Lltable code requires AF_LINK gateway with ifindex 1380 * and mac address specified. 1381 * Returns 0 on success. 1382 */ 1383 static int 1384 cleanup_xaddrs_lladdr(struct rt_addrinfo *info) 1385 { 1386 struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY]; 1387 1388 if (sdl->sdl_family != AF_LINK) 1389 return (EINVAL); 1390 1391 if (sdl->sdl_index == 0) { 1392 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gateway w/o ifindex"); 1393 return (EINVAL); 1394 } 1395 1396 if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len) { 1397 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gw: sdl_nlen/sdl_alen too large"); 1398 return (EINVAL); 1399 } 1400 1401 return (0); 1402 } 1403 1404 static int 1405 cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb) 1406 { 1407 struct sockaddr *gw = info->rti_info[RTAX_GATEWAY]; 1408 struct sockaddr *sa; 1409 1410 if (info->rti_flags & RTF_LLDATA) 1411 return (cleanup_xaddrs_lladdr(info)); 1412 1413 switch (gw->sa_family) { 1414 #ifdef INET 1415 case AF_INET: 1416 { 1417 struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw; 1418 1419 /* Ensure reads do not go beyoud SA boundary */ 1420 if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) { 1421 RTS_PID_LOG(LOG_DEBUG, "gateway sin_len too small: %d", 1422 gw->sa_len); 1423 return (EINVAL); 1424 } 1425 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in)); 1426 if (sa == NULL) 1427 return (ENOBUFS); 1428 fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr); 1429 info->rti_info[RTAX_GATEWAY] = sa; 1430 } 1431 break; 1432 #endif 1433 #ifdef INET6 1434 case AF_INET6: 1435 { 1436 struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw; 1437 if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) { 1438 RTS_PID_LOG(LOG_DEBUG, "gateway sin6_len too small: %d", 1439 gw->sa_len); 1440 return (EINVAL); 1441 } 1442 fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0); 1443 break; 1444 } 1445 #endif 1446 case AF_LINK: 1447 { 1448 struct sockaddr_dl *gw_sdl; 1449 1450 size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data); 1451 gw_sdl = (struct sockaddr_dl *)gw; 1452 if (gw_sdl->sdl_len < sdl_min_len) { 1453 RTS_PID_LOG(LOG_DEBUG, "gateway sdl_len too small: %d", 1454 gw_sdl->sdl_len); 1455 return (EINVAL); 1456 } 1457 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short)); 1458 if (sa == NULL) 1459 return (ENOBUFS); 1460 1461 const struct sockaddr_dl_short sdl = { 1462 .sdl_family = AF_LINK, 1463 .sdl_len = sizeof(struct sockaddr_dl_short), 1464 .sdl_index = gw_sdl->sdl_index, 1465 }; 1466 *((struct sockaddr_dl_short *)sa) = sdl; 1467 info->rti_info[RTAX_GATEWAY] = sa; 1468 break; 1469 } 1470 } 1471 1472 return (0); 1473 } 1474 #endif 1475 1476 static void 1477 remove_netmask(struct rt_addrinfo *info) 1478 { 1479 info->rti_info[RTAX_NETMASK] = NULL; 1480 info->rti_flags |= RTF_HOST; 1481 info->rti_addrs &= ~RTA_NETMASK; 1482 } 1483 1484 #ifdef INET 1485 static int 1486 cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb) 1487 { 1488 struct sockaddr_in *dst_sa, *mask_sa; 1489 const int sa_len = sizeof(struct sockaddr_in); 1490 struct in_addr dst, mask; 1491 1492 /* Check & fixup dst/netmask combination first */ 1493 dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST]; 1494 mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK]; 1495 1496 /* Ensure reads do not go beyound the buffer size */ 1497 if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero)) { 1498 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin_len too small: %d", 1499 dst_sa->sin_len); 1500 return (EINVAL); 1501 } 1502 1503 if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) { 1504 /* 1505 * Some older routing software encode mask length into the 1506 * sin_len, thus resulting in "truncated" sockaddr. 1507 */ 1508 int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr); 1509 if (len >= 0) { 1510 mask.s_addr = 0; 1511 if (len > sizeof(struct in_addr)) 1512 len = sizeof(struct in_addr); 1513 memcpy(&mask, &mask_sa->sin_addr, len); 1514 } else { 1515 RTS_PID_LOG(LOG_DEBUG, "prefix mask sin_len too small: %d", 1516 mask_sa->sin_len); 1517 return (EINVAL); 1518 } 1519 } else 1520 mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST; 1521 1522 dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr)); 1523 1524 /* Construct new "clean" dst/mask sockaddresses */ 1525 if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1526 return (ENOBUFS); 1527 fill_sockaddr_inet(dst_sa, dst); 1528 info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa; 1529 1530 if (mask.s_addr != INADDR_BROADCAST) { 1531 if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1532 return (ENOBUFS); 1533 fill_sockaddr_inet(mask_sa, mask); 1534 info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa; 1535 info->rti_flags &= ~RTF_HOST; 1536 } else 1537 remove_netmask(info); 1538 1539 /* Check gateway */ 1540 if (info->rti_info[RTAX_GATEWAY] != NULL) 1541 return (cleanup_xaddrs_gateway(info, lb)); 1542 1543 return (0); 1544 } 1545 #endif 1546 1547 #ifdef INET6 1548 static int 1549 cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb) 1550 { 1551 struct sockaddr *sa; 1552 struct sockaddr_in6 *dst_sa, *mask_sa; 1553 struct in6_addr mask, *dst; 1554 const int sa_len = sizeof(struct sockaddr_in6); 1555 1556 /* Check & fixup dst/netmask combination first */ 1557 dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST]; 1558 mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK]; 1559 1560 if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1561 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin6_len too small: %d", 1562 dst_sa->sin6_len); 1563 return (EINVAL); 1564 } 1565 1566 if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1567 /* 1568 * Some older routing software encode mask length into the 1569 * sin6_len, thus resulting in "truncated" sockaddr. 1570 */ 1571 int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr); 1572 if (len >= 0) { 1573 bzero(&mask, sizeof(mask)); 1574 if (len > sizeof(struct in6_addr)) 1575 len = sizeof(struct in6_addr); 1576 memcpy(&mask, &mask_sa->sin6_addr, len); 1577 } else { 1578 RTS_PID_LOG(LOG_DEBUG, "rtsock: prefix mask sin6_len too small: %d", 1579 mask_sa->sin6_len); 1580 return (EINVAL); 1581 } 1582 } else 1583 mask = mask_sa ? mask_sa->sin6_addr : in6mask128; 1584 1585 dst = &dst_sa->sin6_addr; 1586 IN6_MASK_ADDR(dst, &mask); 1587 1588 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1589 return (ENOBUFS); 1590 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0); 1591 info->rti_info[RTAX_DST] = sa; 1592 1593 if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) { 1594 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1595 return (ENOBUFS); 1596 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0); 1597 info->rti_info[RTAX_NETMASK] = sa; 1598 info->rti_flags &= ~RTF_HOST; 1599 } else 1600 remove_netmask(info); 1601 1602 /* Check gateway */ 1603 if (info->rti_info[RTAX_GATEWAY] != NULL) 1604 return (cleanup_xaddrs_gateway(info, lb)); 1605 1606 return (0); 1607 } 1608 #endif 1609 1610 static int 1611 cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb) 1612 { 1613 int error = EAFNOSUPPORT; 1614 1615 if (info->rti_info[RTAX_DST] == NULL) { 1616 RTS_PID_LOG(LOG_DEBUG, "prefix dst is not set"); 1617 return (EINVAL); 1618 } 1619 1620 if (info->rti_flags & RTF_LLDATA) { 1621 /* 1622 * arp(8)/ndp(8) sends RTA_NETMASK for the associated 1623 * prefix along with the actual address in RTA_DST. 1624 * Remove netmask to avoid unnecessary address masking. 1625 */ 1626 remove_netmask(info); 1627 } 1628 1629 switch (info->rti_info[RTAX_DST]->sa_family) { 1630 #ifdef INET 1631 case AF_INET: 1632 error = cleanup_xaddrs_inet(info, lb); 1633 break; 1634 #endif 1635 #ifdef INET6 1636 case AF_INET6: 1637 error = cleanup_xaddrs_inet6(info, lb); 1638 break; 1639 #endif 1640 } 1641 1642 return (error); 1643 } 1644 1645 /* 1646 * Fill in @dmask with valid netmask leaving original @smask 1647 * intact. Mostly used with radix netmasks. 1648 */ 1649 struct sockaddr * 1650 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1651 struct sockaddr_storage *dmask) 1652 { 1653 if (dst == NULL || smask == NULL) 1654 return (NULL); 1655 1656 memset(dmask, 0, dst->sa_len); 1657 memcpy(dmask, smask, smask->sa_len); 1658 dmask->ss_len = dst->sa_len; 1659 dmask->ss_family = dst->sa_family; 1660 1661 return ((struct sockaddr *)dmask); 1662 } 1663 1664 /* 1665 * Writes information related to @rtinfo object to newly-allocated mbuf. 1666 * Assumes MCLBYTES is enough to construct any message. 1667 * Used for OS notifications of vaious events (if/ifa announces,etc) 1668 * 1669 * Returns allocated mbuf or NULL on failure. 1670 */ 1671 static struct mbuf * 1672 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1673 { 1674 struct sockaddr_storage ss; 1675 struct rt_msghdr *rtm; 1676 struct mbuf *m; 1677 int i; 1678 struct sockaddr *sa; 1679 #ifdef INET6 1680 struct sockaddr_in6 *sin6; 1681 #endif 1682 int len, dlen; 1683 1684 switch (type) { 1685 case RTM_DELADDR: 1686 case RTM_NEWADDR: 1687 len = sizeof(struct ifa_msghdr); 1688 break; 1689 1690 case RTM_DELMADDR: 1691 case RTM_NEWMADDR: 1692 len = sizeof(struct ifma_msghdr); 1693 break; 1694 1695 case RTM_IFINFO: 1696 len = sizeof(struct if_msghdr); 1697 break; 1698 1699 case RTM_IFANNOUNCE: 1700 case RTM_IEEE80211: 1701 len = sizeof(struct if_announcemsghdr); 1702 break; 1703 1704 default: 1705 len = sizeof(struct rt_msghdr); 1706 } 1707 1708 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1709 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1710 if (len > MHLEN) 1711 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1712 else 1713 m = m_gethdr(M_NOWAIT, MT_DATA); 1714 if (m == NULL) 1715 return (m); 1716 1717 m->m_pkthdr.len = m->m_len = len; 1718 rtm = mtod(m, struct rt_msghdr *); 1719 bzero((caddr_t)rtm, len); 1720 for (i = 0; i < RTAX_MAX; i++) { 1721 if ((sa = rtinfo->rti_info[i]) == NULL) 1722 continue; 1723 rtinfo->rti_addrs |= (1 << i); 1724 1725 dlen = SA_SIZE(sa); 1726 KASSERT(dlen <= sizeof(ss), 1727 ("%s: sockaddr size overflow", __func__)); 1728 bzero(&ss, sizeof(ss)); 1729 bcopy(sa, &ss, sa->sa_len); 1730 sa = (struct sockaddr *)&ss; 1731 #ifdef INET6 1732 if (sa->sa_family == AF_INET6) { 1733 sin6 = (struct sockaddr_in6 *)sa; 1734 (void)sa6_recoverscope(sin6); 1735 } 1736 #endif 1737 m_copyback(m, len, dlen, (caddr_t)sa); 1738 len += dlen; 1739 } 1740 if (m->m_pkthdr.len != len) { 1741 m_freem(m); 1742 return (NULL); 1743 } 1744 rtm->rtm_msglen = len; 1745 rtm->rtm_version = RTM_VERSION; 1746 rtm->rtm_type = type; 1747 return (m); 1748 } 1749 1750 /* 1751 * Writes information related to @rtinfo object to preallocated buffer. 1752 * Stores needed size in @plen. If @w is NULL, calculates size without 1753 * writing. 1754 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1755 * 1756 * Returns 0 on success. 1757 * 1758 */ 1759 static int 1760 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1761 { 1762 struct sockaddr_storage ss; 1763 int len, buflen = 0, dlen, i; 1764 caddr_t cp = NULL; 1765 struct rt_msghdr *rtm = NULL; 1766 #ifdef INET6 1767 struct sockaddr_in6 *sin6; 1768 #endif 1769 #ifdef COMPAT_FREEBSD32 1770 bool compat32 = false; 1771 #endif 1772 1773 switch (type) { 1774 case RTM_DELADDR: 1775 case RTM_NEWADDR: 1776 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1777 #ifdef COMPAT_FREEBSD32 1778 if (w->w_req->flags & SCTL_MASK32) { 1779 len = sizeof(struct ifa_msghdrl32); 1780 compat32 = true; 1781 } else 1782 #endif 1783 len = sizeof(struct ifa_msghdrl); 1784 } else 1785 len = sizeof(struct ifa_msghdr); 1786 break; 1787 1788 case RTM_IFINFO: 1789 #ifdef COMPAT_FREEBSD32 1790 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1791 if (w->w_op == NET_RT_IFLISTL) 1792 len = sizeof(struct if_msghdrl32); 1793 else 1794 len = sizeof(struct if_msghdr32); 1795 compat32 = true; 1796 break; 1797 } 1798 #endif 1799 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1800 len = sizeof(struct if_msghdrl); 1801 else 1802 len = sizeof(struct if_msghdr); 1803 break; 1804 1805 case RTM_NEWMADDR: 1806 len = sizeof(struct ifma_msghdr); 1807 break; 1808 1809 default: 1810 len = sizeof(struct rt_msghdr); 1811 } 1812 1813 if (w != NULL) { 1814 rtm = (struct rt_msghdr *)w->w_tmem; 1815 buflen = w->w_tmemsize - len; 1816 cp = (caddr_t)w->w_tmem + len; 1817 } 1818 1819 rtinfo->rti_addrs = 0; 1820 for (i = 0; i < RTAX_MAX; i++) { 1821 struct sockaddr *sa; 1822 1823 if ((sa = rtinfo->rti_info[i]) == NULL) 1824 continue; 1825 rtinfo->rti_addrs |= (1 << i); 1826 #ifdef COMPAT_FREEBSD32 1827 if (compat32) 1828 dlen = SA_SIZE32(sa); 1829 else 1830 #endif 1831 dlen = SA_SIZE(sa); 1832 if (cp != NULL && buflen >= dlen) { 1833 KASSERT(dlen <= sizeof(ss), 1834 ("%s: sockaddr size overflow", __func__)); 1835 bzero(&ss, sizeof(ss)); 1836 bcopy(sa, &ss, sa->sa_len); 1837 sa = (struct sockaddr *)&ss; 1838 #ifdef INET6 1839 if (sa->sa_family == AF_INET6) { 1840 sin6 = (struct sockaddr_in6 *)sa; 1841 (void)sa6_recoverscope(sin6); 1842 } 1843 #endif 1844 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1845 cp += dlen; 1846 buflen -= dlen; 1847 } else if (cp != NULL) { 1848 /* 1849 * Buffer too small. Count needed size 1850 * and return with error. 1851 */ 1852 cp = NULL; 1853 } 1854 1855 len += dlen; 1856 } 1857 1858 if (cp != NULL) { 1859 dlen = ALIGN(len) - len; 1860 if (buflen < dlen) 1861 cp = NULL; 1862 else { 1863 bzero(cp, dlen); 1864 cp += dlen; 1865 buflen -= dlen; 1866 } 1867 } 1868 len = ALIGN(len); 1869 1870 if (cp != NULL) { 1871 /* fill header iff buffer is large enough */ 1872 rtm->rtm_version = RTM_VERSION; 1873 rtm->rtm_type = type; 1874 rtm->rtm_msglen = len; 1875 } 1876 1877 *plen = len; 1878 1879 if (w != NULL && cp == NULL) 1880 return (ENOBUFS); 1881 1882 return (0); 1883 } 1884 1885 /* 1886 * This routine is called to generate a message from the routing 1887 * socket indicating that a redirect has occurred, a routing lookup 1888 * has failed, or that a protocol has detected timeouts to a particular 1889 * destination. 1890 */ 1891 void 1892 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1893 int fibnum) 1894 { 1895 struct rt_msghdr *rtm; 1896 struct mbuf *m; 1897 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1898 1899 if (V_route_cb.any_count == 0) 1900 return; 1901 m = rtsock_msg_mbuf(type, rtinfo); 1902 if (m == NULL) 1903 return; 1904 1905 if (fibnum != RT_ALL_FIBS) { 1906 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1907 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1908 M_SETFIB(m, fibnum); 1909 m->m_flags |= RTS_FILTER_FIB; 1910 } 1911 1912 rtm = mtod(m, struct rt_msghdr *); 1913 rtm->rtm_flags = RTF_DONE | flags; 1914 rtm->rtm_errno = error; 1915 rtm->rtm_addrs = rtinfo->rti_addrs; 1916 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1917 } 1918 1919 void 1920 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1921 { 1922 1923 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1924 } 1925 1926 /* 1927 * This routine is called to generate a message from the routing 1928 * socket indicating that the status of a network interface has changed. 1929 */ 1930 static void 1931 rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask __unused) 1932 { 1933 struct if_msghdr *ifm; 1934 struct mbuf *m; 1935 struct rt_addrinfo info; 1936 1937 if (V_route_cb.any_count == 0) 1938 return; 1939 bzero((caddr_t)&info, sizeof(info)); 1940 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1941 if (m == NULL) 1942 return; 1943 ifm = mtod(m, struct if_msghdr *); 1944 ifm->ifm_index = ifp->if_index; 1945 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1946 if_data_copy(ifp, &ifm->ifm_data); 1947 ifm->ifm_addrs = 0; 1948 rt_dispatch(m, AF_UNSPEC); 1949 } 1950 1951 /* 1952 * Announce interface address arrival/withdraw. 1953 * Please do not call directly, use rt_addrmsg(). 1954 * Assume input data to be valid. 1955 * Returns 0 on success. 1956 */ 1957 int 1958 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1959 { 1960 struct rt_addrinfo info; 1961 struct sockaddr *sa; 1962 int ncmd; 1963 struct mbuf *m; 1964 struct ifa_msghdr *ifam; 1965 struct ifnet *ifp = ifa->ifa_ifp; 1966 struct sockaddr_storage ss; 1967 1968 if (V_route_cb.any_count == 0) 1969 return (0); 1970 1971 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1972 1973 bzero((caddr_t)&info, sizeof(info)); 1974 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1975 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1976 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1977 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1978 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1979 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1980 return (ENOBUFS); 1981 ifam = mtod(m, struct ifa_msghdr *); 1982 ifam->ifam_index = ifp->if_index; 1983 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1984 ifam->ifam_flags = ifa->ifa_flags; 1985 ifam->ifam_addrs = info.rti_addrs; 1986 1987 if (fibnum != RT_ALL_FIBS) { 1988 M_SETFIB(m, fibnum); 1989 m->m_flags |= RTS_FILTER_FIB; 1990 } 1991 1992 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1993 1994 return (0); 1995 } 1996 1997 /* 1998 * Announce route addition/removal to rtsock based on @rt data. 1999 * Callers are advives to use rt_routemsg() instead of using this 2000 * function directly. 2001 * Assume @rt data is consistent. 2002 * 2003 * Returns 0 on success. 2004 */ 2005 int 2006 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh, 2007 int fibnum) 2008 { 2009 union sockaddr_union dst, mask; 2010 struct rt_addrinfo info; 2011 2012 if (V_route_cb.any_count == 0) 2013 return (0); 2014 2015 int family = rt_get_family(rt); 2016 init_sockaddrs_family(family, &dst.sa, &mask.sa); 2017 export_rtaddrs(rt, &dst.sa, &mask.sa); 2018 2019 bzero((caddr_t)&info, sizeof(info)); 2020 info.rti_info[RTAX_DST] = &dst.sa; 2021 info.rti_info[RTAX_NETMASK] = &mask.sa; 2022 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2023 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 2024 info.rti_ifp = nh->nh_ifp; 2025 2026 return (rtsock_routemsg_info(cmd, &info, fibnum)); 2027 } 2028 2029 int 2030 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 2031 { 2032 struct rt_msghdr *rtm; 2033 struct sockaddr *sa; 2034 struct mbuf *m; 2035 2036 if (V_route_cb.any_count == 0) 2037 return (0); 2038 2039 if (info->rti_flags & RTF_HOST) 2040 info->rti_info[RTAX_NETMASK] = NULL; 2041 2042 m = rtsock_msg_mbuf(cmd, info); 2043 if (m == NULL) 2044 return (ENOBUFS); 2045 2046 if (fibnum != RT_ALL_FIBS) { 2047 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 2048 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 2049 M_SETFIB(m, fibnum); 2050 m->m_flags |= RTS_FILTER_FIB; 2051 } 2052 2053 rtm = mtod(m, struct rt_msghdr *); 2054 rtm->rtm_addrs = info->rti_addrs; 2055 if (info->rti_ifp != NULL) 2056 rtm->rtm_index = info->rti_ifp->if_index; 2057 /* Add RTF_DONE to indicate command 'completion' required by API */ 2058 info->rti_flags |= RTF_DONE; 2059 /* Reported routes has to be up */ 2060 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 2061 info->rti_flags |= RTF_UP; 2062 rtm->rtm_flags = info->rti_flags; 2063 2064 sa = info->rti_info[RTAX_DST]; 2065 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 2066 2067 return (0); 2068 } 2069 2070 /* 2071 * This is the analogue to the rt_newaddrmsg which performs the same 2072 * function but for multicast group memberhips. This is easier since 2073 * there is no route state to worry about. 2074 */ 2075 void 2076 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 2077 { 2078 struct rt_addrinfo info; 2079 struct mbuf *m = NULL; 2080 struct ifnet *ifp = ifma->ifma_ifp; 2081 struct ifma_msghdr *ifmam; 2082 2083 if (V_route_cb.any_count == 0) 2084 return; 2085 2086 bzero((caddr_t)&info, sizeof(info)); 2087 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2088 if (ifp && ifp->if_addr) 2089 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 2090 else 2091 info.rti_info[RTAX_IFP] = NULL; 2092 /* 2093 * If a link-layer address is present, present it as a ``gateway'' 2094 * (similarly to how ARP entries, e.g., are presented). 2095 */ 2096 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 2097 m = rtsock_msg_mbuf(cmd, &info); 2098 if (m == NULL) 2099 return; 2100 ifmam = mtod(m, struct ifma_msghdr *); 2101 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 2102 __func__)); 2103 ifmam->ifmam_index = ifp->if_index; 2104 ifmam->ifmam_addrs = info.rti_addrs; 2105 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 2106 } 2107 2108 static struct mbuf * 2109 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 2110 struct rt_addrinfo *info) 2111 { 2112 struct if_announcemsghdr *ifan; 2113 struct mbuf *m; 2114 2115 if (V_route_cb.any_count == 0) 2116 return NULL; 2117 bzero((caddr_t)info, sizeof(*info)); 2118 m = rtsock_msg_mbuf(type, info); 2119 if (m != NULL) { 2120 ifan = mtod(m, struct if_announcemsghdr *); 2121 ifan->ifan_index = ifp->if_index; 2122 strlcpy(ifan->ifan_name, ifp->if_xname, 2123 sizeof(ifan->ifan_name)); 2124 ifan->ifan_what = what; 2125 } 2126 return m; 2127 } 2128 2129 /* 2130 * This is called to generate routing socket messages indicating 2131 * IEEE80211 wireless events. 2132 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 2133 */ 2134 void 2135 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 2136 { 2137 struct mbuf *m; 2138 struct rt_addrinfo info; 2139 2140 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 2141 if (m != NULL) { 2142 /* 2143 * Append the ieee80211 data. Try to stick it in the 2144 * mbuf containing the ifannounce msg; otherwise allocate 2145 * a new mbuf and append. 2146 * 2147 * NB: we assume m is a single mbuf. 2148 */ 2149 if (data_len > M_TRAILINGSPACE(m)) { 2150 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 2151 if (n == NULL) { 2152 m_freem(m); 2153 return; 2154 } 2155 bcopy(data, mtod(n, void *), data_len); 2156 n->m_len = data_len; 2157 m->m_next = n; 2158 } else if (data_len > 0) { 2159 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 2160 m->m_len += data_len; 2161 } 2162 if (m->m_flags & M_PKTHDR) 2163 m->m_pkthdr.len += data_len; 2164 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 2165 rt_dispatch(m, AF_UNSPEC); 2166 } 2167 } 2168 2169 /* 2170 * This is called to generate routing socket messages indicating 2171 * network interface arrival and departure. 2172 */ 2173 static void 2174 rt_ifannouncemsg(struct ifnet *ifp, int what) 2175 { 2176 struct mbuf *m; 2177 struct rt_addrinfo info; 2178 2179 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 2180 if (m != NULL) 2181 rt_dispatch(m, AF_UNSPEC); 2182 } 2183 2184 static void 2185 rt_dispatch(struct mbuf *m, sa_family_t saf) 2186 { 2187 2188 M_ASSERTPKTHDR(m); 2189 2190 m->m_rtsock_family = saf; 2191 if (V_loif) 2192 m->m_pkthdr.rcvif = V_loif; 2193 else { 2194 m_freem(m); 2195 return; 2196 } 2197 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 2198 } 2199 2200 /* 2201 * Checks if rte can be exported w.r.t jails/vnets. 2202 * 2203 * Returns true if it can, false otherwise. 2204 */ 2205 static bool 2206 can_export_rte(struct ucred *td_ucred, bool rt_is_host, 2207 const struct sockaddr *rt_dst) 2208 { 2209 2210 if ((!rt_is_host) ? jailed_without_vnet(td_ucred) 2211 : prison_if(td_ucred, rt_dst) != 0) 2212 return (false); 2213 return (true); 2214 } 2215 2216 2217 /* 2218 * This is used in dumping the kernel table via sysctl(). 2219 */ 2220 static int 2221 sysctl_dumpentry(struct rtentry *rt, void *vw) 2222 { 2223 struct walkarg *w = vw; 2224 struct nhop_object *nh; 2225 2226 NET_EPOCH_ASSERT(); 2227 2228 export_rtaddrs(rt, w->dst, w->mask); 2229 if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst)) 2230 return (0); 2231 nh = rt_get_raw_nhop(rt); 2232 #ifdef ROUTE_MPATH 2233 if (NH_IS_NHGRP(nh)) { 2234 const struct weightened_nhop *wn; 2235 uint32_t num_nhops; 2236 int error; 2237 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 2238 for (int i = 0; i < num_nhops; i++) { 2239 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); 2240 if (error != 0) 2241 return (error); 2242 } 2243 } else 2244 #endif 2245 sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 2246 2247 return (0); 2248 } 2249 2250 2251 static int 2252 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 2253 struct walkarg *w) 2254 { 2255 struct rt_addrinfo info; 2256 int error = 0, size; 2257 uint32_t rtflags; 2258 2259 rtflags = nhop_get_rtflags(nh); 2260 2261 if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg)) 2262 return (0); 2263 2264 bzero((caddr_t)&info, sizeof(info)); 2265 info.rti_info[RTAX_DST] = w->dst; 2266 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2267 info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask; 2268 info.rti_info[RTAX_GENMASK] = 0; 2269 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 2270 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 2271 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 2272 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 2273 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 2274 } 2275 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 2276 return (error); 2277 if (w->w_req && w->w_tmem) { 2278 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 2279 2280 bzero(&rtm->rtm_index, 2281 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 2282 2283 /* 2284 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags) 2285 * and RTF_UP (if entry is linked, which is always true here). 2286 * Given that, use nhop rtflags & add RTF_UP. 2287 */ 2288 rtm->rtm_flags = rtflags | RTF_UP; 2289 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 2290 rtm->rtm_flags = RTF_GATEWAY | 2291 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 2292 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 2293 rtm->rtm_rmx.rmx_weight = weight; 2294 rtm->rtm_index = nh->nh_ifp->if_index; 2295 rtm->rtm_addrs = info.rti_addrs; 2296 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 2297 return (error); 2298 } 2299 return (error); 2300 } 2301 2302 static int 2303 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 2304 struct rt_addrinfo *info, struct walkarg *w, int len) 2305 { 2306 struct if_msghdrl *ifm; 2307 struct if_data *ifd; 2308 2309 ifm = (struct if_msghdrl *)w->w_tmem; 2310 2311 #ifdef COMPAT_FREEBSD32 2312 if (w->w_req->flags & SCTL_MASK32) { 2313 struct if_msghdrl32 *ifm32; 2314 2315 ifm32 = (struct if_msghdrl32 *)ifm; 2316 ifm32->ifm_addrs = info->rti_addrs; 2317 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2318 ifm32->ifm_index = ifp->if_index; 2319 ifm32->_ifm_spare1 = 0; 2320 ifm32->ifm_len = sizeof(*ifm32); 2321 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 2322 ifm32->_ifm_spare2 = 0; 2323 ifd = &ifm32->ifm_data; 2324 } else 2325 #endif 2326 { 2327 ifm->ifm_addrs = info->rti_addrs; 2328 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2329 ifm->ifm_index = ifp->if_index; 2330 ifm->_ifm_spare1 = 0; 2331 ifm->ifm_len = sizeof(*ifm); 2332 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 2333 ifm->_ifm_spare2 = 0; 2334 ifd = &ifm->ifm_data; 2335 } 2336 2337 memcpy(ifd, src_ifd, sizeof(*ifd)); 2338 2339 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2340 } 2341 2342 static int 2343 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 2344 struct rt_addrinfo *info, struct walkarg *w, int len) 2345 { 2346 struct if_msghdr *ifm; 2347 struct if_data *ifd; 2348 2349 ifm = (struct if_msghdr *)w->w_tmem; 2350 2351 #ifdef COMPAT_FREEBSD32 2352 if (w->w_req->flags & SCTL_MASK32) { 2353 struct if_msghdr32 *ifm32; 2354 2355 ifm32 = (struct if_msghdr32 *)ifm; 2356 ifm32->ifm_addrs = info->rti_addrs; 2357 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2358 ifm32->ifm_index = ifp->if_index; 2359 ifm32->_ifm_spare1 = 0; 2360 ifd = &ifm32->ifm_data; 2361 } else 2362 #endif 2363 { 2364 ifm->ifm_addrs = info->rti_addrs; 2365 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2366 ifm->ifm_index = ifp->if_index; 2367 ifm->_ifm_spare1 = 0; 2368 ifd = &ifm->ifm_data; 2369 } 2370 2371 memcpy(ifd, src_ifd, sizeof(*ifd)); 2372 2373 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2374 } 2375 2376 static int 2377 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 2378 struct walkarg *w, int len) 2379 { 2380 struct ifa_msghdrl *ifam; 2381 struct if_data *ifd; 2382 2383 ifam = (struct ifa_msghdrl *)w->w_tmem; 2384 2385 #ifdef COMPAT_FREEBSD32 2386 if (w->w_req->flags & SCTL_MASK32) { 2387 struct ifa_msghdrl32 *ifam32; 2388 2389 ifam32 = (struct ifa_msghdrl32 *)ifam; 2390 ifam32->ifam_addrs = info->rti_addrs; 2391 ifam32->ifam_flags = ifa->ifa_flags; 2392 ifam32->ifam_index = ifa->ifa_ifp->if_index; 2393 ifam32->_ifam_spare1 = 0; 2394 ifam32->ifam_len = sizeof(*ifam32); 2395 ifam32->ifam_data_off = 2396 offsetof(struct ifa_msghdrl32, ifam_data); 2397 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 2398 ifd = &ifam32->ifam_data; 2399 } else 2400 #endif 2401 { 2402 ifam->ifam_addrs = info->rti_addrs; 2403 ifam->ifam_flags = ifa->ifa_flags; 2404 ifam->ifam_index = ifa->ifa_ifp->if_index; 2405 ifam->_ifam_spare1 = 0; 2406 ifam->ifam_len = sizeof(*ifam); 2407 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 2408 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2409 ifd = &ifam->ifam_data; 2410 } 2411 2412 bzero(ifd, sizeof(*ifd)); 2413 ifd->ifi_datalen = sizeof(struct if_data); 2414 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 2415 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 2416 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 2417 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 2418 2419 /* Fixup if_data carp(4) vhid. */ 2420 if (carp_get_vhid_p != NULL) 2421 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 2422 2423 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2424 } 2425 2426 static int 2427 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 2428 struct walkarg *w, int len) 2429 { 2430 struct ifa_msghdr *ifam; 2431 2432 ifam = (struct ifa_msghdr *)w->w_tmem; 2433 ifam->ifam_addrs = info->rti_addrs; 2434 ifam->ifam_flags = ifa->ifa_flags; 2435 ifam->ifam_index = ifa->ifa_ifp->if_index; 2436 ifam->_ifam_spare1 = 0; 2437 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2438 2439 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2440 } 2441 2442 static int 2443 sysctl_iflist(int af, struct walkarg *w) 2444 { 2445 struct ifnet *ifp; 2446 struct ifaddr *ifa; 2447 struct if_data ifd; 2448 struct rt_addrinfo info; 2449 int len, error = 0; 2450 struct sockaddr_storage ss; 2451 2452 bzero((caddr_t)&info, sizeof(info)); 2453 bzero(&ifd, sizeof(ifd)); 2454 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2455 if (w->w_arg && w->w_arg != ifp->if_index) 2456 continue; 2457 if_data_copy(ifp, &ifd); 2458 ifa = ifp->if_addr; 2459 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 2460 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 2461 if (error != 0) 2462 goto done; 2463 info.rti_info[RTAX_IFP] = NULL; 2464 if (w->w_req && w->w_tmem) { 2465 if (w->w_op == NET_RT_IFLISTL) 2466 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 2467 len); 2468 else 2469 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 2470 len); 2471 if (error) 2472 goto done; 2473 } 2474 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 2475 if (af && af != ifa->ifa_addr->sa_family) 2476 continue; 2477 if (prison_if(w->w_req->td->td_ucred, 2478 ifa->ifa_addr) != 0) 2479 continue; 2480 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2481 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2482 ifa->ifa_addr, ifa->ifa_netmask, &ss); 2483 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2484 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 2485 if (error != 0) 2486 goto done; 2487 if (w->w_req && w->w_tmem) { 2488 if (w->w_op == NET_RT_IFLISTL) 2489 error = sysctl_iflist_ifaml(ifa, &info, 2490 w, len); 2491 else 2492 error = sysctl_iflist_ifam(ifa, &info, 2493 w, len); 2494 if (error) 2495 goto done; 2496 } 2497 } 2498 info.rti_info[RTAX_IFA] = NULL; 2499 info.rti_info[RTAX_NETMASK] = NULL; 2500 info.rti_info[RTAX_BRD] = NULL; 2501 } 2502 done: 2503 return (error); 2504 } 2505 2506 static int 2507 sysctl_ifmalist(int af, struct walkarg *w) 2508 { 2509 struct rt_addrinfo info; 2510 struct ifaddr *ifa; 2511 struct ifmultiaddr *ifma; 2512 struct ifnet *ifp; 2513 int error, len; 2514 2515 NET_EPOCH_ASSERT(); 2516 2517 error = 0; 2518 bzero((caddr_t)&info, sizeof(info)); 2519 2520 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2521 if (w->w_arg && w->w_arg != ifp->if_index) 2522 continue; 2523 ifa = ifp->if_addr; 2524 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 2525 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2526 if (af && af != ifma->ifma_addr->sa_family) 2527 continue; 2528 if (prison_if(w->w_req->td->td_ucred, 2529 ifma->ifma_addr) != 0) 2530 continue; 2531 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2532 info.rti_info[RTAX_GATEWAY] = 2533 (ifma->ifma_addr->sa_family != AF_LINK) ? 2534 ifma->ifma_lladdr : NULL; 2535 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 2536 if (error != 0) 2537 break; 2538 if (w->w_req && w->w_tmem) { 2539 struct ifma_msghdr *ifmam; 2540 2541 ifmam = (struct ifma_msghdr *)w->w_tmem; 2542 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2543 ifmam->ifmam_flags = 0; 2544 ifmam->ifmam_addrs = info.rti_addrs; 2545 ifmam->_ifmam_spare1 = 0; 2546 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2547 if (error != 0) 2548 break; 2549 } 2550 } 2551 if (error != 0) 2552 break; 2553 } 2554 return (error); 2555 } 2556 2557 static void 2558 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w) 2559 { 2560 union sockaddr_union sa_dst, sa_mask; 2561 2562 w->family = family; 2563 w->dst = (struct sockaddr *)&sa_dst; 2564 w->mask = (struct sockaddr *)&sa_mask; 2565 2566 init_sockaddrs_family(family, w->dst, w->mask); 2567 2568 rib_walk(fibnum, family, false, sysctl_dumpentry, w); 2569 } 2570 2571 static int 2572 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2573 { 2574 struct epoch_tracker et; 2575 int *name = (int *)arg1; 2576 u_int namelen = arg2; 2577 struct rib_head *rnh = NULL; /* silence compiler. */ 2578 int i, lim, error = EINVAL; 2579 int fib = 0; 2580 u_char af; 2581 struct walkarg w; 2582 2583 if (namelen < 3) 2584 return (EINVAL); 2585 2586 name++; 2587 namelen--; 2588 if (req->newptr) 2589 return (EPERM); 2590 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { 2591 if (namelen == 3) 2592 fib = req->td->td_proc->p_fibnum; 2593 else if (namelen == 4) 2594 fib = (name[3] == RT_ALL_FIBS) ? 2595 req->td->td_proc->p_fibnum : name[3]; 2596 else 2597 return ((namelen < 3) ? EISDIR : ENOTDIR); 2598 if (fib < 0 || fib >= rt_numfibs) 2599 return (EINVAL); 2600 } else if (namelen != 3) 2601 return ((namelen < 3) ? EISDIR : ENOTDIR); 2602 af = name[0]; 2603 if (af > AF_MAX) 2604 return (EINVAL); 2605 bzero(&w, sizeof(w)); 2606 w.w_op = name[1]; 2607 w.w_arg = name[2]; 2608 w.w_req = req; 2609 2610 error = sysctl_wire_old_buffer(req, 0); 2611 if (error) 2612 return (error); 2613 2614 /* 2615 * Allocate reply buffer in advance. 2616 * All rtsock messages has maximum length of u_short. 2617 */ 2618 w.w_tmemsize = 65536; 2619 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2620 2621 NET_EPOCH_ENTER(et); 2622 switch (w.w_op) { 2623 case NET_RT_DUMP: 2624 case NET_RT_FLAGS: 2625 if (af == 0) { /* dump all tables */ 2626 i = 1; 2627 lim = AF_MAX; 2628 } else /* dump only one table */ 2629 i = lim = af; 2630 2631 /* 2632 * take care of llinfo entries, the caller must 2633 * specify an AF 2634 */ 2635 if (w.w_op == NET_RT_FLAGS && 2636 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2637 if (af != 0) 2638 error = lltable_sysctl_dumparp(af, w.w_req); 2639 else 2640 error = EINVAL; 2641 break; 2642 } 2643 /* 2644 * take care of routing entries 2645 */ 2646 for (error = 0; error == 0 && i <= lim; i++) { 2647 rnh = rt_tables_get_rnh(fib, i); 2648 if (rnh != NULL) { 2649 rtable_sysctl_dump(fib, i, &w); 2650 } else if (af != 0) 2651 error = EAFNOSUPPORT; 2652 } 2653 break; 2654 case NET_RT_NHOP: 2655 case NET_RT_NHGRP: 2656 /* Allow dumping one specific af/fib at a time */ 2657 if (namelen < 4) { 2658 error = EINVAL; 2659 break; 2660 } 2661 fib = name[3]; 2662 if (fib < 0 || fib > rt_numfibs) { 2663 error = EINVAL; 2664 break; 2665 } 2666 rnh = rt_tables_get_rnh(fib, af); 2667 if (rnh == NULL) { 2668 error = EAFNOSUPPORT; 2669 break; 2670 } 2671 if (w.w_op == NET_RT_NHOP) 2672 error = nhops_dump_sysctl(rnh, w.w_req); 2673 else 2674 #ifdef ROUTE_MPATH 2675 error = nhgrp_dump_sysctl(rnh, w.w_req); 2676 #else 2677 error = ENOTSUP; 2678 #endif 2679 break; 2680 case NET_RT_IFLIST: 2681 case NET_RT_IFLISTL: 2682 error = sysctl_iflist(af, &w); 2683 break; 2684 2685 case NET_RT_IFMALIST: 2686 error = sysctl_ifmalist(af, &w); 2687 break; 2688 } 2689 NET_EPOCH_EXIT(et); 2690 2691 free(w.w_tmem, M_TEMP); 2692 return (error); 2693 } 2694 2695 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2696 sysctl_rtsock, "Return route tables and interface/address lists"); 2697 2698 /* 2699 * Definitions of protocols supported in the ROUTE domain. 2700 */ 2701 2702 static struct domain routedomain; /* or at least forward */ 2703 2704 static struct protosw routesw = { 2705 .pr_type = SOCK_RAW, 2706 .pr_flags = PR_ATOMIC|PR_ADDR, 2707 .pr_abort = rts_close, 2708 .pr_attach = rts_attach, 2709 .pr_detach = rts_detach, 2710 .pr_send = rts_send, 2711 .pr_shutdown = rts_shutdown, 2712 .pr_disconnect = rts_disconnect, 2713 .pr_close = rts_close, 2714 }; 2715 2716 static struct domain routedomain = { 2717 .dom_family = PF_ROUTE, 2718 .dom_name = "route", 2719 .dom_nprotosw = 1, 2720 .dom_protosw = { &routesw }, 2721 }; 2722 2723 DOMAIN_SET(route); 2724