1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 #include "opt_ddb.h" 32 #include "opt_route.h" 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 36 #include <sys/param.h> 37 #include <sys/jail.h> 38 #include <sys/kernel.h> 39 #include <sys/eventhandler.h> 40 #include <sys/domain.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rmlock.h> 48 #include <sys/rwlock.h> 49 #include <sys/signalvar.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <net/if.h> 56 #include <net/if_var.h> 57 #include <net/if_private.h> 58 #include <net/if_dl.h> 59 #include <net/if_llatbl.h> 60 #include <net/if_types.h> 61 #include <net/netisr.h> 62 #include <net/route.h> 63 #include <net/route/route_ctl.h> 64 #include <net/route/route_var.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/if_ether.h> 69 #include <netinet/ip_carp.h> 70 #ifdef INET6 71 #include <netinet6/in6_var.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #endif 75 #include <net/route/nhop.h> 76 77 #define DEBUG_MOD_NAME rtsock 78 #define DEBUG_MAX_LEVEL LOG_DEBUG 79 #include <net/route/route_debug.h> 80 _DECLARE_DEBUG(LOG_INFO); 81 82 #ifdef COMPAT_FREEBSD32 83 #include <sys/mount.h> 84 #include <compat/freebsd32/freebsd32.h> 85 86 struct if_msghdr32 { 87 uint16_t ifm_msglen; 88 uint8_t ifm_version; 89 uint8_t ifm_type; 90 int32_t ifm_addrs; 91 int32_t ifm_flags; 92 uint16_t ifm_index; 93 uint16_t _ifm_spare1; 94 struct if_data ifm_data; 95 }; 96 97 struct if_msghdrl32 { 98 uint16_t ifm_msglen; 99 uint8_t ifm_version; 100 uint8_t ifm_type; 101 int32_t ifm_addrs; 102 int32_t ifm_flags; 103 uint16_t ifm_index; 104 uint16_t _ifm_spare1; 105 uint16_t ifm_len; 106 uint16_t ifm_data_off; 107 uint32_t _ifm_spare2; 108 struct if_data ifm_data; 109 }; 110 111 struct ifa_msghdrl32 { 112 uint16_t ifam_msglen; 113 uint8_t ifam_version; 114 uint8_t ifam_type; 115 int32_t ifam_addrs; 116 int32_t ifam_flags; 117 uint16_t ifam_index; 118 uint16_t _ifam_spare1; 119 uint16_t ifam_len; 120 uint16_t ifam_data_off; 121 int32_t ifam_metric; 122 struct if_data ifam_data; 123 }; 124 125 #define SA_SIZE32(sa) \ 126 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 127 sizeof(int) : \ 128 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 129 130 #endif /* COMPAT_FREEBSD32 */ 131 132 struct linear_buffer { 133 char *base; /* Base allocated memory pointer */ 134 uint32_t offset; /* Currently used offset */ 135 uint32_t size; /* Total buffer size */ 136 }; 137 #define SCRATCH_BUFFER_SIZE 1024 138 139 #define RTS_PID_LOG(_l, _fmt, ...) \ 140 RT_LOG_##_l(_l, "PID %d: " _fmt, curproc ? curproc->p_pid : 0, \ 141 ## __VA_ARGS__) 142 143 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 144 145 /* NB: these are not modified */ 146 static struct sockaddr route_src = { 2, PF_ROUTE, }; 147 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 148 149 /* These are external hooks for CARP. */ 150 int (*carp_get_vhid_p)(struct ifaddr *); 151 152 /* 153 * Used by rtsock callback code to decide whether to filter the update 154 * notification to a socket bound to a particular FIB. 155 */ 156 #define RTS_FILTER_FIB M_PROTO8 157 /* 158 * Used to store address family of the notification. 159 */ 160 #define m_rtsock_family m_pkthdr.PH_loc.eight[0] 161 162 struct rcb { 163 LIST_ENTRY(rcb) list; 164 struct socket *rcb_socket; 165 sa_family_t rcb_family; 166 }; 167 168 typedef struct { 169 LIST_HEAD(, rcb) cblist; 170 int ip_count; /* attached w/ AF_INET */ 171 int ip6_count; /* attached w/ AF_INET6 */ 172 int any_count; /* total attached */ 173 } route_cb_t; 174 VNET_DEFINE_STATIC(route_cb_t, route_cb); 175 #define V_route_cb VNET(route_cb) 176 177 struct mtx rtsock_mtx; 178 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 179 180 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 181 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 182 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 183 184 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 185 186 struct walkarg { 187 int family; 188 int w_tmemsize; 189 int w_op, w_arg; 190 caddr_t w_tmem; 191 struct sysctl_req *w_req; 192 struct sockaddr *dst; 193 struct sockaddr *mask; 194 }; 195 196 static void rts_input(struct mbuf *m); 197 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 198 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 199 struct walkarg *w, int *plen); 200 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 201 struct rt_addrinfo *rtinfo); 202 static int cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb); 203 static int sysctl_dumpentry(struct rtentry *rt, void *vw); 204 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 205 uint32_t weight, struct walkarg *w); 206 static int sysctl_iflist(int af, struct walkarg *w); 207 static int sysctl_ifmalist(int af, struct walkarg *w); 208 static void rt_getmetrics(const struct rtentry *rt, 209 const struct nhop_object *nh, struct rt_metrics *out); 210 static void rt_dispatch(struct mbuf *, sa_family_t); 211 static void rt_ifannouncemsg(struct ifnet *, int, const char *); 212 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 213 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 214 static int update_rtm_from_rc(struct rt_addrinfo *info, 215 struct rt_msghdr **prtm, int alloc_len, 216 struct rib_cmd_info *rc, struct nhop_object *nh); 217 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 218 struct mbuf *m, sa_family_t saf, u_int fibnum, 219 int rtm_errno); 220 static void rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc); 221 static void rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask); 222 223 static struct netisr_handler rtsock_nh = { 224 .nh_name = "rtsock", 225 .nh_handler = rts_input, 226 .nh_proto = NETISR_ROUTE, 227 .nh_policy = NETISR_POLICY_SOURCE, 228 }; 229 230 static int 231 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 232 { 233 int error, qlimit; 234 235 netisr_getqlimit(&rtsock_nh, &qlimit); 236 error = sysctl_handle_int(oidp, &qlimit, 0, req); 237 if (error || !req->newptr) 238 return (error); 239 if (qlimit < 1) 240 return (EINVAL); 241 return (netisr_setqlimit(&rtsock_nh, qlimit)); 242 } 243 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 244 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 245 0, 0, sysctl_route_netisr_maxqlen, "I", 246 "maximum routing socket dispatch queue length"); 247 248 static void 249 vnet_rts_init(void) 250 { 251 int tmp; 252 253 if (IS_DEFAULT_VNET(curvnet)) { 254 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 255 rtsock_nh.nh_qlimit = tmp; 256 netisr_register(&rtsock_nh); 257 } 258 #ifdef VIMAGE 259 else 260 netisr_register_vnet(&rtsock_nh); 261 #endif 262 } 263 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 264 vnet_rts_init, NULL); 265 266 #ifdef VIMAGE 267 static void 268 vnet_rts_uninit(void) 269 { 270 271 netisr_unregister_vnet(&rtsock_nh); 272 } 273 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 274 vnet_rts_uninit, NULL); 275 #endif 276 277 static void 278 report_route_event(const struct rib_cmd_info *rc, void *_cbdata) 279 { 280 uint32_t fibnum = (uint32_t)(uintptr_t)_cbdata; 281 struct nhop_object *nh; 282 283 nh = rc->rc_cmd == RTM_DELETE ? rc->rc_nh_old : rc->rc_nh_new; 284 rt_routemsg(rc->rc_cmd, rc->rc_rt, nh, fibnum); 285 } 286 287 static void 288 rts_handle_route_event(uint32_t fibnum, const struct rib_cmd_info *rc) 289 { 290 #ifdef ROUTE_MPATH 291 if ((rc->rc_nh_new && NH_IS_NHGRP(rc->rc_nh_new)) || 292 (rc->rc_nh_old && NH_IS_NHGRP(rc->rc_nh_old))) { 293 rib_decompose_notification(rc, report_route_event, 294 (void *)(uintptr_t)fibnum); 295 } else 296 #endif 297 report_route_event(rc, (void *)(uintptr_t)fibnum); 298 } 299 static struct rtbridge rtsbridge = { 300 .route_f = rts_handle_route_event, 301 .ifmsg_f = rtsock_ifmsg, 302 }; 303 static struct rtbridge *rtsbridge_orig_p; 304 305 static void 306 rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc) 307 { 308 netlink_callback_p->route_f(fibnum, rc); 309 } 310 311 static void 312 rtsock_init(void *dummy __unused) 313 { 314 rtsbridge_orig_p = rtsock_callback_p; 315 rtsock_callback_p = &rtsbridge; 316 } 317 SYSINIT(rtsock_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rtsock_init, NULL); 318 319 static void 320 rts_ifnet_attached(void *arg __unused, struct ifnet *ifp) 321 { 322 rt_ifannouncemsg(ifp, IFAN_ARRIVAL, NULL); 323 } 324 EVENTHANDLER_DEFINE(ifnet_attached_event, rts_ifnet_attached, NULL, 0); 325 326 static void 327 rts_handle_ifnet_departure(void *arg __unused, struct ifnet *ifp) 328 { 329 rt_ifannouncemsg(ifp, IFAN_DEPARTURE, NULL); 330 } 331 EVENTHANDLER_DEFINE(ifnet_departure_event, rts_handle_ifnet_departure, NULL, 0); 332 333 static void 334 rts_handle_ifnet_rename(void *arg __unused, struct ifnet *ifp, 335 const char *old_name) 336 { 337 rt_ifannouncemsg(ifp, IFAN_DEPARTURE, old_name); 338 rt_ifannouncemsg(ifp, IFAN_ARRIVAL, NULL); 339 } 340 EVENTHANDLER_DEFINE(ifnet_rename_event, rts_handle_ifnet_rename, NULL, 0); 341 342 static void 343 rts_append_data(struct socket *so, struct mbuf *m) 344 { 345 346 if (sbappendaddr(&so->so_rcv, &route_src, m, NULL) == 0) { 347 soroverflow(so); 348 m_freem(m); 349 } else 350 sorwakeup(so); 351 } 352 353 static void 354 rts_input(struct mbuf *m) 355 { 356 struct rcb *rcb; 357 struct socket *last; 358 359 last = NULL; 360 RTSOCK_LOCK(); 361 LIST_FOREACH(rcb, &V_route_cb.cblist, list) { 362 if (rcb->rcb_family != AF_UNSPEC && 363 rcb->rcb_family != m->m_rtsock_family) 364 continue; 365 if ((m->m_flags & RTS_FILTER_FIB) && 366 M_GETFIB(m) != rcb->rcb_socket->so_fibnum) 367 continue; 368 if (last != NULL) { 369 struct mbuf *n; 370 371 n = m_copym(m, 0, M_COPYALL, M_NOWAIT); 372 if (n != NULL) 373 rts_append_data(last, n); 374 } 375 last = rcb->rcb_socket; 376 } 377 if (last != NULL) 378 rts_append_data(last, m); 379 else 380 m_freem(m); 381 RTSOCK_UNLOCK(); 382 } 383 384 static void 385 rts_close(struct socket *so) 386 { 387 388 soisdisconnected(so); 389 } 390 391 static SYSCTL_NODE(_net, OID_AUTO, rtsock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 392 "Routing socket infrastructure"); 393 static u_long rts_sendspace = 8192; 394 SYSCTL_ULONG(_net_rtsock, OID_AUTO, sendspace, CTLFLAG_RW, &rts_sendspace, 0, 395 "Default routing socket send space"); 396 static u_long rts_recvspace = 8192; 397 SYSCTL_ULONG(_net_rtsock, OID_AUTO, recvspace, CTLFLAG_RW, &rts_recvspace, 0, 398 "Default routing socket receive space"); 399 400 static int 401 rts_attach(struct socket *so, int proto, struct thread *td) 402 { 403 struct rcb *rcb; 404 int error; 405 406 error = soreserve(so, rts_sendspace, rts_recvspace); 407 if (error) 408 return (error); 409 410 rcb = malloc(sizeof(*rcb), M_PCB, M_WAITOK); 411 rcb->rcb_socket = so; 412 rcb->rcb_family = proto; 413 414 so->so_pcb = rcb; 415 so->so_fibnum = td->td_proc->p_fibnum; 416 so->so_options |= SO_USELOOPBACK; 417 418 RTSOCK_LOCK(); 419 LIST_INSERT_HEAD(&V_route_cb.cblist, rcb, list); 420 switch (proto) { 421 case AF_INET: 422 V_route_cb.ip_count++; 423 break; 424 case AF_INET6: 425 V_route_cb.ip6_count++; 426 break; 427 } 428 V_route_cb.any_count++; 429 RTSOCK_UNLOCK(); 430 soisconnected(so); 431 432 return (0); 433 } 434 435 static int 436 rts_ctloutput(struct socket *so, struct sockopt *sopt) 437 { 438 int error, optval; 439 440 error = ENOPROTOOPT; 441 if (sopt->sopt_dir == SOPT_SET) { 442 switch (sopt->sopt_level) { 443 case SOL_SOCKET: 444 switch (sopt->sopt_name) { 445 case SO_SETFIB: 446 error = sooptcopyin(sopt, &optval, 447 sizeof(optval), sizeof(optval)); 448 if (error != 0) 449 break; 450 error = sosetfib(so, optval); 451 break; 452 } 453 break; 454 } 455 } 456 return (error); 457 } 458 459 static void 460 rts_detach(struct socket *so) 461 { 462 struct rcb *rcb = so->so_pcb; 463 464 RTSOCK_LOCK(); 465 LIST_REMOVE(rcb, list); 466 switch(rcb->rcb_family) { 467 case AF_INET: 468 V_route_cb.ip_count--; 469 break; 470 case AF_INET6: 471 V_route_cb.ip6_count--; 472 break; 473 } 474 V_route_cb.any_count--; 475 RTSOCK_UNLOCK(); 476 free(rcb, M_PCB); 477 so->so_pcb = NULL; 478 } 479 480 static int 481 rts_disconnect(struct socket *so) 482 { 483 484 return (ENOTCONN); 485 } 486 487 static int 488 rts_shutdown(struct socket *so, enum shutdown_how how) 489 { 490 /* 491 * Note: route socket marks itself as connected through its lifetime. 492 */ 493 switch (how) { 494 case SHUT_RD: 495 sorflush(so); 496 break; 497 case SHUT_RDWR: 498 sorflush(so); 499 /* FALLTHROUGH */ 500 case SHUT_WR: 501 socantsendmore(so); 502 } 503 504 return (0); 505 } 506 507 #ifndef _SOCKADDR_UNION_DEFINED 508 #define _SOCKADDR_UNION_DEFINED 509 /* 510 * The union of all possible address formats we handle. 511 */ 512 union sockaddr_union { 513 struct sockaddr sa; 514 struct sockaddr_in sin; 515 struct sockaddr_in6 sin6; 516 }; 517 #endif /* _SOCKADDR_UNION_DEFINED */ 518 519 static int 520 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 521 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 522 { 523 #if defined(INET) || defined(INET6) 524 struct epoch_tracker et; 525 #endif 526 527 /* First, see if the returned address is part of the jail. */ 528 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 529 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 530 return (0); 531 } 532 533 switch (info->rti_info[RTAX_DST]->sa_family) { 534 #ifdef INET 535 case AF_INET: 536 { 537 struct in_addr ia; 538 struct ifaddr *ifa; 539 int found; 540 541 found = 0; 542 /* 543 * Try to find an address on the given outgoing interface 544 * that belongs to the jail. 545 */ 546 NET_EPOCH_ENTER(et); 547 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 548 struct sockaddr *sa; 549 sa = ifa->ifa_addr; 550 if (sa->sa_family != AF_INET) 551 continue; 552 ia = ((struct sockaddr_in *)sa)->sin_addr; 553 if (prison_check_ip4(cred, &ia) == 0) { 554 found = 1; 555 break; 556 } 557 } 558 NET_EPOCH_EXIT(et); 559 if (!found) { 560 /* 561 * As a last resort return the 'default' jail address. 562 */ 563 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 564 sin_addr; 565 if (prison_get_ip4(cred, &ia) != 0) 566 return (ESRCH); 567 } 568 bzero(&saun->sin, sizeof(struct sockaddr_in)); 569 saun->sin.sin_len = sizeof(struct sockaddr_in); 570 saun->sin.sin_family = AF_INET; 571 saun->sin.sin_addr.s_addr = ia.s_addr; 572 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 573 break; 574 } 575 #endif 576 #ifdef INET6 577 case AF_INET6: 578 { 579 struct in6_addr ia6; 580 struct ifaddr *ifa; 581 int found; 582 583 found = 0; 584 /* 585 * Try to find an address on the given outgoing interface 586 * that belongs to the jail. 587 */ 588 NET_EPOCH_ENTER(et); 589 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 590 struct sockaddr *sa; 591 sa = ifa->ifa_addr; 592 if (sa->sa_family != AF_INET6) 593 continue; 594 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 595 &ia6, sizeof(struct in6_addr)); 596 if (prison_check_ip6(cred, &ia6) == 0) { 597 found = 1; 598 break; 599 } 600 } 601 NET_EPOCH_EXIT(et); 602 if (!found) { 603 /* 604 * As a last resort return the 'default' jail address. 605 */ 606 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 607 sin6_addr; 608 if (prison_get_ip6(cred, &ia6) != 0) 609 return (ESRCH); 610 } 611 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 612 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 613 saun->sin6.sin6_family = AF_INET6; 614 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 615 if (sa6_recoverscope(&saun->sin6) != 0) 616 return (ESRCH); 617 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 618 break; 619 } 620 #endif 621 default: 622 return (ESRCH); 623 } 624 return (0); 625 } 626 627 static int 628 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun) 629 { 630 struct ifaddr *ifa; 631 sa_family_t saf; 632 633 if (V_loif == NULL) { 634 RTS_PID_LOG(LOG_INFO, "Unable to add blackhole/reject nhop without loopback"); 635 return (ENOTSUP); 636 } 637 info->rti_ifp = V_loif; 638 639 saf = info->rti_info[RTAX_DST]->sa_family; 640 641 CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) { 642 if (ifa->ifa_addr->sa_family == saf) { 643 info->rti_ifa = ifa; 644 break; 645 } 646 } 647 if (info->rti_ifa == NULL) { 648 RTS_PID_LOG(LOG_INFO, "Unable to find ifa for blackhole/reject nhop"); 649 return (ENOTSUP); 650 } 651 652 bzero(saun, sizeof(union sockaddr_union)); 653 switch (saf) { 654 #ifdef INET 655 case AF_INET: 656 saun->sin.sin_family = AF_INET; 657 saun->sin.sin_len = sizeof(struct sockaddr_in); 658 saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 659 break; 660 #endif 661 #ifdef INET6 662 case AF_INET6: 663 saun->sin6.sin6_family = AF_INET6; 664 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 665 saun->sin6.sin6_addr = in6addr_loopback; 666 break; 667 #endif 668 default: 669 RTS_PID_LOG(LOG_INFO, "unsupported family: %d", saf); 670 return (ENOTSUP); 671 } 672 info->rti_info[RTAX_GATEWAY] = &saun->sa; 673 info->rti_flags |= RTF_GATEWAY; 674 675 return (0); 676 } 677 678 /* 679 * Fills in @info based on userland-provided @rtm message. 680 * 681 * Returns 0 on success. 682 */ 683 static int 684 fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum, 685 struct rt_addrinfo *info) 686 { 687 int error; 688 689 rtm->rtm_pid = curproc->p_pid; 690 info->rti_addrs = rtm->rtm_addrs; 691 692 info->rti_mflags = rtm->rtm_inits; 693 info->rti_rmx = &rtm->rtm_rmx; 694 695 /* 696 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 697 * link-local address because rtrequest requires addresses with 698 * embedded scope id. 699 */ 700 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 701 return (EINVAL); 702 703 info->rti_flags = rtm->rtm_flags; 704 error = cleanup_xaddrs(info, lb); 705 if (error != 0) 706 return (error); 707 /* 708 * Verify that the caller has the appropriate privilege; RTM_GET 709 * is the only operation the non-superuser is allowed. 710 */ 711 if (rtm->rtm_type != RTM_GET) { 712 error = priv_check(curthread, PRIV_NET_ROUTE); 713 if (error != 0) 714 return (error); 715 } 716 717 /* 718 * The given gateway address may be an interface address. 719 * For example, issuing a "route change" command on a route 720 * entry that was created from a tunnel, and the gateway 721 * address given is the local end point. In this case the 722 * RTF_GATEWAY flag must be cleared or the destination will 723 * not be reachable even though there is no error message. 724 */ 725 if (info->rti_info[RTAX_GATEWAY] != NULL && 726 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 727 struct nhop_object *nh; 728 729 /* 730 * A host route through the loopback interface is 731 * installed for each interface address. In pre 8.0 732 * releases the interface address of a PPP link type 733 * is not reachable locally. This behavior is fixed as 734 * part of the new L2/L3 redesign and rewrite work. The 735 * signature of this interface address route is the 736 * AF_LINK sa_family type of the gateway, and the 737 * rt_ifp has the IFF_LOOPBACK flag set. 738 */ 739 nh = rib_lookup(fibnum, info->rti_info[RTAX_GATEWAY], NHR_NONE, 0); 740 if (nh != NULL && nh->gw_sa.sa_family == AF_LINK && 741 nh->nh_ifp->if_flags & IFF_LOOPBACK) { 742 info->rti_flags &= ~RTF_GATEWAY; 743 info->rti_flags |= RTF_GWFLAG_COMPAT; 744 } 745 } 746 747 return (0); 748 } 749 750 static struct nhop_object * 751 select_nhop(struct nhop_object *nh, const struct sockaddr *gw) 752 { 753 if (!NH_IS_NHGRP(nh)) 754 return (nh); 755 #ifdef ROUTE_MPATH 756 const struct weightened_nhop *wn; 757 uint32_t num_nhops; 758 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 759 if (gw == NULL) 760 return (wn[0].nh); 761 for (int i = 0; i < num_nhops; i++) { 762 if (match_nhop_gw(wn[i].nh, gw)) 763 return (wn[i].nh); 764 } 765 #endif 766 return (NULL); 767 } 768 769 /* 770 * Handles RTM_GET message from routing socket, returning matching rt. 771 * 772 * Returns: 773 * 0 on success, with locked and referenced matching rt in @rt_nrt 774 * errno of failure 775 */ 776 static int 777 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 778 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 779 { 780 RIB_RLOCK_TRACKER; 781 struct rib_head *rnh; 782 struct nhop_object *nh; 783 sa_family_t saf; 784 785 saf = info->rti_info[RTAX_DST]->sa_family; 786 787 rnh = rt_tables_get_rnh(fibnum, saf); 788 if (rnh == NULL) 789 return (EAFNOSUPPORT); 790 791 RIB_RLOCK(rnh); 792 793 /* 794 * By (implicit) convention host route (one without netmask) 795 * means longest-prefix-match request and the route with netmask 796 * means exact-match lookup. 797 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128 798 * prefixes, use original data to check for the netmask presence. 799 */ 800 if ((rtm->rtm_addrs & RTA_NETMASK) == 0) { 801 /* 802 * Provide longest prefix match for 803 * address lookup (no mask). 804 * 'route -n get addr' 805 */ 806 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 807 info->rti_info[RTAX_DST], &rnh->head); 808 } else 809 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 810 info->rti_info[RTAX_DST], 811 info->rti_info[RTAX_NETMASK], &rnh->head); 812 813 if (rc->rc_rt == NULL) { 814 RIB_RUNLOCK(rnh); 815 return (ESRCH); 816 } 817 818 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 819 if (nh == NULL) { 820 RIB_RUNLOCK(rnh); 821 return (ESRCH); 822 } 823 /* 824 * If performing proxied L2 entry insertion, and 825 * the actual PPP host entry is found, perform 826 * another search to retrieve the prefix route of 827 * the local end point of the PPP link. 828 * TODO: move this logic to userland. 829 */ 830 if (rtm->rtm_flags & RTF_ANNOUNCE) { 831 struct sockaddr_storage laddr; 832 833 if (nh->nh_ifp != NULL && 834 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 835 struct ifaddr *ifa; 836 837 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 838 RT_ALL_FIBS); 839 if (ifa != NULL) 840 rt_maskedcopy(ifa->ifa_addr, 841 (struct sockaddr *)&laddr, 842 ifa->ifa_netmask); 843 } else 844 rt_maskedcopy(nh->nh_ifa->ifa_addr, 845 (struct sockaddr *)&laddr, 846 nh->nh_ifa->ifa_netmask); 847 /* 848 * refactor rt and no lock operation necessary 849 */ 850 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr( 851 (struct sockaddr *)&laddr, &rnh->head); 852 if (rc->rc_rt == NULL) { 853 RIB_RUNLOCK(rnh); 854 return (ESRCH); 855 } 856 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 857 if (nh == NULL) { 858 RIB_RUNLOCK(rnh); 859 return (ESRCH); 860 } 861 } 862 rc->rc_nh_new = nh; 863 rc->rc_nh_weight = rc->rc_rt->rt_weight; 864 RIB_RUNLOCK(rnh); 865 866 return (0); 867 } 868 869 static void 870 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask) 871 { 872 #ifdef INET 873 if (family == AF_INET) { 874 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 875 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 876 877 bzero(dst4, sizeof(struct sockaddr_in)); 878 bzero(mask4, sizeof(struct sockaddr_in)); 879 880 dst4->sin_family = AF_INET; 881 dst4->sin_len = sizeof(struct sockaddr_in); 882 mask4->sin_family = AF_INET; 883 mask4->sin_len = sizeof(struct sockaddr_in); 884 } 885 #endif 886 #ifdef INET6 887 if (family == AF_INET6) { 888 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 889 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 890 891 bzero(dst6, sizeof(struct sockaddr_in6)); 892 bzero(mask6, sizeof(struct sockaddr_in6)); 893 894 dst6->sin6_family = AF_INET6; 895 dst6->sin6_len = sizeof(struct sockaddr_in6); 896 mask6->sin6_family = AF_INET6; 897 mask6->sin6_len = sizeof(struct sockaddr_in6); 898 } 899 #endif 900 } 901 902 static void 903 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst, 904 struct sockaddr *mask) 905 { 906 #ifdef INET 907 if (dst->sa_family == AF_INET) { 908 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 909 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 910 uint32_t scopeid = 0; 911 rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr, 912 &scopeid); 913 return; 914 } 915 #endif 916 #ifdef INET6 917 if (dst->sa_family == AF_INET6) { 918 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 919 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 920 uint32_t scopeid = 0; 921 rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr, 922 &mask6->sin6_addr, &scopeid); 923 dst6->sin6_scope_id = scopeid; 924 return; 925 } 926 #endif 927 } 928 929 static int 930 update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm, 931 int alloc_len) 932 { 933 struct rt_msghdr *rtm, *orig_rtm = NULL; 934 struct walkarg w; 935 int len; 936 937 rtm = *prtm; 938 /* Check if we need to realloc storage */ 939 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 940 if (len > alloc_len) { 941 struct rt_msghdr *tmp_rtm; 942 943 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 944 if (tmp_rtm == NULL) 945 return (ENOBUFS); 946 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 947 orig_rtm = rtm; 948 rtm = tmp_rtm; 949 alloc_len = len; 950 951 /* 952 * Delay freeing original rtm as info contains 953 * data referencing it. 954 */ 955 } 956 957 w = (struct walkarg ){ 958 .w_tmem = (caddr_t)rtm, 959 .w_tmemsize = alloc_len, 960 }; 961 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 962 rtm->rtm_addrs = info->rti_addrs; 963 964 if (orig_rtm != NULL) 965 free(orig_rtm, M_TEMP); 966 *prtm = rtm; 967 return (0); 968 } 969 970 971 /* 972 * Update sockaddrs, flags, etc in @prtm based on @rc data. 973 * rtm can be reallocated. 974 * 975 * Returns 0 on success, along with pointer to (potentially reallocated) 976 * rtm. 977 * 978 */ 979 static int 980 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 981 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 982 { 983 union sockaddr_union saun; 984 struct rt_msghdr *rtm; 985 struct ifnet *ifp; 986 int error; 987 988 rtm = *prtm; 989 union sockaddr_union sa_dst, sa_mask; 990 int family = info->rti_info[RTAX_DST]->sa_family; 991 init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa); 992 export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa); 993 994 info->rti_info[RTAX_DST] = &sa_dst.sa; 995 info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa; 996 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 997 info->rti_info[RTAX_GENMASK] = 0; 998 ifp = nh->nh_ifp; 999 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 1000 if (ifp) { 1001 info->rti_info[RTAX_IFP] = 1002 ifp->if_addr->ifa_addr; 1003 error = rtm_get_jailed(info, ifp, nh, 1004 &saun, curthread->td_ucred); 1005 if (error != 0) 1006 return (error); 1007 if (ifp->if_flags & IFF_POINTOPOINT) 1008 info->rti_info[RTAX_BRD] = 1009 nh->nh_ifa->ifa_dstaddr; 1010 rtm->rtm_index = ifp->if_index; 1011 } else { 1012 info->rti_info[RTAX_IFP] = NULL; 1013 info->rti_info[RTAX_IFA] = NULL; 1014 } 1015 } else if (ifp != NULL) 1016 rtm->rtm_index = ifp->if_index; 1017 1018 if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0) 1019 return (error); 1020 1021 rtm = *prtm; 1022 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 1023 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 1024 rtm->rtm_flags = RTF_GATEWAY | 1025 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 1026 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 1027 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 1028 1029 return (0); 1030 } 1031 1032 #ifdef ROUTE_MPATH 1033 static void 1034 save_del_notification(const struct rib_cmd_info *rc, void *_cbdata) 1035 { 1036 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 1037 1038 if (rc->rc_cmd == RTM_DELETE) 1039 *rc_new = *rc; 1040 } 1041 1042 static void 1043 save_add_notification(const struct rib_cmd_info *rc, void *_cbdata) 1044 { 1045 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 1046 1047 if (rc->rc_cmd == RTM_ADD) 1048 *rc_new = *rc; 1049 } 1050 #endif 1051 1052 #if defined(INET6) || defined(INET) 1053 static struct sockaddr * 1054 alloc_sockaddr_aligned(struct linear_buffer *lb, int len) 1055 { 1056 len = roundup2(len, sizeof(uint64_t)); 1057 if (lb->offset + len > lb->size) 1058 return (NULL); 1059 struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset); 1060 lb->offset += len; 1061 return (sa); 1062 } 1063 #endif 1064 1065 static int 1066 rts_send(struct socket *so, int flags, struct mbuf *m, 1067 struct sockaddr *nam, struct mbuf *control, struct thread *td) 1068 { 1069 struct rt_msghdr *rtm = NULL; 1070 struct rt_addrinfo info; 1071 struct epoch_tracker et; 1072 #ifdef INET6 1073 struct sockaddr_storage ss; 1074 struct sockaddr_in6 *sin6; 1075 int i, rti_need_deembed = 0; 1076 #endif 1077 int alloc_len = 0, len, error = 0, fibnum; 1078 sa_family_t saf = AF_UNSPEC; 1079 struct rib_cmd_info rc; 1080 struct nhop_object *nh; 1081 1082 if ((flags & PRUS_OOB) || control != NULL) { 1083 m_freem(m); 1084 if (control != NULL) 1085 m_freem(control); 1086 return (EOPNOTSUPP); 1087 } 1088 1089 fibnum = so->so_fibnum; 1090 #define senderr(e) { error = e; goto flush;} 1091 if (m == NULL || ((m->m_len < sizeof(long)) && 1092 (m = m_pullup(m, sizeof(long))) == NULL)) 1093 return (ENOBUFS); 1094 if ((m->m_flags & M_PKTHDR) == 0) 1095 panic("route_output"); 1096 NET_EPOCH_ENTER(et); 1097 len = m->m_pkthdr.len; 1098 if (len < sizeof(*rtm) || 1099 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 1100 senderr(EINVAL); 1101 1102 /* 1103 * Most of current messages are in range 200-240 bytes, 1104 * minimize possible re-allocation on reply using larger size 1105 * buffer aligned on 1k boundaty. 1106 */ 1107 alloc_len = roundup2(len, 1024); 1108 int total_len = alloc_len + SCRATCH_BUFFER_SIZE; 1109 if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL) 1110 senderr(ENOBUFS); 1111 1112 m_copydata(m, 0, len, (caddr_t)rtm); 1113 bzero(&info, sizeof(info)); 1114 nh = NULL; 1115 struct linear_buffer lb = { 1116 .base = (char *)rtm + alloc_len, 1117 .size = SCRATCH_BUFFER_SIZE, 1118 }; 1119 1120 if (rtm->rtm_version != RTM_VERSION) { 1121 /* Do not touch message since format is unknown */ 1122 free(rtm, M_TEMP); 1123 rtm = NULL; 1124 senderr(EPROTONOSUPPORT); 1125 } 1126 1127 /* 1128 * Starting from here, it is possible 1129 * to alter original message and insert 1130 * caller PID and error value. 1131 */ 1132 1133 if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) { 1134 senderr(error); 1135 } 1136 /* fill_addringo() embeds scope into IPv6 addresses */ 1137 #ifdef INET6 1138 rti_need_deembed = 1; 1139 #endif 1140 1141 saf = info.rti_info[RTAX_DST]->sa_family; 1142 1143 /* support for new ARP code */ 1144 if (rtm->rtm_flags & RTF_LLDATA) { 1145 error = lla_rt_output(rtm, &info); 1146 goto flush; 1147 } 1148 1149 union sockaddr_union gw_saun; 1150 int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT); 1151 if (blackhole_flags != 0) { 1152 if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT)) 1153 error = fill_blackholeinfo(&info, &gw_saun); 1154 else { 1155 RTS_PID_LOG(LOG_DEBUG, "both BLACKHOLE and REJECT flags specifiied"); 1156 error = EINVAL; 1157 } 1158 if (error != 0) 1159 senderr(error); 1160 } 1161 1162 switch (rtm->rtm_type) { 1163 case RTM_ADD: 1164 case RTM_CHANGE: 1165 if (rtm->rtm_type == RTM_ADD) { 1166 if (info.rti_info[RTAX_GATEWAY] == NULL) { 1167 RTS_PID_LOG(LOG_DEBUG, "RTM_ADD w/o gateway"); 1168 senderr(EINVAL); 1169 } 1170 } 1171 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 1172 if (error == 0) { 1173 rtsock_notify_event(fibnum, &rc); 1174 #ifdef ROUTE_MPATH 1175 if (NH_IS_NHGRP(rc.rc_nh_new) || 1176 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { 1177 struct rib_cmd_info rc_simple = {}; 1178 rib_decompose_notification(&rc, 1179 save_add_notification, (void *)&rc_simple); 1180 rc = rc_simple; 1181 } 1182 #endif 1183 /* nh MAY be empty if RTM_CHANGE request is no-op */ 1184 nh = rc.rc_nh_new; 1185 if (nh != NULL) { 1186 rtm->rtm_index = nh->nh_ifp->if_index; 1187 rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); 1188 } 1189 } 1190 break; 1191 1192 case RTM_DELETE: 1193 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 1194 if (error == 0) { 1195 rtsock_notify_event(fibnum, &rc); 1196 #ifdef ROUTE_MPATH 1197 if (NH_IS_NHGRP(rc.rc_nh_old) || 1198 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { 1199 struct rib_cmd_info rc_simple = {}; 1200 rib_decompose_notification(&rc, 1201 save_del_notification, (void *)&rc_simple); 1202 rc = rc_simple; 1203 } 1204 #endif 1205 nh = rc.rc_nh_old; 1206 } 1207 break; 1208 1209 case RTM_GET: 1210 error = handle_rtm_get(&info, fibnum, rtm, &rc); 1211 if (error != 0) 1212 senderr(error); 1213 nh = rc.rc_nh_new; 1214 1215 if (!rt_is_exportable(rc.rc_rt, curthread->td_ucred)) 1216 senderr(ESRCH); 1217 break; 1218 1219 default: 1220 senderr(EOPNOTSUPP); 1221 } 1222 1223 if (error == 0 && nh != NULL) { 1224 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 1225 /* 1226 * Note that some sockaddr pointers may have changed to 1227 * point to memory outsize @rtm. Some may be pointing 1228 * to the on-stack variables. 1229 * Given that, any pointer in @info CANNOT BE USED. 1230 */ 1231 1232 /* 1233 * scopeid deembedding has been performed while 1234 * writing updated rtm in rtsock_msg_buffer(). 1235 * With that in mind, skip deembedding procedure below. 1236 */ 1237 #ifdef INET6 1238 rti_need_deembed = 0; 1239 #endif 1240 } 1241 1242 flush: 1243 NET_EPOCH_EXIT(et); 1244 1245 #ifdef INET6 1246 if (rtm != NULL) { 1247 if (rti_need_deembed) { 1248 /* sin6_scope_id is recovered before sending rtm. */ 1249 sin6 = (struct sockaddr_in6 *)&ss; 1250 for (i = 0; i < RTAX_MAX; i++) { 1251 if (info.rti_info[i] == NULL) 1252 continue; 1253 if (info.rti_info[i]->sa_family != AF_INET6) 1254 continue; 1255 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1256 if (sa6_recoverscope(sin6) == 0) 1257 bcopy(sin6, info.rti_info[i], 1258 sizeof(*sin6)); 1259 } 1260 if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) { 1261 if (error != 0) 1262 error = ENOBUFS; 1263 } 1264 } 1265 } 1266 #endif 1267 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1268 1269 return (error); 1270 } 1271 1272 /* 1273 * Sends the prepared reply message in @rtm to all rtsock clients. 1274 * Frees @m and @rtm. 1275 * 1276 */ 1277 static void 1278 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1279 sa_family_t saf, u_int fibnum, int rtm_errno) 1280 { 1281 struct rcb *rcb = NULL; 1282 1283 /* 1284 * Check to see if we don't want our own messages. 1285 */ 1286 if ((so->so_options & SO_USELOOPBACK) == 0) { 1287 if (V_route_cb.any_count <= 1) { 1288 if (rtm != NULL) 1289 free(rtm, M_TEMP); 1290 m_freem(m); 1291 return; 1292 } 1293 /* There is another listener, so construct message */ 1294 rcb = so->so_pcb; 1295 } 1296 1297 if (rtm != NULL) { 1298 if (rtm_errno!= 0) 1299 rtm->rtm_errno = rtm_errno; 1300 else 1301 rtm->rtm_flags |= RTF_DONE; 1302 1303 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1304 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1305 m_freem(m); 1306 m = NULL; 1307 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1308 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1309 1310 free(rtm, M_TEMP); 1311 } 1312 if (m != NULL) { 1313 M_SETFIB(m, fibnum); 1314 m->m_flags |= RTS_FILTER_FIB; 1315 if (rcb) { 1316 /* 1317 * XXX insure we don't get a copy by 1318 * invalidating our protocol 1319 */ 1320 sa_family_t family = rcb->rcb_family; 1321 rcb->rcb_family = AF_UNSPEC; 1322 rt_dispatch(m, saf); 1323 rcb->rcb_family = family; 1324 } else 1325 rt_dispatch(m, saf); 1326 } 1327 } 1328 1329 static void 1330 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1331 struct rt_metrics *out) 1332 { 1333 1334 bzero(out, sizeof(*out)); 1335 out->rmx_mtu = nh->nh_mtu; 1336 out->rmx_weight = rt->rt_weight; 1337 out->rmx_nhidx = nhop_get_idx(nh); 1338 /* Kernel -> userland timebase conversion. */ 1339 out->rmx_expire = nhop_get_expire(nh) ? 1340 nhop_get_expire(nh) - time_uptime + time_second : 0; 1341 } 1342 1343 /* 1344 * Extract the addresses of the passed sockaddrs. 1345 * Do a little sanity checking so as to avoid bad memory references. 1346 * This data is derived straight from userland. 1347 */ 1348 static int 1349 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1350 { 1351 struct sockaddr *sa; 1352 int i; 1353 1354 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1355 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1356 continue; 1357 sa = (struct sockaddr *)cp; 1358 /* 1359 * It won't fit. 1360 */ 1361 if (cp + sa->sa_len > cplim) { 1362 RTS_PID_LOG(LOG_DEBUG, "sa_len too big for sa type %d", i); 1363 return (EINVAL); 1364 } 1365 /* 1366 * there are no more.. quit now 1367 * If there are more bits, they are in error. 1368 * I've seen this. route(1) can evidently generate these. 1369 * This causes kernel to core dump. 1370 * for compatibility, If we see this, point to a safe address. 1371 */ 1372 if (sa->sa_len == 0) { 1373 rtinfo->rti_info[i] = &sa_zero; 1374 return (0); /* should be EINVAL but for compat */ 1375 } 1376 /* accept it */ 1377 #ifdef INET6 1378 if (sa->sa_family == AF_INET6) 1379 sa6_embedscope((struct sockaddr_in6 *)sa, 1380 V_ip6_use_defzone); 1381 #endif 1382 rtinfo->rti_info[i] = sa; 1383 cp += SA_SIZE(sa); 1384 } 1385 return (0); 1386 } 1387 1388 #ifdef INET 1389 static inline void 1390 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr) 1391 { 1392 1393 const struct sockaddr_in nsin = { 1394 .sin_family = AF_INET, 1395 .sin_len = sizeof(struct sockaddr_in), 1396 .sin_addr = addr, 1397 }; 1398 *sin = nsin; 1399 } 1400 #endif 1401 1402 #ifdef INET6 1403 static inline void 1404 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6, 1405 uint32_t scopeid) 1406 { 1407 1408 const struct sockaddr_in6 nsin6 = { 1409 .sin6_family = AF_INET6, 1410 .sin6_len = sizeof(struct sockaddr_in6), 1411 .sin6_addr = *addr6, 1412 .sin6_scope_id = scopeid, 1413 }; 1414 *sin6 = nsin6; 1415 } 1416 #endif 1417 1418 #if defined(INET6) || defined(INET) 1419 /* 1420 * Checks if gateway is suitable for lltable operations. 1421 * Lltable code requires AF_LINK gateway with ifindex 1422 * and mac address specified. 1423 * Returns 0 on success. 1424 */ 1425 static int 1426 cleanup_xaddrs_lladdr(struct rt_addrinfo *info) 1427 { 1428 struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY]; 1429 1430 if (sdl->sdl_family != AF_LINK) 1431 return (EINVAL); 1432 1433 if (sdl->sdl_index == 0) { 1434 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gateway w/o ifindex"); 1435 return (EINVAL); 1436 } 1437 1438 if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len) { 1439 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gw: sdl_nlen/sdl_alen too large"); 1440 return (EINVAL); 1441 } 1442 1443 return (0); 1444 } 1445 1446 static int 1447 cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb) 1448 { 1449 struct sockaddr *gw = info->rti_info[RTAX_GATEWAY]; 1450 struct sockaddr *sa; 1451 1452 if (info->rti_flags & RTF_LLDATA) 1453 return (cleanup_xaddrs_lladdr(info)); 1454 1455 switch (gw->sa_family) { 1456 #ifdef INET 1457 case AF_INET: 1458 { 1459 struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw; 1460 1461 /* Ensure reads do not go beyoud SA boundary */ 1462 if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) { 1463 RTS_PID_LOG(LOG_DEBUG, "gateway sin_len too small: %d", 1464 gw->sa_len); 1465 return (EINVAL); 1466 } 1467 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in)); 1468 if (sa == NULL) 1469 return (ENOBUFS); 1470 fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr); 1471 info->rti_info[RTAX_GATEWAY] = sa; 1472 } 1473 break; 1474 #endif 1475 #ifdef INET6 1476 case AF_INET6: 1477 { 1478 struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw; 1479 if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) { 1480 RTS_PID_LOG(LOG_DEBUG, "gateway sin6_len too small: %d", 1481 gw->sa_len); 1482 return (EINVAL); 1483 } 1484 fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0); 1485 break; 1486 } 1487 #endif 1488 case AF_LINK: 1489 { 1490 struct sockaddr_dl *gw_sdl; 1491 1492 size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data); 1493 gw_sdl = (struct sockaddr_dl *)gw; 1494 if (gw_sdl->sdl_len < sdl_min_len) { 1495 RTS_PID_LOG(LOG_DEBUG, "gateway sdl_len too small: %d", 1496 gw_sdl->sdl_len); 1497 return (EINVAL); 1498 } 1499 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short)); 1500 if (sa == NULL) 1501 return (ENOBUFS); 1502 1503 const struct sockaddr_dl_short sdl = { 1504 .sdl_family = AF_LINK, 1505 .sdl_len = sizeof(struct sockaddr_dl_short), 1506 .sdl_index = gw_sdl->sdl_index, 1507 }; 1508 *((struct sockaddr_dl_short *)sa) = sdl; 1509 info->rti_info[RTAX_GATEWAY] = sa; 1510 break; 1511 } 1512 } 1513 1514 return (0); 1515 } 1516 #endif 1517 1518 static void 1519 remove_netmask(struct rt_addrinfo *info) 1520 { 1521 info->rti_info[RTAX_NETMASK] = NULL; 1522 info->rti_flags |= RTF_HOST; 1523 info->rti_addrs &= ~RTA_NETMASK; 1524 } 1525 1526 #ifdef INET 1527 static int 1528 cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb) 1529 { 1530 struct sockaddr_in *dst_sa, *mask_sa; 1531 const int sa_len = sizeof(struct sockaddr_in); 1532 struct in_addr dst, mask; 1533 1534 /* Check & fixup dst/netmask combination first */ 1535 dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST]; 1536 mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK]; 1537 1538 /* Ensure reads do not go beyound the buffer size */ 1539 if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero)) { 1540 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin_len too small: %d", 1541 dst_sa->sin_len); 1542 return (EINVAL); 1543 } 1544 1545 if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) { 1546 /* 1547 * Some older routing software encode mask length into the 1548 * sin_len, thus resulting in "truncated" sockaddr. 1549 */ 1550 int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr); 1551 if (len >= 0) { 1552 mask.s_addr = 0; 1553 if (len > sizeof(struct in_addr)) 1554 len = sizeof(struct in_addr); 1555 memcpy(&mask, &mask_sa->sin_addr, len); 1556 } else { 1557 RTS_PID_LOG(LOG_DEBUG, "prefix mask sin_len too small: %d", 1558 mask_sa->sin_len); 1559 return (EINVAL); 1560 } 1561 } else 1562 mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST; 1563 1564 dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr)); 1565 1566 /* Construct new "clean" dst/mask sockaddresses */ 1567 if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1568 return (ENOBUFS); 1569 fill_sockaddr_inet(dst_sa, dst); 1570 info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa; 1571 1572 if (mask.s_addr != INADDR_BROADCAST) { 1573 if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1574 return (ENOBUFS); 1575 fill_sockaddr_inet(mask_sa, mask); 1576 info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa; 1577 info->rti_flags &= ~RTF_HOST; 1578 } else 1579 remove_netmask(info); 1580 1581 /* Check gateway */ 1582 if (info->rti_info[RTAX_GATEWAY] != NULL) 1583 return (cleanup_xaddrs_gateway(info, lb)); 1584 1585 return (0); 1586 } 1587 #endif 1588 1589 #ifdef INET6 1590 static int 1591 cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb) 1592 { 1593 struct sockaddr *sa; 1594 struct sockaddr_in6 *dst_sa, *mask_sa; 1595 struct in6_addr mask, *dst; 1596 const int sa_len = sizeof(struct sockaddr_in6); 1597 1598 /* Check & fixup dst/netmask combination first */ 1599 dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST]; 1600 mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK]; 1601 1602 if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1603 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin6_len too small: %d", 1604 dst_sa->sin6_len); 1605 return (EINVAL); 1606 } 1607 1608 if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1609 /* 1610 * Some older routing software encode mask length into the 1611 * sin6_len, thus resulting in "truncated" sockaddr. 1612 */ 1613 int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr); 1614 if (len >= 0) { 1615 bzero(&mask, sizeof(mask)); 1616 if (len > sizeof(struct in6_addr)) 1617 len = sizeof(struct in6_addr); 1618 memcpy(&mask, &mask_sa->sin6_addr, len); 1619 } else { 1620 RTS_PID_LOG(LOG_DEBUG, "rtsock: prefix mask sin6_len too small: %d", 1621 mask_sa->sin6_len); 1622 return (EINVAL); 1623 } 1624 } else 1625 mask = mask_sa ? mask_sa->sin6_addr : in6mask128; 1626 1627 dst = &dst_sa->sin6_addr; 1628 IN6_MASK_ADDR(dst, &mask); 1629 1630 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1631 return (ENOBUFS); 1632 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0); 1633 info->rti_info[RTAX_DST] = sa; 1634 1635 if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) { 1636 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1637 return (ENOBUFS); 1638 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0); 1639 info->rti_info[RTAX_NETMASK] = sa; 1640 info->rti_flags &= ~RTF_HOST; 1641 } else 1642 remove_netmask(info); 1643 1644 /* Check gateway */ 1645 if (info->rti_info[RTAX_GATEWAY] != NULL) 1646 return (cleanup_xaddrs_gateway(info, lb)); 1647 1648 return (0); 1649 } 1650 #endif 1651 1652 static int 1653 cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb) 1654 { 1655 int error = EAFNOSUPPORT; 1656 1657 if (info->rti_info[RTAX_DST] == NULL) { 1658 RTS_PID_LOG(LOG_DEBUG, "prefix dst is not set"); 1659 return (EINVAL); 1660 } 1661 1662 if (info->rti_flags & RTF_LLDATA) { 1663 /* 1664 * arp(8)/ndp(8) sends RTA_NETMASK for the associated 1665 * prefix along with the actual address in RTA_DST. 1666 * Remove netmask to avoid unnecessary address masking. 1667 */ 1668 remove_netmask(info); 1669 } 1670 1671 switch (info->rti_info[RTAX_DST]->sa_family) { 1672 #ifdef INET 1673 case AF_INET: 1674 error = cleanup_xaddrs_inet(info, lb); 1675 break; 1676 #endif 1677 #ifdef INET6 1678 case AF_INET6: 1679 error = cleanup_xaddrs_inet6(info, lb); 1680 break; 1681 #endif 1682 } 1683 1684 return (error); 1685 } 1686 1687 /* 1688 * Fill in @dmask with valid netmask leaving original @smask 1689 * intact. Mostly used with radix netmasks. 1690 */ 1691 struct sockaddr * 1692 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1693 struct sockaddr_storage *dmask) 1694 { 1695 if (dst == NULL || smask == NULL) 1696 return (NULL); 1697 1698 memset(dmask, 0, dst->sa_len); 1699 memcpy(dmask, smask, smask->sa_len); 1700 dmask->ss_len = dst->sa_len; 1701 dmask->ss_family = dst->sa_family; 1702 1703 return ((struct sockaddr *)dmask); 1704 } 1705 1706 /* 1707 * Writes information related to @rtinfo object to newly-allocated mbuf. 1708 * Assumes MCLBYTES is enough to construct any message. 1709 * Used for OS notifications of vaious events (if/ifa announces,etc) 1710 * 1711 * Returns allocated mbuf or NULL on failure. 1712 */ 1713 static struct mbuf * 1714 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1715 { 1716 struct sockaddr_storage ss; 1717 struct rt_msghdr *rtm; 1718 struct mbuf *m; 1719 int i; 1720 struct sockaddr *sa; 1721 #ifdef INET6 1722 struct sockaddr_in6 *sin6; 1723 #endif 1724 int len, dlen; 1725 1726 switch (type) { 1727 case RTM_DELADDR: 1728 case RTM_NEWADDR: 1729 len = sizeof(struct ifa_msghdr); 1730 break; 1731 1732 case RTM_DELMADDR: 1733 case RTM_NEWMADDR: 1734 len = sizeof(struct ifma_msghdr); 1735 break; 1736 1737 case RTM_IFINFO: 1738 len = sizeof(struct if_msghdr); 1739 break; 1740 1741 case RTM_IFANNOUNCE: 1742 case RTM_IEEE80211: 1743 len = sizeof(struct if_announcemsghdr); 1744 break; 1745 1746 default: 1747 len = sizeof(struct rt_msghdr); 1748 } 1749 1750 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1751 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1752 if (len > MHLEN) 1753 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1754 else 1755 m = m_gethdr(M_NOWAIT, MT_DATA); 1756 if (m == NULL) 1757 return (m); 1758 1759 m->m_pkthdr.len = m->m_len = len; 1760 rtm = mtod(m, struct rt_msghdr *); 1761 bzero((caddr_t)rtm, len); 1762 for (i = 0; i < RTAX_MAX; i++) { 1763 if ((sa = rtinfo->rti_info[i]) == NULL) 1764 continue; 1765 rtinfo->rti_addrs |= (1 << i); 1766 1767 dlen = SA_SIZE(sa); 1768 KASSERT(dlen <= sizeof(ss), 1769 ("%s: sockaddr size overflow", __func__)); 1770 bzero(&ss, sizeof(ss)); 1771 bcopy(sa, &ss, sa->sa_len); 1772 sa = (struct sockaddr *)&ss; 1773 #ifdef INET6 1774 if (sa->sa_family == AF_INET6) { 1775 sin6 = (struct sockaddr_in6 *)sa; 1776 (void)sa6_recoverscope(sin6); 1777 } 1778 #endif 1779 m_copyback(m, len, dlen, (caddr_t)sa); 1780 len += dlen; 1781 } 1782 if (m->m_pkthdr.len != len) { 1783 m_freem(m); 1784 return (NULL); 1785 } 1786 rtm->rtm_msglen = len; 1787 rtm->rtm_version = RTM_VERSION; 1788 rtm->rtm_type = type; 1789 return (m); 1790 } 1791 1792 /* 1793 * Writes information related to @rtinfo object to preallocated buffer. 1794 * Stores needed size in @plen. If @w is NULL, calculates size without 1795 * writing. 1796 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1797 * 1798 * Returns 0 on success. 1799 * 1800 */ 1801 static int 1802 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1803 { 1804 struct sockaddr_storage ss; 1805 int len, buflen = 0, dlen, i; 1806 caddr_t cp = NULL; 1807 struct rt_msghdr *rtm = NULL; 1808 #ifdef INET6 1809 struct sockaddr_in6 *sin6; 1810 #endif 1811 #ifdef COMPAT_FREEBSD32 1812 bool compat32; 1813 1814 compat32 = w != NULL && w->w_req != NULL && 1815 (w->w_req->flags & SCTL_MASK32); 1816 #endif 1817 1818 switch (type) { 1819 case RTM_DELADDR: 1820 case RTM_NEWADDR: 1821 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1822 #ifdef COMPAT_FREEBSD32 1823 if (compat32) 1824 len = sizeof(struct ifa_msghdrl32); 1825 else 1826 #endif 1827 len = sizeof(struct ifa_msghdrl); 1828 } else 1829 len = sizeof(struct ifa_msghdr); 1830 break; 1831 1832 case RTM_IFINFO: 1833 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1834 #ifdef COMPAT_FREEBSD32 1835 if (compat32) 1836 len = sizeof(struct if_msghdrl32); 1837 else 1838 #endif 1839 len = sizeof(struct if_msghdrl); 1840 } else { 1841 #ifdef COMPAT_FREEBSD32 1842 if (compat32) 1843 len = sizeof(struct if_msghdr32); 1844 else 1845 #endif 1846 len = sizeof(struct if_msghdr); 1847 } 1848 break; 1849 1850 case RTM_NEWMADDR: 1851 len = sizeof(struct ifma_msghdr); 1852 break; 1853 1854 default: 1855 len = sizeof(struct rt_msghdr); 1856 } 1857 1858 if (w != NULL) { 1859 rtm = (struct rt_msghdr *)w->w_tmem; 1860 buflen = w->w_tmemsize - len; 1861 cp = (caddr_t)w->w_tmem + len; 1862 } 1863 1864 rtinfo->rti_addrs = 0; 1865 for (i = 0; i < RTAX_MAX; i++) { 1866 struct sockaddr *sa; 1867 1868 if ((sa = rtinfo->rti_info[i]) == NULL) 1869 continue; 1870 rtinfo->rti_addrs |= (1 << i); 1871 #ifdef COMPAT_FREEBSD32 1872 if (compat32) 1873 dlen = SA_SIZE32(sa); 1874 else 1875 #endif 1876 dlen = SA_SIZE(sa); 1877 if (cp != NULL && buflen >= dlen) { 1878 KASSERT(dlen <= sizeof(ss), 1879 ("%s: sockaddr size overflow", __func__)); 1880 bzero(&ss, sizeof(ss)); 1881 bcopy(sa, &ss, sa->sa_len); 1882 sa = (struct sockaddr *)&ss; 1883 #ifdef INET6 1884 if (sa->sa_family == AF_INET6) { 1885 sin6 = (struct sockaddr_in6 *)sa; 1886 (void)sa6_recoverscope(sin6); 1887 } 1888 #endif 1889 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1890 cp += dlen; 1891 buflen -= dlen; 1892 } else if (cp != NULL) { 1893 /* 1894 * Buffer too small. Count needed size 1895 * and return with error. 1896 */ 1897 cp = NULL; 1898 } 1899 1900 len += dlen; 1901 } 1902 1903 if (cp != NULL) { 1904 dlen = ALIGN(len) - len; 1905 if (buflen < dlen) 1906 cp = NULL; 1907 else { 1908 bzero(cp, dlen); 1909 cp += dlen; 1910 buflen -= dlen; 1911 } 1912 } 1913 len = ALIGN(len); 1914 1915 if (cp != NULL) { 1916 /* fill header iff buffer is large enough */ 1917 rtm->rtm_version = RTM_VERSION; 1918 rtm->rtm_type = type; 1919 rtm->rtm_msglen = len; 1920 } 1921 1922 *plen = len; 1923 1924 if (w != NULL && cp == NULL) 1925 return (ENOBUFS); 1926 1927 return (0); 1928 } 1929 1930 /* 1931 * This routine is called to generate a message from the routing 1932 * socket indicating that a redirect has occurred, a routing lookup 1933 * has failed, or that a protocol has detected timeouts to a particular 1934 * destination. 1935 */ 1936 void 1937 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1938 int fibnum) 1939 { 1940 struct rt_msghdr *rtm; 1941 struct mbuf *m; 1942 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1943 1944 if (V_route_cb.any_count == 0) 1945 return; 1946 m = rtsock_msg_mbuf(type, rtinfo); 1947 if (m == NULL) 1948 return; 1949 1950 if (fibnum != RT_ALL_FIBS) { 1951 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1952 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1953 M_SETFIB(m, fibnum); 1954 m->m_flags |= RTS_FILTER_FIB; 1955 } 1956 1957 rtm = mtod(m, struct rt_msghdr *); 1958 rtm->rtm_flags = RTF_DONE | flags; 1959 rtm->rtm_errno = error; 1960 rtm->rtm_addrs = rtinfo->rti_addrs; 1961 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1962 } 1963 1964 void 1965 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1966 { 1967 1968 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1969 } 1970 1971 /* 1972 * This routine is called to generate a message from the routing 1973 * socket indicating that the status of a network interface has changed. 1974 */ 1975 static void 1976 rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask __unused) 1977 { 1978 struct if_msghdr *ifm; 1979 struct mbuf *m; 1980 struct rt_addrinfo info; 1981 1982 if (V_route_cb.any_count == 0) 1983 return; 1984 bzero((caddr_t)&info, sizeof(info)); 1985 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1986 if (m == NULL) 1987 return; 1988 ifm = mtod(m, struct if_msghdr *); 1989 ifm->ifm_index = ifp->if_index; 1990 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1991 if_data_copy(ifp, &ifm->ifm_data); 1992 ifm->ifm_addrs = 0; 1993 rt_dispatch(m, AF_UNSPEC); 1994 } 1995 1996 /* 1997 * Announce interface address arrival/withdraw. 1998 * Please do not call directly, use rt_addrmsg(). 1999 * Assume input data to be valid. 2000 * Returns 0 on success. 2001 */ 2002 int 2003 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 2004 { 2005 struct rt_addrinfo info; 2006 struct sockaddr *sa; 2007 int ncmd; 2008 struct mbuf *m; 2009 struct ifa_msghdr *ifam; 2010 struct ifnet *ifp = ifa->ifa_ifp; 2011 struct sockaddr_storage ss; 2012 2013 if (V_route_cb.any_count == 0) 2014 return (0); 2015 2016 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 2017 2018 bzero((caddr_t)&info, sizeof(info)); 2019 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 2020 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 2021 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2022 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 2023 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2024 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 2025 return (ENOBUFS); 2026 ifam = mtod(m, struct ifa_msghdr *); 2027 ifam->ifam_index = ifp->if_index; 2028 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2029 ifam->ifam_flags = ifa->ifa_flags; 2030 ifam->ifam_addrs = info.rti_addrs; 2031 2032 if (fibnum != RT_ALL_FIBS) { 2033 M_SETFIB(m, fibnum); 2034 m->m_flags |= RTS_FILTER_FIB; 2035 } 2036 2037 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 2038 2039 return (0); 2040 } 2041 2042 /* 2043 * Announce route addition/removal to rtsock based on @rt data. 2044 * Callers are advives to use rt_routemsg() instead of using this 2045 * function directly. 2046 * Assume @rt data is consistent. 2047 * 2048 * Returns 0 on success. 2049 */ 2050 int 2051 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh, 2052 int fibnum) 2053 { 2054 union sockaddr_union dst, mask; 2055 struct rt_addrinfo info; 2056 2057 if (V_route_cb.any_count == 0) 2058 return (0); 2059 2060 int family = rt_get_family(rt); 2061 init_sockaddrs_family(family, &dst.sa, &mask.sa); 2062 export_rtaddrs(rt, &dst.sa, &mask.sa); 2063 2064 bzero((caddr_t)&info, sizeof(info)); 2065 info.rti_info[RTAX_DST] = &dst.sa; 2066 info.rti_info[RTAX_NETMASK] = &mask.sa; 2067 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2068 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 2069 info.rti_ifp = nh->nh_ifp; 2070 2071 return (rtsock_routemsg_info(cmd, &info, fibnum)); 2072 } 2073 2074 int 2075 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 2076 { 2077 struct rt_msghdr *rtm; 2078 struct sockaddr *sa; 2079 struct mbuf *m; 2080 2081 if (V_route_cb.any_count == 0) 2082 return (0); 2083 2084 if (info->rti_flags & RTF_HOST) 2085 info->rti_info[RTAX_NETMASK] = NULL; 2086 2087 m = rtsock_msg_mbuf(cmd, info); 2088 if (m == NULL) 2089 return (ENOBUFS); 2090 2091 if (fibnum != RT_ALL_FIBS) { 2092 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 2093 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 2094 M_SETFIB(m, fibnum); 2095 m->m_flags |= RTS_FILTER_FIB; 2096 } 2097 2098 rtm = mtod(m, struct rt_msghdr *); 2099 rtm->rtm_addrs = info->rti_addrs; 2100 if (info->rti_ifp != NULL) 2101 rtm->rtm_index = info->rti_ifp->if_index; 2102 /* Add RTF_DONE to indicate command 'completion' required by API */ 2103 info->rti_flags |= RTF_DONE; 2104 /* Reported routes has to be up */ 2105 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 2106 info->rti_flags |= RTF_UP; 2107 rtm->rtm_flags = info->rti_flags; 2108 2109 sa = info->rti_info[RTAX_DST]; 2110 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 2111 2112 return (0); 2113 } 2114 2115 /* 2116 * This is the analogue to the rt_newaddrmsg which performs the same 2117 * function but for multicast group memberhips. This is easier since 2118 * there is no route state to worry about. 2119 */ 2120 void 2121 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 2122 { 2123 struct rt_addrinfo info; 2124 struct mbuf *m = NULL; 2125 struct ifnet *ifp = ifma->ifma_ifp; 2126 struct ifma_msghdr *ifmam; 2127 2128 if (V_route_cb.any_count == 0) 2129 return; 2130 2131 bzero((caddr_t)&info, sizeof(info)); 2132 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2133 if (ifp && ifp->if_addr) 2134 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 2135 else 2136 info.rti_info[RTAX_IFP] = NULL; 2137 /* 2138 * If a link-layer address is present, present it as a ``gateway'' 2139 * (similarly to how ARP entries, e.g., are presented). 2140 */ 2141 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 2142 m = rtsock_msg_mbuf(cmd, &info); 2143 if (m == NULL) 2144 return; 2145 ifmam = mtod(m, struct ifma_msghdr *); 2146 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 2147 __func__)); 2148 ifmam->ifmam_index = ifp->if_index; 2149 ifmam->ifmam_addrs = info.rti_addrs; 2150 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 2151 } 2152 2153 static struct mbuf * 2154 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 2155 struct rt_addrinfo *info, const char *ifname) 2156 { 2157 struct if_announcemsghdr *ifan; 2158 struct mbuf *m; 2159 2160 if (V_route_cb.any_count == 0) 2161 return NULL; 2162 bzero((caddr_t)info, sizeof(*info)); 2163 m = rtsock_msg_mbuf(type, info); 2164 if (m != NULL) { 2165 ifan = mtod(m, struct if_announcemsghdr *); 2166 ifan->ifan_index = ifp->if_index; 2167 strlcpy(ifan->ifan_name, 2168 ifname != NULL ? ifname : ifp->if_xname, 2169 sizeof(ifan->ifan_name)); 2170 ifan->ifan_what = what; 2171 } 2172 return m; 2173 } 2174 2175 /* 2176 * This is called to generate routing socket messages indicating 2177 * IEEE80211 wireless events. 2178 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 2179 */ 2180 void 2181 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 2182 { 2183 struct mbuf *m; 2184 struct rt_addrinfo info; 2185 2186 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info, NULL); 2187 if (m != NULL) { 2188 /* 2189 * Append the ieee80211 data. Try to stick it in the 2190 * mbuf containing the ifannounce msg; otherwise allocate 2191 * a new mbuf and append. 2192 * 2193 * NB: we assume m is a single mbuf. 2194 */ 2195 if (data_len > M_TRAILINGSPACE(m)) { 2196 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 2197 if (n == NULL) { 2198 m_freem(m); 2199 return; 2200 } 2201 bcopy(data, mtod(n, void *), data_len); 2202 n->m_len = data_len; 2203 m->m_next = n; 2204 } else if (data_len > 0) { 2205 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 2206 m->m_len += data_len; 2207 } 2208 if (m->m_flags & M_PKTHDR) 2209 m->m_pkthdr.len += data_len; 2210 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 2211 rt_dispatch(m, AF_UNSPEC); 2212 } 2213 } 2214 2215 /* 2216 * This is called to generate routing socket messages indicating 2217 * network interface arrival and departure. 2218 */ 2219 static void 2220 rt_ifannouncemsg(struct ifnet *ifp, int what, const char *ifname) 2221 { 2222 struct mbuf *m; 2223 struct rt_addrinfo info; 2224 2225 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info, ifname); 2226 if (m != NULL) 2227 rt_dispatch(m, AF_UNSPEC); 2228 } 2229 2230 static void 2231 rt_dispatch(struct mbuf *m, sa_family_t saf) 2232 { 2233 2234 M_ASSERTPKTHDR(m); 2235 2236 m->m_rtsock_family = saf; 2237 if (V_loif) 2238 m->m_pkthdr.rcvif = V_loif; 2239 else { 2240 m_freem(m); 2241 return; 2242 } 2243 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 2244 } 2245 2246 /* 2247 * This is used in dumping the kernel table via sysctl(). 2248 */ 2249 static int 2250 sysctl_dumpentry(struct rtentry *rt, void *vw) 2251 { 2252 struct walkarg *w = vw; 2253 struct nhop_object *nh; 2254 2255 NET_EPOCH_ASSERT(); 2256 2257 if (!rt_is_exportable(rt, w->w_req->td->td_ucred)) 2258 return (0); 2259 2260 export_rtaddrs(rt, w->dst, w->mask); 2261 nh = rt_get_raw_nhop(rt); 2262 #ifdef ROUTE_MPATH 2263 if (NH_IS_NHGRP(nh)) { 2264 const struct weightened_nhop *wn; 2265 uint32_t num_nhops; 2266 int error; 2267 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 2268 for (int i = 0; i < num_nhops; i++) { 2269 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); 2270 if (error != 0) 2271 return (error); 2272 } 2273 } else 2274 #endif 2275 sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 2276 2277 return (0); 2278 } 2279 2280 2281 static int 2282 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 2283 struct walkarg *w) 2284 { 2285 struct rt_addrinfo info; 2286 int error = 0, size; 2287 uint32_t rtflags; 2288 2289 rtflags = nhop_get_rtflags(nh); 2290 2291 if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg)) 2292 return (0); 2293 2294 bzero((caddr_t)&info, sizeof(info)); 2295 info.rti_info[RTAX_DST] = w->dst; 2296 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2297 info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask; 2298 info.rti_info[RTAX_GENMASK] = 0; 2299 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 2300 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 2301 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 2302 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 2303 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 2304 } 2305 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 2306 return (error); 2307 if (w->w_req && w->w_tmem) { 2308 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 2309 2310 bzero(&rtm->rtm_index, 2311 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 2312 2313 /* 2314 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags) 2315 * and RTF_UP (if entry is linked, which is always true here). 2316 * Given that, use nhop rtflags & add RTF_UP. 2317 */ 2318 rtm->rtm_flags = rtflags | RTF_UP; 2319 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 2320 rtm->rtm_flags = RTF_GATEWAY | 2321 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 2322 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 2323 rtm->rtm_rmx.rmx_weight = weight; 2324 rtm->rtm_index = nh->nh_ifp->if_index; 2325 rtm->rtm_addrs = info.rti_addrs; 2326 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 2327 return (error); 2328 } 2329 return (error); 2330 } 2331 2332 static int 2333 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 2334 struct rt_addrinfo *info, struct walkarg *w, int len) 2335 { 2336 struct if_msghdrl *ifm; 2337 struct if_data *ifd; 2338 2339 ifm = (struct if_msghdrl *)w->w_tmem; 2340 2341 #ifdef COMPAT_FREEBSD32 2342 if (w->w_req->flags & SCTL_MASK32) { 2343 struct if_msghdrl32 *ifm32; 2344 2345 ifm32 = (struct if_msghdrl32 *)ifm; 2346 ifm32->ifm_addrs = info->rti_addrs; 2347 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2348 ifm32->ifm_index = ifp->if_index; 2349 ifm32->_ifm_spare1 = 0; 2350 ifm32->ifm_len = sizeof(*ifm32); 2351 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 2352 ifm32->_ifm_spare2 = 0; 2353 ifd = &ifm32->ifm_data; 2354 } else 2355 #endif 2356 { 2357 ifm->ifm_addrs = info->rti_addrs; 2358 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2359 ifm->ifm_index = ifp->if_index; 2360 ifm->_ifm_spare1 = 0; 2361 ifm->ifm_len = sizeof(*ifm); 2362 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 2363 ifm->_ifm_spare2 = 0; 2364 ifd = &ifm->ifm_data; 2365 } 2366 2367 memcpy(ifd, src_ifd, sizeof(*ifd)); 2368 2369 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2370 } 2371 2372 static int 2373 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 2374 struct rt_addrinfo *info, struct walkarg *w, int len) 2375 { 2376 struct if_msghdr *ifm; 2377 struct if_data *ifd; 2378 2379 ifm = (struct if_msghdr *)w->w_tmem; 2380 2381 #ifdef COMPAT_FREEBSD32 2382 if (w->w_req->flags & SCTL_MASK32) { 2383 struct if_msghdr32 *ifm32; 2384 2385 ifm32 = (struct if_msghdr32 *)ifm; 2386 ifm32->ifm_addrs = info->rti_addrs; 2387 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2388 ifm32->ifm_index = ifp->if_index; 2389 ifm32->_ifm_spare1 = 0; 2390 ifd = &ifm32->ifm_data; 2391 } else 2392 #endif 2393 { 2394 ifm->ifm_addrs = info->rti_addrs; 2395 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2396 ifm->ifm_index = ifp->if_index; 2397 ifm->_ifm_spare1 = 0; 2398 ifd = &ifm->ifm_data; 2399 } 2400 2401 memcpy(ifd, src_ifd, sizeof(*ifd)); 2402 2403 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2404 } 2405 2406 static int 2407 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 2408 struct walkarg *w, int len) 2409 { 2410 struct ifa_msghdrl *ifam; 2411 struct if_data *ifd; 2412 2413 ifam = (struct ifa_msghdrl *)w->w_tmem; 2414 2415 #ifdef COMPAT_FREEBSD32 2416 if (w->w_req->flags & SCTL_MASK32) { 2417 struct ifa_msghdrl32 *ifam32; 2418 2419 ifam32 = (struct ifa_msghdrl32 *)ifam; 2420 ifam32->ifam_addrs = info->rti_addrs; 2421 ifam32->ifam_flags = ifa->ifa_flags; 2422 ifam32->ifam_index = ifa->ifa_ifp->if_index; 2423 ifam32->_ifam_spare1 = 0; 2424 ifam32->ifam_len = sizeof(*ifam32); 2425 ifam32->ifam_data_off = 2426 offsetof(struct ifa_msghdrl32, ifam_data); 2427 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 2428 ifd = &ifam32->ifam_data; 2429 } else 2430 #endif 2431 { 2432 ifam->ifam_addrs = info->rti_addrs; 2433 ifam->ifam_flags = ifa->ifa_flags; 2434 ifam->ifam_index = ifa->ifa_ifp->if_index; 2435 ifam->_ifam_spare1 = 0; 2436 ifam->ifam_len = sizeof(*ifam); 2437 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 2438 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2439 ifd = &ifam->ifam_data; 2440 } 2441 2442 bzero(ifd, sizeof(*ifd)); 2443 ifd->ifi_datalen = sizeof(struct if_data); 2444 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 2445 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 2446 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 2447 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 2448 2449 /* Fixup if_data carp(4) vhid. */ 2450 if (carp_get_vhid_p != NULL) 2451 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 2452 2453 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2454 } 2455 2456 static int 2457 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 2458 struct walkarg *w, int len) 2459 { 2460 struct ifa_msghdr *ifam; 2461 2462 ifam = (struct ifa_msghdr *)w->w_tmem; 2463 ifam->ifam_addrs = info->rti_addrs; 2464 ifam->ifam_flags = ifa->ifa_flags; 2465 ifam->ifam_index = ifa->ifa_ifp->if_index; 2466 ifam->_ifam_spare1 = 0; 2467 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2468 2469 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2470 } 2471 2472 static int 2473 sysctl_iflist(int af, struct walkarg *w) 2474 { 2475 struct ifnet *ifp; 2476 struct ifaddr *ifa; 2477 struct if_data ifd; 2478 struct rt_addrinfo info; 2479 int len, error = 0; 2480 struct sockaddr_storage ss; 2481 2482 bzero((caddr_t)&info, sizeof(info)); 2483 bzero(&ifd, sizeof(ifd)); 2484 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2485 if (w->w_arg && w->w_arg != ifp->if_index) 2486 continue; 2487 if_data_copy(ifp, &ifd); 2488 ifa = ifp->if_addr; 2489 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 2490 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 2491 if (error != 0) 2492 goto done; 2493 info.rti_info[RTAX_IFP] = NULL; 2494 if (w->w_req && w->w_tmem) { 2495 if (w->w_op == NET_RT_IFLISTL) 2496 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 2497 len); 2498 else 2499 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 2500 len); 2501 if (error) 2502 goto done; 2503 } 2504 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 2505 if (af && af != ifa->ifa_addr->sa_family) 2506 continue; 2507 if (prison_if(w->w_req->td->td_ucred, 2508 ifa->ifa_addr) != 0) 2509 continue; 2510 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2511 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2512 ifa->ifa_addr, ifa->ifa_netmask, &ss); 2513 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2514 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 2515 if (error != 0) 2516 goto done; 2517 if (w->w_req && w->w_tmem) { 2518 if (w->w_op == NET_RT_IFLISTL) 2519 error = sysctl_iflist_ifaml(ifa, &info, 2520 w, len); 2521 else 2522 error = sysctl_iflist_ifam(ifa, &info, 2523 w, len); 2524 if (error) 2525 goto done; 2526 } 2527 } 2528 info.rti_info[RTAX_IFA] = NULL; 2529 info.rti_info[RTAX_NETMASK] = NULL; 2530 info.rti_info[RTAX_BRD] = NULL; 2531 } 2532 done: 2533 return (error); 2534 } 2535 2536 static int 2537 sysctl_ifmalist(int af, struct walkarg *w) 2538 { 2539 struct rt_addrinfo info; 2540 struct ifaddr *ifa; 2541 struct ifmultiaddr *ifma; 2542 struct ifnet *ifp; 2543 int error, len; 2544 2545 NET_EPOCH_ASSERT(); 2546 2547 error = 0; 2548 bzero((caddr_t)&info, sizeof(info)); 2549 2550 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2551 if (w->w_arg && w->w_arg != ifp->if_index) 2552 continue; 2553 ifa = ifp->if_addr; 2554 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 2555 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2556 if (af && af != ifma->ifma_addr->sa_family) 2557 continue; 2558 if (prison_if(w->w_req->td->td_ucred, 2559 ifma->ifma_addr) != 0) 2560 continue; 2561 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2562 info.rti_info[RTAX_GATEWAY] = 2563 (ifma->ifma_addr->sa_family != AF_LINK) ? 2564 ifma->ifma_lladdr : NULL; 2565 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 2566 if (error != 0) 2567 break; 2568 if (w->w_req && w->w_tmem) { 2569 struct ifma_msghdr *ifmam; 2570 2571 ifmam = (struct ifma_msghdr *)w->w_tmem; 2572 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2573 ifmam->ifmam_flags = 0; 2574 ifmam->ifmam_addrs = info.rti_addrs; 2575 ifmam->_ifmam_spare1 = 0; 2576 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2577 if (error != 0) 2578 break; 2579 } 2580 } 2581 if (error != 0) 2582 break; 2583 } 2584 return (error); 2585 } 2586 2587 static void 2588 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w) 2589 { 2590 union sockaddr_union sa_dst, sa_mask; 2591 2592 w->family = family; 2593 w->dst = (struct sockaddr *)&sa_dst; 2594 w->mask = (struct sockaddr *)&sa_mask; 2595 2596 init_sockaddrs_family(family, w->dst, w->mask); 2597 2598 rib_walk(fibnum, family, false, sysctl_dumpentry, w); 2599 } 2600 2601 static int 2602 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2603 { 2604 struct epoch_tracker et; 2605 int *name = (int *)arg1; 2606 u_int namelen = arg2; 2607 struct rib_head *rnh = NULL; /* silence compiler. */ 2608 int i, lim, error = EINVAL; 2609 int fib = 0; 2610 u_char af; 2611 struct walkarg w; 2612 2613 if (namelen < 3) 2614 return (EINVAL); 2615 2616 name++; 2617 namelen--; 2618 if (req->newptr) 2619 return (EPERM); 2620 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { 2621 if (namelen == 3) 2622 fib = req->td->td_proc->p_fibnum; 2623 else if (namelen == 4) 2624 fib = (name[3] == RT_ALL_FIBS) ? 2625 req->td->td_proc->p_fibnum : name[3]; 2626 else 2627 return ((namelen < 3) ? EISDIR : ENOTDIR); 2628 if (fib < 0 || fib >= rt_numfibs) 2629 return (EINVAL); 2630 } else if (namelen != 3) 2631 return ((namelen < 3) ? EISDIR : ENOTDIR); 2632 af = name[0]; 2633 if (af > AF_MAX) 2634 return (EINVAL); 2635 bzero(&w, sizeof(w)); 2636 w.w_op = name[1]; 2637 w.w_arg = name[2]; 2638 w.w_req = req; 2639 2640 error = sysctl_wire_old_buffer(req, 0); 2641 if (error) 2642 return (error); 2643 2644 /* 2645 * Allocate reply buffer in advance. 2646 * All rtsock messages has maximum length of u_short. 2647 */ 2648 w.w_tmemsize = 65536; 2649 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2650 2651 NET_EPOCH_ENTER(et); 2652 switch (w.w_op) { 2653 case NET_RT_DUMP: 2654 case NET_RT_FLAGS: 2655 if (af == 0) { /* dump all tables */ 2656 i = 1; 2657 lim = AF_MAX; 2658 } else /* dump only one table */ 2659 i = lim = af; 2660 2661 /* 2662 * take care of llinfo entries, the caller must 2663 * specify an AF 2664 */ 2665 if (w.w_op == NET_RT_FLAGS && 2666 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2667 if (af != 0) 2668 error = lltable_sysctl_dumparp(af, w.w_req); 2669 else 2670 error = EINVAL; 2671 break; 2672 } 2673 /* 2674 * take care of routing entries 2675 */ 2676 for (error = 0; error == 0 && i <= lim; i++) { 2677 rnh = rt_tables_get_rnh(fib, i); 2678 if (rnh != NULL) { 2679 rtable_sysctl_dump(fib, i, &w); 2680 } else if (af != 0) 2681 error = EAFNOSUPPORT; 2682 } 2683 break; 2684 case NET_RT_NHOP: 2685 case NET_RT_NHGRP: 2686 /* Allow dumping one specific af/fib at a time */ 2687 if (namelen < 4) { 2688 error = EINVAL; 2689 break; 2690 } 2691 fib = name[3]; 2692 if (fib < 0 || fib > rt_numfibs) { 2693 error = EINVAL; 2694 break; 2695 } 2696 rnh = rt_tables_get_rnh(fib, af); 2697 if (rnh == NULL) { 2698 error = EAFNOSUPPORT; 2699 break; 2700 } 2701 if (w.w_op == NET_RT_NHOP) 2702 error = nhops_dump_sysctl(rnh, w.w_req); 2703 else 2704 #ifdef ROUTE_MPATH 2705 error = nhgrp_dump_sysctl(rnh, w.w_req); 2706 #else 2707 error = ENOTSUP; 2708 #endif 2709 break; 2710 case NET_RT_IFLIST: 2711 case NET_RT_IFLISTL: 2712 error = sysctl_iflist(af, &w); 2713 break; 2714 2715 case NET_RT_IFMALIST: 2716 error = sysctl_ifmalist(af, &w); 2717 break; 2718 } 2719 NET_EPOCH_EXIT(et); 2720 2721 free(w.w_tmem, M_TEMP); 2722 return (error); 2723 } 2724 2725 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2726 sysctl_rtsock, "Return route tables and interface/address lists"); 2727 2728 /* 2729 * Definitions of protocols supported in the ROUTE domain. 2730 */ 2731 2732 static struct domain routedomain; /* or at least forward */ 2733 2734 static struct protosw routesw = { 2735 .pr_type = SOCK_RAW, 2736 .pr_flags = PR_ATOMIC|PR_ADDR, 2737 .pr_abort = rts_close, 2738 .pr_attach = rts_attach, 2739 .pr_ctloutput = rts_ctloutput, 2740 .pr_detach = rts_detach, 2741 .pr_send = rts_send, 2742 .pr_shutdown = rts_shutdown, 2743 .pr_disconnect = rts_disconnect, 2744 .pr_close = rts_close, 2745 }; 2746 2747 static struct domain routedomain = { 2748 .dom_family = PF_ROUTE, 2749 .dom_name = "route", 2750 .dom_nprotosw = 1, 2751 .dom_protosw = { &routesw }, 2752 }; 2753 2754 DOMAIN_SET(route); 2755